3,579 research outputs found

    Empirical analysis of web-based user-object bipartite networks

    Get PDF
    Understanding the structure and evolution of web-based user-object networks is a significant task since they play a crucial role in e-commerce nowadays. This Letter reports the empirical analysis on two large-scale web sites, audioscrobbler.com and del.icio.us, where users are connected with music groups and bookmarks, respectively. The degree distributions and degree-degree correlations for both users and objects are reported. We propose a new index, named collaborative clustering coefficient, to quantify the clustering behavior based on the collaborative selection. Accordingly, the clustering properties and clustering-degree correlations are investigated. We report some novel phenomena well characterizing the selection mechanism of web users and outline the relevance of these phenomena to the information recommendation problem.Comment: 6 pages, 7 figures and 1 tabl

    Behavior patterns of online users and the effect on information filtering

    Get PDF
    Understanding the structure and evolution of web-based user-object bipartite networks is an important task since they play a fundamental role in online information filtering. In this paper, we focus on investigating the patterns of online users' behavior and the effect on recommendation process. Empirical analysis on the e-commercial systems show that users have significant taste diversity and their interests for niche items highly overlap. Additionally, recommendation process are investigated on both the real networks and the reshuffled networks in which real users' behavior patterns can be gradually destroyed. Our results shows that the performance of personalized recommendation methods is strongly related to the real network structure. Detail study on each item shows that recommendation accuracy for hot items is almost maximum and quite robust to the reshuffling process. However, niche items cannot be accurately recommended after removing users' behavior patterns. Our work also is meaningful in practical sense since it reveals an effective direction to improve the accuracy and the robustness of the existing recommender systems.Comment: 8 pages, 6 figure

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Information Filtering on Coupled Social Networks

    Full text link
    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm based on the coupled social networks, which considers the effects of both social influence and personalized preference. Experimental results on two real datasets, \emph{Epinions} and \emph{Friendfeed}, show that hybrid pattern can not only provide more accurate recommendations, but also can enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding structure and function of coupled social networks

    Temporal effects in trend prediction: identifying the most popular nodes in the future

    Full text link
    Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes' recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail

    Tag-Aware Recommender Systems: A State-of-the-art Survey

    Get PDF
    In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related works and future challenges of tag-aware recommendation algorithms.Comment: 19 pages, 3 figure
    corecore