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Understanding the structure and evolution of web-based user-item bipartite networks is
an important task since they play a fundamental role in online information filtering. In
this paper, we focus on investigating the patterns of online users’ behavior and the effect
on recommendation process. Empirical analysis on the e-commercial systems show that
users’ taste preferences are heterogeneous in general but their interests for niche items
are highly clustered. Additionally, recommendation processes are investigated on both
the real networks and the reshuffled networks in which real users’ behavior patterns can
be gradually destroyed. We find that the performance of personalized recommendation
methods is strongly related to the real network structure. Detailed study on each item
shows that most hot items are accurately recommended and their recommendation
accuracy is robust to the reshuffling process. However, the accuracy for niche items is
relatively low and drops significantly after removing users’ behavior patterns. Our work
is also meaningful in practical sense since it reveals an effective direction to improve the
accuracy and the robustness of the existing recommender systems.

1. Introduction

Complex networks have been studied intensively for more than a decade. The rapid development of network science has
greatly helped us to understand andmodel real systems [1]. So far, many systems have been described by networks, such as
the transportation systemwhere nodes are airports and links are airlines [2–5], the neural systemwhere nodes are neurons
and links are synapses [6], the social system where nodes are people and links are the social interactions [7,8], the power
grid where nodes are power plants and links are power cables [9]. Some other systems coupled by two different elements
aremodeled by the bipartite networks. For example, the e-commercial systems consisting of online users and items [10], the
scientific collaboration system consisting of authors and papers [11], family name inheritance system consisting of babies
and names [12] are naturally described by such networks.

The e-commercial systems have brought giant benefit to our daily lives. Nowadays, we can simply order books, movies,
clothes etc. from the online retailer even at home. However, like a coin has both sides, internet also brings us overabundant
information so that we always have too many candidate products to compare. In order to solve the problem, many
recommendation algorithms such as collaborative filtering [13,14], content-based analysis [15], spectral analysis [16]
and iterative self-consistent refinement [17] were developed to filter irrelevant information. Some physical dynamics
on the bipartite networks, including mass diffusion [18] and heat conduction process [19], have also been applied to
design recommendation algorithms. The hybrid algorithm combining mass diffusion and heat conduction is shown to
obtain significant improvement in both recommendation accuracy and item diversity [20]. Very recently, the performance
of diffusion-based recommendation methods has been further enhanced by the preferential diffusion process [21] and
modified heat conduction [22].
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Table 1
Properties of the used datasets.

Network Users Items Links Sparsity

Movielens 943 1682 82,520 5.20 · 10−2

Netflix 3000 3000 197,248 2.19 · 10−2

Delicious 10,000 232,657 1,233,997 5.30 · 10−4

Amazon 99,622 645,056 2,036,091 3.17 · 10−5

Previousworks have found that people’s behavior is far different from randomandobeys certain predictable rules [23,24].
From the network point of view, the users’ online behavior will emerge some typical statistical patterns on the network
structure [25,26]. Besides, the network structure properties have been shown to affect the recommendation process [27–29].
Therefore, users’ behavior patterns will inevitably influence the recommendation result. Actually, users’ behavior patterns
are commonly believed to be beneficial for recommendation since related algorithms generally filter relevant information
by cooperating the history of similar users. If users randomly choose items, the recommender systemswill not have valuable
information to refer to. Hence, howmuch the recommendation performance relies on these behavior patterns of users can be
an interesting problem. It is not only helpful for understanding the effect of network structure on recommendation process,
but also meaningful in improving the robustness of the existing recommender systems.

In this paper, we focus on understanding online users’ statistical behavior pattern and the related effect on
recommendation. We will compare the real bipartite networks with the randomized counterpart networks (i. e. the
reshuffled networks) in which real users’ behavior pattern can be gradually removed. Actually, some specific properties of
the real networks have been discovered by the comparison to the reshuffled networks such as the loop distribution [30,31],
rich club [32,33], community structure [34], assortative [35] and motifs [36]. Here, we find that users’ taste preferences
are well separated in general, which means that users tend to seek for different items from each other. Users’ interests
for niche items (i.e. items with small degree) are found to be highly clustered, which indicates that the selectors of niche
items enjoy a high similarity. Furthermore, we investigate the recommendation processes on both the real networks and
the reshuffled networks. The results show that the performance of popularity-based recommendation methods do not rely
on the real network structure while the performance of personalized recommendationmethods is strongly related to it. The
recommendation accuracy on each item is studied in detail. We find that most personalized recommendation methods can
accurately catch users’ taste on hot items (i.e. items with large degree) and the reshuffling process does not influence the
recommendation accuracy for hot items. However, the accuracy for niche items is relatively low and drops significantly after
removing users’ behavior patterns. Actually, a robust recommender system should enjoy a stable recommendation accuracy
even the user-item networks are deliberately attacked with some random links, our finding suggests that preserving the
recommendation accuracy for niche items is significant for enhancing the robustness of the recommender system. Since we
reveal an effective direction to improve the accuracy and the robustness of the existing recommender systems, this work is
meaningful from the practical point of view.

2. Statistical behavior patterns of online users

In this paper, the datasets that we will use are the subsets of data obtained from four online systems: Movielens
(http://www.grouplens.com/), Netflix (http://www.netflixprize.com/), Delicious (http://www.delicious.com/) and Amazon
(http://www.amazon.com/). These data are random samplings of the whole records of user activities in these websites, the
descriptions of data are given in Table 1.

To investigate users’ behavior pattern, wewill compare the real bipartite networks with the reshuffled networks. In each
step of the reshuffling process, we first randomly pick two links from the real network, for example, one is from user i to
item α and the other is from user j to item β (throughout this paper we use Greek and Latin letters, respectively, for item-
and user-related indices). Thenwe rewire these two links by i to β and j to α. Hence, the degree of the users and itemswould
not be changed by this reshuffling process while the links in this reshuffled networks are randomized. Denoting T as the
reshuffling times and L as the total links in the networks, we fix T/L = 3 in the following analysis.

After the reshuffling process, users’ degree and items’ degree are preserved while the correlation between users and
items are destroyed. To begin our comparison, we focus on the average degree of users’ selected items. Suppose a user i
selects m items with degree kα (α = 1, 2, . . . ,m), we calculate the average degree of the items that he/she selected as

di =
∑m

α=1 kα
m

. Actually, the distribution of d reflects the heterogeneity of users’ preference. When all the users prefer the
same items, users’ d will be quite close to each other. Consequently, the distribution of d will be narrow. On the contrary,
the distribution of dwill be quite flat if all the users seek for different items. We then compare the distribution P(d) in real
networks with P(d) in the reshuffled networks. As shown in Fig. 1, P(d) in real networks indeed are much boarder than that
in the reshuffled networks, which means the real users exhibit heterogeneous preference in choosing items.

Second, for each user we study the inter-similarity among all his/her selected items. Suppose a user i selects m items
and the similarity between items α and β is denoted as sαβ , the inter-similarity among all these m items can be obtained

by S̃i = 2
∑m

α=2

∑α
β=1 sαβ

m(m−1)
. The similarity sαβ of two items is calculated by the common neighbor index which is simply the
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Fig. 1. (Color online) The distribution P(d) in real systems and reshuffled networks where d is the average degree of selected items for each user.

Fig. 2. (Color online) The inter-similarity S̃ among all the selected items for each user vs user’s degree. For a given x, its corresponding S̃ is obtained by
averaging over all the items whose degrees are in the range of [a(x2 − x), a(x2 + x)], where a is chosen as 1

2
log 5 for a better illustration.

overlap number of their neighbors [37,38]. In fact, S̃ estimates the taste diversity for each single user. Specifically, when a
user always selects the same kind of items, the value of S̃ for him/her will be high. On the other hand, if the interest of a
user changes from time to time, his/her S̃ will be very low. As shown in Fig. 2, compared to the reshuffled networks, the
low-degree users in real systems show a higher S̃ while the high-degree users are with lower S̃. Actually, as a low-degree
user, he/she does not have much experience in exploring new items. He/she is more likely to conservatively choose items
in the group which he/she is already familiar with (normally, popular items [25]). Consequently, his/her selected items are
very similar. On the contrary, a high-degree user in real systems inclines to search and try different kinds of items (normally,
unpopular items [25]). Therefore, his/her selected items will be with low S̃.

Similarly, for each item we investigate the inter-similarity among all the users who selected it. Assume an item α is
chosen by n users and the similarity between user i and j is denoted as sij, the inter-similarity among all these users is

S̃α = 2
∑n

i=2

∑i
j=1 sij

n(n−1)
where sij is again calculated by common neighbor index. Actually, S̃ here reflects whether a specific
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Fig. 3. (Color online) The inter-similarity S̃ among all the selecting users for each item vs item’s degree. The S̃ is averaged by the same process in Fig. 2.

item is selected by the same group of users. In Fig. 3, we study S̃α in the real networks and the reshuffled networks. For
hot items, their selectors in real networks have lower S̃ than those in the reshuffled networks since hot items in real
system are selected by many low-degree users [25]. However, the selectors of niche items in the real networks enjoy
higher inter-similarity than those in the reshuffled networks since unpopular items in real networks are normally selected
by high-degree users [25]. As we know, the personalized recommendation systems generally filter relevant information
by cooperating the history of similar users. The clustering of users’ interests for niche items is very meaningful since it
makes the limited historical information of these niche items valuable for the recommendation systems to refer to. In
following sections, we will detailedly investigate how these users’ online behavior patterns affect the recommendation
process.

3. Recommendation algorithms and the related features

In order to reveal the effect of users’ online behavior patterns on information filtering, we investigate the
recommendation process on both the real networks and the reshuffled networks in which real users’ behavior patterns
are destroyed. We consider four conventional recommendation algorithms including mass diffusion (MD), heat conduction
(HC), collaborative filtering (CF), and popularity-based (PR) methods. We will show how the recommendation performance
is influenced when we gradually remove users’ real behavior patterns.

Let us consider an online system with N users andM items. It can be represented by a bipartite network with adjacency
matrix A, where the element aiα = 1 if user i has collected item α, and aiα = 0, otherwise. As shown in Fig. 4(a), for a target
user i, the MD algorithm starts by assigning one unit of resources to items collected by i, and redistributes the resource
through the user-item network. We denote the vector fi as the initial resources on items, where the α-th component f iα is

the resource possessed by object α. Recommendations for the user i are obtained by setting the elements in fi to be f iα = aiα ,

in accordance with the objects the user has already collected. The redistribution is represented by f̃ = W f, where

Wαβ = 1

kβ

N∑
l=1

alαalβ

kl
, (1)

is the diffusion matrix, with kβ = ∑N
i=1 aiβ and kl = ∑M

γ alγ denoting the degree of item β and user l, respectively [18].

Physically, the diffusion is equivalent to a three-step random walk starting with ki units of resources on the target user i.
The recommendation score of an item is taken to be the amount of resources on it after the diffusion.

The HC algorithmworks similar to theMD algorithm as shown in Fig. 4(b), the only difference is that the diffusionmatrix
is calculated as

Wαβ = 1

kα

N∑
l=1

alαalβ

kl
. (2)
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(a) Mass diffusion.

(b) Heat conduction.

Fig. 4. (Color online) (a) Mass diffusion and (b) heat conduction algorithms (Eqs. (1) and (2)) at work on the bipartite user-item network. Users are shown
as circles; items are squares. The target user is indicated by the shaded circle.

Physically, the temperature of a user is considered to be the average temperature of its nearest neighbors (i.e. its connected
items) and the temperature of an item is also calculated as the average temperature of its nearest neighbors (i.e. its connected
users). The higher the final temperature of an item is, the higher its recommendation score will be [19].

The CF algorithms provide recommendations based on user or item similarities. Here, we consider the item-based
CF which has been successfully applied to many online applications such as Amazon (one of the largest online product
retailers) [39]. In the item-based CF method, the recommendation score of an item is evaluated based on its similarity with
the collected items of the target user. The final recommendation score for each item can be written as

f̃ iα =
M∑

β=1

sαβaiβ (3)

where sαβ is the similarity between item α and β [40]. Based on the bipartite networks, many methods can be used to
quantify the similarity of two items [38]. Here we apply the Common Neighbors index in the calculation.

The PR algorithms are very simple and commonly used in many websites. In this method, the recommendation score for
each item is proportional to its popularity (i.e. the degree of the item).

In these methods, the final recommendation scores for items that user i have already collected are set to 0. The
recommendation list for user i is generated by ranking all his/her uncollected items in descending order of their final
recommendation scores. Actually, the differences of these recommendationmethods have been studied in detail in Ref. [41].
In order to further understand these methods, we calculate the normalized total recommendation score for each item as

Fα = ∑N
i=1

f̃ iα
maxβ (̃f iβ )

. The result is shown in Fig. 5. In statistical sense, theMD, CF and PRmethods assign high recommendation

score to the high degree items. In the HCmethod, the itemswith low degree are generally with high recommendation score.
Therefore, the MD, CF and PR methods tend to recommend the popular items while the HC method inclines to recommend
unpopular items.

4. The effect of users’ behavior patterns on information filtering

We then apply all these methods to the real networks and their reshuffled networks to see how users’ real behavior
patterns affect the recommendation. Similar to the previous work [20], to test the recommendation result we randomly
remove 10% of the links (the probe set denoted as EP ). We then apply the algorithms to the remainder (the training set
denoted as ET ) to produce a recommendation list for each user.

In order tomeasure the accuracy of the recommendation result, wemake use of the ranking score index [18]. For a target
user, the recommender systemwill return a ranking list of all his uncollected items to him according to the recommendation
scores. For each hiddenuser-item relation (i.e., the link in probe set),wemeasure the rank of the item in the recommendation
list of this user. For example, if there are 1000 uncollected items for user i, and item α is at 10th place, we say the position
of this item is 10/1000, denoted by RSiα = 0.01. A successful recommendation result is expected to highly recommend the
items in the probe set, and thus leading to small ranking score. Averaging over all the hidden user-item relations, we obtain
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Fig. 5. (Color online) The normalized total recommendation score F vs item degree in different recommendation systems.

the mean value of ranking score to evaluate the recommendation accuracy, namely

〈RS〉 = 1

|EP |
∑
iα∈EP

RSiα, (4)

where iα denotes the probe link connecting user i and item α. Clearly, the smaller the ranking score, the higher the
algorithm’s accuracy, and vice versa.

In Fig. 6, we report how the average ranking scores of different recommendation methods are influenced when we
gradually remove real users’ behavior patterns. The results show that the ranking score of PR is hardly affected by the
reshuffling process. It is reasonable because the PR method does not rely on the detail bipartite network structure and
gives the recommendation score for each item simply according to its popularity. On the contrary, the personalized
recommendation methods such as the MD, HC and CF methods, which return different recommendation list for each user
based on his/her historical information, are influenced. Obviously, the ranking score of the HC method increases most
significantly when we reshuffle the networks. In fact, the HC method is considered as an effective method to enhance
recommendation diversity by mainly predicting users’ preference for niche items [20]. Therefore, the result implies that
without the real correlation between users and items, only the information of degree is insufficient for the recommendation
systems accurately providing a diverse recommendation. More specifically, as we discussed in the previous section, users’
interests for niche items are highly clustered in real systems. Hence, the recommendation systems can predict target user’s
potential niche items by cooperating the information from his/her similar users. However, in the reshuffled networks users’
interests for niche items only slightly overlap, so there is little information from the similar users for the recommendation
engines to refer to. It finally leads to the serious increment in the ranking score of the HC method.

As recommendation algorithms which tend to recommend popular items, MD and CF methods are not so sensitive to
the reshuffling process as the HC method. In the dense networks like Movielens and Netflix, the ranking scores of MD and
CF stay almost unchanged. However, in the sparse networks like Delicious and Amazon, the ranking scores of MD and CF
methods show an observable increment. In order to see the effect of the reshuffling process on the MD and CF methods in
detail, we study the ranking score for each item, namely

〈RSα〉 = 1

|EP
α |

∑
iα∈EPα

RSiα, (5)

where EP
α denotes all the links in the probe set that connect to itemα. Thenwe can see the relation between items’ degree and

their ranking score, the result is reported in Fig. 7. In real networks, the hot items enjoy low ranking score (〈RS〉 ≈ 0) while
the niche items are with high ranking score (it can be even higher than the random recommendation whose 〈RS〉 = 0.5).
It suggests that almost all the hot items are accurately recommended while niche items’ accuracy is quite low and has
plenty of room for improvement. Therefore, in order to design a more effective personalized recommendation method than
current ones, it is crucial to solve the cold start problem, i.e. to improve the recommendation for niche items [20,21,42].
Another interesting finding is that only the ranking scores for unpopular items are affected by the reshuffling process while
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Fig. 6. (Color online) The ranking score 〈RS〉 of different recommendation methods when reshuffling the real networks. T is the reshuffling steps and L is
the total links in the networks.

Fig. 7. (Color online) Dependence of ranking score 〈RSα〉 on the item degree. The 〈RSα〉 is averaged by the same process in Fig. 2. The main figures are the
results of the MD method while the inserts are the results of the CF method. In the reshuffled networks, T/L = 3.

the ranking score for popular items stays almost the same. Since lots of items are with low degree in the sparse networks
such as Delicious and Amazon, the average ranking scores for MD and CF in Fig. 6(c) and (d) increase with the reshuffling
process. In theMovielens andNetflix networkswhere the links are relatively dense, fewer items arewith lowdegree in these
networks. Accordingly, the average ranking scores forMD and CF in Fig. 6(a) and (b) do not increasemuch. From the practical
point of view, a robust recommender system should enjoy a stable recommendation accuracy even the user-item networks
are deliberately attacked with some random links. Therefore, if we want to enhance the robustness of the recommender
system, the most effective way is to preserve the recommendation accuracy for niche items since they are sensitive to the
random links.

The previous study reveals that hybrid of the MD and HC methods can result in significant improvement in both
recommendation accuracy and item diversity [20]. Actually, this hybrid method is implementable because the HC method
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can effectively catch the users’ taste for niche items. As the recommendation accuracy for the HC method in the reshuffled
networks is close to the random recommendation (〈RS〉 = 0.5), the hybrid method is impossible to be carried out in the
systems where users randomly choose their items. It indicates that users’ behavior patterns in real systems are essential for
solving the diversity-accuracy dilemma of recommender systems.

5. Conclusion

The development in network science has greatly improved the function as well as our understanding to many real
systems. In recommendation which is considered as a promising way to solve the problem of information overabundance,
researchers have designed the network-based recommendation methods to filter irrelevant information. For example, with
the help of some typical physics dynamics on the bipartite networks, the mass diffusion and heat conduction algorithms
have been proposed to improve the recommendation accuracy and diversity, respectively.

In this paper, we investigate the users’ online behavior patterns and related effect on information filtering. we compare
the real bipartite networks with the reshuffled networks in which users’ behavior patterns are gradually removed. The
results reveal the heterogeneity of users’ taste preference and highly clustering of users’ interests on niche items. In addition,
we find that the performance of personalized recommendation methods such as MD, HC and CF is strongly related to the
real network structure. We then detailedly study the recommendation accuracy of the personalized methods on each item.
The result indicates that hot items enjoy high recommendation accuracy and their accuracy is quite robust to the reshuffling
process. On the contrary, niche items cannot be accurately recommended without real users’ behavior properties.

Our work is also meaningful in practical aspect. Our result suggests that the niche items are more valuable information
than hot items. Those users who co-collect the same niche item are more likely share common interests. Based on this
understanding, a wisely designed similarity, such as Resource Allocation index [43,44], may improve the recommendation
performance of the conventional collaborative filtering algorithm. Moreover, in order to improve the accuracy of current
recommendation engines, our results suggest that it is crucial to improve the recommendation accuracy for niche items. For
enhancing the robustness of the recommender engines, the most effective way is to preserve the recommendation accuracy
for niche items when the e-commercial systems are added with some noisy information. In this sense, our work may shed
some light for developing a new recommender system with both higher accuracy and better reliability.
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