6 research outputs found

    A Development Framework for Rapid Metaheuristics Hybridization

    Get PDF
    While meta-heuristics are effective for solving large-scale combinatorial optimization problems, they result from time-consuming trial-and-error algorithm design tailored to specific problems. For this reason, a software tool for rapid prototyping of algorithms would save considerable resources. This paper presents a generic software framework that reduces development time through abstract classes and software reuse, and more importantly, aids design with support of user-defined strategies and hybridization of meta-heuristics. Most interestingly, we propose a novel way of redefining hybridization with the use of the “request and response ” metaphor, which form an abstract concept for hybridization. Different hybridization schemes can now be formed with minimal coding, which gives our proposed Metaheuristics Development Framework its uniqueness. To illustrate the concept, we restrict to two popular metaheuristics Ants Colony Optimization and Tabu Search, and demonstrate MDF through the implementation of various hybridized models to solve the Traveling Salesman Problem. 1

    Metaheuristics “In the Large”

    Get PDF
    Many people have generously given their time to the various activities of the MitL initiative. Particular gratitude is due to Adam Barwell, John A. Clark, Patrick De Causmaecker, Emma Hart, Zoltan A. Kocsis, Ben Kovitz, Krzysztof Krawiec, John McCall, Nelishia Pillay, Kevin Sim, Jim Smith, Thomas Stutzle, Eric Taillard and Stefan Wagner. J. Swan acknowledges the support of UK EPSRC grant EP/J017515/1 and the EU H2020 SAFIRE Factories project. P. GarciaSanchez and J. J. Merelo acknowledges the support of TIN201785727-C4-2-P by the Spanish Ministry of Economy and Competitiveness. M. Wagner acknowledges the support of the Australian Research Council grants DE160100850 and DP200102364.Following decades of sustained improvement, metaheuristics are one of the great success stories of opti- mization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need for stronger scientific and computational infrastructure to sup- port the development, analysis and comparison of new approaches. To this end, we present the vision and progress of the Metaheuristics “In the Large”project. The conceptual underpinnings of the project are: truly extensible algorithm templates that support reuse without modification, white box problem descriptions that provide generic support for the injection of domain specific knowledge, and remotely accessible frameworks, components and problems that will enhance reproducibility and accelerate the field’s progress. We argue that, via such principled choice of infrastructure support, the field can pur- sue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing the exploration of the design space of metaheuristics.UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) EP/J017515/1EU H2020 SAFIRE Factories projectSpanish Ministry of Economy and Competitiveness TIN201785727-C4-2-PAustralian Research Council DE160100850 DP20010236

    Meta-heuristics development framework: Design and applications

    Get PDF
    Master'sMASTER OF SCIENC

    Discrete optimization algorithms for marker-assisted plant breeding

    Get PDF
    corecore