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SUMMARY 

Recent researches have reported a trend whereby meta-heuristics are 

successful in solving NP-hard combinatorial optimization problems, many of 

which surpassed the results obtained by classical search methods. These promising 

reports naturally captivated the attention of the research communities, especially 

those in the field of computational logistics. While meta-heuristics are effective in 

solving large-scale combinatorial optimization problems, in general, they result 

from an extensively manual trial-and-error algorithmic design tailored to specific 

problems. This leads to a waste of manpower as well as equipment resources in 

developing each trial algorithm, which consequently delays the progress in 

application development. Hence, the demand for a rapid prototyping tool for fast 

algorithm development became a necessity.  

In this thesis, we propose Meta-Heuristics Development Framework 

(MDF), a generic meta-heuristics framework that reduces development time 

through abstract classes and code reuse, and more importantly, aids design through 

the support of user-defined strategies and hybridization of meta-heuristics. We 

study two different aspects of MDF. First we examine the Design Concepts, which 

analyze the blueprint of MDF. In this aspect, we will investigate the rationale 

behind the architecture of MDF such as the interaction between the abstract classes 

and the meta-heuristic engines. More interestingly, we will examine a novel way of 

redefining hybridization in MDF through the “request-and-response” metaphor, 

which form an abstract concept for hybridization. Different hybridization schemes 

can now be formulated with relative ease, which give the proposed framework its 

uniqueness. The second aspect of the thesis covers the applications of MDF, in 
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which we take a more “critic” role by investigating some MDF’s applications, and 

examining their strengths and weaknesses. We begin with the Traveling Salesman 

Problem (TSP) as a “walk-through” in exploring the various facets of MDF, 

particularly hybridization. As TSP is a single-objective single-constraint problem, 

the reduced complexity makes it an ideal candidate for a comprehensive 

illustration. We then extend the problem complexity by augmenting TSP into 

multiple-objective multiple-constraint problems, with potentially larger search 

space. The extension results in solving (a) Vehicle Routing Problem with Time 

Windows (VRPTW), a logistic problem that deals with finding optimal routes for 

serving a given number of customers; and (b) Inventory and Routing Problem with 

Time Windows (IRPTW), which adds inventory planning over a defined period to 

the routing problem. Using the various hybridized schemes supported by MDF, 

quality solutions can be obtained in good computational time within relatively 

short developmental cycle, as presented in the experimental results. 
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CHAPTER 1 

INTRODUCTION 

 [Garey and Johnson, 1979] shows the existence of many non-deterministic 

polynomial (NP)-hard optimization problems whose solutions are computationally 

intractable to find. Exact search is no longer a valid option as it is not only 

operationally infeasible, but also impractical, especially for solving large-scale 

problems. This motivates the development of intelligent search methods that can 

achieve good results efficiently. Meta-heuristics have matured rapidly in the recent 

years and become an excellent substitute for exact methods, due to their 

algorithmic effectiveness and computational efficiency. Contrary to exact methods 

however, meta-heuristics do not guarantee global optimality. Rather, they seek to 

obtain quality solutions within a reasonably time. The fundamental role of meta-

heuristics is to “guide” a heuristic (such as greedy) from getting trapped in local 

optimality and is achieved through their own unique features and strategies.  

Meta-heuristic approaches have been shown to achieve promising results 

for solving NP-hard problems very efficiently, making its industry applications, 

particularly in the field of logistics, appealing. For two decades, meta-heuristics 

such as Tabu Search (TS), Simulated Annealing (SA), and Genetic Algorithms (GA) 

have been studied in the literature for obtaining quality results from NP-hard 

optimization problems. Following the success of these meta-heuristics, there has 

been an explosive growth of new techniques in line with natural and biological 

observations, such as Ant Colony Optimization (ACO) [Dorigo & Di Caro, 1999], 

Squeaky Wheel [Joslin & Clements, 1999], Particle Swarm [Parsopoulos & 

Vrahatis, 2002] and even mammals like lab rats [Yufik and Sheridan, 2002]. This 
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diffusion, while healthy for seeding new ideas into the community, is met with 

such numerous and diversity that renders finding the best meta-heuristic intricate. 

Till the date of this thesis, there has been no work in the literature that 

shows one meta-heuristic that could truly dominate the rest for every problem. 

Consequently, this implies the challenge of finding the right meta-heuristic for the 

right problem. The challenge is further heighten by the observation that the search 

strategies used within a meta-heuristic have a considerable influence on the 

effectiveness and efficiency. For example, by determining when to perform 

exploitation or exploration during an ACO search can yield significant differences 

in results [Dorigo & Di Caro, 1999]. As such, developers have to face the 

insurmountable task of trying out different meta-heuristics with varying strategies, 

and algorithmic parameters, on their problem(s).  

Surprisingly, many researchers actually meet this challenge by building 

meta-heuristics applications from scratch. As such, an enormous amount of 

resources, in both man and machines, have to be invested for each redevelopment 

that apparently is uncalled for. Ironically, the process of optimizing problems is not 

optimized at all! One effective solution is to incorporate a framework that would 

enable fast development through generic software design. This recycling of design 

and code conserves the unnecessary wastage of resource, thus allowing researchers 

to focus on the algorithmic aspects and meaningful experiments rather than 

mundane implementation issues. However, certain criteria must be imposed to the 

framework and we list three vital decisive factors. 

1. It must be generic.  

2. It is able to benchmark fairly on different algorithmic designs. 

3. It has an unambiguous object-oriented design. 
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Genericity has two different meanings in this context. First, the framework 

must be able to work with most if not all combinatorial optimization problems. 

Naturally, this is subject to many criticisms as it is not viable to justify the claim. 

The most convincing “proof” will then be providing illustrations on different 

applications, which in the scope of this thesis, is restricted to Routing related 

problems. Secondly, genericity also signifies that the framework can support 

various meta-heuristics as well their strategies. This is especially important, as with 

the diverse growth of meta-heuristics, we see the potential for advancing the field 

further if there is provision for algorithm designers to hybridize one technique with 

another. As expected, each meta-heuristic has its own forte and shortcomings and 

logically leads to hybrid schemes that could exploit the strengths and cover the 

weaknesses of one technique with its collaborator(s). Results from the literature 

have supported the claim that such hybrid methods usually out-perform their 

predecessors, e.g. [Bent & Hentenryck 2001]. 

The second point stresses on the role as an unbiased platform for 

benchmarking, which typically refers to the comparisons of solution quality and 

computational time. Although effectiveness is likely to be attributed to search 

strategies, the computational time is more often than not a controversy issue. Aside 

from algorithmic efficiency, it is obvious that the technical skill of an implementer 

has a considerable impact on the overall competency. A framework should 

therefore provide a developmental platform that neglects the impact of 

programming proficiency. This achieves a more precise comparison on the 

algorithms’ efficiency. Bearing this in mind, the framework should reduce the 

development efforts by off-loading the routine aspects of meta-heuristics through 

abstractions and a software library of reusable codes.  
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Finally, the last point states a software engineering requirement, which may 

not seem essential but is highly sought-after. Object-Oriented Programming (OOP) 

is adopted because of its clarity in design and ease of integration and extension. As 

the framework is likely to be a complex tool, each abstract class should be 

unambiguous and clearly defined for its role. Advantages of a well-designed 

architecture could give implementers fewer frustrating development hours and is 

also less prone to programming errors.  

By now it is apparent that there is a powerful motivation for a meta-

heuristics framework. We propose the Meta-heuristics Development Framework 

(MDF) as an aspirant to compete with other works in the literature. Powered by 

four different meta-heuristics, MDF provides a platform for both rapid prototyping 

as well as unbiased benchmarking. The potency of MDF lies in its unique control 

mechanism, which allows hybridization to be formed effortlessly. In addition, the 

control mechanism follows the “request-and-response” analogy, which enhances 

comprehension and easily adopted. The framework also bridges the algorithm 

designers and the program implementers by having no constraint on the 

formulation of strategies, thus giving liberty to the designers’ imagination and yet 

easily accommodated by the implementers. In short, MDF is a generic, flexible 

framework that is constrained only by the developers’ mind rather than the 

restrictions in framework.  

The following two sections in this chapter will give a short account on the 

meta-heuristics’ background and some software engineering concepts. For readers 

who are more concerned with MDF issues, these sections can be skipped without 

affecting the rest of the thesis. Chapter 2 will be examining the design concepts of 

MDF, which we term as fundamental research and development. In this chapter, 
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we will be exploring the conceptual design and appreciate the rationale leading to 

its architecture. Illustrations and pseudo-codes can be found throughout the chapter 

to enhance its comprehension. Chapter 3 focuses on the applications of MDF, 

particularly to illustrate the flexible design and reuse capability. The chapter will 

start off with Traveling Salesman Problem (TSP), whose simplicity makes it an 

excellent illustration on the various formulations of hybridization scheme. We then 

demonstrated how the Vehicle Routing Problem with Time Windows (VRPTW), 

using TSP implementations, is solved, followed by the Inventory Routing Problem 

with Time Windows (IRPTW). Through these applications, we demonstrate how the 

framework allows reuse, which reduces development time and yet provides 

excellent results. The experimental results have shown the effectiveness of the 

proposed framework. Related work in the literature is reviewed in Chapter 4. 

Finally, Chapter 5 concludes the thesis by reporting the current development and 

proposing some future extension that is insightful for the growth of MDF.  

 

1.1 Meta-heuristics Background 

Meta-heuristics are as flexible as the ingenuity of the algorithm designer, 

and they can be inspired from physics, biology, nature and any other fields of 

science. This section provides a brief description on the four meta-heuristics that 

are incorporated in MDF and they are Tabu Search (TS), Ant Colony Optimization 

(ACO), Simulated Annealing (SA) and Genetic Algorithm (GA). Important concepts 

are further discussed in ANNEX A-D to enhance the readers’ understanding of the 

strategies discussed in the later chapters of this thesis.  
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1.1.1 Tabu Search (TS) 

In 1986, Fred Glover [Glover, 1986] described TS as “a meta-heuristic 

superimposed on another heuristic. The overall approach is to avoid entrapment in 

cycles by forbidding or penalizing moves that take the solution, in the next 

iteration, to points in the solution space previously visited (hence ‘tabu’)”. TS was 

inspired from the observation that human behavior appears to operate with a 

random element that leads to inconsistent behavior given similar circumstances. As 

a result, the underlying search principle deviates from the conventional charted 

course: although a poor solution might be regretted as a source of error, it can also 

prove to be a source of gain. In other words, TS proceeds according to the 

supposition that a new (poor) solution should be explored if all better paths have 

already been investigated. This insures new regions of a problems solution space 

will be investigated in with the goal of avoiding local minima and ultimately 

finding the desired solution. TS begins by converging to a local minima. To avoid 

retracing the explored solution, TS stores recent moves in one or more tabu lists. 

Hence, these tabu lists are historical in nature and they form the TS memory 

mechanism. Strategies involving TS is usually associated with either 

diversification or intensification and could change as the algorithm proceeds. For 

example, at the initialization the goal is make a coarse examination of the solution 

space (diversification), but as candidate locations are being identified, the search 

changes to focus on producing improved local optimal in a process of 

‘intensification’. By alternating between the two opposing techniques, various 

variations of TS implementation can be formed to optimize a specific problem 

domain. 
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1.1.2 Ant Colony Optimization (ACO) 

ACO [Dorigo and Di Caro, 1999] can be generalized as a population-based 

approach in finding a solution to combinatorial optimization problems. The basic 

concept is to employ a number of simple artificial agents to construct good 

solutions through an elementary form of communication. While real ants cooperate 

in their search for food by depositing chemical traces (pheromones) on the paths 

they traveled, ACO simulates this behavior by using a common memory that is 

analogous to the deposited pheromone. This artificial pheromone is accumulated at 

run-time through a learning mechanism and consequently influences the behavior 

of subsequent search. In short, the artificial ants can be viewed as parallel 

processes that build solutions using a constructive procedure that is composed of 

the artificial pheromone and a heuristic function is used to evaluate successive 

constructive steps. The current trend of using ACO is often associated with the 

combination of other meta-heuristic, thus giving birth to many hybrid methods.  

 

1.1.3 Simulated Annealing (SA) 

SA exploits an analogy between the way in which a metal cools and freezes 

into a minimum energy crystalline structure (the annealing process). The algorithm 

is based upon that of [Metropolis et al., 1953], which was originally proposed as a 

means of finding the equilibrium configuration of a collection of atoms at a given 

temperature. This technique is subsequently developed by [Kirkpatrick et al., 1983] 

to form the basis of an optimization technique for combinatorial problems. The 

major advantage of SA over other meta-heuristics is its ability of avoiding 

entrapment at local minima. The algorithm employs a random search that not only 
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accepts changes that improve the objective function, but also some changes that 

decrease it. The latter are accepted with a probability given by 

   p = exponential-|∆x/Ti| 

where ∆x is the increase in objective function and T is a control parameter, which 

is analogous with `temperature' and is irrespective to the objective function. 

 

1.1.4 Genetic Algorithm (GA) 

GA was introduced as a computational analogy of adaptive systems that 

performs parallelized stochastic search [Holland, 1992]. It is modeled loosely on 

the principles of the evolution that evolve the fitness of a population of individuals 

by undergoing selection processes in the presence of variation-inducing operators 

such as mutation and recombination (crossover). A fitness function is used to 

evaluate individuals, and reproductive success varies with fitness. A significant 

advantage of GA is that it works very well on mixed (continuous and discrete), 

combinatorial problems. In fact GA is less susceptible entrapment in local optima 

but tends to be more computationally expensive. To order to use GA, the algorithm 

designer must first represent the solution as a genome (or chromosome). GA then 

creates a population of solutions and applies genetic operators such as mutation 

and crossover to evolve the solutions in order to find the best one(s).  

 

1.2 Software Engineering Concepts 

Well-engineered software does not only provide clarity in design, but also 

gives the ease of integration and extension. While the drawback of obligatory 

overheads may cause slight degrade in performance, the overall benefits are often 

Eqn 1.1 
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much greater. Among the numerous design standards and practices offered, two 

useful major concepts are adopted in MDF: Framework and Software library 

[Marks Norris et. al., 1999]. The following sections provide brief introductions to 

these concepts.  

 

1.2.1 Framework 

Frameworks [e.g. Microsoft .NET framework (.NET), Java Media Framework 

(JMF), Apache Struts Web Application framework] are reusable designs of all or 

part of a software system described by a set of abstract classes and the manner in 

which instances of those classes collaborate. A good framework can reduce the 

cost of developing an application by an order of magnitude because it allows the 

reuse of both designs and codes. They do not require new technology, because they 

can be implemented with existing object-oriented programming languages. 

Unfortunately, developing a good framework is time consuming. A framework 

must be simple enough to be understood yet provides enough features to be used 

quickly and accommodates for the features that are likely to change. It must 

embody a theory of the problem domain, and is always the result of domain 

analysis, whether explicit and formal, or hidden and informal. Therefore, 

frameworks are developed only when many applications are going to be developed 

within a specific problem domain, allowing the timesaving from reuse to recoup 

the time invested in development.  

 

1.2.2 Software Library  

Often a framework can be viewed as a top-down approach as it supplies the 

architectural structure for an implementer to complete by “filling” in the necessary 
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components (interfaces). As opposed to the concept of frameworks, a software 

library supplies “ready-codes” to the implementer to speed up the progress of 

coding. The two software engineering concepts when utilized could form a 

powerful coalition. For example, the framework could guide the implementer in 

building his applications through the abstract classes. In addition, it also handles 

the routines of the underlying algorithm. Such design gives the advantage of clarity 

in program flows, which in turn prevents coding errors and results in less 

developing and debugging hours for the implementer. On the other hand, the 

software library provides the implementer with building blocks to construct the 

interfaces in the framework. Hence, the tasks of the implementer can be reduced to 

devising the algorithmic aspects of the problem and coordinating the sequence of 

events in the framework. 



 

11 

 CHAPTER 2 

DESIGN CONCEPTS 

In this chapter, we discuss the design of MDF. This work has been 

published in [Lau et. al1, 2004].  

MDF works on a “higher level” than the individual algorithm frameworks 

in the literature (see Chapter 4 for a more in-depth comparison), and guides the 

development of both new and existing techniques. In particular, MDF extends the 

work of TSF++ ([Lau et al 1, 2003]), by working on a higher level where TSF++ 

serves as a component algorithm. MDF is able to:  

a) Act as a development tool to swiftly create solvers for various optimization 

problems; 

b) Benchmark fairly the performance of new algorithm implementations 

against any existing technique, or other hybridized techniques; and 

c) Create hybrid algorithms of any existing technique in the framework, or 

allow others to adapt their algorithm through reuse; 

In short, MDF presents a model to facilitate multi-algorithm inter-

operability. MDF uses abstraction and inheritance as the primary mechanism to 

build adaptable components or interfaces. The architecture of MDF can be 

categorized into four collections.  

1. The general interfaces are a collection of generic interfaces that have 

factored and grouped from the general behavior of meta-heuristics, thus 

rendering the framework to be robust yet flexible. They include Solution, 

Move, Constraint, Neighborhood Generator, Objective Function, and 

Penalty Function. These general interfaces do not deal with the actual 



 

12 

algorithm, but provides a common medium in which different algorithms 

share information and collaborate. We illustrate this concept using the Move 

interface. In TS for example, a move is defined as a translation from current 

solution to its neighbor. For the case of ACO, a move is defined as a 

transition while constructing a partial solution to a complete solution. GA 

treats a move as a solution “mutation” while simulated annealing defines 

the move as a probabilistic operation to its next state. Although each of 

these operators exhibits a different behavior, their underlying algorithmic 

concept is the same. Such realization of common interfaces allows 

implementation to be easily switched across different meta-heuristics and 

enables the formation of hybridized models. For example, a common 

solution interface will allow both TS and GA to modify the solution-

inherited object easily.  

2. Extended or proprietary interfaces are a collection that built above the 

general interfaces to support unique behaviors exhibited by each meta-

heuristic. In ACO, the proprietary interfaces are the local heuristic and 

pheromone trail. In the case of TS, these are tabu list and aspiration 

criteria interfaces. SA requires the annealing schedule interface and GA 

has population and recombination interfaces. Although each proprietary 

interface is exclusive to its meta-heuristic, the designs and codes can be 

shared across different problems. For example, the tabu list for TSP can be 

easily recycled to be applied on VRPTW.  

3. The third collection shows the engines that are currently available in MDF; 

TS, ACO, SA and GA. MDF uses a generic Engine interface as a base class 

for each meta-heuristic to describe the common rudimentary controls. 
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Some of these controls include recording of solutions and specifying the 

stopping criteria. Like engine in reality, a Switch Box is incorporated as a 

container for the tuning parameters, such as number of iterations and tabu 

tenure. This centralization design allows fast access and easy modification 

on the parameters, either manually or through the Control Mechanism. 

4. The control mechanism is the core collection in MDF. It is inspired from 

the observation that meta-heuristics strategies (including hybridization) can 

be decomposed into two aspects; first, the point in time when a certain 

event(s) occur, and second, the action(s) performed on the current search 

state to bring it to the next state. We define the first aspect as Requests and 

the second aspect as Responses. Following this metaphor, the control is 

devised to bridge requests to their intended responses. This mechanism 

gives limitless flexibility to the algorithm designers through the many-to-

many relationship between requests and responses. Since requests are 

actually search experiences (events) and responses are the modification 

made to the search state (handlers), such control implies vast adaptability in 

search techniques. We will reserve a more in-depth discussion on this 

mechanism in section 2.4 of this chapter.  

 

In addition, MDF also incorporates an optional built-in software library 

that facilitates developing selected strategies. While these generic strategies are not 

as powerful as some specific methods that are tailored to a problem type, these 

components provide a quick and easy means for fast prototyping. In the following 

sections, we will explain and discuss each of these collections. Figure 2.1 presents 

an overview of the collections in MDF.   
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2.1 General Interfaces 

The fundamental interfaces are intended to classify the common behaviors 

of meta-heuristics into distinctive abstract classes. Figure 2.2 illustrates how this 

common behavior can be formulated into the interfaces. For each interface, we will 

present the virtual functions that are essential for the objects and a description of 

their uses. 

 

 

 

 

 

 

 

Figure 2.1: The architecture of Meta-heuristics Development Framework 

New State 
[Solution] 

Evaluate State 
[Objective Function] 

Apply Penalty 
[Penalty Function] 

Generate Next State 
[Neighborhood Generator] 

Check Feasibility 
[Constraint] 

Translate to New State 
[Move] 

Figure 2.2: The relationship of Meta-heuristics behavior and MDF’s  
                  fundamental interfaces 



 

15 

2.1.1 Solution Interface 

Virtual Function: 

• Solution* Clone ( void );     Function 1 

Descriptions: 

The Solution class provides a representation to the result of problem. MDF 

imposes no restriction on the solution formulation or the type of data structures 

used because the search engine never manipulates the Solution objects directly. 

Instead, the engine relies on the Move object to translate the Solution, the Objective 

Function object to evaluate the Solution and the Solution itself for cloning. The 

Solution interface has one virtual function, Clone (Function 1), which returns a 

cloned instance of the solution object. A pitfall for unaware programmer is the 

common mistake of using shallow cloning (copy references of the data) instead of 

deep cloning (copying the data itself) and by doing so, loses valuable results.  

 

2.1.2 Move Interface 

Virtual Function: 

• void Translate ( Solution* solution );    Function 2 

Descriptions: 

The Move class is used to translate a Solution object from its current state to a new 

state. However, the definition of a “state” varies across different meta-heuristics. 

For example in TS, a state refers to the current solution and a new state is defined 

as a neighbor “adjacent” to the current solution. Hence the move operator 

delineates the neighborhood around the current solution and translates a current 

solution to its neighbor. In ACO, a state refers to the paths of the ants. In the 

beginning, the ant starts from the colony, which corresponds to an empty solution. 



 

16 

When the ant moves from one path (state) to another, the solution is built 

incrementally. This continues until a complete solution is constructed, which 

indicate the ant has reached the food source. Hence each move is seen as a 

transitional phase in which new paths are added into the (partial) solution. In SA, 

the move operator is a probabilistic operation that generates a random neighbor. 

This definition of a state is similar to TS except that rather than a neighborhood, 

only one neighbor in generated in each iteration. Finally in GA, the move operator 

acts as a mutation to evolve the individuals (solutions). In this way, the current 

state refers to the current generation and the new state is their offspring. 

Surprisingly, there is no rule that prevents one meta-heuristic from using another’s 

move. For example, TS could use ACO incremental move to build up a solution 

and at the same time, tabu-ing the past constructed solution’s components to 

prevent assembling the same solution (cycling) again. By adopting this view, it 

becomes probable to assault problems at different angles and even instigate a new 

technique. In addition, the interface also allows the multiple types of move for a 

problem through inheritance. In VRPTW for example, both exchange and replace 

moves can inherited the same Move interface. Beside moves that perform different 

operation, it also implies that complex moves such as an adaptive k-opt can be 

implemented to generate Very Large Scaled Neighborhood (VLSN). The Translate 

function (Function 2) modifies the solution in its argument to its next state. 

Programmer should be aware that the translate operation is permanent and cloning 

should be done to prevent loss of solutions. 
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2.1.3 Constraint Interface 

Virtual Function: 

• int DegreeOfViolation ( Solution* solution, Move* move ); Function 3 

Descriptions: 

The Constraint class is usually used to ensure the feasibility of a solution. The 

Degree of Violation function (Function 3) takes in two arguments, a solution and a 

move objects and return an integer. The return parameter indicates “how much” 

violation is presented in the candidate neighbor (i.e. neighbor = current solution ⊕  

proposed move). A zero value signifies a feasible solution and any integer above 

zero indicates infeasibility. It is possible to apply some relaxation criteria so that 

violated solution can be accepted. This is extremely useful in oscillating strategies, 

in which constraints are sometimes violated to explore previously inaccessible 

regions and subsequently repaired. However, such tactics often run into the danger 

of over-violation (solution can no longer to be repaired to feasibility) and a 

restraint degree of violation can help to confine the risk.   

 

2.1.4 Neighborhood Generator Interface 

Virtual Function: 

• Neighborhood* GenerateMove ( Solution* solution ); Function 4 

Descriptions: 

The Neighborhood Generator class generates the desired next states from the 

current solution using the Generate Move function as shown in Function 4. When 

the Neighborhood Generator is called, it will use the move objects to generate a list 

of possible next states. It is possible to control the type of moves that is used to 

generate the current neighbors. For example, if the search result is stagnant, the 
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Neighborhood Generator can be adjusted to generate drastic moves. This kind of 

adaptive selection of moves can be easily programmed using MDF’s control 

mechanism and hence guarantees a more controlled search process. After the 

neighborhood is generated, the constraint objects select the candidates that satisfy 

their criteria and these chosen candidates are recorded. The resultant neighborhood 

is sent back for processing. Each meta-heuristic has a different contextual meaning 

for the Neighborhood Generator. For TS, the neighborhood generator produces a 

list of desired neighbor with respect to the current solution. In ACO, the 

Neighborhood Generator determines the possible subsequent paths that can be 

linked from the partial solution. When no new path is constructed, it implies that 

the solution has been completely built. In SA, the Neighborhood Generator acts as 

a generator for generating the random moves and in GA, it performs the selection 

routine of choosing the individuals for recombination. In short, the functionality of 

Neighborhood Generator is to generate new candidates so that the meta-heuristics’ 

selection process could continue. 

     

2.1.5 Objective Function Interface 

Virtual Function: 

• ObjectiveValueType Evaluate ( Solution* solution,  
Move* move );      Function 5 

 
• boolean IsProposedBetterThanOriginal ( ObjectiveValueType proposed,  

ObjectiveValueType original );   Function 6 
 

 

Descriptions: 

The Objective Function evaluates the quality of a solution. It uses a user-defined 

metric called ObjectiveValueType to dictate favorableness of the solution. With 
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this design, implementer can now define their objective value type to an integer, a 

double (floating point number) or even a vector of integer or double. This is 

especially useful for goal programming optimization, in which there are several 

objectives to be considered and inconvenient to be projected into a single 

dimension. VRPTW for example has two objectives, which are to minimize the 

number of vehicle used and the distance traveled. Sometimes, it is impractical to 

project these two objectives of different dimension together (i.e. how much 

distance is equivalence to the cost of a vehicle). In MDF, both objective values are 

stored and compared independently, which allows a case-by-case evaluation.  

In order to improve the performance of search, the Objective Function object also 

supports incremental calculation. Absolute calculation should be done for the 

initial solution and subsequently switched to incremental calculation for efficiency 

reasons. An example on absolute and incremental calculation can be illustrated 

using the Knapsack Problem (KSP). For the initial solution, the objective value is 

calculated by adding up all the items’ values contained in the knapsack. This 

method is known as the absolute calculation. Subsequent addition and removal can 

be computed using incremental calculation from the original objective value by 

adding or subtracting the targeted item value. The Evaluate function (Function 5) 

is designed for this purpose and Is Proposed Better Than Original function 

(Function 6) determines whether a proposed next state is better than current state.     

 

2.1.6 Penalty Function Interface 

Virtual Function: 

• ObjectiveValueType ApplyPenalty ( Solution* solution, Move* move 
ObjectiveValueType NeighborObjectValue ); Function 7 
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Descriptions: 

The Penalty Function gives a temporary penalty to the objective value. This is 

extremely useful in implementing soft constraints. Typically soft constraints are 

employed by the algorithm designer to incline the search toward preferred 

solutions. For example in KSP, bricks and cements are encouraged to be packed 

together unless the cost is very high and this user-constraint can be easily 

implemented by applying a “bonus” (negative penalty) to solution value if such 

arrangement occurred.  

 

2.2 Proprietary Interfaces 

This section addresses the interfaces that describe the behaviors exclusive 

to each meta-heuristic. Interestingly, by formulating these unique behaviors into 

abstract classes, it gives us valuable insights in forming innovative hybrids. For 

example, a tabu list can be added to ACO to empower the ants with memory and 

the annealing schedule can be added to GA as a breeding criterion. In addition, 

algorithm designers can define their own proprietary interfaces that may mature 

into a new technique.  

 

Tabu Search   

2.2.1 Tabu List Interface  

Virtual Function: 

• boolean IsTabu ( Solution* solution, Move* move ); Function 8 
 
• void SetTabu ( Solution* solution, Move* move );  Function 9 

 
 

Descriptions: 
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The Tabu List reduces the tendency of solution cycling through the use of memory. 

The most straightforward implementation is to use a list that stored previously 

visited solutions for the tenured duration. While this approach looks simplistic, 

there are a few concerned issues. We consider the case of a solution size of l, a 

tabu tenure t and running for k iterations and analyze the computational time. In 

every iteration, each neighbor has to be verified with every element in the tabu list 

and this requires Ο(l * t). Suppose there is an average of m neighbors in each 

iteration, then the total computational time spent in validating the tabu status is O(l 

* t * m * k). Apparently, the efficiency of the tabu list could be improved if one or 

more of the four parameters is/are reduced. Since t and k directly affect the 

algorithm effectiveness, they should be tuned optimality. As for m, it is sometimes 

possible to reduce the size without sacrificing the quality (such as using a 

candidate list strategy), but it is generally done heuristically and thus could not be 

guaranteed. l is the best parameter to cut down as it is usually unnecessary to 

record the complete solution. A possible approach is to record the hash of the 

solution rather than the solution itself.  

Unfortunately for some problems, it is sometimes impossible or very costly to 

validate the tabu status even if the solutions are stored. For example in TSP, 

solution A consisting of a tour of 1-2-3-4 and solution B of a tour of 2-3-4-1 can 

only be detected as the same solution if rotational comparison is supported. Hence, 

rather than tabu-ing the solutions, sometimes the move applied can be tabu-ed. 

Typically, moves only affect some portions of a solution and thus occupy lesser 

space then the solution. To reduce cycling, subsequent moves are verified to ensure 

the reverse moves would not be applied. Apparently such technique does not 



 

22 

strictly prevent all forms of solution cycling in its tenure. Nevertheless it is 

effective and generic to problems.  

As oppose to tabu-ing the move, a more restrictive approach is to tabu the 

objective value. This is based on the assumption that most solutions have an 

unique objective value and thus tabu-ing the objective value is almost as good as 

tabu-ing the solution itself. The drawback of this approach is that elite solutions 

that have the same objective value would be missed.  

The Tabu List interface supported various kind of tabu techniques (including those 

that are not mentioned in this thesis) by manipulating the list indirectly through the 

virtual functions Is Tabu (Function 8) and Set Tabu (Function 9). The Is Tabu 

verifies if the neighbor is tabu-ed and Set Tabu sets accepted neighbors into the list. 

  

2.2.2 Aspiration Criteria Interface  

Virtual Function: 

• boolean OverrideTabu ( Solution* solution, Move* move, 
ObjectiveValueType neighborObjectiveValue,  
SwitchBox* switchbox );    Function 10 

 
 

Descriptions: 

The aspiration criterion is used to override the tabu status of a neighbor if it meets 

some criteria. For example, when the tabu list is used to tabu the move applied, 

there is a possibility that good neighbors may be mistaken as tabu-ed solutions. 

The aspiration criterion could then override the tabu status of a neighbor if its 

objective value is better than the best-found solution. A virtual function Override 

Tabu (Function 10) is used to perform the exemption.  

 



 

23 

Ants Colony Optimization 

2.2.3 Pheromone Trail Interface  

Virtual Function: 

• double ExtractPheromone ( Solution* solution,  
Move* move )      Function 11 

 
• void UpdateLocalPheromone ( Solution* localSolution ); Function 12 
 
• void UpdateGlobalPheromone ( Solution* currentSolution,  

Solution* localSolution );    Function 13 
 

• void PheromoneEvaporation ( void );   Function 14 
 

Descriptions: 

The Pheromone Trail object is used to record the pheromone density on the paths. 

The pheromone trails is one of the two parameters used to determine the 

transitional probability of ants in choosing their paths. While the local heuristics 

can be seem as the ant’s natural judgment in taking a trail, it is the pheromone 

density on the trails that influences the ant to change its direction. Each of these 

factors is assigned a weight, α and β for the pheromone trail and local heuristic 

respectively. In particular, the probability of moving from node r to node s is given 

generally by 
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  Eqn 2.1 

where  τ(r,s) = pheromone for moving from node r to node s 
η(r,s) = local heuristics for moving from node r to node s 

 
The pheromone trail τ is usually initialized to a fixed value across of the trails prior 

to being used (Elitism Strategy), and the value it is initialized to, τ0, is usually 

given by a generic “baseline” solution to the problem. This solution can be 
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evaluated using any constructing algorithm likes Greedy Algorithm, or even ACO 

itself (using a generic pheromone trail initialized to any arbitrary value). τ0 is a 

function of this initial solution. The value of τ(r,s)  is retrieved using the Extract 

Pheromone function (Function 11). 

After each move is completed, the ant may choose to perform a local pheromone 

decay or deposit. If no such action is performed, each of the ants in the iteration 

will be non-collaborative and use only the pheromone trail at the beginning of the 

iteration. While there are implementations without local pheromone updates with 

good results, it was generally found that local pheromone update improves solution 

quality. The logic is that unlike real-ants, the solver of an optimization problem 

needs to traverse the best path once to record it, and implement other ways to 

enforce this knowledge (global pheromone update). Meanwhile, it is necessary to 

search as much of the solution space as possible, and in most cases, it is better to 

lower the pheromone concentration from a taken trail, so that other ants may try 

the less trodden paths, which leads to a more aggressive search around the 

neighborhood as well as to prevent solution cycling. There are many formulas (if 

implemented) for local pheromone update, but generally, 

0.),().1(),( τρτρτ ll srsr +−←    Eqn 2.2 

 where  τ0 represents the default pheromone level 
   ρl represents the local decay factor 
 

Local pheromone update can be performed in two ways. The first, step-by-step 

update is performed as each ant takes a move. The nature of this process makes it 

more suited for a parallel implementation. The second, online-delayed pheromone 

update, is performed as each ant completes a solution build, and is more suited for 
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a serial implementation. This process is updated by the ACO search indirectly 

through the Update Local Pheromone function (Function 12). 

While the local pheromone update may be optional, the global pheromone update 

that occurred at the end of iteration is compulsory. The justification for such an 

action is by counter-intuition. Suppose there is no pheromone update. Then, each 

ant will repeatedly find the same probabilities on all the moves. The only variable 

then is the random choice. While this progresses the solution, it does so very 

gradually. Furthermore, there tend to be an excessive amount of solution cycling 

due to the constant nature of the probabilities. This completes the intuition that the 

pheromone trail should be updated. Global pheromone update can be performed in 

several ways. Some implementations proposed using the trail from all the ants in 

the iteration (AS, ASrank), others advocate using only the best route in the iteration 

(MMAS, ACO), and most suggest using the best route found so far. Generally, 

),(.),().1(),( srsrsr gg τρτρτ ∆+−←   Eqn 2.3 

 where  ρg represents the global decay factor 

The global update on the pheromone trails is performed via the Update Global 

Pheromone function (Function 13). In synch with global pheromone update is the 

optional pheromone evaporation, which is updated with the Pheromone 

Evaporation (Function 14). One idea is to use additional reinforcement for unused 

movements, with equation 2.4, while other approaches perform a simple 

evaporation on all trails with equation 2.5, for all i and j: 

0.),(),( τρττ ejiji +←    Eqn 2.4 

),().1(),( jiji e τρτ −←    Eqn 2.5 

 where  ρe represents the evaporation factor 
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2.2.4 Local Heuristic Interface  

Virtual Function: 

• double ComputeLocalHeuristic ( Solution* solution,  
Move* move )      Function 15 
 

Descriptions: 

The Local Heuristic interface is used to incorporate the underlying heuristic in 

solving the problem. Generally a single greedy heuristic is used for its speed and 

performance. However there are instances of problems, especially those of 

increased complexity that a single local heuristic does not suffice. For example, 

there had been implementations of VRPTW with multiple combined local 

heuristics [Bullnheimer et al., 1997]. In such instances, η(r,s) can be formulated as 

∑
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where  αj ≥ 0 and symbolize the weights of the local heuristics 

The function Compute Local Heuristics (Function 15) is used to compute the value 

of η(r,s), which is later used together with τ(r,s) as shown in Eqn 2,1 to give the 

transitional probability. 

 

Simulated Annealing 

2.2.5 Annealing Schedule Interface  

Virtual Function: 

• double RetrieveCoolingTemperature ( Solution* solution,   
ObjectiveValueType neighborObjectiveValue, int currentIteration, 
int totalIteration )    Function 16 
 

 

Descriptions: 



 

27 

In SA, the probability of transition is a function of the objective values difference 

between the two states and a global time-dependent parameter called the 

temperature. Suppose δE is the difference in objective values of the current 

solution and its neighbor, and T is the temperature. If δE is negative (i.e., the new 

neighbor has a better objective value) then the algorithm moves to the new 

neighbor with probability 1. If not, it does so with probability e-δE/T. This rule is 

deliberately similar to the Maxwell-Boltzmann distribution governing the 

distribution of molecular energies. It is clear that the behavior of the algorithm is 

crucially dependent on the T. If T is 0, the algorithm is reduced to greedy, and will 

always be moving toward a neighbor with a better objective value. If T is ∞, it 

moves around randomly. In general, the algorithm is sensitive to coarser objective 

variations for large T and finer variations for small T. This is exploited in designing 

the annealing schedule, which is the procedure for varying T with time (the number 

of iterations). At first T is set to infinity, and is gradually decreased to zero 

("cooling"). This enables the algorithm to initially get to the general region of the 

search space containing good solutions, and later hone in on the optimum. The 

Annealing Schedule Object is catered for algorithm designer to devise their cooling 

function. The Retrieve Cooling Temperature function (Function 16) retrieves the 

time-dependent T, when a non-improving neighbor is encountered. 

 

Genetic Algorithm 

2.2.6 Recombination Interface  

Virtual Function: 

• void Crossover ( Solution *  parentA, Solution* ParentB  
Solution* offSpring1, Solution * offSpring2)  Function 17 
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Descriptions: 

The Recombination object combines the selected individuals to produce their 

offspring. It incorporates a single tunable variable probability of crossover (Pc), 

which encodes the probability that two selected individual will actually breed. 

Generally the value is set between 0.6 and 1.0. For each pair of parent, a random 

number between 0 and 1 is generated. If the number falls under the crossover 

threshold, the organisms are reproduced or otherwise, they are propagated into the 

next generation unchanged. Crossover results in two new child individuals, which 

are added to the next generation pool. The Crossover function shown in Function 

17 is dictated for this purpose. During the crossover, the chromosomes of the 

parents are mixed typically by simply swapping a portion of the underlying data 

structure, although other more complex merging mechanisms have proved useful 

for certain types of problems. This process is known as one-point crossover and is 

repeated with different parent individuals until there are an appropriate number of 

candidate solutions in the next generation pool.  

 

2.2.7 Population Interface  

Virtual Function: 

• void InitializeFirstGeneration ( void )  Function 18 
 
• void DiscardUnfitIndividuals ( void )  Function 19 

 
 

Descriptions: 

GA solution is usually represented as simple strings of data in a manner not unlike 

instructions for a von Neumann machine, although a wide variety of other data 

structures for storing chromosomes have also been tested, with varying degrees of 



 

29 

success in different problem domains. The Population object is used to keep a 

collection of such individuals, with each new population (generation) created at the 

end of every iteration. Initially a first generation population is seeded unto the 

gene pool. This function is implemented in the Initialize First Generation function 

(Function 18) and is used by the Population object to initialize the individuals prior 

to the start of the algorithm. The first generation can be created randomly or by 

heuristics such as randomized greedy. However, it is vital that the implementer 

ensures the diversity of the first generation to prevent rapid convergence of similar 

individuals. To prevent over-population, GA employs various strategies in 

selecting the individuals for the next generation (Fitness Techniques, Elitism, 

Linear Probability Curve, Steady Rate Reproduction). To cater for these strategies, 

the Population object uses the Discard Unfit Individuals (Function 19) that mixes 

parents and their children together and consequently discards some of these 

individuals in accordance to the user-specific strategies. 

  

2.3 Engine and its Component 

Section 2.1 and 2.2 has illustrated the various abstract classes in MDF. In 

this section, we observe how the MDF search engines put these classes together 

and then discuss the issues arising from the integration. This section also provides 

the opportunity to examine the search parameters (contained in the engine switch 

box) and analyze their effects on the search process. 
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2.3.1 Engine Interface  

Virtual Function: 

• void StartSolving  ( void )     Function 20 
 
• void StopSolving ( void )     Function 21 

 
• Solution* GetBestFoundSolution ( void )   Function 22 

 
Descriptions: 

The Engine Interface contains the general operations that are subsequently 

inherited by the meta-heuristics engines. There are three operations, Start Solving 

(Function 20) that begins the search sequences, Stop Solving (Function 21) that 

terminates the search and Get Best Found Solution (Function 22) that returns the 

best found solution in the search. These virtual functions prevent unnecessary 

amendment to application codes when an implementer changes the underlying 

meta-heuristic, thus giving a more generic design. 

 

2.3.2 Switchbox Interface  

Parameter: 

• NumberOfIteration      Parameter G1 
 

Descriptions: 

The Switchbox interface complement the Engine interface as a container that stores 

the generic parameter presented in meta-heuristics. The Number Of Iteration 

(parameter G1) indicates the amount of time the meta-heuristics is allowed to run 

and is often used as a termination criterion. Typically, the quality of solutions 

improves with the increasing number of iterations, which follows the law of 

diminishing returns. As such, it is important to determine a value that gives 
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sufficiently well results and yet be computed in a reasonable time. Unfortunately, 

there are many factors that affects this variable and they include the problem size, 

the meta-heuristics’ parameters (such as tabu tenure, pheromone density), the 

strategies involved (internsification/diversification) and even instances of the 

problem. Hence it is a challenge for an algorithm designer to devise an 

optimization scheme that could produce the best results in the fastest possible time. 

 

2.3.3 TS Engine 

TS Engine performs the rudimentary procedures of TS and the pseudo-code 

is presented in Figure 2.3.  

TS Engine 

procedure 

Initialize a current Solution  

while terminating criteria not reached 

  Neighborhood Generator generates a new neighborhood;  

Constraint discards any undesired neighbors; 

Objective Function evaluates selected neighbors; 

Penalty Function applied to neighbors; 

Tabu List and Aspiration Criteria are consulted; 

Move translates current Solution to best neighbor; 

if  new Solution is better than best found Solution   

  Clones and records new Solution as best found Solution; 

end if 

Tabu List is updated; 

end while 

end procedure 

Figure 2.3: The TS Engine Procedure (pseudo-code) 
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Prior to the search, TS Engine initializes a solution usually from a problem-

specified constructing heuristic. Based on this solution, the Neighborhood 

Generator creates a list of neighbors using the Move object(s). The Constraint 

object(s) then validate each of these created neighbors to select a subgroup of 

accepted neighbors, which are also known as candidates. These candidates are then 

evaluated using the Objective Function. The Penalty Function is applied to the 

objective value of the candidates and the best non-tabu neighbor is selected after 

consulting the Tabu List and Aspiration Criteria. At this point, a new state is 

selected and the selected Move object translates the current solution to the chosen 

neighbor. The objective value of the new solution is compared against the best-

found solution and if the value is better, the new solution will be cloned and then 

recorded. Finally the Tabu List will be updated to prevent reoccurrence of solutions. 

If the terminating condition is not reached at this time, a new neighborhood will be 

generated and the iterative search continues. 

 

2.3.4 TS Switchbox   

Parameter: 

• Tabu Tenure      Parameter TS1 
• First Accept       Parameter TS2 
 

Descriptions: 

The Tabu Tenure (Parameter TS1) determines the tabu-ed duration of visited 

solution. Apparently a short tenure is ineffective in preventing solution cycling and 

a long tenure requires a greater validating time. In fact it is almost impossible to 

find an optimal tenure value even for instances of a same problem. Hence a 

popular approach is to vary the tenure in accordance to the search events. This 
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strategy is known as reactive tabu list and is illustrated in Control Mechanism. 

There are several ways to implement the tabu tenure. An effectual implementation 

is to set up the tabu list is a circular array with size equals to the tenure. In this way, 

when the list is filled, the first inserted solution will be replaced. Beside the tenure, 

TS Engine also uses First Accept (Parameter TS2). Typically, TS will examine 

each candidate in the neighborhood to determine the best neighbor to move to. 

However, when time is crucial (such as real-time optimization), it is possible to 

speed up the search by accepting the first encountered neighbor with an improving 

objective value. This strategy is known as first-accept and can be activated by 

setting the First Accept parameter to true. 

 

2.3.5 ACO Engine 

ACO Engine performs the rudimentary procedures of ACO and the pseudo-code is 

presented in Figure 2.4. Using the Elitism Strategy, the pheromone trail is first 

updated with pre-constructed solution(s). ACO Engine then uses a triple nested 

loop to carry out the ACO routines. The main procedure performs the iterative 

improvement steps bounded by the number of iteration or user-defined criteria. 

The colony procedure (second loop) spawns the activity of each ant in the colony 

and updates the global pheromone trails in accordance to the defined strategies 

(such as ASrank, MMAS or ACO). 
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ACO Engine 

procedure 

Initialize the Pheromone Trail  

while terminating conditions not reached 

while there is still ants in colony and  

  while the solution is not completed  

    Neighborhood Generator generates a set of new trails;  

Constraint discards any impassible trails; 

   Trail chosen by consulting Local Heuristic and Pheromone Trail 

   Move translates the Solution with selected trail; 

   Local Pheromone Trail Updated 

  End while 

end while 

Objective Function evaluates solutions constructed by ants; 

Penalty Function is applied to determine the quality of solutions; 

Global Pheromone Trail is updated; 

If new Solution is better than best found Solution   

  Clones and records new Solution as best found Solution; 

end If 

Pheromone Evaporation Occurred;  

end while 

end procedure 

 

In addition to the global pheromone update, the colony procedure also executes the 

pheromone evaporation. The innermost loop describes the ant activity in 

constructing a solution. The Neighborhood Generator generates the ant’s trails 

Figure 2.4: The ACO Engine Procedure (pseudo-code) 
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with respect to the ant current position (partial solution). The Constraint objects 

then obstruct the trails that would lead to infeasible solution. The transitional 

probability of each trail is computed by consulting the Local Heuristic and 

Pheromone Trail, and the ant randomly chooses a path with this probability. When 

a trail is selected, the Move object adds the new trail into the partial solution. 

Optional local pheromone update strategies such as ACO, is applied to improve the 

search and the activity continues until the solution is completely built.  

 

2.3.6 ACO Switchbox   

Parameter: 

• Number of Ants     Parameter ACO1 
• α (Pheromone Trail weight)    Parameter ACO2 
• β (Local Heuristic weight)    Parameter ACO3 
• ρ (Decay factors)     Parameter ACO4 
• q0 (Exploitation/Exploration factor)   Parameter ACO5 
 

 
Descriptions: 

There are many arguments on the optimal number of ants and the two most agreed 

value for this parameter (Parameter ACO1) is a constant value (e.g., 10) or n 

(problem size) [Bullnheimer et al., 1997; Dorigo et al., 1996]. The impact of a 

choosing n will increase the computational complexity of the problem by another 

factor of n. Based on x iterations and n2 for the probability calculation, choosing a 

constant number of ants give O(xn2), whereas n ants gives O(xn3). However more 

ants could mean better exploration. Hence, both arguments are valid, and the 

decision on the value should be up to the implementer. Another two important 

parameters are the weights value of α (Parameter ACO2) and β (Parameter ACO3). 

[Dorigo, 1992] found from experimental results that good values of α and β (for 
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TSP at least) are 1 and 5 respectively. A greater weight is usually placed on the 

local heuristics (affected by β) to prevent fast convergence to local optimal. 

Another key parameters are the decay factors ρ (Parameter ACO4). These factors 

are generally set between 0 and 1, to signify the percentage of decay/evaporation 

(0 means no decay, 1 means complete decay). Decay factors can be subdivided into 

three separate parameters (local decay, global decay, and evaporation), although 

most classic ACO uses the same value for them. Exploration or exploitation factor 

is another important factor in the ACO algorithm. A complete exploitation reduce 

the algorithm simply to the power of the local heuristics, in most cases just a 

greedy approach. Exploration allows an opportunity to search around the best-

found solution, a technique that works often in non-linear problems. The decision 

of exploration or exploitation is defined by the factor q0 (Parameter ACO5) the 

exploitation factor, which has a domain of 0 to 1. When q0 is 0, the ants explore all 

the time; when q0 is 1, exploitation occurs all the time. 

 

2.3.7 SA Engine 

SA Engine performs the rudimentary procedures of SA and the pseudo-code is 

presented in Figure 2.5. Similar to TS and ACO, an initial solution is created as the 

starting point of the search. The Neighborhood Generator then generates a random 

Move and this neighbor is evaluated with the Objective Function. The Penalty 

Function is the applied to the neighbor’s objective value and the adjusted value is 

then compared against the current solution. If the objective value of the neighbor is 

better, the Move object translates the current solution to its neighbor. Otherwise, 

the annealing schedule is speculated to see if the non-improving neighbor could be 

accepted. If the neighbor is accepted, the Move object will translate the solution; 
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otherwise, the current solution will remain unchanged. This procedure is repeated 

until the any of the terminating criteria is reached. 

 

SA Engine 

procedure 

Initialize a current Solution; 

while terminating conditions not reached 

  Neighborhood Generator generates a random neighbor;  

Constraint validates the feasibility of neighbor; 

Objective Function evaluates solutions; 

Penalty Function temporary adjusts the objective value; 

If new neighbor is better than current Solution   

  Move translates Solution to neighbor; 

Else  

 Consults the Annealing Schedule; 

 If neighbor is accepted 

  Move translates Solution to neighbor; 

 Else 

  Current Solution remains unchanged; 

 end if  

end If 

If new Solution is better than best found Solution   

  Clones and records new Solution as best found Solution; 

end If 

end while 

end procedure 

 Figure 2.5: The SA Engine Procedure (pseudo-code) 
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2.3.8 SA Switchbox   

Parameter: 

• Temperature      Parameter SA1 
 

Descriptions: 

There are various approaches in modeling the temperature and can be classified as 

either static or dynamic. In a static annealing schedule, the parameters are fixed 

and cannot be changed during the execution. In this category, there are two simple 

static annealing schedules. The first schedule is the exponential cooling scheme 

(ECS), which has the form of Tk+1 = αTk, where α is some constant that satisfies 0 

< α < 1, k is the annealing schedule index starting from 0, and T0 is the initial 

temperature. This cooling is first proposed by [Kirkpatrick et al., 1983] with α = 

0.95. Another cooling scheme is the linear cooling scheme (LCS) [Randel and 

Grest, 1986], which has the form of Tk+1 = Tk - ∆T (i.e. T is reduced for every L 

trials).  

 

2.3.9 GA Engine 

GA Engine performs the rudimentary procedures of GA and the pseudo-code is 

presented in Figure 2.6. Initially, the Population object creates the first generation 

pool. From this gene pool, the Neighborhood Generator selects the individuals 

(Solutions) for crossover. The developer specifies the type of crossover and 

implements in the Recombination object. When the crossover is performed, the 

Constraint objects validate the offspring to ensure their feasibility. The Move 

objects translates/mutates the qualified Solutions so as to improve their fitness, 

which is evaluated by the Objective Function. The mutated children are mixed with 

their parents and the Penalty Function is applied to the whole population. The 
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Population is now over-populated and some of the solutions are discarded based 

on the modified objective value until the number of solutions is the same as the 

original population. Subsequently the new population is used to generate the next 

generation and this procedure is repeated until any of the terminating conditions is 

reached. 

 

GA Engine 

procedure 

Initialize the first generation Population; 

while terminating conditions not reached 

  Neighborhood Generator selects Solutions for mating;  

Recombination crosses selected Solutions to form new children 

Constraint discards infeasible children; 

Move mutates feasible children; 

Objective Function evaluates children; 

Children are mixed into the parent Population; 

Penalty Function adjusts the objective value of all Solutions in Population; 

Population discards unfit individuals until the population is balanced; 

If any Solution in Population is better than best found Solution   

  Clones and records new Solution as best found Solution; 

end If 

end while 

end procedure 

 

 

Figure 2.6: The GA Engine Procedure (pseudo-code) 
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2.3.10 GA Switchbox   

Parameter: 

• Pc (probability of crossover)    Parameter GA1 
 

Descriptions: 

Pc (Parameter GA1) is an optional parameter that determines the probability in 

which two selected individuals are combined. For most GA application, Pc is often 

set as 1 (i.e. all selected individuals are mated successfully). However, this implies 

that elite individuals (which have high selection probability) may lose their “good” 

traits during the crossover or mutation. Hence the primarily function of Pc is to 

probabilistically preserve some elite parents for each successive generations. It is 

also possible to model this parameter in accordance to the SA annealing schedule. 

 

2.4 Control Mechanism 

The objective of the Control Mechanism is to allow the meta-heuristic to 

adapt itself with the various situations that occurred during a search process. As 

meta-heuristics suffer from the inability of performing global optimization, it is 

vital that the local improvement should not depend solely on the underlying meta-

heuristics but also on rules or guides that could enhance the search. These rules are 

better known as search strategies and can be generally categorized as either 

intensifying or diversifying. It is not difficult to realize that while intensification 

and diversification work in opposition to each other, they are actions applied to 

adjust the search trajectory, or more precisely reactions that are executed in 

response to search situations or events. Based of this observation, we can define 

ALL search strategies by two components, Requests (when is an action necessary) 

and their Responses (what action is needed) (R&R). This implies that meta-
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heuristic can be viewed as a request-driven simulation, in which the occurrences 

experienced during the search can be utilized to guide the future exploration.  

The above phenomenon can be seen as a feedback path in control 

engineering, in which information from engines is passed to a centralized control 

unit that readjusts the control parameters to adapt to the external environment. 

Figure 2.7 shows an illustration on the feedback control mechanism. 

 

  

 

 

 

 

 

Most of the works in the literature present various search strategies and 

provide detailed explanation on how the they can be performed. Surprisingly, these 

works seldom describe exactly when these strategies should be performed. For 

example in the work of [Stutzle and Dorigo, 1999], the importance of exploitation 

and exploration is illustrated together with a recommended value for q0. The 

authors also proposed how q0 can be dynamically changed but failed to provide 

exact details on the factors affecting q0. The same predicament surfaced in [Battiti 

and Tecchiolli, 1994], in which the authors could not present accurate rules that 

could guide the behavior of the reactive tenure. Obviously, these authors could not 

be faulted as we realize the considerable efforts involved in coming up with precise 

rules, especially when some of these rules are problem-specified. However, it 

would be interesting if we could input different rules into their works and observe 

Centralized Control unit 

External 
Environment 

Sensory 
Engine 
Parameters 

Readjust parameters 

Feedback on 
Environment 

Figure 2.7: Illustration on a feedback control mechanism 
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their effects. The control mechanism facilitates this by providing an experimental 

“playground” that could readily convert user-defined rules into program codes. 

Rules are turned into search events (Requests) and the techniques are converted 

into handlers (Responses) and a “multiple-to-multiple” relationship can be 

established between these components. 

 Most interestingly, the R&R concept provides a suitable platform for 

forming hybridized models. Most meta-heuristic hybrids are either loosely coupled 

such as the two-phase approach (e.g. [Maa and Shanblatt, 1992], [Gehring and 

Homberger, 2001]) or where one meta-heuristic embedded on another [Stutzle and 

Dorigo, 1999]. We observe that in these hybrids, each meta-heuristic occupies a 

certain time phase in the search. These phases can be rotated (loosely coupled 

hybrids) or interpolated (embedded hybrids). We define an atomic unit as the 

smallest unit time for a meta-heuristic to perform a completed set of routine and 

assign each phase as an atomic unit. Due to the diverse nature of meta-heuristics, 

the definition of an atomic unit varies across them. In most cases, an atomic unit is 

equivalent to one search iteration but in techniques like ACO, an atomic unit 

means the activity of a single ant. Table 2.1 shows the definition of an atomic unit 

in TS, ACO, SA and GA. Once the search process is partition into atomic units, 

each of these units is allocated to a meta-heuristic. The allocation can be adaptive 

to the previous events and the assigned meta-heuristic is dependent on the rules set 

by the algorithm designer.  
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Meta-heuristics Atomic Unit Definition 

Tabu Search An iteration of the search 

Ant Colony Optimization The activity of an ant 

Simulated Annealing Generating a new random move 

Genetic Algorithm A new generation 

 

 In our model, a search state at any atomic time point comprises of the best-

found solution, the current solution, the current operating meta-heuristic and the 

values of search parameters at that point. Prior to the search, the algorithm designer 

inputs the requests (or rules) that react to event(s) such as improving solutions, 

non-improving solutions, new best solution found and end of atomic unit. A search 

algorithm begins with an initial search state. As the search proceeds, any occurred 

event(s) that matches the rules of the requests will be activated, which 

consequently triggered the desired responses. Suppose we are solving a problem 

using TS and we implement a response that performs “switch the operating meta-

heuristic to SA” and a request that states “execute the switch if 100 non-improving 

moves are encountered”. In this example, each time the search process notices a 

non-improving solution, the request will be informed. When a hundred non-

improving solutions are encountered, the request will trigger the response, which in 

turn changes the operating meta-heuristic from TS to SA. In the next section, we 

will examine how R&R can be implemented using three mechanisms, Events, 

Handlers and Event Controller.  

 

Table 2.1: The definition of an atomic unit in TS, ACO, SA and GA 
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2.4.1 Event Interface  

Virtual Function: 

• list <EventMessage> TriggerResponse (  
Engine* currentEngine )    Function 23 
 

Descriptions: 

The Event object implements the user-defined rule(s) in a request. When the 

operating engine detected an event that matches these rules, the Trigger Response 

function (Function 23) will evoke a list of required action (Event Message). Each 

of these messages is associated with two parameters: the response to be executed 

and its corresponding priority. There are three priority levels, namely, (a) 

INSTANT, which is to execute the responses immediately, (b) NORMAL, which 

is to execute the responses at the end of the atomic unit, and (c) DELAYED, which 

is only executed after all the responses with priority NORMAL have been 

performed. The hierarchical nature of the priority queue will allow designers to 

have additional control over sequence of responses.  

 

2.4.2 Handler Interface  

Virtual Function: 

• void Execute ( EventController* eventController )  Function 24 
 

Descriptions: 

The Handler object implements the responses that readjust the search procedure. 

Generally these responses can be classified into two categories, parameters-based 

and techniques-based strategies. Parameters-based strategies such as reactive tabu 

search and dynamic annealing schedule adapt their search parameters in 

accordance to events. An example could be a reactive tabu list that shortens the 
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tabu tenure when an elite solution is encountered and lengthens it when there is 

solution cycling. For this strategy, two Handler objects are required, with one 

object handling increment and the other decrement. When an event (such as an 

elite solution) is encountered, the Handler will modify the parameter(s) in 

Switchbox via the Event Controller using the Execute function (Function 24). 

Techniques-based strategies on the other hand, usually modified parts of the search 

state. Modifications include changing the current solution, the underlying meta-

heuristic and/or the search procedure (e.g. intensification/diversification). These 

modifications can be evoked using the Event Controller, who has control to every 

aspect of the search state.      

 

2.4.3 Event Controller  

The role of the Event Controller is to control the search process through the 

adjustment of search state, which includes the current operating meta-heuristic 

engine, the search parameters and the current solution. In software term, it acts as a 

“manager” between the user-defined requests and the meta-heuristics engine and 

adopts the design of “Chain of Responsibility” [Schmidt et. al., 1995]. Initially, the 

Event Controller sets up the search engine. As the search proceeds, events 

experienced such as the behavior of the solutions’ objective values, the structure of 

the solutions are compared against the user-defined request. If there is a match, the 

related responses are queued and later triggered according to their priority. If the 

related response(s) affects the search parameters, the parameters are modified and 

the search is continued. However, a chain will occur if the response activates 

another meta-heuristic engine (such as the case of hybridization), which then has 

the capability to execute yet again another engine as illustrated in Figure 2.8. 
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As illustrated in Figure 2.8, we see that multiple search engine (corresponds 

to multiple meta-heuristics) can be deployed in a single search. This chain of 

responsibility ensures that the search is sequential, in which each engine is 

responsible for their roles as defined by the algorithm designer. In addition, 

communications between the search engines is possible via the centralized event 

controller and this enabled them to “share” information experienced in the search. 

Finally, the Event Controller also assures that duplicate responses would not be 

triggered twice in the same atomic time so as to prevent executing the same 

handler twice.  

TS Engine 

Event 
Controller 

Event 
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SA Engine 

Event 
Controller 
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1. Event Controller starts off the first engine (TS Engine). 
2. TS Engine encounters an event and passes the control to 

the Event Controller. 
3. Event Controller executes a handler, which activates the 

SA Engine to start searching. 
4. SA Engine encounters an event and passes the control to 

the Event Controller. 
5. Event Controller executes a handler, which activates the 

GA Engine to start searching. 
6. GA Engine completed search and passes information to the 

previous search engine (SA Engine). 
7. SA Engine completed search and passes information to the 

previous engine (TS Engine). 
8. TS Engine stopped when any terminating condition(s) is 

reached. 

5 

Figure 2.8: The illustration of the Chain of Responsibility pattern 
       adopted by Event Controller. 

8 
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2.4.4 Further Illustrations 

Our first example illustrates how MDF performs hybridization using the 

R&R paradigm. The illustrated hybrid scheme is proposed by [Stutzle and Dorigo, 

1999], in which ACO and Local Search (LS) were hybridized to solve TSP. The 

authors’ approach was to apply LS to the iteration-best solution before the ants 

update it into the pheromone trails. This strategy is implemented in MDF as 

follows; ACO is the operating meta-heuristic and LS is embedded as a Handler, 

which we will denote as the LS handler. We define a request (End_ACO_Event) 

that will be triggered at the end of every ACO search iteration and set it to 

NORMAL priority. When an iteration is completed, this event will register a match 

with the request and the Event Controller will execute the LS handler. The LS 

handler then modifies the search state by applying LS onto the iteration best 

solution. Subsequently, the enhanced solution will be updated into the pheromone 

trail for future ants. Figure 2.9 shows the code fragment of the End_ACO_Event 

and LS handler as an illustration of this technique-based strategy. 

 

 

 

 

 

 

 

 

 

class End_ACO_Event : Event  
{  

list<EventMessage>TriggeredResponse 
          ( Engine* This )  

       { 
 If ( This->IterationCompleted ( ) )      

    list.add (“LS Hander”, NORMAL);      
    return List; 

       } 
} 

class LS_hander : Handler   
{ 
    void Execute(EventController* This)  
     { 

     TSP_Solution* currentBestSoln  
          = This->GetCurrentSolution(); 
          LSEngine->SetInitialSolution(currentBestSoln); 
          LSEngine->StartSolving(); 
          This->SetCurrentSolution 
                 (LSEngine->GetBestFoundSolution()); 
       } 
} 

Figure 2.9: An illustration on a technique-based strategy 
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Our next example is on reactive tabu search, in which we illustrate how 

parameter-based strategies can be implemented using MDF. Reactive tabu search 

refers to strategies that adaptively adjusting tabu search parameters according to 

the search trajectory [Battiti and Tecchiolli, 1994]. Many complex heuristics have 

been proposed with this strategy, each with its own assumptions on the solution 

space. In fact a popular analogy is to visualize the solution space as a multi-

dimensional terrain. The factors include objective value, similarity in the solution 

structure and time. Based on these factors, the reactive tabu search attempts to 

navigate along the terrain toward new local optima. In order to simplify our 

illustration, we only consider two factors, time and objective value and the 

parameter adjusted is limited to the tabu tenure. Time simply refers to number of 

iterations performed. Our simplified strategy works as follows. When we encounter 

a series of non-improving we lengthen our tabu tenure so as to prevent solution 

cycling. On the other hand, when we encounter a new best solution, we shorten our 

tenure in order to perform intensification. We implement an event called 

Reactive_Event which trigger two handlers, Lengthen_Tenure and Shorten_Tenure. 

The first handler (Lengthen_Tenure) will increase the tabu tenure by some x 

amount when the search encounters a series of non-improving moves. On the other 

hand, when a new best solution is encountered, we will revert back the tenure, 

discarding any move that have been kept for more than n iterations using the 

Shorten_Tenure handler. The code fragment for this implementation is shown in 

Figure 2.10. 
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class Reactive_Event : Event  
{  

Int countBadMove = 0; 
int badMoveLimit = n; // Maximum allowed bad moves 

          list<message> TriggeredResponse( Engine* This )  
          { 
    If ( This->BestSolutionFound( ) )  
                 {       

        list.add ( “Shorten_Tenure” , NORMAL ); 
        countBadMove = 0;    
   } 
   Else  
   { 
         If ( countBadMove = badMoveLimit ) 
              list.add ( “Lengthen_Tenure”, NORMAL ); 

                        Else 
                             countBadMove ++;   
                  } 
     return list; 
          } 
} 
class Shorten_Tenure : Handler   
{ 
        void Execute(EventController* This)  
         { 
        This->SBContainer->TSSwitchBox->TabuList.Tenure = t; 
         } 
}          
class Lengthen_Tenure : Handler   
{ 
        void Execute(EventController* This)  
         { 
        This->SBContainer->TSSwitchBox->TabuList.Tenure = t + x; 
         } 
} 

Figure 2.10: An illustration on a parameter-based strategy 
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2.5 Software Strategy Library (SSL) 

SSL provides a list of tools that facilitates some of the more popular 

strategies. For example, the two static annealing schedules (exponential and linear) 

are incorporated. These tools can be classified as tools for general strategies and 

for specific meta-heuristics such as the discussed annealing schedules. SSL 

remains an on-going work due to the numerous strategies (both existing and new) 

that can and would be included. Sections 2.5.1 and 2.5.2 provides more 

illustrations on the SSL components.  

 

2.5.1 General Tools Illustration: Elite Recorder  

SSL supports this strategy by storing a list of elite solutions during the 

search in the Elite Recorder. Each of these elite solutions can be used as a new 

initial solution for another meta-heuristic. The rationale is to search these elite 

solutions more intensively and perhaps differently across various meta-heuristics.  

The Elite Recorder is embedded as a Handler and is triggered when a new best 

solution is found. 

 

2.5.2 Specific Tools Illustration: Very Large Scaled Neighborhood (VLSN) 

VLSN [e.g. Ahuja et al., 2003] works on the principle that by generating a larger 

neighborhood, it increases the chances of obtaining better solutions. One approach is to 

repetitively apply the Move operator “k times” on all the neighbors generated in each move. 

However, to prevent the neighborhood from expanding exponentially, it is often useful to 

select only the elite neighbors to narrow down the size. SSL provides a Candidate List 

class that inherits from the Constraint Interface. It selects the best n neighbors from those 

generated by each k-opt moves. 
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CHAPTER 3 

APPLICATIONS  

This chapter reviews some of the MDF applications published. These 

applications include the Traveling Salesman Problem (TSP) [Lau et. al1, 2004], the 

Vehicle Routing Problem with Time Window (VRPTW) [Lau et. al1, 2003] and the 

Inventory Routing Problem with Time Window (IRPTW) [Lau et. al2, 2003].  

The choice of TSP, VRPTW, and IRPTW is a generalization of many real-

world routing problems, which tend to have multiple objectives and constraints. 

For instance, the IRPTW considers inventory costs across multiple period of 

VRPTW, which in turn is the VRP extended with time window, which in turn is 

extended with optimal fleet (vehicles) size objective from the classic and NP-hard 

TSP. The extensions of NP-hard problems with more constraints and objectives 

provide increasing approximate analogy to practical application, increasing the 

value of solving these problems optimally. As such, these problems are chosen to 

demonstrate the power of re-use in the framework in solving similar or extended 

instances of a problem. We believe that MDF framework can be applied in other 

problems as long as a solution can be formulated for the base problem.  

 

3.1 Traveling Salesman Problem (TSP) 

The Traveling Salesman Problem is a classic NP-hard problem, and the 

mathematical basis related to TSP was treated as early as the 1800s by Irish 

mathematician Sir William Rowan Hamilton. The development of the general form 

of TSP, as well as other classic combinatorial optimization problems, is studied by 

[Schrijver, 1960]. While the problem was well-known, there appears a lack of 
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reference in the literature to earlier work, and it was not until 1954 that the most 

popular TSP definition came from [Dantzig et al., 1954]. TSP definitions for 

general and variant forms of the problems are easily available. In the context of 

this thesis, TSP is defined in Figure 3.1. 

Let 

G = (V,A) be a graph, 

where  V{ v1, v2, ... , vn } be a set of cities (vertex set), and 

A = { (vi,vj) : vi,vj ∈ V, i ≠ j } be the edge set, 

C(r,s) = C(s,r) be a cost measure associated with edge (r,s) w.r.t. A. 

 

 

A tour is defined as a Hamiltonian circuit passing exactly once through 

each point in vertices V. The TSP objective is to find a tour of minimum 

costs/distance. Interested reader can find the full historical mathematical 

formulations of TSP at [http://rodin.wustl.edu/~kevin/dissert/node11.html]. 

 

3.1.1 Design Issues  

This section illustrates the capability of MDF in supporting different 

schemes of hybridization. The authors use ACO and TS to exploit on various 

hybridization schemes in solving the TSP. Their implementation, denoted as 

Hybrid Ant System and Tabu Search (HASTS), is a flexible hybrid method that 

spawns derived models that utilize the strength of meta-heuristics adept at solving 

certain problems. Particularly, HASTS takes advantage of the ACO for its nature 

capability as a constructing heuristic and TS as a local improvement heuristic. By 

Figure 3.1: Problem definition of the Traveling Salesman Problem 
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varying the degree of importance of the inherent algorithms, various derived 

models are easy formed and formulated with MDF.  

The intrinsic flexibility and potential for collaboration allows HASTS to 

vary the importance of the component meta-heuristics. ACO and TS are argued to 

be good complements to each other, as ACO works using a preference list, given 

by the pheromone trail, while TS operates using a forbidden (or tabu) list. The 

algorithmically opposite techniques offered a high potential that when one 

algorithm reaches a local optimal, the other algorithm has a higher chance of bring 

it out and improving the solution henceforth. 

HASTS improves results by adjusting the importance level and degree of 

collaboration of the component meta-heuristics in the hybrid technique, via the 

framework provided by MDF. Each variant of HASTS has a set of algorithms as 

the core algorithm, while the other algorithm(s) serves as the aide algorithm(s). 

Each of these variant becomes a derived model of HASTS. The advantage of the 

derived models lies in the ability to adapt search to exploit the strength and cover 

the weakness of the meta-heuristics under the scheme. As such, HASTS is 

especially suitable for solving complex problems through the use of a divide-and-

conquer approach, by first breaking down and identifying the objectives of the sub-

problems, and solving them using the best approach optimally. This aptitude will 

be illustrated in the next two sections, VRPTW and IRPTW. For this section, we 

focus on illustrating the effects of different hybrids on TSP and observe the efforts 

required to construct each of them. Figure 3.2 showed four possible derived 

models of HASTS. 
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   (A) HASTS-EA   (B) HASTS-IE 

 

 

 

 

   (C) HASTS-ED   (D) HASTS-CC 

 

The four derived models are respectively Empowered Ants (HASTS-EA) 

(Figure 3.2(A)), Improved Exploitation (HASTS-IE) (Figure 3.2(B)), Enhanced 

Diversification (HASTS-ED) (Figure 3.2(C)), and Collaborative Coalition 

(HASTS-CC) (Figure 3.2(D)). The framework design ensured that each of these 

derived models reuses the same implementation for each of the component 

algorithms. The difference is mainly in where to separate the algorithm, as well as 

the communication between the algorithms. Hence, for HASTS, MDF guarantees 

that a generic ACO and TS component engine can be used. 

 

HASTS-EA (Empowered Ants) 

  This derived model arises from the observation that when ACO reaches 

local optimal solutions, it suffers from a tendency of solution cycling in the near 

optimum region due to their emphasis on the strong pheromone trails. By 

empowering the ants with memory, it reduces the chances of reconstructing the 

 

Figure 3.2: The four derived models of HASTS 
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same solution. An analogy can be drawn where each ant becomes more intelligent 

to find a better trail by not following false tracks laid by previous ants. Following 

this metaphor, ACO optimizes the solution based on its pheromone trails as a 

“preference” memory, while solution cycling is reduced via the tabu list. 

Furthermore, TS can be applied to diversify the solutions radically, hence 

encouraging exploration that helps to escape from local optimality. The tabu list 

also eliminates the need for local pheromone decay, which reduces one of the 

parameters. This implementation, however, suffers from a slight increase in 

computational needs, as well as more computational memory for the additional 

tabu list. This tradeoff however, is often justified by the increase in performance, 

especially over large iterations. From an implementation viewpoint, HASTS-EA 

modifies ACO to include a tabu list, which records the solution made by each ant 

in a single iteration. Subsequently, each ant in the iteration would check if the next 

move is tabu-ed. If it is, the move will be dropped and a new move will be 

generated. The tabu list is reset at the end of the iteration. Figure 3.3 shows the 

pseudo-code of HASTS-EA.  

 

procedure: HASTS – EA () 
while (termination-criterion-not-satisfied) 
 while (Max_Ant_Not_Reached) 
  Ants_generation_and_activity 
  Pheromone_Evaporation 
  Reset_Tabu_List 
  Daemon_actions   
 end Schedule_activities 
end while 

end procedure 
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procedure: Ants_generation_and_activity () 
 while (available_resources) 
  Schedule_creation_of_new_ant   
  New_Solution = New_active_ant   
              update_Tabu_List (New_Solution)   

end while 
end procedure 
 
procedure: New_active_ant () 
 Initialize_ant; 
 M = read_Pheromone Trail   
      T = read_Tabu_List   
 while (current_state != target_state) 
  A = read_local_ant_routing_table 
  P = compute_transitional_probabilities (A, M) 
  for Next_state do 
               Next_state = apply_ant_decision_policy(P) 
  end for 
  while (check_Tabu_List (Next_state) == non-tabued) 
  Move_to_next_state (next_state) 
  if (online_step-by-step_pheromone_update) 
   Deposit pheromone 
   Update M 
  end if 
 end while 
 if (online_delayed_pheromone_update) 
  for visited_arc do 
   Deposit pheromone 
   Update M 
  end for  
 end if 
end procedure 

 

In the implementation, the Neighborhood Generator is modified to include 

a tabu list as an event handler, which records the solution made by each ant in a 

Figure 3.3: The pseudo-code of HASTS-EA 
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single iteration. Subsequent ants in the iteration will trigger an event to check with 

the handler to prevent them from constructing similar solution structure. 

 

HASTS-IE (Improved Exploitation) 

  In this model, TS is embedded in ACO to conduct intensification search on 

the best solution. A similar design has been employed in [Stutzle and Dorigo, 

1999] to produce good solutions for TSP. This model offers two advantages. First, 

by updating the pheromone trail only after intensifying the best solution, we 

increase the probability of finding a better solution by subsequent ants. Second, 

due to the probabilistic guided nature of ants system, this narrows the chances of 

reaching an optimal solution if it happens to be radically different from local 

optimum. For example, it is well known that for TSP, the ants system may take a 

long time before it reaches optimality, due to the presence of “crossings” in the 

tour, such as those in Figure 3.4. With the help of tabu search, such crossings can 

be eliminated easily by swap moves such as 2-opt. HASTS-IE, on the other hand, 

is computational expensive, though it can be extremely effective in situations with 

many “crossings” in the solution. 
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Figure 3.4: Crossings and Crossing resolved by a swap operation 
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 In the implementation, TS is applied adaptively by adjusting the 

terminating criterion with respect to the number of non-improving moves. An 

event is set to detect the time when an iteration best solution is found. Before the 

solution is updated into the pheromone trail, a handler will apply TS to optimize 

the solution until it reaches 100 non-improving moves.   

 

HASTS-ED (Enhanced Diversification) 

  In this model, ACO is proposed as a diversifier for tabu search. As TS 

suffers from local optimality, a diversification strategy is to apply another meta-

heuristic as a diversifier [Li and Lim, 2001]. HASTS-ED uses ACO as the TS 

diversifier with the following rationales. First, the probabilistic nature of the ants 

system gives a higher chance of successfully diversifying from the local optimum. 

Second, the diversifier should make a radical move from the current solution so as 

to explore new regions. Although a random restart is a good strategy, the new 

starting solution is often poor. Ants system provides a remedy to this by 

reconstructing quality solutions. However, appropriate parameters for the ACO 

diversifier should be set, such as a low q0 that is unusually in most other effective 

ACO implementation. 

 In the implementation, a counter event is used to adaptively apply ants to 

diversify as a non-linear function of non-improving moves. A recommended 

function is to cumulatively increment the number of non-improved move tolerated 

for every diversification applied. The diversification technique is embedded into 

the handler, which reconstructs the part of best-found solution in TS using ACO. 

 

HASTS-CC (Collaborative Coalition) 
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HASTS-CC proposes a collaborative coalition between the ACO and TS. 

This model offers the least coupling between the two meta-heuristics but allows 

great flexibility in the formulation of the problem. One configuration of HASTS-

CC is to espouse the two-phase approach as advocated by [Schulze and Fahle, 

1997]. This approach consists of a construction phase follow by an optimization 

phase. ACO work extremely well for the construction phase as it could be used 

independently to obtain quality solutions. Being an optimization heuristic, tabu 

search fit naturally into the second phase of the approach. Such collaboration 

exploits the natural heritage of each meta-heuristic. 

For the implementation, an event is set to switch from ACO to TS when 

ACO has completed its intended iterations. 

 

Hyper-hybrid models 

In addition to the four hybrid schemes, [Lau et al.1, 2004] also illustrates 

the ability of MDF in combining hybrid to hyper-hybrid. The authors introduce 

two hyper-hybrid schemes, HASTS-CCED and HASTS-IEEA. HASTS-CCED 

replaces the TS in HASTS-CC to HASTS-ED. This aims to enhance the optimizing 

phase. For HASTS-IEEA, it fuses the tabu list strategy in HASTS-EA to HASTS-

IE, thus allowing HASTS-IE to develop a more aggressive diversifying capability. 

HASTS-CCED and HASTS-IEEA are simple illustrations of how hyper-hybrids 

can be easily formed from previously constructed hybrids when MDF is applied. 

Initial experimentation of these hyper-hybrids has shown promising results with 

low additional development cost. 

 

3.1.2 Experimental Observations and Discussion 
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We demonstrate experimentally the cost-effectiveness of MDF in 

hybridization. The TSP test problems are obtained from TSPLIB [Reinelt, 1991]. 

 

Development Cost of Hybrids  

The most obvious and necessary incentive for using a framework is cost-

savings in development time. However, it is difficult to measure accurately the 

amount of resources required as it is subject to numerous factors. The metric used 

in [Lau et al.1, 2004] is to record the lines of code, which reveals partially the 

programming efforts. Unfortunately, the number of lines of code alone is often 

inadequate to reflect exact development time, as some programmers are known to 

write condensed codes. In addition, this metric only considers the implementation 

time and not the validation time. Intuitionally, if each hybrid scheme were 

developed independently, they would have to be validated separately. An implicit 

benefit of MDF is the reduction in validation cost. Usually the time required to 

validate an application increases non-linearly with the amount of code. Hence the 

savings could be considerable especially in complex applications such as meta-

heuristic hybridization. Figure 3.5 approximates the metric for each model. From 

the comparison, it is apparent that developing strict TS and ACO requires less 

effort than building from scratch (which typically requires around 1500 lines of 

code). The large amount of code in MDF and the relatively smaller additional code 

to formulate MDF to solve TSP, strongly suggests that the MDF has provided the 

bulk of the implementation. Consequently, this implies that MDF has a strong 

software reuse capability that could greatly save development time, satisfying the 

primary objective of the framework. 
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Cost Effectiveness Comparison of Hybrids 

The authors compare the effectiveness of the various hybrid schemes on an 

Athlon XP 3200+ processor with 512MB of memory, and the results are taken after 

90 seconds regardless of the instance size. For each scheme, a greedy heuristic 

based on the nearest neighbor is used to construct the initial solution. Two test 

cases, KROA150 (Figure 3.6) and LIN318 (Figure 3.7) are analyzed in the 

following. 

 

Figure 3.5: Approximation of development time 



 

62 

 

 

In test case KROA150, we observed that Pure TS converged faster then 

Pure AC. However the solution quality of TS stops improving at around 10 

seconds while Pure AC continued to improve on its solution. HASTS-CC, HASTS-

ED and HASTS-CCED produced the same result at 90 seconds although HASTS-

ED converged the fastest. Although HASTS-CCED appeared to be slowest to reach 

the local optimum, we observe a rapid improvement from 22nd seconds to the 26th 

seconds. The winner of this instance is HASTS-IEEA where the local optimum is 

reached at 88 seconds. HASTS-EA has the weakest result showing the unsuitability 

of the scheme in this instance. 

Figure 3.6: Result of test case KROA150 
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In test case LIN318, Pure AC could not improve significantly on the initial 

solution. This phenomenon has been observed by the authors in [Stützle and 

Dorigo, 1999], which comments that Pure AC does not solve TSP well for large 

instances. Due to the weakness of Pure AC, HASTS-CC and HASTS-CCED are 

rendered ineffective. Fortunately, the TS component compensates the weakness to 

produce results that are comparable with Pure TS. HASTS-ED also produces result 

close to Pure TS due to the ineffectiveness of the diversifier. The HASTS-IEEA 

Figure 3.7: Result of test case LIN318. 
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emerged as the winner although HASTS-IE is only a step behind. Again, we see 

that HASTS-EA has little improvement as it was greatly affected by the limitation 

of Pure AC. 

In addition, another 13 test cases from the TSPLIB are recorded in Table 

3.1.  The “Bound” column shows the best-published results to date. Each column 

gives the objective value and the percentage gap when compared with best-

published results. In summary, the table shows that HASTS-IEEA produces the 

best results and has the best standard deviation.  Although it is not conclusive, we 

have a strong belief that hybrids usually out-perform their parents. Hence, with 

MDF, complex hybridized schemes are now possible to be developed in much less 

development time, allowing hybridization to become a practical solution for 

algorithm improvement. 

 

Name Bound Pure TS Pure ACO HASTS-EA HASTS-IE 
Att48 10628 10755 1.19 10847 2.06 10860 2.18 10628 0.00
ei151 426 427 0.23 430 0.94 430 0.94 427 0.23
Pr76 108159 109186 0.95 111994 3.55 111435 3.03 108159 0.00
kroA100 21282 21296 0.07 21559 1.30 22092 3.81 21282 0.00
kroB100 22141 22235 0.42 23145 4.53 22936 3.59 22220 0.36
Wil101 629 629 0.00 649 3.18 638 1.43 629 0.00
Ch130 6110 6196 1.41 6492 6.25 6492 6.25 6124 0.23
kroA150 26524 27125 2.27 27682 4.37 27621 4.14 26550 0.10
kroB150 26130 26178 0.18 27909 6.81 28499 9.07 26132 0.01
d198 16780 15909 0.82 17397 10.25 17213 9.08 15780 0.00
kroA200 29368 29487 0.41 34087 16.07 35859 22.10 29565 0.67
kroB200 29437 30121 2.32 36980 25.62 36980 25.62 29813 1.28
a280 2579 2669 3.49 3157 22.41 3157 22.41 2598 0.74
Lin318 42029 43123 2.60 52156 24.10 50053 19.09 42777 1.78
pcb442 50778 52025 2.46 61979 22.06 61979 22.06 51873 2.16
STD Deviation  1.11 9.15 9.13  0.70

 

Table 3.1: Results for TSP from TSPLIB test cases 



 

65 

 
Name Bound HASTS-ED HASTS-CC HASTS-CCED HASTS-IEEA 
Att48 10628 10628 0.00 10653 0.24 10628 0.00 10628 0.00
ei151 426 426 0.00 426 0.00 426 0.00 426 0.00
Pr76 108159 108159 0.00 108159 0.00 108159 0.00 108159 0.00
kroA100 21282 21282 0.00 21282 0.00 21292 0.05 21282 0.00
kroB100 22141 22210 0.31 22200 0.27 22271 0.59 22141 0.00
wil101 629 629 0.00 629 0.00 629 0.00 629 0.00
ch130 6110 6128 0.29 6150 0.65 6113 0.05 6113 0.05
kroA150 26524 26767 0.92 26727 0.77 26762 0.90 26525 0.00
kroB150 26130 26152 0.08 26860 2.79 26391 1.00 26130 0.00
d198 16780 16876 0.61 15796 0.10 15799 0.12 15781 0.01
kroA200 29368 29668 1.02 29487 0.41 29603 0.80 29479 0.38
kroB200 29437 30121 2.32 30121 2.32 30121 2.32 29543 0.36
a280 2579 2658 3.06 2669 3.49 2654 2.91 2579 0.00
lin318 42029 42938 2.16 43123 2.60 43083 2.51 42665 1.51
pcb442 50778 51860 2.13 52025 2.46 51955 2.32 51654 1.73
STD Deviation  1.05 1.26 1.07 0.56
 

3.2 Vehicle Routing Problem with Time Windows (VRPTW) 

The Vehicle Routing Problem [Toth and Vigo, 2002] is a generic class of 

complex combinatorial optimization problems extended from the TSP and the Bin 

Packing Problem (BPP), and was first formulated by [Dantzig and Ramser, 1959]. 

The VRP is a generalization of the TSP, with additional m constraints, the m-TSP, 

inductively making VRP NP-hard. Inversely, the TSP is the VRP with one un-

capacitated vehicle (which is the elementary version of VRP, the Capacitated 

Vehicle Routing Problem – CVRPT), no depot, and customers with no demand. 

Such observation inspired some approach to solving VRP using a divide and 

conquer method to break VRP into several Multiple TSP (MTSP, a TSP with m 

identical duplicated origin and m salesman) (e.g., [Bullnheimer et al., 1997]). VRP 

and its variations had been well examined and solved using various techniques 

from exact methods (e.g., [Baldacci et al., 1999], [Balinski and Quandt, 1964], 

[Christofides and Eilon, 1969], [Christofides et al., 1981], [Cook and Rich, 1999], 

[Cullen et al., 1981], [Fisher, 1988], [Fisher and Jaikumar, 1981], and [Foster and 
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Ryan, 1976]), to heuristics and meta-heuristics (e.g., [Braysy, 2001], [Chiang and 

Russell, 1997], [Cordeau et al., 2000], [Gillet and Miller, 1974], and [Rousseau et 

al., 1999]). 

A popular and important variant to the VRP, the Vehicle Routing Problem 

with Time Windows (VRPTW), introduce additional constraints to the original 

definition, specifying that each costumer must be served within a specific time 

window. Other variants of the problem are multi-depot, fixed routes, fixed areas, 

etc. Such variants are formulated as they better approximate practical scenarios. 

This thesis in particular looks at VRPTW, which is defined in Figure 3.8. 

Let  

G = (V, A) be a graph, 

 where  V = {v0, v1, … , vn} is the vertex set, and 

A = {(vi, vj) | vi, vj ∈ V, i ≠ j} is the edge set. 

 

 

This definition is similar to the TSP definition. The difference is in the 

additional constraints. The depot vertex v0, has m identical vehicles, each with a 

maximum load capacity Q and a maximum route duration D. The remaining vertex 

vi є V represent customers to be serviced, each with a non-negative demand qi, a 

service time si, and a service time window comprised of a ready time ri and a due 

time li. A waiting time wi is incurred if customer i is serviced before its ready time. 

Each edge (vi, vj) has an associated non-negative costij, interpreted as the travel 

time tij between location i and j. A complete tour is defined by the order in which 

the n customers are serviced by m vehicles, and the objective of VRPTW is to 

determine a complete tours starting and ending at the depot, such that each 

Figure 3.8:  Problem definition of the Vehicle Routing Problem  
       with Time Windows 
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customer is visited exactly once within its time window, the total demand of any 

vehicle route does not exceed Q, the duration of any vehicle route does not exceed 

D and the total cost of all routes is minimized. 

Due to the number of constraints in the problem, there are many definitions 

on the problem optimality. A widely debated factor is whether to consider distance 

or number of vehicles as the primal optimality factor, with more researchers 

focusing on the latter as the primary factor with the former as the secondary factor, 

due in part to the challenge among the community in solving [Solomon, 1987] 

benchmark test cases. ([Larsen, 1999], [Mester, 2002], and [Mester and Braysy, 

2002]) provides further references on the VRPTW. 

 

3.2.1 Design Issues 

The problem being solved in this instance, the VRPTW, is an NP-hard 

multi-objective optimization problem. Traditional approach in solving VRPTW 

involves projecting all objectives into a single dimension. However, the correlation 

between these various objectives are usually weak and difficult to express using a 

common aspect. In addition, during the search, the optimizer has no insight to 

which objective it is improving. This resulted in redundancy spent in optimizing 

the secondary objectives while the primary objective is being optimized. To 

resolve this, an approach is to optimize the problem by independently considering 

each of its objectives, allowing precise strategies to be employed. In solving this 

problem, a decision can be made to decompose the problem into the following 

objectives: 
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Objective 1: Minimize the number of vehicles given a set number of customers. 

The dual problem is to maximize the total number of customers 

given a set of vehicles. 

Objective 2: Minimizes the total distance traveled given a fixed set of vehicles. 

This divide-and-conquer formulation suggests the suitability of using 

HASTS. As had been mentioned earlier, each derived model of HASTS share the 

same implementation for the component algorithm. It is also seen that VRPTW is 

an extension of the TSP. Hence, in the implementation, HASTS utilizes a generic 

ACO and TS implementation for TSP, and reuse this implementation with 

modifications to handle the additional constraints in VRPTW, to provide a solver 

for VRPTW. This solver is then extended by each derived model, and modified 

according to the specifications of the sub-problem it is assigned to solve. Figure 

3.9 shows the evolution of the MDF implementation in solving VRPTW using 

HASTS. 

 

  

For this problem, HASTS requires only two derived models, HASTS-IE 

and HASTS-ED described earlier. The first objective can be reformulated to its 

dual model and writing it as maximizing the customers served in given a set of 

vehicles, and reduce the required vehicles each time a solution that serves all the 

TSP solver VRPTW solver 

HASTS derived model 1 

HASTS derived model n 

Figure 3.9: Codes reuse for MDF implementation 
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customers is found with the lesser fleet size. The HASTS-EA derived model is 

appropriate for this sub-problem. ACO is a good meta-heuristic for this objective 

as it optimizes the solution quality through reconstruction. TS, although possible, 

is not a suitable candidate as it tries to ‘pull’ the solution to feasibility through 

optimizing the customers’ sequence in the tour, which is a slow process. Instead, 

tabu search is used to empower the ant system by intelligently rupturing the 

pheromone trails left by the ants, and in doing so, helped the ants from being 

ensnared in a local optimum. Initially m vehicles are obtained by applying a greedy 

heuristic to serve all customers. The algorithm then reduces the value of m by 1 

and seeks to construct a feasible solution that services all the customers. Once a 

feasible solution is found, the number of vehicles is reduced to the best-found 

number of vehicles and the process is repeated for a new feasible solution. This 

sub-problem requires the search to find a configuration where the customers can fit 

into the pre-set vehicles. HASTS-EA performs well since the tabu list assists each 

ant in an iteration to construct a radically different solution. Although other derived 

models can also be used, they lack of the intensified exploration that HASTS-EA 

provides.  

Objective 2 is attempted after Objective 1 had been optimized, and as a 

result, this sub-problem will consist of a tighter solution space. In spite of the 

success by HASTS-EA in optimizing the number of vehicles, this derived model is 

not very effective for this objective because of the difficulties involved in 

constructing different feasible solutions on an allowed number of vehicles due to 

the nature of ACO. Instead, another derived model, HASTS-ED, is employed to 

minimize the total distance on a fixed set of vehicles. HASTS-ED uses tabu search 

as the core heuristic with ants system acting as the diversifier. Tabu search is 
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effective in solving this sub-problem as it optimizes the route distance rather than 

reconstructs the solutions. However, tabu search still faces the danger of being 

entrapped in a local optimum during its search. To address this issue, when tabu 

search encounters a local optimum, it randomly selects some of the routes to be 

reconstructed by ACO, which assists tabu search by radically re-configuring the 

selected partial routes. Details on this objective rely mainly on the operations of 

Tabu Search and are examined in further detail in [Lau et. al.2, 2003]. 

 

3.2.2 Experimental Observations and Discussion 

VRPTW, as mentioned, as extended from the TSP. The classical and most 

common comparison for VRPTW solvers in the literature is with the Solomon’s 

VRPTW benchmark [Solomon, 1987], consisting of a total of 56 test cases 

covering different scenarios. These test cases included a set of problems consisting 

of Clustered nodes (C101-C109, and C201-208), which generally is best solved by 

assigning vehicles to service the same or nearby clusters in the problem; a set of 

problems consisting of Random nodes (R101-R112, and R201-R211), which has 

nodes randomly assigned, and solving it optimally will be problem specific; and a 

set of problems consisting of a combination of Random and Clustered nodes 

(RC101-108, and RC201-208). Table 3.2 tabulates the results obtained. 

 

Test cases TS ACO HASTS 

C101 10/828.94 10/855.07 10/828.94 
C102 10/852.97 10/1072.24 10/845.61 
C103 10/858.62 10/1435.26 10/840.88 
C104 10/856.87 10/1182.64 10/857.57 
C105 10/828.94 10/936.47 10/828.94 
C106 10/828.94 10/958.91 10/828.94 
C107 10/828.94 10/877.99 10/828.94 
C108 10/828.94 10/1033.81 10/828.94 

Table 3.2: Results for VRPTW from the Solomon’s original 
test cases (n=100)
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C109 10/828.94 10/1900.94 10/828.94 
R101 19/1686.24 19/1929.05 19/1686.24 
R102 18/1518.93 18/1886.77 18/1493.31 
R103 14/1301.64 14/1679.71 14/1301.64 
R104 11/1072.04 10/1198.69 10/1025.38 
R105 14/1459.84 14/1651.43 14/1458.60 
R106 13/1324.38 12/1564.99 12/1314.69 
R107 11/1165.87 10/1144.72 10/1140.27 
R108 10/1002.56 10/1117.25 10/ 994.66 
R109 12/1287.62 12/1502.57 12/1207.58 
R110 11/1218.33 11/1348.78 11/1166.65 
R111 11/1104.93 11/1239.53 11/1172.66 
R112 10/1039.55 10/1242.24 10/1041.36 
RC101 15/1742.29 15/1899.97 15/1698.50 
RC102 13/1605.30 13/1780.98 13/1551.32 
RC103 11/1337.04 11/1567.12 11/1371.40 
RC104 11/1249.13 10/1353.87 10/1187.97 
RC105 15/1633.39 14/1899.54 14/1618.01 
RC106 12/1428.88 12/1620.67 12/1434.33 
RC107 12/1312.84 11/1468.59 11/1266.92 
RC108 11/1258.40 10/1326.94 10/1273.12 
C201 3/591.56 3/ 591.56  3/ 591.56 
C202 3/591.56 3/ 993.62  3/ 591.56 
C203 3/617.32 3/1065.81  3/ 605.23 
C204 3/673.46 3/1046.87  3/ 594.80 
C205 3/604.67 3/ 913.03  3/ 588.88 
C206 3/632.35 3/ 647.29  3/ 588.49 
C207 3/621.02 3/ 646.69  3/ 588.49 
C208 3/588.88 3/ 646.72  3/ 588.49 
R201 4/1308.84 4/2048.31   4/1366.34 
R202 4/1123.34 3/1755.11   3/1239.22 
R203 3/1013.59 3/1625.26   3/1000.29 
R204 3/817.60 3/1159.14   3/ 781.86 
R205 4/1022.02 3/1678.53   3/1063.29 
R206 4/963.94 3/1525.34   3/ 955.34 
R207 3/863.60 3/1258.12   3/ 866.35 
R208 3/761.94 2/1016.07   2/1016.07 
R209 4/934.45 3/1551.01   3/ 979.30 
R210 3/1000.53 3/1659.90   3/ 968.32 
R211 3/816.33 3/1143.96   3/ 865.51 
RC201 4/1704.92 4/2226.23   4/1445.00 
RC202 4/1265.78 4/1878.00   4/1204.45 
RC203 3/1118.19 3/1706.48   3/1091.71 
RC204 3/884.70 3/1342.81   3/ 826.27 
RC205 4/1435.06 4/2271.26   4/1469.25 
RC206 4/1162.96 3/1717.62   3/1259.12 
RC207 4/1178.01 3/1733.47   3/1127.19 
RC208 3/931.76 3/1422.07   3/ 937.78 
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 Table 3.2 is read as follows: TS refers to the results obtained using a 

standard Tabu Search implementation on MDF-TSF. ACO refers to the results after 

passing the data through derived model HASTS-EA, a predominantly ACO 

technique implemented with MDF-ACF that focus on solving the first objective 

(minimizing the fleet size of vehicles). Finally, the HASTS column tabulates the 

results obtained after the entire HASTS process mentioned earlier – in effect after a 

combination of HASTS-EA and HASTS-ED. 

Note the effectiveness of the hybrid HASTS compared against TS and 

ACO, which adequately showed the effectiveness of MDF and a divide and 

conquer hybrid approach. Also, the results from TS are generally better than ACO 

in this instance due to the different objectives of the approach. TS has an objective 

of minimizing distance, and perform it so well that for some instances, such as 

R202, it performs better in terms of distance, but is worse off by the problem 

definition specifying the fleet size as primary priority, while the ACO results 

focuses mainly on reducing the fleet size of vehicles. It should also be further 

noted that the development of the TS implementation takes about 3 months man-

hours, while the ACO implementation takes a lesser amount of time at about 2 

months, due to its simpler nature. Meanwhile, with the availability of MDF, 

HASTS requires only less than a week man-hours to develop. 

 

3.3 Inventory Routing Problem with Time Window (IRPTW) 

The Inventory Routing Problem with Time Window (IRPTW) follows as a 

natural extension from the VRPTW, with the additional constraint over multiple 

time-periods, which better reflect practical scenarios of a known future period 

planning. Despite the complexity, literature survey showed that IRPTW can be 
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solved optimally if major restrictions are imposed. [Carter et al., 1996] proposed a 

Lagrangean heuristic to solve a single-supplier, single-warehouse instance of the 

problem, but it is sensitive to the values of several parameters where there are no 

good heuristics for setting them, and is unable to guarantee feasibility. [Chan et al., 

1998] modeled a single-item, constant demand distribution system and presented 

worst case as well as probabilistic bounds. However, it is doubtful that any of the 

asymptotically optimal heuristic proposed will perform well for realistic problems 

with time-varying demand due to the unrealistic assumption on demand. [Campbell 

et al., 1998] proposed a computationally intensive integer programming approach 

to a similar problem. [Lau et al., 2000; Lau et al., 2002] proposed a divide and 

conquer approach of decomposing IRPTW into two sub-problems, then defined an 

interface to allow the two corresponding algorithms to collaborate in a master-

slave fashion and provided a proof of convergence. This approach is unable to 

guarantee feasibility, when the output of the first module is infeasible for the 

second; and the quality of solution is necessarily low, since there is no provision 

for an iterative improvement heuristics. IRPTW is defined as in Figure 3.10. 

Given 

 S: set of suppliers 

 R: set of retailers 

 J: set of items 

 T: consecutive days in the planning period {1,2,…,n} 

 Dijt: demand of retailer I for item j on day t 

 Qv: vehicle capacity 

 Qw: warehouse storage capacity 

 Qi: storage capacity of retailer i 
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 Wi: time window of retailer i 

 Cj: inventory holding cost per unit item j per day at the warehouse 

 Cij: inventory holding cost per unit item j per day at retailer i 

 Bij: backlog cost per unit item j per day at retailer i 

Tik: transportation cost incurred by visiting retailer i followed  

           by k on the same route 

and 

 G = (V,A,T) is a multi-period graph 

where  V = (v1,v2,…,vi,…,vm) is the vertex set, and 

A = {(vi, vj) | vi, vj ∈ V, i ≠ j} is the edge set, and 

T : as defined above 

Output the following: 

[1] The distribution plan denoted by 

xsjt: integral flow of amount of item j from supplier 

                  s to warehouse on day t, and 

xijt: integral flow amount of item j from the warehouse  

                  to retailer i on day t 

[2] The set of daily transportation routes Φ, which carry the flow amounts 

in (1) from the warehouse to the retailers such that the sum of the 

following linear costs is minimized: 

(a) inventory cost at the warehouse (Cj) 

(b) inventory cost at the retailer (Cij) 

(c) backlog cost (Bij) 

(d) transportation cost from the warehouse to the retailers (Tik) 

Figure 3.10: Problem Definition for the Inventory Routing Problem  
                    with Time Windows  
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3.3.1 Design Issues 

The design of the IRPTW solver is presented in [Lau et al.2, 2003]. 

Following the similar concept proposed in [Lau et al., 2000], the algorithm works 

by decomposing this complex problem into the relatively simpler VRPTW and 

DLP. Since VRPTW can be further broken down using its separate objectives as 

described in the previous sub-section, IRPTW then can be formulated to the 

following three sub-objectives: 

Objective 1: Minimize the number of vehicle used subject to customer time 

windows of the given set of customers. 

Objective 2: Minimize the total distance traveled, subject to customer time 

windows and the given fleet of vehicles. 

Objective 3: Minimize the inventory holding and backlog costs, subject to the 

vehicle capacity and retailer holding capacity constraints. 

It can be seen that objectives 1 and 2 forms the VRPTW part of the 

problem, while objective 3 specifies the DLP sub-problem. Having previously used 

HASTS to solve VRPTW, it become logical to reuse this implementation to solve 

IRPTW once it was apparent IRPTW can be broken down into the VRPTW and 

DLP.  

 In order to reduce inventory or backlog, more frequent deliveries have to be 

made, hence increasing the transportation cost. Hence, the goal for objective 3 is to 

minimize the number of retailers (or customers) served each day without 

increasing the total cost. That is, the objective is to delete retailers from routes in a 

manner that does not incur additional costs. Many techniques are available to 

handle this objective, but in line with reusing HASTS, which is already used to 

solve the problem involving the other two objectives, it is a straightforward matter 
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to reuse the same ACO and TS engines by employing another derived model 

catered to the problem, HASTS-IE, such as in Figure 6.6. HASTS-IE uses ACO to 

construct different solutions. It then uses tabu search to improve its exploitation to 

reduce missing elite solutions. The tabu search uses the standard “add”, “remove” 

and “swap” moves that attempt to improve the solution quality found by the ACO. 

The output is a distribution plan that induces the set of customers to be served for 

objective 1, to facilitate iterative improvement.  

 

3.3.2 Experimental Observations and Discussion 

The results for IRPTW are obtained from an implementation that reuses the 

implementation for the VRPTW. There are no well-known sets of test cases for the 

IRPTW, but there are implementations in the literature that extends the set of test 

cases from the Solomon’s benchmark for the VRPTW with additional constraints. 

As such, the MDF application was experimented on the set of problems in [Lau et 

al., 2002], which provided a good set of test cases for IRPTW. 

Specifically, the planning period is 10 days. The vehicle capacity, locations 

and time-windows of the customers and depot are as specified in the corresponding 

Solomon instances. The demand dit of customer i for day t (t=1,…,10) is equal to 

the demand di of the Solomon instance, by partitioning the value 10*di into 10 

parts, i.e. di1, di2,…,di,10 randomly such that dit is within the range [0.5*di, 1.5*dj]. 

The capacities of consumers and warehouse are the vehicle capacity and infinity 

respectively. As for cost coefficients, the inventory cost and backlog cost for each 

customer are 1 and 2 respectively, symbolizing a preference to holding a unit of 

inventory over a day than suffer a lost of customer trust on a backlog of a 

corresponding unit of inventory. The transportation cost of each route is 10 times 
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its total distance. Table 3.3 shows the results of the test cases. The table also 

presented the addition test cases from the RC2 series that was not in the original 

benchmark problems. The columns VRPTW, ILS+VRP and TS+VRP denote the 

results obtained, where VRPTW is the approach taken from adopting a standard 

two-phase heuristics; ILS+VRP is the results obtained using Iterated Local Search 

([Gu, 1992] and [Johnson 1990]) and TS+VRP employs a Tabu Search technique. 

The column HASTS presents the results obtained using our proposed hybrid 

algorithm implemented from the MDF (ACF+TSF). 

 

Test Cases VRPTW ILS+VRP TS+VRP HASTS 

C201 178650 113263 112821 54905 
C202 192818 117483 124312 53404 
C203 200615 131920 122055 53620 
C204 216447 136384 142300 54778 
C205 175378 116147 109248 51907 
C206 177331 123978 127876 50507 
C207 177447 122204 117735 51453 
C208 175268 124110 125667 52501 
R201 304779 111330 116893 85014 
R202 291492 116982 114717 70533 
R203 247122 110215 115070 68865 
R204 227381 114118 114118 61944 
R205 284759 122333 123009 73455 
R206 260760 120928 123251 64652 
R207 223527 115438 115438 63697 
R208 338033 120011 117255 59285 
R209 249036 116840 120725 69200 
R210 - - - 69545 
R211 - - - 61816 
RC201 - - - 97417 
RC202 - - - 87245 
RC203 - - - 80114 
RC204 - - - 71795 
RC205 - - - 92560 
RC206 - - - 86144 
RC207 - - - 83326 
RC208 - - - 71740 

 

Table 3.3: Results for IRPTW extended from Solomon’s original test cases 
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 Results for the VRPTW, ILS+VRP, and TS+VRP columns are obtained on 

a Pentium 666MHz machine, while the results from the HASTS column is 

obtained on a Pentium 1.13GHz machine, which is estimated to perform at twice 

the power. As such, for comparison, the HASTS implementation is obtained under 

90 seconds, to compensate for the 180 seconds upper bound used for the other 

implementations. 

 With the objective being to minimize the cost, Table 3.3 amply showed that 

HASTS offers a set of superior results compared to previous works. While this 

could be due in part to the originality of IRPTW in the literature, and hence not 

well studied as yet, it can still be claimed that the effectiveness when solving 

VRPTW is not lost when reused to solve IRPTW. Furthermore, it can be seen that 

the framework provided generality and flexibility for reuse, which enabled 

development to take minimal effort and implementation to be achieved in less than 

2 weeks man-hours. 

 Beside the applications illustrated in this chapter, other publications of 

MDF include the Multi-Periods Multi-dimension Knapsack problems (MPMKP) 

[Lau et al.2, 2004] and Quadratic Assignment Problems [Lau et al.1, 2003]. 



 

79 

CHAPTER 4 

RELATED WORKS 

This chapter examines some of the software frameworks in the literature 

that share similar design goals with MDF, and yet differ in their structurally 

designs. These frameworks include OpenTS [Harder, 2003], Localizer ++ [Michel 

and Van Hentenryck, 2001], EasyLocal ++ [Gaspero and Schaerf, 2001], and 

HotFrame [Fink and Voß, 2002], and will be introduced respectively in the 

following sections. 

 

4.1 OPENTS    

OpenTS is one of the project initialized by Computational Infrastructure 

for Operations Research (COIN-OR) to spur the development of open-source 

software for the operations research community. It is a java-based tabu search 

framework that has a well-defined, object-oriented design. The generic aspect of 

the framework is achieved through inheritance, using well-structured interfaces, 

which includes Solution, Move, Move Manager, Objective Function, Tabu List and 

Aspiration Criteria. This unambiguous decomposition defined clearly the 

collaborative role of each interface in the algorithm. In addition, the author 

presumes that most TS applications adopt the “tabu-ing the move” strategy and 

hence provides “helper” classes such as SimpleTabuList, ComplexMove and 

ComplexTabuList classes to assist the implementation.  

OpenTS also supports the implementation of TS strategies through the use 

of the EventListener objects. These objects can be embedded into any of the 

interface-inherited objects so as adjust their parameters. However OpenTS only 
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support a static set of search events and does not cater for user-defined events such 

as the presence (or absence) of certain component(s) in solutions. This causes 

difficulties in implementing strategies that are based on the solution structures 

(such as recency and frequency based strategies). The absence of a centralized 

control mechanism also poses a limitation to the framework capability. For 

example, when two EventListeners are triggered in the same iteration, their order 

of execution follows a First-In-First-Out (FIFO) sequence, thus giving no control 

to the algorithm designer. It is also probable for two conflicting EventListener 

objects (such as intensification and diversification) to be performed together. 

 

4.2 LOCALIZER ++    

The literature presented another framework known as the Localizer ++ that 

incorporates Constraint Local Search (CLS) in C++. The framework is structured 

into a two-level architecture, which composes of Declarative and Search 

components. The Declarative components are the core of the architecture and are 

used to maintain the complex data structure in local search. In addition, it also 

incorporates a Constraint Library that provides a set of frequently used constraints, 

such as the alldiff which verifies that every element in the data structure has a 

different value. The Search component on the other hand, operates around the 

Declarative component and is procedural in nature. Generally, this component 

implements the general procedure of local search and thus could be used to 

implement any meta-heuristics that follow to this general behavior (i.e. such as 

iterative local search and tabu search). 

Before Localizer ++ can be deployed, it requires the algorithm designer to 

formulate the problem into its mathematical equivalence form in order for the 
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framework to recognize and subsequent manage the variables. Algorithm designers 

are required to implement the routines of the local search such as the local moves 

and the selection criteria, and together with the Constraint Library, to construct the 

solver. Due to the numerous possible types of constraint, it is improbable for the 

Constraint Library to provide all forms of constraint and thus Localizer ++ copes 

with this limitation by supporting the extension to the library through the addition 

of invariants. The framework also supports user-defined search strategies that are 

triggered at static points of the search (such as at the start or the end of the search) 

rather than dynamically in response to search events. New search procedures can 

be extended from Localizer ++ through inheritance. 

 

4.3 EASYLOCAL ++ 

EasyLocal ++ is another object-oriented framework that can be used as a 

general tool for the development of local search algorithms in C++. EasyLocal ++ 

relies on programming techniques such as the “Template Method” that specifies 

and implements the invariant parts of various search algorithms, and the “Strategy 

Method” for the communication between the main solver and its component 

classes, in order to achieve the generic aspect. The classes in EasyLocal ++ can be 

classified into four categories, Basic Data, Helpers, Runners and Solvers. The 

Basic Data is a group of data structure with their managers and is used to maintain 

the states of the search space, the moves, and the input/output data. The Basic Data 

classes are supplied to the other classes of the framework by means of template 

instantiation. The local search problem is embodied in the Helpers classes, which 

perform actions that are related to some specific aspects of the search, such as 

maintaining the states or exploring the neighborhood of a solution. The Runners 
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represent the algorithmic core of the framework and are responsible for performing 

the routine of the meta-heuristic. Currently, EasyLocal ++ supports several 

common meta-heuristics such as Hill Climbing heuristic, SA and TS. 

EasyLocal ++ can be easily deployed by first defining the data classes and 

the derived helper classes, which encode the specific problem description. These 

classes are then “linked” with the required Runners and Solvers and the application 

is ready to run. EasyLocal ++ also supports diversification techniques through the 

Kickers classes. The Kickers objects are incorporated into the Solver and triggered 

at specific iteration of the search. Hence, this mechanism relies on the knowledge 

of the algorithm designer to determine the best moment to trigger the 

diversification. While this may be achievable for most experience designer, it may 

be a bit demanding for unfamiliar implementer coping in a new problem. 

Hybridization is also very restricted as the framework only supports three meta-

heuristics. In addition, TS can be seen as a Hill-Climbing heuristic with memory 

and hence the most probable candidates for hybridization are TS and SA. Hence 

very limited hybridized schemes can formed with Easy Local++.     

 

4.4 HOTFRAME 

 HotFrame is a meta-heuristics framework implemented in C++, which 

provides adaptable components to incorporate different meta-heuristics and 

common problem-specific complements. Currently HotFrame includes meta-

heuristics such as basic and iterated local search, SA and their variations, different 

variants of tabu search, evolutionary methods, variable depth neighborhood search, 

candidate list approaches and some hybrid methods. HotFrame provides several 

reusable data structure classes to incorporate common solution spaces such as 
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binary vectors, permutations, combined assignment and sequencing and also some 

standard neighborhood operations like bit-flip, shift, or swap moves. These classes 

can be deployed immediately or be used as base classes for subsequent customized 

derived classes. This design encourages software reuse especially for problems that 

can be formulated with the components that are already presence in the framework.   

Meta-heuristics strategies can be implemented in HotFrame through the 

templates design, which incorporates a set of type parameters that can be extended 

to support both problem-specific and generic strategies. A benefit of this design is 

that it gives HotFrame a concise and declarative system specification, which would 

decrease the conceptual gap between program codes and domain concepts. 

HotFrame adopts a hierarchical configuration for the formulation of the search 

techniques in order to separate problem-specific with the generic meta-heuristic 

concepts. Generic meta-heuristic components are pre-defined in the configuration 

as a higher-level control while the problem-specific definitions are incorporated 

inside these meta-heuristic components to form a two level architecture (i.e. each 

problem-specific strategy will be embedded to a meta-heuristic scheme). 

 

4.5 Frameworks Comparison 

 Apparently each of these frameworks has its own forte and drawbacks and 

we conclude that there is no one universal model that truly dominates the rest. 

Hence we proposed six different facets that we consider as important criteria in 

benchmarking these frameworks. Table 4.1 presents a summarized tabulation on 

the performance of the frameworks. 
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 MDF OpenTS Localizer++ EasyLocal++ HotFrame 
Programming 
Language? 

C++ 
 

Java 
 

C++ 
 

C++ C++ 

Number of  
meta-heuristics 
supported? 

04 01 02 03 04 

Support for 
Hybridization? 

Supported None None Limited Supported 

Adaptive 
control? 

Yes Yes No No No 

Usage 
Friendliness? 

Easy Easy Moderate Easy Moderate 

Extended library 
included? 

Yes No Yes No Yes 

  

The first aspect compares the programming language platform among these 

frameworks. OpenTS appears to be the only framework that is implemented in 

Java, which is well-known for its “across platform” capability. However, both 

MDF and EasyLocal ++ can be used with Windows, Linux and Solaris, and 

although not explicitly mentioned, we believe Localizer ++ and HotFrame could be 

deployed in these platforms as well. We consider C++ to be a better candidate for 

writing framework due to its efficiency (since C++ is a native language, it occurs a 

smaller overheads than Java, which requires additional interpretation from the 

virtual machine) and also the supports of templates design (static polymorphism). 

Implicitly, the evidence of more number of frameworks written in C++ also 

implies that the committees are more inclined toward C++. 

  The second aspect considers the number of meta-heuristics supported, 

which implicitly measures the extensiveness of the framework. We consider only 

the fundamental meta-heuristics (excluding any variations). MDF and HotFrame 

both support four different core algorithms, EasyLocal ++ three algorithms, 

Localizer ++ two algorithms and OpenTS supporting only TS. Hence in this aspect, 

MDF and HotFrame offer more varieties to the algorithm designer. 

Table 4.1: A comparison of MDF and the four reviewed frameworks 
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 The third aspect is very much related to the second as it examines the 

supporting mechanism provided for hybridization, which is deemed as a vital 

consideration for modern meta-heuristics framework. Having only a single meta-

heuristic, OpenTS does not perform very well in this criterion. The EventListener 

provides an awkward means for hybridization and added to the absence of reusable 

codes, the merging of multiple meta-heuristics could be an inconvenient if not 

intricate task. Similarly Localizer ++ suffers from this aspect as it provides no 

mechanism for hybridization and. Only limited hybridization can be achieved 

through overriding some of the abstract classes. EasyLocal++ offers a Kickers 

classes as the mechanism to support hybridization (i.e. TS as the core algorithm 

and SA as the diversifier). However, this provides very limited hybridized schemes 

and is generally not considered as very flexible. HotFrame offers a greater amount 

of flexibility and convenience by providing deployable codes as that can be readily 

inherited to form hybrids. Unfortunately, we observe that the framework does not 

facilitate the formation of hyper-hybrids (hybridizing hybrids) nor encourages the 

recycling of derived hybrids codes (i.e. once the hybrid is formed from the base 

class, the derived hybrid’s codes cannot be easily recycled onto another hybridized 

scheme). These two issues are easily resolved in MDF. Firstly the Event Controller 

provides a centralized scheme that facilitates the merging of hybrids (see Section 

3.1.1). In addition, every hybridized scheme is formulated into Event and Handler 

objects that could be easily recycled from one scheme to another, which solve the 

second issue. Hence MDF is more prominent when hybridization is concerned. 

 The fourth aspect regards the adaptability of the frameworks to the search 

events. Localizer ++, EasyLocal ++ and HotFrame have no mechanism to support 

adaptive controls and usually the task for reactively adjusting the search trajectory 
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is fallen onto the algorithm designers’ shoulder. MDF and OpenTS incorporates a 

feedback mechanism that links the search engine with a decision unit. This forms a 

learning environment for their applications. Algorithm designer can generalize 

their decisions on when to perform a strategy into rules rather than specifying a 

time to trigger the strategy. This results in more dynamism in directing the search. 

 The fifth aspect looks at the user friendliness in deploying the framework. 

Localizer ++ requires implementer to formulate the problem into its mathematical 

forms and this may cause difficulties to unfamiliar implementer. EasyLocal ++ and 

HotFrame relies on templates to offload the routine behaviors of meta-heuristics 

from the implementer. In addition EasyLocal ++ also provides a Testers class that 

facilitate implementers on their debugging process. MDF and OpenTS on the other 

hand, relies more on inheritance for its generic aspect and handle the derived 

objects indirectly through the routine in the search engine(s). This provides the 

additional advantage of design clarity as the interfaces specify clearly the role of 

the inherited classes, which is often less confusing than using template classes. 

 The final aspect complements the fifth by observing if the framework 

provides any additional tools to facilitate development. These tools are often 

grouped together to form a software library. MDF provides tools that facilitate 

general and meta-heuristics strategies implementation (Section 2.5). HotFrame has 

a more matured library that contains general data storage classes and standard 

neighborhood operators. Localizer ++ offers a constraints library that provides 

general constraints to the implementers. There is no report of a library in OpenTS 

and EasyLocal ++.   
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CHAPTER 5 

CONCLUSION 

 In this thesis, we presented the designs and architecture of MDF, which is a 

generic framework capable of integrating any number of separate heuristics to aid 

algorithmic collaboration and performance comparisons. The primary objectives of 

the thesis are to demonstrate MDF as a versatile platform for strategy development, 

particularly hybridization, as well as to exemplify the potential of reuse, which can 

decrease developmental resources and increase productivity. These capabilities are 

illustrated with implemented examples, which include TSP and the extended 

VRPTW and IRPTW. The TSP and VRPTW implementations obtained good 

results, even when compared against state-of-the-art techniques in the literature, 

and when reused for IRPTW, the excellent results achieved clearly show the value 

of software reuse in this instance. By induction, it is logical to state that as long as 

a good implementation is found for a base problem, it is simple to reuse that 

implementation for similar or extended scenarios of that base problem. 

Unfortunately, the versatility of MDF is not without a price. In order for MDF to 

achieve the generic aspect, control codes are required to sequence the order of 

events, which inevitably induces overheads to the framework. However, we 

consider this nearly negligible outlay of efficiency a small price to pay with respect 

to the advantages that have been illustrated throughout the thesis. In the next few 

sections, we list the contributions of this thesis and report the current development 

as well as future goal of MDF. 
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5.1 Thesis Contributions 

This thesis is a contribution to the application of meta-heuristics. It 

describes a new meta-heuristics framework that is a paradigm of a software 

solution for combinatorial optimization problems. The following are our main 

contributions: 

1.  It presents a wide discussion on the current state-of-art in meta-

heuristics and their techniques. 

2.  It proposes a novel approach of characterizing different meta-

heuristics into common behavior, which consequently enables codes 

reuse across different meta-heuristics. 

3.  It describes the design and realization on how meta-heuristics can 

adopts a Request and Response (R&R) scheme that facilitates the 

formation hybridized schemes and related strategies 

These results are also reported in [Lau et.al., 2004], [Lau et.al.1, 2003] and 

[Lau et.al.2, 2003]. 

 

5.2 Current Development 

MDF is currently undergoing an enhancement phase. Areas of interest in 

which development is in progress include those listed in section 5.2.1, 5.2.2 and 

5.2.3. 

 

5.2.1 Parallel Computing  

Works in literature [e.g. Perry, 1990] have shown parallel computing does 

not only reduced computation time but produced better solutions for several 



 

89 

problems. However, an obstacle in this approach is the difficulty in implementing 

the multi-processes application. This is further hindered by the fact that each new 

application usually demands re-implementation, which is both tedious and prone to 

errors. MDF is viewed as a potential candidate to reduce this hazard through 

extending the framework to support parallel computing.       

   

5.2.2 Human-guided Visualization 

Manual or adaptive tuning of search parameters could be a demanding task 

for either the algorithm designer or machine. A logical solution is then to bridge 

human instinct with artificial intelligence. A collaborative venture can be formed 

with a visualizer that provides information to the algorithm designer, which in turn 

devises new rules to guide the machine. This technique is currently investigated as 

a possible extension to MDF. 

 

5.2.3 Solving problems with scholastic demands   

Meta-heuristics are often applied on deterministic problems even if their 

underlying techniques are scholastic. This is due to the difficulty in computing the 

objective value of a scholastic problem analytically. Simulation on the other hand, 

excels at handling scholastic problems but usually has no means of optimization. 

Apparently there is no rule that prevents their collaboration and this initiates 

another extension that could be made to the MDF architecture.   
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Annex A 

Tabu Search (TS) 

History 

The roots of TS can be traced back to the 1970's and was first formally introduced 

in its present form by [Glover, 1986]. Incidentally, the basic ideas had also been 

sketched in the works of [Hansen, 1986]. Additional efforts of formalization are 

later reported in [Glover, 1989], [de Werra & Hertz, 1989], [Glover, 1990]. Many 

computational experiments have shown TS to be competitive against most known 

techniques and through its flexibility, could out-perform many classical 

procedures. Surprisingly till today, there is yet a formal explanation of this good 

behavior. Theoretical aspects of TS have been investigated in the works of ([Faigle 

& Kern, 1992], [Fox, 1993]). A didactic presentation of tabu search and a series of 

applications have also been collected in a book [Glover, Taillard, Laguna & de 

Werra, 1993]. Its interest lies in the fact that success with tabu search often implies 

that a serious effort of modeling was done from the beginning. The applications in 

[Glover and Laguna, 1997] provide many such examples together with a collection 

of references. 

 

Basic Concept 

Formally let us consider an optimization problem in the following way: Given a set 

S of feasible solutions and a function f : S →  ℜ, find some solution i* in S such 

that f(i*) is acceptable subjected to some constraints. Generally the acceptability 

for a solution i* is to have f(i*) ≤ f(i) for every i in S. In such a situation TS would 

be an exact minimization algorithm provided the exploration process can guarantee 
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that after a finite number of steps such an i* would be reached. However in most 

situation, there is no guarantee on an i* and therefore TS could simply be viewed 

as an extremely general heuristic procedure. The general procedure of TS is 

presented in Figure A.1. 

Tabu Search  

Step 1. Choose an initial solution i in S. Set i* = i and k = 0. 

Step 2. Set k = k+1 and generate a subset V* of solution in N(i,k) such  

that either one of the tabu conditions is violated or at least one  

of the aspiration conditions holds. 

Step 3.  Choose a best j = i Å m in V* (with respect to f )  

and set i = j. 

Step 4.  If f(i) < f(i*) then set i* = i. 

Step 5.  Update tabu and aspiration conditions. 

Step 6.  If a stopping condition is met, then stop. Else go to Step 2. 

 

Generally V* = N(i), which indicates the complete neighborhood generated from 

the current solution i. However this neighborhood is often large and it may be too 

time-consuming to search each individual. Hence an appropriate size of V* would 

be a substantial improvement. The iterative exploration process (local search) 

should accept non-improving moves from i to j in V* (i.e. f(j) > f(i)) if one would 

like to escape from a local minimum. However, as soon as non-improving moves 

are possible, the risk of re-visiting a solution (cycling) becomes a serious concern. 

TS reduces this likelihood through the use of memory, which forbids moves that 

might lead to recently visited solutions. If such a memory is introduced, the 

structure of N(i) will depend upon the iteration k and so the neighborhood becomes 

N(i,k) instead of N(i). It is important to realize that the definition of N(i, k) at each 

Notations 

S:        Available Search  
           Space    
i:         Current Solution 
i*:        Best Found  
           Solution 
k:        Current iteration 
N(i,k): Neighborhood 
 

Figure A.1: The Tabu Search (TS) Procedure 
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iteration k and the choice of V* are crucial. The definition of N(i, k) implies that 

some recently visited solutions are removed from N(i). These removed solutions 

are known as “tabu-ed” solutions and should be avoided in some future iterations. 

Such usage of recency-based memory will prevent cycling for the length of “tabu-

ed” duration (tabu tenure). For instance, keeping at iteration k a tabu list of the last 

T solutions visited will prevent cycles of size at most T. However, keeping a tabu 

list of the last T solutions is sometimes cumbersome and it is often simplified to 

keep track of the last T moves associated with the translation of i to j (j = i ⊕ m). It 

is clear that this restriction has a loss of information and hence will have no 

guarantee that there is no cycling for a length of T. The drawback of the 

simplification (replacement of solutions by moves) could result in giving a “tabu-

ed” status to solutions, which may be unvisited so far. As such, it is compelled to 

have a relaxation on the tabu status when the tabu-ed solutions will look attractive. 

This relaxation is known as aspiration criterion. For example, a tabu-ed move m 

applied to a current solution i may appear attractive because it results in a solution 

that is better than the best found so far. Finally the stopping conditions also assert 

certain influence on the search procedure and some immediate stopping conditions 

could be the following: 

• N(i, k+1) = NULL 

• k is larger than the maximum number of iterations allowed 

• The number of iterations since the last improvement of i* is larger than a 

specified number 

• Evidence can be given than an optimum solution has been obtained. 

 



 

101 

Strategies 

Most of the TS strategies are associated the memory. So far the described usage of 

memory is an essential part of TS and is considered as a short-term memory that 

prevents cycling to some extent. On the other hand, long-term memory often 

involves collecting information from the search and applied strategies in response 

to these information. Among these strategies, there are three distinctive tactics, 

variable (reactive) tabu list size, intensification and diversification.  

 

Reactive tabu list 

The basic role of the tabu list is to prevent cycling. Ideally, the tabu tenure should 

be small as a lengthy list affects both the search efficiency as well as the memory 

consumption. However, if the length of the list is too small, the role might not be 

achieved. Given an optimization problem it is often difficult or even impossible to 

determine a value that prevents cycling and does not excessively restrict the search 

for all instances of the problem of a given problem size. An effective way for 

circumventing this difficulty is to use a tabu list with variable size. The size of the 

list would response to the search information based on the instance it is solving and 

changes accordingly. To prevent extreme sizes being used, it is often bounded by 

given maximal and minimal values. 

 

Intensification  

Intensifying strategies are based on the assumption that better solutions can be 

found by exploring the search space around elite solutions. In order to intensify the 

search in promising regions, a preliminary search is performed to collect a list of 

elite solutions (mostly local optimal). Each elite solution is then “examined” 
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closely by decreasing the size of the tabu list for a small number of iterations. In 

some cases, more elaborate techniques may be used. Another strategy inspired 

from the classic divide-and-conquer paradigm consists of partitioning an 

optimization problem into sub-problems, solving them (optimally) and finally 

combining the partial solutions. A post-optimization phase may sometimes be 

performed on the combined solution. Obviously, the difficulty lies in finding a 

good partitioning technique. Other ways for intensifying the search are the use of 

more elaborate heuristics or even exact methods, or the enlargement of the 

neighborhood around elite solutions. It is also possible to perform an 

intensification based on long-term memory. As each solution or move can be 

characterized by certain components for their "goodness", these components are 

memorized for future selection of neighbors. This usage of long-term memory can 

be viewed as a kind of learning process. 

 

Diversification 

As oppose to intensification, diversifying strategies focus on searching the 

unexplored regions. While intensification attempts to improve on the solution 

quality, it is not necessary for a solution to diversify to a better neighbor. The 

underlying notion is to “jump” away from the current solution structure. The 

simplest diversification is to perform random restarts. A different approach, which 

ensures the exploration of unvisited regions is to penalize frequently, performed 

moves or certain component(s) presence in the neighbors. Some diversifications 

involve oscillating between feasible and infeasible solutions. This is achieved by 

relaxing the constraints for a small number of iteration before repairing the 
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feasibility. However, there are times in which the solution is beyond repair and it is 

then necessary to “backtrack” to the original solution or to restart the search again.  
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Annex B 

Ants Colony Optimization (ACO) 

History 

Ant Colony Optimization (ACO) is a recently proposed meta-heuristic approach, 

which is inspired from the foraging behavior of real ants using pheromones as a 

communication medium. In analogy to the biological example, ACO is based on 

the indirect communication of a colony of simple agents, called (artificial) ants, 

mediated by (artificial) pheromone trails. The pheromone trails in ACO serve as 

distributed, numerical information, in which individual ants use to probabilistically 

construct solutions. The ants adapt by “depositing” different amount of pheromone 

to reflect their search experience. The first ACO algorithm proposed was Ant 

System (AS) [Dorigo et al., 1991]. At the early stage, AS was applied to some 

rather small instances of the TSP with the problem size of up to 75 cities. 

Experimental results show that it was more than a match in performance compared 

to other meta-heuristics such as evolutionary computation ([Dorigo, 1992], [Dorigo 

et al., 1996]). Despite the initial encouraging results, AS loses its edges for large 

instances in TSP. Since then, a substantial amount of research has been invested on 

ACO algorithms. The more recent algorithms are direct extensions of AS with 

added advanced features, and have established their creditability in obtaining good 

results ([Dorigo and Gambardella, 1997], [Dorigo and Di Caro, 1999]). Ironically, 

while these features improve on the effectiveness, they also render the behaviors of 

ACO to draft away from the resemblance of its biological counter-parts.  
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Basic Concept 

While TS is considered as an enhancement to the local search technique, ACO can 

be interpreted as an extension of traditional construction heuristics. Informally, the 

ACO algorithm can be summarized as follows: A colony of ants is concurrently 

and asynchronously moving through adjacent states of the problem, which 

incrementally build up a solution to the optimization problem. Each “chosen” state 

depends on a stochastic local decision policy that uses a combination of 

pheromone trails and heuristic information. During the construction of a solution, 

the ant evaluates the (partial) solution and deposits pheromone trails on the 

components or connections it used. This pheromone information is used later to 

direct the search of the future ants. Beside the ants’ activity, there are two other 

concurrent events, pheromone trail evaporation and daemon actions. Pheromone 

evaporation is the process in which the pheromone trail intensity on the 

components decreases over time. This phenomenon is necessary to avoid a rapid 

convergence towards a sub-optimal region. Analogically, it can be seen as 

“forgetting” the previously favored paths and begins the exploration of new areas 

of the search space. Daemon actions are used to implement centralized actions that 

cannot be performed by a single ant. For example, a daemon action can be the 

collection of global information that can be used to decide whether it is useful to 

deposit additional pheromone to guide the search process away from local 

optimum. A pseudo code of ACO is presented in Figure B.1. 
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Ants Colony Optimization 

procedure ACO  

ScheduleActivities 

ManageAntsActivity() 

EvaporatePheromone() 

DaemonActions() 

   end ScheduleActivities 

end ACO  

 

As discussed, the three components of ACO algorithms: (i) ManageAntsActivity, 

(ii) EvaporatePheromone, and (iii) DaemonActions are encapsulated under 

ScheduleActivities. These three activities need not be performed in any particular 

order. Rather, they can be executed in a completely parallel and independent way, 

or with some kind of synchronization among them when necessary. There are two 

technical issues concerned with managing the ants’ activities. First is the definition 

of stochastic local decision policy. [Dorigo, 1992] proposed an equation for 

computing the probability of acceptance for each (partial) solution states and is 

given as: 

    

  

 

where ijη is a priori available heuristic information, ilτ  is the relative strength of 

pheromone trails, α and β are two parameters that determine the relative influence 

of pheromone trail and heuristic information and Nk
j is the feasible neighborhood 

of ant k. If α = 0, the selection probabilities are proportional to [ ijη ]β and the states 

Figure B.1: The pseudo code of Ants Colony Optimization (ACO) 
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with the best heuristic value will more likely be selected. In this case, ACO 

behaves like a classical stochastic greedy algorithm. If β = 0, only pheromone 

amplification is at work and would lead to the rapid emergence of a stagnation 

solution (ie all the ants converge to a same solution usually sub-optimal). The 

second issue arises from updating the pheromone trails. Equation B.1 was 

recommended by Dorigo as a formula for update and is shown below. 

 

 

where 0 < ρ ≤ 1 is the pheromone trail evaporation rate and m is the number of 

ants. The parameter ρ is used to avoid unlimited accumulation of the pheromone 

trails and enables the algorithm to “forget” previous (bad) decisions. Hence, on 

paths that are not chosen by the ants, the associated pheromone strength will 

decrease exponentially with the number of iterations. 

 

Strategies 

As mentioned earlier, naive AS approach was not competitive with most other 

meta-heuristics in large-scale instances. As such, the algorithm is extended with 

additional features to improve its search. These enhancements include Elitist 

Strategy, Rank-Based version of Ant System (ASrank), MAX – MIN Ant System 

(MMAS), and Ant Colony System (ACS). 

 

Elitist Strategy 

The Elitist Strategy was introduced in ([Dorigo, 1992], [Dorigo et al., 1996]). Prior 

to the start of the search, a good (elite) solution is acquired through means such as 

greedy heuristics or iterative local searches. Pheromone is then deposited onto the 

Eqn B.1 ( ) ∑
=

+−=
m

k
ijijij
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  .1 ττρτ ∆ k ( )ji,∀



 

108 

“path” contained in the elite solution. When the search begins, the additional 

pheromone will render the ants to favor taking the “good” paths. Hence, this 

strategy can be also viewed as intensifying the ants to search around the elite 

solution.   

 

Rank-Based Ants System (ASrank) 

Following the same concept of intensification, ASrank [Bullnheimer et. al., 1999] 

can be seen as an extension of the Elitist Strategy. For each round of optimization 

(iteration), the solutions constructed by the ants are sorted according to their 

quality. The selected best w solution is then updated into the pheromone trails. In 

addition, the strength of the updated pheromone depends on the quality of the 

solution. For example, the r best ant will be updated with (w – r) amount of 

pheromone onto its trail. An advantage of this strategy is that it removes the false 

trails left by poorly constructed solutions, and hence reduces the probability of 

constructing poor solutions. 

 

MAX –MIN Ant System (MMAS) 

In MMAS ([Stutzle et al., 1997], [Stutzle, 1999], [Stutzle et al., 2000]), upper and 

lower bounds are enforced to the values of the pheromone trails, as well as a 

different initialization of their values. This helps to avoid sudden convergence to 

stagnation solution and promote a higher degree of exploration. For each round of 

optimization, MMAS only update the best ants’ trail (the global-best or the 

iteration-best ant). Similar to the ASrank, the idea is to prevent deposition of 

pheromone in false trails. Computational results have shown that best results are 
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obtained when pheromone updates are performed using the global-best solution 

with increasing frequency during the algorithm execution. 

 

Ants Colony System (ACS) 

ACS ([Gambardella and Dorigo, 1996], [Dorigo and Gambardella, 1997]) focuses 

more on the exploitation of information collected by previous ants than the 

exploration of the search space. There are three mechanisms involved. Firstly, a 

pseudo-random proportional rule [Dorigo and Gambardella, 1997] is used to guide 

the ants in choosing their “paths”. This rule uses a parameter q0 to determine 

whether an ant is performing exploitation or exploration. In exploitation, the ants 

are stimulated to intensify their search on paths with stronger pheromone whereas 

in exploration, the ants are encouraged to diversify their search on unexplored 

ground. When the value q0 is set to a value close to 1, the ants will favor 

exploitation over exploration. Conversely, when q0 is set to 0, the probabilistic 

decision rule becomes the same as in AS. Secondly, ACS follows the concepts of 

MMAS by only updating the trails of the best ants with pheromone. The best ants 

could be the global-best or the iteration-best ants. Thirdly, to counter the effect of 

over-exploitation, the last mechanism (known as the local evaporation), is used to 

lessen the pheromone on a trail whenever an ant moves through it. The local 

evaporation can be imagined as ants “absorbing” some of the pheromone as they 

move along the trails. The effect is to encourage subsequent ants to explore new 

regions rather than to follow previous ants’ paths. In addition to the three 

mechanisms, some ACS algorithms also incorporate local search to enhancement 

their results. 
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Annex C 

Simulated Annealing (SA) 

History 

In 1983 three IBM researchers [Kirkpatrick et al., 1983] published a paper in 

Science magazine called Optimization by Simulated Annealing. They described a 

computational intensive algorithm for finding solutions to general optimization 

problems. Their method is based on the way nature performs an “optimization of 

energy” of a crystalline solid when it is annealed to remove defects in the atomic 

arrangement. As an analogy to this physical process, Simulated Annealing (SA) 

uses the objective function of an optimization problem instead of the energy level 

of a real material. The simulated thermal fluctuations are changes in the adjustable 

parameters of the problem rather than atomic positions. If the annealing schedule 

achieves effective thermal equilibrium at each temperature (i.e., enough accepted 

random moves), then the objective function reaches its global minimum when the 

simulated temperature reaches the vicinity of zero.  

 

Basic Concept 

SA is a global optimization method that distinguishes between different local 

optimal. Starting from an initial point, the algorithm generates a random neighbor 

and the objective function is evaluated on the neighbor. Any improving move is 

accepted and the process repeats from this new point. However, a non-improving 

move may be accepted in order to allow the search to escape from local optimal. 

This “anti-greedy” decision is made by the Metropolis criteria [Metropolis et al. 
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1953]. Generally, as the optimization process proceeds, the probability of 

acceptance declines. The complete pseudo code is presented in Figure C.1.  

Simulated Annealing 

Choose an initial state i at random 

While termination-condition is not satisfied, do 

 Pick at random, a neighbor j of the current state 

Let ∆x be the improvement in ∆x  = f(j) – f(i) 

If ∆x > 0 then 

 Set current state to the selected neighbor, j = i 

Else 

 Calculate probability p = exponential-|∆x/Ti| 

  Set the current state j = i with probability p 

 

One technical issue of the algorithm is the formulation the acceptance probability. 

Generally, there are two factors to be considered when deciding the probability. 

The first is the variable ∆x, which measures the desirability of the random 

neighbors. Following the same rationale as the hill climbing heuristic, a neighbor 

with a smaller regression is more favored. The second consideration is annealing 

schedule, which is time-dependent. The basic idea is that the algorithm is more 

likely to accept a “bad” neighbor at the start of the search. As search time gets 

shorter, the algorithm would “insist” on better solutions and hence the acceptance 

probability decreases. A general acceptance probability is given in equation C.1. 

  p = exponential-|∆x/Ti| 

The literature has also proposed many variations of the annealing schedule such as 

the Boltzmann Annealing [Metropolis et al. 1953], which was essentially 

Eqn C.1 

Figure C.1: The pseudo code of Simulated Annealing (SA) 

Notations 

∆x:     Difference in objective 
           value between current 
           new state  
i:         Current State 
j:        New State  
Ti:       Temperature, dependent 
           on time (iteration) 
 



 

112 

introduced as a Monte Carlo importance-sampling technique for doing large-

dimensional path integrals arising in statistical physics problems. This method was 

later generalized to apply on non-convex cost-functions arising from a variety of 

optimization problems. Fast Annealing [Szu and Hartley, 1987] was later extended 

from the Boltzmann Annealing, by replacing the Boltzmann forms with the 

Cauchy distribution.  

 

Strategies 

In most optimization, SA is rarely used alone. This is because of the lengthy 

computational time involved before the algorithm could obtain quality results. On 

the other hand, SA excellent capability in escaping from local optimal made it too 

valuable to be ignored. As such, modern techniques often hybridize SA (or its 

variations) as a mechanism to escape local entrapment. For example, a simple 

hybrid scheme can be formed with the hill-climbing heuristic. The hill-climbing 

heuristic is an iterative improvement technique that adopted a greedy approach to 

increase the solution quality. When the heuristic is ensnared in local optimal, SA 

could then be applied as a “kick” to diversify the search to a new region. In such 

strategies, SA acts as a probabilistic diversifier and has been known to obtain good 

results when hybridize in similar fashion with many other meta-heuristics.  
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Annex D  

Genetic Algorithm (GA) 

History 

GA originated from the studies of cellular automata, conducted by Holland 

[Holland, 1992], and his colleagues at the University of Michigan. Holland’s book 

that was published in 1975 is generally acknowledged as the beginning of the 

research of GA. Until the early 1980s, the research in genetic algorithms was 

mainly theoretical [Davidor, 1991], with few real applications. From the early 

1980s the community of genetic algorithms has experienced an abundance of 

applications that spread across a large range of disciplines. Each and every 

additional application gave a new perspective to the theory. Furthermore, in the 

process of improving performance, new and important findings regarding the 

generality, robustness and applicability of genetic algorithms became available. 

Following the last decades of rapid development, GA, in various guises has been 

successfully applied to various optimization problems.  

 

Basic Concept 

Genetic algorithm is a model of machine learning that derives its behavior from a 

metaphor of the processes of evolution in nature. A population of individuals can 

be represented by their chromosomes. Nature compels each individual to go 

through a process of evolution which, according to [Darwin, 1979], is made up of 

the principles of selection and mutation. The selection process allows only the 

“fittest” to survive and consequently passed down their genes to their offspring. 

Natural mutation on the other hand, “alters” the individuals’ chromosomes, usually 
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to improve survivability. Optimization can be formulated as an evolutionary 

process. For example, a solution can be represented as a set of characters or 

byte/bit strings, which corresponds to the chromosomes. The selection criterion 

then becomes the objective function. Table D.1 gives a list of GA components with 

its evolutionary counterparts. With these components in place, the pseudo-code of 

GA is presented in Figure D.1. 

 

Natural Genetic Algorithm 

Individual Solution  

Chromosome String Representation 

Gene Feature, character or detector 

Allele Feature value 

Locus String position 

Genotype Structure, or population 

Phenotype Parameter set, alternative solution, a decode structure 

Fitness Objective Function 

Reproduction Recombination Function 

Mutation Local Improvement Function 

 

Genetic Algorithm 

Initialize and evaluate population P (0); 

While not last generation, do 

 P’(t) := Select_Parents P(t); 

  Recombine P’(t); 

  Mutate P’(t); 

  Evaluate P(t); 

  P(t + 1) := survive P(t), P’(t); 

 end while 

 Figure D.1: The pseudo code of Genetic Algorithm (GA) 

Table D.1: Allegory of GA components and their evolutionary counterparts 
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GA starts off with a population of strings (original parents) that is used to generate 

successive populations (generations). The initialization randomly constructs some 

individuals for the first generation. These individuals are evaluated on their fitness, 

which in turn determine their probability of selection. In the selection process, a 

fitter individual has a higher likelihood to be selected (several times) for 

reproduction (or recombination). The recombination process consists of a 

crossover operator that extracts certain traits (structures) from both parent and then 

recombines them to form a new offspring. Each offspring then undergoes a 

mutation process, in which some fast heuristics are used to improve on its fitness. 

Sometimes, these new offspring are evaluated and mixed with their parents. Finally 

a new generation is obtained through sampling of the combined population to 

remove away the individuals who are considered as “unfit”. The algorithm is then 

repeated for a pre-determined number of generations. It is essential for the solution 

to be formulated as characters or byte strings before GA can be applied. This 

restriction demands some ingenuity from the algorithm designers when they devise 

their approaches. In addition, the modeling of GA does not take into account the 

possibility of infeasible solutions. In GA, infeasible solutions are often treated as 

“unfit” individual and eventually discarded. However, there is no mechanism that 

prevents producing infeasible individual and thus renders the algorithm to be less 

suitable for problems with tight constraints. 

 

Strategies 

Aside from hybridization (which will be discussed further in Chapter 2), there are 

several strategies that improve the effectiveness and efficiency of GA search. 

Usually these strategies involve one or more GA components collaborating 
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together. Among these strategies, we introduce Fitness Techniques, Elitism, Linear 

Probability Curve and Steady Rate Reproduction. 

 

Fitness Techniques  

At the start of GA search, it is common to have a few elite individuals in a 

population of mediocre contemporaries. If left to the normal selection rule of the 

simple GA, the elite individuals would soon take over a significant proportion of 

the finite population in a single generation and this leads to an undesirable cause of 

premature convergence. In the later part of the search, the population average 

fitness may come close to the population best fitness. If this situation is left alone, 

the average individuals and best individuals will have nearly the same structure in 

future generations and the survival of the fittest necessary for improvement 

becomes a random walk among the mediocre. There are three proposed solutions 

in the literature and they are linear scaling, windowing and linear normalization. 

Linear scaling requires a linear relationship between the original raw fitness f and 

the scaled fitness f' as shown in equation 1.4. 

 bfaf += *'  

The coefficients a and b may be calculated from fmin, fmax and favg in as follows. 

   

with f’max = Cmult * favg, and δ = fmax- favg. 

Eqn 1.4 

Eqn 1.5 
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In this way, the number of offspring given to each population member with 

maximum raw fitness is controlled by the parameter Cmult (the number of expected 

selections desired for the best population member). Windowing is a technique for 

assigning “vitamins” to a population of chromosomes to boost the fitness of the 

weaker members, in order to prevent their elimination. The technique works by 

first determining a threshold for the minimum fitness in the population. Each 

chromosome below this minimum is assigned a small random amount so that it 

exceeds this minimum. This creates a guard against the lowest chromosomes to 

have no chance of reproduction. The last technique is known as Linear 

Normalization, which takes the fairness inherent in windowing to an extreme by 

first normalizing the fitness for all chromosomes in the population. 

 

Elitism 

The Elitism strategy is inspired from the observation that for every new generation, 

there is a chance that elite parents may be lost through the algorithm’s probabilistic 

selection. This could result in an unstable algorithm and a slower convergence. The 

Elitism strategy is proposed to overcome this problem by retaining some of the 

best parents of each generation into the succeeding generations. Although this may 

heighten the risk of domination by a superior individual, but on balance it appears 

to improve the performance. 

 

Linear Probability Curves 

The Linear Probability is another technique for giving the better individuals a 

higher survival rate. This could be achieved by assigning a “survival probability” 

to each individual in the population using a linear probability curve [Barberio, 
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1996]. For example, the best individual could be assigned to a probability of 0.9, 

and the worst individual to a probability of 0.1. In this way, not all the least fit 

individuals would necessarily perish, and not all the fittest individuals would 

survive and subsequently reproduce. If an individual is assigned to a probability of 

1, then the strategy behaves similarly to the Elitism Strategy. 

 

Steady State Reproduction 

When the simple GA reproduces, it replaces its entire set of parents by their 

children. This technique has some potential drawbacks and even with an Elitism 

Strategy, there is no guarantee that the best individuals would reproduce and hence 

their genes may be lost. It is also possible that mutation or crossover may alter the 

best chromosomes' genes such that their “good” traits are lost. The steady-state 

reproduction can be used to resolve this problem. The strategy work as follows: As 

pairs of solutions are produced, they replace the two worst individual in the 

population. This is repeated until the number of new offspring added to the 

population since the last generation is equal to the original number of individuals 

in the population [Parker, 1992]. The steady-state without duplicates [Davis, 1991] 

improves this strategy by discarding the children that are the duplicates of current 

chromosomes in the population. 

 

Other Advanced Techniques 

In addition to the discussed GA strategies, some strategies improve on the GA 

components. For example, the works of [Davis, 1991, Goldberg, 1989, 

Starkweather et al., 1991] showed that advanced recombination methods such as 

two-point crossover, uniform crossover, partially mixed crossover and uniform 
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order-based crossover have several advantages over the original one-point 

crossover. One apparent drawback of the one-point crossover is that it cannot 

merge certain combinations of features encoded on chromosomes and hence 

schemata with a large defining length are easily disrupted. Beside the 

recombination methods, the works of [Davis, 1991, Grant, 1995] have also shown 

some advanced improvements made for the mutation operator. 
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