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taking over when Yvonne left Bayer and sacrificing so much of his
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when I was short on time while writing my thesis and preparing
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Part I

INTRODUCT ION

This introductory part provides a general background

of plant breeding and optimization, that will aid the

reader to understand the breeding problems addressed

in subsequent chapters, and theoptimization techniques

used to solve these problems.





1
INTRODUCT ION TO PLANT BREED ING

Some insight into traditional andmodern plant breeding is needed

to be able to understand the problems addressed in chapters 4 to 6.

We introduce most relevant concepts here, loosely based on selec-

ted chapters from Principles of plant genetics and breeding byAcquaah
(2012), and refer the reader to this excellent book for more inform-

ation about plant breeding, genetics and related technologies.

1.1 history of plant breeding

More than ten thousand years ago our ancestors started to herd

animals and cultivate plants, such as vegetables and field crops, as

they left behind their lives as hunters and gatherers. These ancient

farmers did not only invent agriculture but were also the first plant

breeders, as evidence was found that they stored seed from good

looking plants and used it for planting in the next season. In this

way, heritable favourable traits were propagated and accumulated

over generations leading to better variants in each season. Over

time, cultivated crops became more and more adapted to the en-

vironment in which they were grown, for example flowering and

ripening at appropriate times (e. g. beforewinter). Such local, highly

adapted varieties obtained through decades of purely selection are

commonly referred to as landraces and provide a useful source of

diverse material to be exploited in various breeding programs.

The goal of plant breeders is to continuously improve certain traits

of cultivated crops, vegetables, trees, flowers, or any plant of their

interest. Important traits include resistance to diseases and abiotic

stress—such as wind, extreme temperatures, drought or flood—

and many quantitative traits—such as yield, or certain consumer

preferences like taste, high nutritional quality, shape or colour. The

most fundamental technique used for this purpose has always been

and still is artificial selection. Of course, selection requires variab-

ility to discriminate among. Early plant breeders depended on the

diversity of wild species and the naturally occurring variability on

the field as a result of cross-pollination. As the wind blows and in-

sects like bees fly from one flower to another, they carry pollen

and randomly fertilize plants leading to natural diversity among

the offspring. To really control the process, one thus needs to make

3



4 introduction to plant breeding

artificial crossings, which turned out to be more difficult to master

than the selection step. There is some archeological evidence that

the Babylonians and Assyrians manually pollinated date palms by

transferring pollen from amale plant to fertilize flowers on a femaleIn contrast to date
palms, and some
other plants like

pistachio trees and
kiwi vines, most
plant species are
bisexual, having

flowers that contain
both the male

(stamens) and female
parts (pistils) or

sometimes separate
male and female

flowers on the same
plant. Such plants

can usually be
self-pollinated, as is

the case for most field
crops and vegetables.

Some species
however, like most
apple and several

other kinds of fruit
trees, still require

cross-pollination for
successful

fertilization, even
though apple flowers

are bisexual.

plant, but it took severalmoremillennia to really unravel the sexual-

ity and heredity of plants and to go beyond the rudimentary plant

manipulations as occasionally done by these early civilizations.

In the late 17th century Rudolph Camerarius, a German botanist

from the University of Tubingen, described the male and female re-

productive parts of plants and their function in fertilization, in his

work De sexu plantarum epistola (Camerarius, 1694). He conducted

experiments with several species, including mulberry and maize,

to validate the general belief that plants had some form of sex and

that pollen were the male fertilizer. When growing unisexual, fe-

male mulberry trees outside the vicinity of male trees, no seed was

produced on the female plants. Likewise, by taking away the male

flowers ofmaize plants, no seedwas formed as fertilizationwas pre-

vented. In the following century, Joseph Gottlieb Kölreuter, also a

German botanist, experimented with artificial fertilization. He per-

formed systematic crossings of tobacco plants and discovered that,

on average, the hybrid offspring resembles both parents equally.

Kölreuter also recognized the role of wind and insects in natural

pollination.

In the 19th century Louis de Vilmorin investigated how to develop

new plant varieties with specific characteristics through repeated

crossing (hybridization) and selection. He developed a basic theory

of heredity, recognizing that selected traits are passed on and accu-

mulated throughgenerations.As such, hiswork laid the foundation

for the modern breeding industry. The great grandfather of Louis

de Vilmorin was chief botanist and seed supplier for King Louis

XV and until today, the Vilmorin company is a major French seed

producer, which was family-owned for about two centuries.

Around the same time Charles Darwin, an English naturalist and

geologist with one of the most well-known names in the history of

natural sciences, developed his theory of evolution, according to

which all species of life have evolved from a common ancestor. He

published his work in the famous book On the origin of species (Dar-

win, 1859). Evolution is driven by natural selection due to survival

of the fittest individuals, that happen to be best adapted to their en-

vironment. As mentioned before, selection requires variability, and

the main source of variation for natural evolution are rare genetic

mutations which by chance turn out to be favourable. Therefore,

evolution happens extremely slowly, requiring thousands or mil-

lions of years to diverge new species from their common ancestor.
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Natural selection also acts within populations of existing species,

where the fittest individuals have the best chance for survival and

reproduction, due to which they produce the largest offspring and

keep the population fitness intact. In a way, plant breeding can be

seen as a controlled high-speed emulation of evolution. By perform-

ing well-chosen crossings followed by artificial selection, breeders

are able to nudge nature to their advantage.

Figure 1.1 shows a schematic overview of a traditional so-called

recurrent selection plant breeding scheme. First, the breeder gathers

diverse material used to initiate the scheme, for example two or

more existing high-quality varieties, possibly with complementary

favourable traits. This material is then used for repeated crossing,

evaluation and selection.At the endof eachgeneration, the selection

leads to a new product that the breeder can sell to his customers.

In addition, the selection is advanced to the next generation for

further improvement. In contrast to landraces, a variety produced

through deliberate plant breeding is called a cultivar.

Traditional plant breeding is mostly based on intuition and experi-

ence of the breeder who repeatedly selects plants with favourable

observable characteristics. Therefore, plant breeding is often said

to be an art, requiring a keen eye and well-developed gut feeling,

evenmore so because some traits are difficult to observe and the per-

formance of plants for example also depends on the environment

in which they were grown. Over the last two centuries however,

scientists started to unravel the genetics behind the expressed traits

and themechanisms underlying heredity, i. e. how traits are passed

on from parents to their offspring. Many technological advances

followed, especially during the last few decades, that now make it

possible to directly improve the genetic composition of plants. As

such, plant breeding has been and is still further being transformed

from an art into a science—the science of molecular breeding.

1.2 molecular breeding

1.2.1 Basics of genetics
Mendel started his
experiments on
heredity with mice.
The abbey’s bishop
however did not like
that one of his monks
was studying animal
sex, so Mendel
continued his work
with plants.

Another famous natural scientist from the 19th century is Gregor

Mendel, who is often considered to be the father of modern genet-

ics. Mendel was born in Hynčice—at that time part of the Austrian

Empire, now of the Czech Republic—and joined the Augustinian

Abbey of St Thomas in Brno. Born in a family of farmers, and fas-

cinated by science, becoming a friar allowed Mendel to receive a

high-level education without having to pay for it himself. In the
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Gather initial
breeding material

Select

...

Release product

Cross

Evaluate

Select Release product

Cross

Evaluate

Figure 1.1: Schematic overview of a traditional so-called recurrent selection
plant breeding scheme. Two generations of crossing, evalu-

ation and selection are displayed. After each selection step, a

new product is released, and the chosen plants are advanced

to the next generation for further improvement.
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monastery, he performed crossings with pea plants and carefully

recorded the number of variants among the offspring, looking at

several characteristics that seemed to inherit independently, such as

plant height, seed colour and shape, and flower colour. Based on his

observations he concluded that there are invisible units of hered-

ity, which he called "factors" and are now called genes, that occur
in alternate "forms"—now called alleles—and control the observed

traits in predictable ways. Moreover, these genes follow what are

currently known as the three laws ofMendelian inheritance: segreg-

ation, independent assortment and dominance.

Mendel described that an individual contains two alleles of each

gene, one inherited from each parent, a property which is now re-

ferred to as diploidy. Alleles segregate when an organism produces

reproductive cells—sperm and eggs—meaning that these so-called

gametes contain only half of the genetic information from the par-

ent, i. e. one allele for each gene. Fusion of two haploid gametes

of the opposite sex produces a new diploid individual. Chance de-

termines which combination of alleles is formed in the gametes

and passed on to the offspring. Although Mendel concluded that

different traits are independently inherited and as such, that each

possible allele recombination occurs with equal probability, this

is not always the case, due to genetic linkage, which is explained

below. Finally, Mendel’s law of dominance states that, while an in- Cystic fibrosis is an
example of a human
genetic disease
controlled by a
recessive mutation in
a single gene. A
healthy person may
carry one mutated
allele as the disease
only develops when
both copies are
mutated. If two
healthy parents
happen to be both
carrier, they have a
chance of one out of
four to have a child
with cystic fibrosis.

dividual can contain two different alleles of the same gene, they are

not necessarily both expressed as observable characteristics. One

allele may be dominant and as such mask the presence of the other,

so-called recessive allele. Still, the recessive allele can be passed on

to and expressed in future offspring.

It was later discovered that the cells of each known living organ-

ism contain so-called DNA (deoxyribonucleic acid) that carries

the genes described by Mendel. In eukaryotic cells, such as those

of humans, animals and plants, most DNA is found in the nuc-
leus (figure 1.2). This nuclear DNA is diploid and structured into

multiple chromosomes containing the genes that follow the laws of

Mendelian inheritance. In the mid-20th century Watson and Crick

(1953) showed that DNA molecules have a double helical struc-

ture. Both strands of the double helix consist of a long sequence of

nucleotides, four of which occur in DNA: cytosine (C), guanine (G),

adenine (A) and thymine (T). The order in which the nucleotides

appear determines the genetic architecture of an organism, and

certain sequences of nucleotides spread across the DNA encode

for genes that may be expressed as various observable characterist-

ics. Both strands actually each contain all information, as A always

binds with T, and Cwith G. This redundancy may seem a bit weird
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Figure 1.2: A cell of an eukaryotic organism has a well-delimited core,

called the nucleus, which containsmost of theDNA. This DNA

is separated into a set of chromosomes and has a double hel-

ical structure composed of two complementary sequences of

nucleotides: adenine (A; red), thymine (T; yellow), guanine

(G; blue) and cytosine (C; green). The small piece of DNA

shown in detail is characterized by one of the two comple-

mentary strings AGGATGCTACGATCTGTG or TCCTACGAT-

GCTAGACAC (read from top to bottom).

Image ’DNA in Eukaryote cell’ by Radio89 available at https://commons.wikimedia.

org/wiki/File:Eukaryote_DNA-en.svg under CC BY-SA 3.0. Full terms at https:

//creativecommons.org/licenses/by-sa/3.0.

but it is just one of nature’s clever tricks used to duplicate DNA by

separating the strands and regrowing the other half.

ConfirmingMendel’s theoryofdiploidy, chromosomesalways come

inpairs, each consistingof two so-called homologous chromosomes—

one inherited from the father andone from themother. For example,

humans have 23 chromosome pairs (figure 1.3). An individual can

thus either contain twice the same allele (homozygous) or two dif-

ferent alleles (heterozygous) of a particular gene. When producing

sperm and egg cells the homologous chromosomes recombine—a

process called crossover—which causes segregation of genes as ob-

served by Mendel (figure 1.4). Although Mendel suggested that

different traits segregate independently, this is only true when the

corresponding genes lie on different chromosomes or at a certain

distance on the same chromosome, which was the case for all the

traits he studied. Genes located close to each other on the same

chromosome are linked and those with a higher genetic linkage are
less likely to recombine, because the area in which a crossover

is needed becomes smaller as the genes lie closer together. The

distance between genes can be measured as a physical distance,

https://commons.wikimedia.org/wiki/File:Eukaryote_DNA-en.svg
https://commons.wikimedia.org/wiki/File:Eukaryote_DNA-en.svg
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
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expressed in number of base pairs, or as a genetic distance, ex-

pressed in centimorgans (cM) named after geneticist Thomas Hunt

Morgan. The latter corresponds to the recombination rate, which is

approximately d% for genes at a small distance of d cM and goes

to 50% as d goes to infinity. By performing experimental crosses

and counting the number of recombinations, scientist are able to

create genetic maps that describe the positions (loci) of and distances

between multiple genes of a certain organism.

The complete set of an organism’s genetic material is called its gen-
ome, including the parts of the DNA that do not code for genes and

any non-nuclearDNA. The term genotype is used to refer specifically

to the collection of genes, which determine the characteristics of an

individual—the set of these observable traits is called the phenotype.
A genotype encodes for a certain phenotype and while traditional

breeding is based on phenotypic selection, modern breeding aims

to focus directly on improving the genotype, containing the actual

heritable genes responsible for the observed variability.

Through genome-wide association studies (GWAS) scientists are

able to identify the effect of certain genes and their alleles on spe-

cific traits (Cantor et al., 2010). It turned out that there are simple

traits which are controlled by one or a few genes only, for example

including many disease resistances, while quantitative traits, such

as size or yield, are generally affected by many genes (up to mul-

tiple thousands) that are spread across the genome and each have

a relatively small additive effect. The latter is known as the infin-
itesimal model of quantitative genetics first described by the famous

statistician Fisher (1919). To improve the quality of a plant in terms

of such complex quantitative trait one thus needs to accumulate

beneficial alleles of many so-called quantitative trait loci (QTL) to

maximize their total effect.

1.2.2 Molecular markers

Many methods have been developed to extract DNA from organ-

isms such as plants, animals or humans—a process called DNA
sequencing. Since each cell of an individual contains a copy of its

full DNA, sequencing generally requires only a small amount ofma-

terial. In case of plants it is usually sufficient to cut off a leafwhile for

animals a blood sample is taken. However, current technology does

not allow to sequence an organism’s entire genome at once. Instead,

the DNA is read in parts that have to be stitched together, which

is a tedious and costly process. Genotyping-by-sequencing (GBS;

Poland and Rife 2012) recently became feasible for some applica-
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Figure 1.3: Human DNA is composed of 23 chromosome pairs, each con-

sisting of two homologous chromosomes, one inherited from

bothparents. The last pair differs betweenmen,whohaveoneX

and one Y chromosome, andwomen, who have two X chromo-

somes. When producing sperm and egg cells the homologous

chromosomes recombine which results in the segregation of

genes as described byMendel. As an exception, only the tips of

the X and Y chromosome are able to recombine, which means

that the Y chromosome is passed on almost identically from a

father to all of his suns, cheating a bit on the laws of Mendel.
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Double crossover

Single crossover

Figure 1.4: When an organism produces gametes—sperm and egg cells—

homologous chromosomesmay recombine at one ormore loca-

tions. This mechanism is the source of diversity within species

and explains the segregation of traits that was observed by

Mendel. Here, an example of a single and double crossover is

shown, resulting in gametes with different recombinants.
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tions due to steadily decreasing sequencing costs, but is generally

still quite expensive. Most commonly, including for GBS, molecular
or genetic markers are used to characterize a genome, because these

are easy to work with and can also be extracted without full DNA

sequencing through various methods (Semagn et al., 2006).

Genetic markers are easily observable landmarks in the genome—

short sequences of DNA that vary among individuals, similar to

genes, but without encoding for phenotypic traits. Following the

terminology of genes, the variants of a marker are referred to as its

alleles, and an individual can be homozygous or heterozygous at

a certain marker locus. Sometimes particular genes are tracked by

tagging themwith closely linkedmarkers, while other applications

use dense markers spread across the entire genome.

Many differentmarker systems have been developed over the years,

with varying properties. For several of these marker types, genetic

maps were constructed for many plant (and animal) species. Two

examples of frequently used markers are microsatellites (or simple

sequence repeats; SSRs) and single nucleotide polymorphisms (SNPs).

Microsatellites are short repetitiveDNAsequences,whichgenerally

have several possible alleles, corresponding to a different number

of repeats. For example, one individual may contain the sequence

GAC while another has GACGAC, or GACGACGAC, etc. This spe-

cific SSR would be referred to as (GAC)n where n differs among

alleles. On the other hand, SNPs correspond to differences in a

single nucleotide. Although, in theory, SNPs can have up to four

alleles (A, T, G, C), they are actually mostly bi-allelic.

Regardless of the employedmarker system, an individual (table 1.1)

or group (table 1.2) can be characterized by reporting the observed

allele frequencies for a collection of markers. However, bi-allelic

marker data can be represented more compactly, for example as

a matrix with allele scores 0, 1 and 2 (table 1.3). This is possible

because for a marker with two alleles, say A and a, there are only

three combinations: AA (0), Aa (1) and aa (2). As such, the value

in the marker matrix indicates the number of copies of a certain

reference allele (here a).

For some applications, knowledge of the linkage phase—which al-

lele resides onwhich homologous chromosome?—may be required

to discriminate between different heterozygous genotypes with

the same allele frequencies. For example, the second genotype in

table 1.3, with allele scores [2, 1, 1], could have linkage phase

(a)

[
1 0 0

1 1 1

]
or (b)

[
1 0 1

1 1 0

]
.
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M1-1 M1-2 M1-3 M2-1 M2-2 M3-1 M3-2 M3-3

G1 0.00 1.00 0.00 0.50 0.50 0.00 0.50 0.50

G2 1.00 0.00 0.00 0.50 0.50 0.00 0.50 0.50

G3 0.50 0.00 0.50 0.00 1.00 0.50 0.50 0.00

G4 0.00 0.00 1.00 1.00 0.00 0.50 0.00 0.50

G5 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.00

Table 1.1: Example of allele frequency data for five individuals (rows)

that were genotyped using three multi-allelic genetic markers

(columns) having three, two, and three alleles, respectively. Be-

cause we are looking at a diploid organism, only frequencies

0.0, 0.5, and 1.0 were observed. A frequency of 1.0 means that

an individual is homozygous for the respective marker, having

twice the same allele. On the other hand, if an individual is

heterozygous at a specific marker, the two respective alleles are

observed with a frequency of 0.5. The values for each marker

sum to 1.0 in each individual.

In the first case, the 1-alleles at the second and third locus reside

on the same homologous chromosome, while they are separated in

case of the second linkage phase. Even though the linkage phase

does not affect the expressed phenotype, it determines the distribu-

tion of produced gametes and therefore the probability to observe

a certain genotype in the offspring of a crossing. If the second and

third marker in the example above happen to be genetically linked,

a genotype with linkage phase (a) will more likely produce gam-

etes [1, 0, 0] and [1, 1, 1], and fewer gametes [1, 0, 1] or [1, 1, 0], as
compared to a genotype with linkage phase (b). Unfortunately, the

linkage phase is not easily observed with current genotyping tech-

nologies, but it can be inferred or estimated by looking at additional

information such as the genotypes of an individual’s ancestors in

its pedigree (the "family tree").

1.2.3 Marker-assisted selection

Breeders can use marker data to make better decisions as com-

pared to traditional breeding based solely on phenotypic selection.

For example, the availability of marker data makes it possible to

compose genetically diverse breeding material, to perform better

crossings, or to select sooner and with higher accuracy among the

produced offspring in each generation. Over the last decade several

marker-based plant breeding strategies have been established and

are increasingly used to develop better products. At present, geno-
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M1-1 M1-2 M1-3 M2-1 M2-2 M3-1 M3-2 M3-3

G1 0.00 0.90 0.10 0.60 0.40 0.00 0.25 0.75

G2 1.00 0.00 0.00 0.50 0.50 0.00 0.50 0.50

G3 0.60 0.00 0.40 0.05 0.95 0.30 0.70 0.00

G4 0.20 0.05 0.75 1.00 0.00 0.20 0.00 0.80

G5 0.33 0.33 0.33 0.15 0.85 0.55 0.45 0.00

Table 1.2: Example of allele frequency data for five groups of n = 30

individuals (rows) thatwere genotypedusing threemulti-allelic

genetic markers (columns) having three, two, and three alleles,

respectively. In a group of n diploid individuals, 2n alleles are

observed for each marker, which means that all multiples of
1
2n

are possible frequencies. Again, the values for eachmarker sum

to 1.0 in each individual.

typing technologies are no longer limiting and the major challenge

is to optimally use genetic markers in practical breeding schemes.

One very promising marker-assisted selection technique used for

complex quantitative traits is to predict breeding values from ge-

netic marker data. Recording phenotypic traits is a very time con-

suming and expensive task, further complicated by the fact that

observable characteristics are influenced by the environment. Also,

some traits are difficult to observe, and often adult plants are

needed. Ideally, a breeder wants to select plants with a high ge-
netic value—which will be inherited by the offspring produced in

subsequent crossings—as soon as possible in the breeding cycle.

Using datasets for which both genetic marker data and phenotypes

are available, statistical regression models can be built that pre-

dict the genetic value of an individual from its marker data. Such

models are called genomic predictionmodels and selecting based on

the predicted values is referred to as genomic selection (GS)—amajor

trend inmodernmarker-assisted breeding for complex quantitative

traits (Heffner et al., 2009). Because there are so many, it is difficult

to identify all QTL affecting a complex trait of interest. Genomic

selection offers a practical solution by using a large number (up

to tens or hundreds of thousands) of genome-wide markers in the

hope that most QTL effects are picked up in the prediction model

through a linked marker in its vicinity. A major practical advant-

age of genomic selection is that it allows to perform more selection

cycles per time unit. Once a prediction model has been obtained,

phenotypic evaluation does not need to be completed before selec-

tion takes place. Yet, if necessary, evaluation can be performed in
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Allele frequencies for bi-allelic markers

M1-1 M1-2 M2-1 M2-2 M3-1 M3-2

G1 0.50 0.50 0.50 0.50 0.50 0.50

G2 1.00 0.00 0.50 0.50 0.50 0.50

G3 0.50 0.50 0.00 1.00 1.00 0.00

G4 0.00 1.00 1.00 0.00 0.00 1.00

G5 0.50 0.50 0.50 0.50 1.00 0.00

Allele scores

M1 M2 M3
G1 1 1 1

G2 2 1 1

G3 1 0 2

G4 0 2 0

G5 1 1 2

Table 1.3: Example of allele frequencydata (top) for five individuals (rows)

that were genotyped using three bi-allelic markers (columns).

Now there are only two columns per marker, with values 0.0,

0.5, and 1.0, again summing to 1.0 for each marker. Therefore,

one column can obviously be inferred from the other, and it is

possible to more compactly represent the data as a matrix (bot-

tom) with one row per individual and one column per marker.

Values in this matrix are allele scores 0, 1, and 2, and indicate

the number of observed copies of an arbitrary reference allele.

In this example, the first allele of each marker was taken as the

reference allele.
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parallel with selection to update the prediction model in order to

improve its accuracy in the next cycle (figure 1.5).

For simple traits, controlled by a small number of genes, we can

go much further than prediction of value from marker data. Here,

the genetic profile of the breeding target can be fully defined at

the few involved loci. It is therefore possible to predesign a de-

tailed crossing scheme that obtains this target genotype from the

available parents in an efficient way, for example minimizing the

associated cost and number of generations. Such crossing scheme

tells the breeder precisely which plants to cross in each generation

and which genetic profiles, in terms of the involved genes, to select

from the offspring. Due to the massive number of possible crossing

schemes, that quickly increaseswhen consideringmore genes, such

an approach is only feasible for simple traits controlled by up to a

dozen of genes.

Of course many other marker-assisted selection techniques have

been and are being developed besides those that we addressed.

For example, marker-assisted backcrossing is used to transfer se-

lected genes, e. g. from a wild relative, into an elite background.

By tracking a large number of background markers, breeders can

assure that only the desired genes are transferred with as little sur-

rounding wild DNA as possible, to retain the high quality of the

elite product. For more information about modern marker-assisted

breeding techniques we refer to Tester and Langridge (2010).

Although plant breeding used to be mainly an art, science is now

increasingly taking the guesswork out. In this respect, marker-

assisted selection is one of the major technologies with huge po-

tential to lead to further successes in coping with a changing envir-

onment and a vastly growing world population.

1.2.4 Other molecular breeding techniques

In contrast to marker-assisted selection which is used to improve

conventional breeding driven by repeated crossing and selection,

other methods have been developed that directly modify the ge-

netic composition of plants (or animals)—a practice referred to as

genetic engineering or genetic modification (GM) that yields so-called

genetically modified organisms (GMO; Uzogara 2000).

One of the most astonishing but equally controversial GM tech-

niques is transgenesis, which moves genes around beyond nature’s

boundaries. For example, genes from an animal can be inserted in

a plant, or genes can be transferred between unrelated plant spe-
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Figure 1.5: Schematic overview of a simple marker-assisted recurrent se-

lection plant breeding scheme using genomic selection. As in

a traditional scheme, the first generation consists of crossing,

evaluation and selection, in this order. A genomic prediction

model is built based on the genotypes and phenotypes of the

selection candidates in this first generation, and used for se-

lection. In subsequent generations, selection is performed im-

mediately after crossing using the prediction model that was

previously constructed. In parallel, the selection candidates

are phenotyped so that the model can be updated to provide

more accurate predictions, as the number of individuals with

both known genotypes and phenotypes increases.
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cies that cannot be crossed. A particular example of a GMO that

caused a lot of controversy is Golden Rice™. This rice variety was

genetically modified by inserting several genes, including one nat-

urally found in daffodils, to produce beta-carotene—as contained

in other vegetables like carrots, hence the golden colour—in an at-

tempt to address vitamin A deficiency in developing countries. It

is estimated that this nutritional deficiency causes the yearly death

of hundreds of thousands of children under the age of five, who

are most susceptible. Proponents say that Golden Rice is a quick-fix

solution that can savemany lives, and should therefore bemassively

adopted, while opponents claim that there are more sustainable al-

ternatives, that do not compromise food security, avoid a financial

dependency on the biotech industry, and address the causes of

malnutrition—such as poverty and lack of education—rather than

addressing its symptoms only. Fear of unanticipated side effects

caused by consuming unnatural GMO’s containing foreign genes,

and of irreversible contamination of non-GMO varieties through

undesired cross-pollination or accidental mixing of seeds, plays

an important role in the debate on the acceptance or rejection of

genetic modification and transgenesis in particular.

Other GM methods include cisgenesis, mutagenesis and gene edit-
ing. In case of cisgenesis, specific genes are artificially transferred

between species that could also be crossed—meaning that it is in

theory also possible, although not necessarily practical, to obtain

the same transfer through conventional breeding.Mutagenesismay

be used to trigger mutations, for example through radiation with

X-rays or ultraviolet light. Although mutations also occur in nature

and those that by chance happen to be beneficial are the driving

force of evolution, these are very rare, due to which natural evolu-

tion is slow and conventional breeding mostly depends on hybrid-

ization (crossing) as its source of variation. Artificially inducing

additional mutations provides an alternative source of variability

that can be exploited for selection and allows to study the effect

of new mutations on various phenotypic traits. Gene editing tech-

niques even go a step further than mutagenesis as they allow to

cut, paste and correct specific pieces of DNA in living organisms,

instead of just triggering mostly random mutations.

The latest addition to the gene editing toolbox called CRISPR-Cas9

(Doudna and Charpentier, 2014; Hsu et al., 2014) is very promising

due to its simplicity and allows to edit genomeswith extremelyhigh

precision up to changing a single nucleotide. This CRISPR-Cas9

method can be used to alter specific genes, without performing

any crosses nor transferring genes from other organisms, offering

an efficient alternative to both conventional breeding as well as to

older GM methods such as transgenesis and cisgenesis. Moreover,
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gene editing has the potential of fixingmutations that cause genetic

diseases, also in humans. Remember the example of cystic fibrosis,

a serious condition caused by a mutation in a single gene—what if

we could simply cut out themutation and replace it with the correct

DNA sequence? Many studies have been initiated with the aim to

develop new cures for this and various other diseases, including

cancer, although genetic engineering of humans does raise ques-

tions similar to and beyond those posed in the context of GMO’s.

Hardly anyone would oppose against the use of gene editing to

try curing serious diseases like cystic fibrosis or cancer, but what

about editing human embryos to add abilities such as improved

night vision that are currently found in other species? And what

about giving parents the ability to determine certain characteristics

such as the eye colour of their children? For sure, an ethical debate

is needed and scientists agree that the time for this has come as

the required technologies have arrived. Gene editing in humans

no longer belongs to the realm of science fiction, and many break-

throughs are expected to follow within the next decade.

Going back to plant breeding, it must be noted that due to the

controversy GMO’s are not yet a global industry, with six countries

growingabout 95%of all commercialGMcrops (USA,Brazil,Argen-

tina, India, Canada and China). More than half of the production

takes place in the USA. Most plant breeding companies currently

develop their main products without the use of GM, which may

then be further augmented for markets where GMO’s are allowed.

1.3 optimizing plant breeding

Plant breeding is a complex process of which many aspects can

still be improved, especially when using the now largely available

molecular marker data to make better, more informed decisions.

In this thesis we address several optimization problems related

to marker-assisted plant breeding. The techniques used to solve

these problems are introduced in chapter 2 and some specific meth-

ods were implemented generically—i. e. independently from any

application—in a Java framework called JAMES, which is presen-

ted in chapter 3.

Chapter 4 describes an approach to sample diverse, representative

subsets, known as core subsets, from large plant collections. Core

subset selection was initially introduced in the context of genetic

resource conservation, but hasmany applications in plant breeding

as well. For example, breeders may want to compose genetically di-

verse material to initiate a breeding program, or to phenotype a
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representative sample to be used as the training population for a

genomic prediction model from which the genetic value of the re-

maining plants can be estimated. Our software, called Core Hunter,

samples cores with complementary allele frequencies or pheno-

typic trait values to maximize diversity within the core and repres-

entativeness of the individual plants from the entire collection.

Next, chapter 5 explores long-term genomic selection strategies

that balance gain and diversity. These are needed because previ-

ous research showed that genomic selection accelerates the loss of

diversity in the breeding population and, as mentioned before, no

improvement can be made in the absence of variability. We com-

pare several existing and new diversity management strategies by

simulating the genomic selection scheme shown in figure 1.5.

Finally, chapter 6 introduces Gene Stacker: a transparent and flex-

ible crossing scheme generator used to stack several genes, encod-

ing for simple traits, from multiple parents into a single new plant.

Gene Stacker is an example of a tool that requires phase-known gen-

otype data, to compute the distribution of the offspring of each

particular crossing. Therefore, Gene Stacker carefully monitors the

linkage phase of all genotypes through the scheme, and avoids as

well as reports any ambiguities that may result in an undesired

linkage phase. To handle the massive amount of possible crossing

schemes we included several heuristics in Gene Stacker that can

be enabled to reduce the number of explored schemes, providing

a quality-runtime tradeoff that allows to obtain good schemes for

complex stacking problems involving up to ten or more genes.



2
INTRODUCT ION TO OPT IM IZAT ION

Optimizationproblemsof all kinds frequently arise invariousfields.

Just think about daily life: whether you are trying to minimize the

time needed to get home fromworkwhile picking up your children

at school and stopping by the supermarket, figuring out how to put

a maximum number of dirty plates in the dishwasher, or organiz-

ing your clothes to minimize the time needed to find a matching

outfit—these are all optimization problems, for which a number of

solutions exist, some of which are preferred over others. Coming An algorithm is a
finite sequence of
simple instructions
that transform some
specific input into a
desired output. For
example, a recipe is
an algorithm that
describes how to
combine several
ingredients to
prepare a tasty dish.
In computer science,
algorithms define the
sequence of steps
taken by a computer
to perform a certain
task or to solve a
certain problem.

up with the best possible solution can be very tough, even more so

when trying to find it by hand. Carefully modelling the problem

in a mathematical way allows us to use calculus and optimization

algorithms to help identify the optimal solution.

2.1 optimization problems

A general optimization problem is mathematically formulated as

minimize f(x)

subject to x ∈ Ω

where x is a solution, f(x) is a scalar objective function (i. e. assigns a

certain value to any given x), andΩ is the so-called feasible solution

space. Alternatively, the objective function may need to be maxim-

ized, but often only one of both formulations is considered in op-

timization theory because maximizing f(x) can easily be achieved

by minimizing −f(x) and vice versa. In general, a minimum or

maximum of f(x) is called an extremum or optimum.

As a simple example, suppose thatwewant to build a fence attached

to one side of a building, enclosing the largest possible rectangular

area when using 20m of fencing material (Dawkins, 2016). The

chosen side of the building is more than 20m long, meaning that

21
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BUILDING x1

x2

x2

Figure 2.1: Example of maximizing the rectangular area enclosed by a

fence attached to a building, using a certain amount of fencing

material.

no fencing is needed there in any configuration (figure 2.1). This

description leads to the following mathematical formulation:

maximize f(x1, x2) = x1x2
subject to x1 ∈ R, x2 ∈ R

x1 > 0, x2 > 0
x1 + 2x2 = 20.

Here, a solution x is defined by two positive real valued variables

x1 and x2, and the objective function to be maximized corresponds

to the area enclosed by the fence. In addition, the total amount of

fencing material should equal 20m, which constrains the feasible

values of both variables.We can nowfind the optimal configuration

using basic calculus. First, we combine the objective function and

constraint to obtain a function in one variable, either x1 or x2—the

choice is arbitrary. From

x1 + 2x2 = 20

follows

x1 = 20− 2x2

and

f(x1, x2) = x1x2 = (20− 2x2)x2 = 20x2 − 2x
2
2 = f(x2).

From figure 2.2 we can already see that this function reaches a

maximumhalfway the feasible range [0, 10], i. e. forx2 = 5. Toobtain
a formal confirmation of our visual result, we set the derivative of

f(x2) to zero to find its candidate local extrema:

f ′(x2) = 20− 4x2 = 0⇔ x2 = 5.
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Maximizing area enclosed by fence

Figure 2.2: Objective function of maximizing the area enclosed by the

fence, for x2 ∈ [0, 10], which is the feasible range as inferred

from the constraints x2 > 0, x1 > 0 and x1 = 20− 2x2.

Looking at the secondderivative f ′′(x2) = −4 < 0 confirms that this

single candidate is an extremum, andmore precisely amaximum—

not a minimum. Since f(x2) has only one local extremum, we know

that it is also a global extremum, in this case the global maximum,

meaning that there does not exist any other solution with a higher

value. As the corresponding configuration, with x2 = 5 and x1 =

20− 2x2 = 10, falls in the feasible range of both variables, we have

found the best solution, enclosing the largest area (50m2) using the

available fencing material.

The example solved above is a simple continuous optimization prob-

lem, where all variables take values from an uncountably infinite

set such as the real numbers, which allows the use of calculus tech-

niques. Here, we had only two variables, and using the imposed

constraint we were able to further reduce the formulation to a ba-

sic univariate problem. Also, we were lucky that there was only a

single maximum, and that it fell inside the range of feasible val-

ues of both variables. Things can get much more complicated as

for problems with multiple variables we need to look at partial

derivatives and their interactions. Also, in general, there may be

several local extrema which often severely complicates the task of

finding the global optimum, and we need to make sure that we do

not miss the best solution if it happens to fall at the border of the
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feasible solution space. Moreover, much more complex constraints

may apply than the simple linear constraint in our example.

A huge variety of methods have been developed for specific types

of continuous optimization problems, such as for problemswithout

any constraints, those with only equality constraints, and problems

with both equality and inequality constraints. Some methods only

use function values, while others rely on the availability of first

and possibly also second-order derivatives. We do not go further

into the topic of continuous optimization here, because the plant

breeding problems dealt with in this thesis are discrete optimization

problems,which require adifferent approach. The interested reader

is referred to Patriksson et al. (2017). Yet,we briefly touch the subject

of continuous optimization again in chapter 5.

2.2 discrete optimization

In a discrete optimization problem some or all variables are re-

stricted to discrete values, such as integers or natural numbers,

which may further complicate the search for an optimal solution.

In general a discrete problem can still have an infinite number of

solutions—even when all variables are discrete—but often the val-

ues are constrained to a finite set, such as binary values, which

when combined in all possible ways yield a finite number of feas-

ible solutions. Such problems are called combinatorial optimization

problems and can in theory always be solved exactly by simply eval-

uating all possible solutions, and selecting the best one. Yet, such

exhaustive search usually takes way too much time, and therefore

more sophisticated techniques are required to solvemost combinat-

orial optimization problems. Still, some algorithms are based on the

idea of generating all solutions while taking shortcuts where pos-

sible. Therefore, we first describe how to explore the entire solution

space through an exhaustive search.

2.2.1 Exhaustive search

A common way to generate all solutions of a combinatorial optim-

ization problem is by representing the search space as a tree that
reflects all combinations of possible variable values. For example,

suppose that we want to generate all subsets of a collection of n

items. We can formalize this combinatorial problem using n binary

variables x1 to xn, where xi = 1means that the i-th item is selected,

and xi = 0 means it is not. Figure 2.3 shows how the search space

can be represented as a tree, for a collection with n = 3 items, in



2.2 discrete optimization 25

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 1 x2 = 0

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

x1 =
x2 =
x3 =

1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

Figure 2.3: Tree representation of the search space when generating all

eight subsets of a collection with three items. Each branch of

the tree assigns a possible value to a variable, and each leaf

(green) corresponds to one of the eight solutions.

which case there are eight possible subsets. Starting at the root of the

tree (the small circle) we have not yet assigned any value to any vari-

able xi. The first thing to decide iswhether or not to include the first

item in the selection, and both options need to be considered in or-

der to generate all subsets. As such, the tree splits into two branches
at its root—one with x1 = 1 and the other with x1 = 0. From each

of the two obtained blue nodes we repeat the same process for the

second variable x2, creating four new branches leading to four new

yellow nodes. From left to right, the first yellow node corresponds

to the partial solution in which both the first and second item are

selected, followed by the two options that only include the first or

second item, respectively, and finally a currently empty selection.

The remaining decision is whether or not to include the third item,

which introduces a total of eight new branches—two from each yel-

low node—leading to the so-called leaves of the tree (green). Each

leaf corresponds to one of the eight possible subsets.

To construct the search tree we can either follow a depth-first or
breadth-first approach (figure 2.4). In a depth-first search (top)—a

method also known as backtracking—immediately after assigning

the first possible value to the first variable, x1 = 1, we go further

down the tree by considering thefirst option for the second followed

by the third variable as well, i. e. x2 = 1 and subsequently x3 = 1.

As such, the third visited node is already a leaf, corresponding

to the solution in which all three items are selected. Since there
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Depth-first search

Breadth-first search

Figure 2.4: Order inwhich thenodes of the search tree are visitedwhen fol-

lowing a depth-first (top) or breadth-first (bottom) approach.

are no further branches to explore, we go back up one level in

the tree, to node two. Here, there is a second, unexplored branch

that sets x3 = 0, which again leads to a solution, this time having

selected only the first and second item. Going back up, we see that

all branches from node two have now been explored and therefore

go back up one more level to node one, from which we now follow

the second option with x2 = 0, which eventually leads to two new

solutions. This process continues until we arrive back at the root

and find that there are no more branches to explore, which means

that the entire tree has been traversed and that all solutions have

been generated.

A breadth-first search (figure 2.4; bottom) simply visits the nodes

of the tree level by level. Although this order may seem more in-

tuitive, a depth-first search is often easier to program and—when

done carefully—also more efficient. For example, a breadth-first

search requires to make copies of partial solutions at each node,

because all possible extensions are simultaneously considered. In
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practice, this is implemented with a queue that contains all gen-

erated partial solutions that still need to be further extended. At

the root node, an initial partial solution in which no variable val-

ues have yet been assigned is added to the queue. Then, as long

as there are elements in the queue, the first one is dequeued and

all possible extensions of the respective partial solution are added

at the end of the queue. Repeating this process until the queue is

empty generates all possible solutions in a breadth-first order. In

contrast, a depth-first search can work with a single current solu-

tion that is repeatedly modified while traversing the tree. When

following a branch downwards, the current solution is extended by

assigning the chosen value to the respective variable. When going

back up—the backtracking part—the previously assigned value is

erased and ready to be replaced with the next possible value, if

any. Because of this advantage, a depth-first approach usually re-

quiresmuch lessmemory than a breadth-first search.Moreover, the

leaves of the tree are visited earlier by a depth-first search, mean-

ing that this approach more quickly generates complete solutions.

Pruning criteria used to reduce the number of explored solutions,

as explained below, often use information about the best solution

that was generated so far. As such, a depth-first search often allows

earlier pruning leading to shorter execution times. Yet, for some

problems a breadth-first search may be preferred due to specific

requirements, or a depth-first search may simply not be possible.

In general, a collection of n items has 2n possible subsets. Due to

this exponential growth, which is typical for a combinatorial op-

timization problem, it quickly becomes infeasible to generate all

solutions. Suppose that we have a reasonably fast computer that

can evaluate about one million subsets per second. Table 2.1 indic-

ates how much time would approximately be needed to evaluate

all subsets of a collection of varying size. In case of n = 20 items,

there are about one million subsets, so these can all be evaluated in

as little as one second. Doubling the size to n = 40 already severely

increases the computation time to about 13 days, and evaluating

all subsets of a collection with n = 80 items would require a truly

astonishing amount of time—over 38 billion years, which is almost

three times the age of the universe. Even if we would use a high

performance computing cluster with hundreds of cooperating ma-

chines, it would takemillions of years to inspect all possible subsets

of a quite small dataset with only 80 items. Therefore, techniques

are required to reduce the number of evaluated solutions, for ex-

ample by pruning branches of the search tree of which we can

predict that they cannot lead to an optimal solution.
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Items (n) Subsets (2n) Approximate time

20 ≈ 1million 1 second

40 ≈ 1012 13 days

60 ≈ 1018 > 36 thousand years

80 ≈ 1024 > 38 billion years

Table 2.1: Approximate computation time needed to evaluate all subsets

of a collection of varying size. It is assumed that about one

million solutions are evaluated per second.

2.2.2 Pruning criteria

When solving a combinatorial optimization problem we actually

only want to find the best solution—not all solutions—and the

fewer solutions that need to be explored, the better. One approach

to reduce the number of solutions constructed in an exhaustive

search, and as such its execution time, is by incorporating pruning

criteria that skip certain parts of the search tree. Of course, to still

guarantee optimality, we can only skip those branches of which we

know that they cannot lead to an optimal solution.

For example, consider a subset selection problem known as the

knapsack problem. Given n items that each have a certain profit and

weight, we want to select a set of items with the highest possible

total profit, taking into account that their totalweight cannot exceed

a certain capacity. To solve this problem we could generate all sub-

sets, discard those that violate the capacity constraint, and from the

remaining solutions take the one with the highest profit. However,

we can easily prune the search space, for example by taking into

account that adding more items to the selection can only increase

the total weight. Therefore, if a partial selection already exceeds the

capacity, there is no need to consider any further branches from the

corresponding node in the search tree. Furthermore, we can try to

predict the maximum profit that can be achieved by extending a

given partial solution. If this upper bound is lower than the profit

of the best solution found so far, we need not further extend the

respective partial solution, since it can never lead to a solution that

outperforms the currently known best solution.

A trivial bound for the knapsack problem would be to take the

profit of the current selection increased by the total profit of all

items for which no decision has yet been made, as obviously we

can impossibly obtain a higher total profit than in case we select all

these remaining items. Although this bound may severely overes-
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timate the maximum obtainable profit—and much better alternat-

ives have been developed that also take into account the capacity of

the knapsack—many branches would already be skipped with this

simple criterion. A pruned generation algorithm that applies up-

per bounds, or lower bounds in case of a minimization problem, is

called a branch-and-bound algorithm. To prune as many branches as

possible, we need tight bounds that fully exploit the characteristics

of the specific problem at hand.

2.2.3 Problem complexity

Even when pruning the search tree where possible, an exponen-

tially growing number of solutions typically needs to be explored

to solve a combinatorial optimization problem with an approach

based on exhaustive enumeration. Effective pruning criteria and

bounds may significantly reduce the execution time, and as such

allow to solve larger problems within reasonable time, but sooner

or later we often still hit a computational limit. Luckily, many com-

binatorial optimization problems can be solved without the need

to build a search tree that generates an exponentially increasing

number of solutions. For example, consider a special case of the

knapsack problem where all items have equal weightwi = 1. Max-

imizing the total profit with a capacity of k is then easily accom-

plished by selecting the k items with the highest individual profit.

Efficient algorithms have been developed for many specific optim-

ization problems—yet, others showed to be exceptionally difficult.

For example, nobody has been able to find an algorithm that can

solve the general knapsack problem described above, without in

the worst case evaluating an exponential number of solutions. It is

believed that the knapsack problem cannot be solved "efficiently",

which leads us to one of the most important open questions in

computer science: the P versus NP problem.

Every optimization problem has a corresponding decision problem

that asks the question (formulated here for maximization):

Is there any solution x ∈ Ω that has a value f(x) > v?

where v is the input of the decision problem. For example, we can

formulate the knapsack problem as a decision problem by asking:

Is there any selectionwith total profit at least v that does

not exceed the imposed capacity?

Anoptimizationproblem is always at least as hard as its correspond-

ing decision problembecause ifwe can efficiently find the optimum,

we can also efficiently solve the decision problem by comparing the
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given value vwith that of the optimal solution. A decision problem

that can be solved efficiently, more precisely in polynomial time, is

said to belong to a class called P. This means that an algorithm is

known that solves the problemwith at most cnk operations, where

c and k are arbitrary constants, and n is the size of the input. Ob-

viously, an exhaustive search or branch-and-bound algorithm does

not run in polynomial time as it may in the worst case evaluate

an exponential number of cn solutions. More generally, the class

NP contains those decision problems for which an answer can be

verified—but not necessarily obtained—in polynomial time. For ex-

ample, in case of the knapsack problem, verifying whether a given

selection stays within the capacity, and whether its value is indeed

larger than a given value v, is as easy as summing up the weights

and profits of the selected items and comparing these to a certain

value. Thus, the knapsack problem is contained in NP. It is clear

that P ⊆ NP, i. e. every problem in P is also in NP, since finding a

solution is always at least as hard as verifying one.

The question remains however whether P = NP, i. e. whether all

problems whose solutions are easily verified can also be solved ef-A million dollar
prize is rewarded by
the Clay Institute to

the one who can
prove whether or not
P 6= NP. Up to the
challenge? Take a

look at https:
//goo.gl/IUGWVz.
But be warned, many
talented minds have

tried before you,
without success.

ficiently. Although it is generally believed that P 6= NP, no one has

been able to prove it (Fortnow, 2009). Still, there are so many prob-

lems in NP, such as the knapsack problem, for which nobody has

yet found a polynomial algorithm, that it would be truly remark-

able if it turns out that P = NP. Such a result would have serious

implications in many fields, including cryptography. The strength

of certain encryption algorithms depends on the generally accepted

assumption that P 6=NPas, for example, it should be easy to quickly

encrypt and decrypt a confidential file or message, but extremely

difficult for a potential intruder to reveal its contents without hav-

ing access to the applied encryption key (such as a password).

Certain problems in NP are at least as difficult as all others—these

are referred to asNP-complete problems. If a polynomial algorithm

would be discovered for anyNP-complete problem, it could be used

to efficiently solve all other problems in NP as well. Therefore it is

generally assumed that NP-complete problems cannot be solved

efficiently, since they are the problems in NP that are most likely

not in P. The knapsack problem, for example, is NP-complete.

It must be noted that the term "efficient" is used here from a the-

oretical viewpoint, always meaning "in polynomial time". Even a

problem in P can be hard to solve in practicewithin reasonable time,

for example if the best known algorithm takes n10 steps and could

thus hardly be called efficient for practical purposes, being useless

for large inputs. On the other hand, for many NP-complete prob-

lems, including the knapsack problem, state-of-the-art algorithms

https://goo.gl/IUGWVz
https://goo.gl/IUGWVz
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Algorithm 2.1 Greedy heuristic for the knapsack problem.

Input: n items with profits pi and weights wi; capacityW

Output: profitable selection of items with total weight at mostW

1: sort the items on decreasing ratio of profit per weight (pi/wi)

2: start with an empty selection

3: w← 0

4: for i from 1 to n do
5: if w+wi 6W then
6: add i-th item to selection

7: w← w+wi
8: else
9: skip i-th item

10: end if
11: end for
12: return selection

can solve certain practical cases efficiently—yet, in general, with an

exponential worst case execution time.

2.2.4 Heuristics and metaheuristics

In practice, approximation algorithms are often used to obtain

good solutionswithin reasonable time for tough optimization prob-

lems, such as those whose corresponding decision problem is NP-

complete. Such inexact algorithms are called heuristics and do not

guarantee that the result is truly optimal—trading solution qual-

ity for execution time. Still, intelligent heuristics can often quickly

find near-optimal results, that may be sufficient to deal with the

problem at hand in a practical setting.

For example, algorithm 2.1 provides a simple heuristic for the gen-

eral knapsack problem. We describe this optimization algorithm

using pseudocode, which defines its outline in a way that is clear

and structured but yet independent of any programming language.

Pseudocode should be specific enough to allow a programmer to

implement the algorithm in his or her favourite language (such as

C or Java). In our pseudocode we use the arrow symbol (←) as a

notation for the assignment of a certain value, specified at the right

side of the arrow, to the variable stated at the left side of the arrow.

The presented so-called greedy heuristic for the knapsack problem

is very fast as it just repeatedly selects the remaining item with the

highest profit per weight, unless the capacity would be exceeded,

but does not guarantee that the best solution will be found.
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Some heuristics—known as metaheuristics—provide general pur-

pose approximation strategies to explore the solution space in an

intelligent way, independently from a specific problem description.

A major advantage of using such high-level heuristics is the in-

herent flexibility that for example allows to solve multiple related

problems without changing the optimization engine.

Local search

Inparticular, local searches aremetaheuristics that repeatedlymodify

agiven initial solution in anattempt to improve it, until a certain con-

dition is satisfied. Often, the initial solution is randomly generated,

or the result of another approximation algorithm. Local modifica-

tions are usually formalized through the concept of a neighbourhood
function that, given a solution, yields a set of similar solutions.

random descent One of themost basic local search strategies—

referred to as stochastic hill-climbing or random descent—is described

in algorithm 2.2 (formulated for a maximization problem). This

metaheuristic takes an initial, e. g. randomly generated solution

and then iteratively evaluates a randomly chosen neighbour to see

if it improves over the current solution. If so, this neighbour replaces

the current solution. This process is repeated until a certain stop

condition is satisfied, such as a maximum number of iterations,

maximum runtime, or maximum time or number of steps without

finding any further improvement over the current solution.

Algorithm 2.2 Random descent.

Input:
• objective function f(x)

• initial solution x ∈ Ω
• neighbourhood function N(x) : Ω→ P(Ω)

• stop condition

Output: best found solution x∗ ∈ Ω

1: repeat
2: pick random neighbour x ′ ∈ N(x) of current solution x

3: if f(x ′) > f(x) then
4: x← x ′ (accept x ′ as new current solution)

5: else
6: retain x as current solution

7: end if
8: until stop condition satisfied

9: return x
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For a solution x ∈ Ω, the neighbourhood functionN(x) : Ω→ P(Ω)

yields a set of similar solutions (neighbours). Here, P(Ω) refers to

the power set of Ω, i. e. the set of all subsets of Ω. The neighbour-

hood function, and the way in which an initial solution is obtained,

are problem specific. For example, for the knapsack problem, a

possible neighbourhood function could be one that randomly adds

or removes an item to/from the selection, while ensuring that the

capacity is not exceeded:

N(x) = {x ′ | w(x ′) 6W ∧ ∃i : x ′i = 1− xi ∧ ∀j 6= i : x
′
j = xj}.

According to this definition, N(x) contains all solutions x ′ with

weight w(x ′) below the capacity W that differ from the current

solution x in a single variable, whose value is changed from 0 to

1 (addition) or from 1 to 0 (removal). An initial valid solution can

easily be obtained, for example by starting with an empty selection

or by taking a random selection and then, if necessary, removing

some items to bring the total weight below the allowed capacity.

Given that a sufficient number of iterations are performed, the

random descent heuristic will converge towards a local optimum,

i. e. a solution x for which there exists no neighbour x ′ ∈ N(x)

with f(x ′) > f(x). Yet, this does not necessarily mean that a global

optimum has been obtained. For example, imagine you would like

to find the highest point on earth, starting from some location, by

walking in a random direction that leads upwards. If you walk

long enough you will eventually arrive at the top of some hill or

mountain, but chances are low that you will find yourself at the

summit ofMount Everest. For the same reason, the randomdescent

algorithmwill likely not yield the best possible solution. Sometimes

wemaywant towalkdownabit to look for an evenhighermountain

than the one we just climbed, but the random descent algorithm

does not allow such inferior moves. In particular, when using the

exampleneighbourhooddescribedabove for theknapsackproblem,

no removals will ever be accepted as these always decrease the total The simulated
annealing algorithm
is based on the
annealing process in
metallurgy. To be
able to shape metal it
is heated to a very
high temperature
that provides the
atoms with sufficient
energy to move
around freely. The
material is then
slowly cooled to
obtain a strong
product.

profit. However, it may be beneficial to remove an item so that it

can subsequently be replaced by other, potentially more valuable

items. Of course we can not expect that a heuristic always finds

the optimal solution but we do want to approximate this optimum

as closely as possible. Therefore, many more intelligent and more

powerful local searches have been developed.

simulated annealing One popular extension of the basic ran-

domdescent algorithm is known as simulated annealing (Kirkpatrick
et al., 1983). This method may accept worse neighbours as the new

current solution to escape from local optima. The probability of ac-

cepting such inferior solutions decreases over time, so that initially
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Algorithm 2.3 Simulated annealing.

Input:
• objective function f(x)

• initial solution x ∈ Ω
• neighbourhood function N(x) : Ω→ P(Ω)

• temperature function t(i)

• acceptance function p(∆, t)
• stop condition

Output: best found solution x∗ ∈ Ω

1: i← 0

2: repeat
3: pick random neighbour x ′ ∈ N(x)

4: compute ∆← f(x ′) − f(x)
5: with probability p(∆, t(i)): set x← x ′

6: i← i+ 1

7: until stop condition satisfied

8: return x

there is a lot of freedom but eventually the search will converge

to an optimum—hopefully a global optimum or a close approx-

imation. This gradual reduction of freedom is modelled through

a temperature, that determines the probability to accept a worse

solution and decreases over time. The simulated annealingmethod

is described in algorithm 2.3 (again for a maximization problem).

The temperature function t(i) provides the (positive) temperature

of the optimization engine in the i-th iteration and is usually chosen

to always decrease and approach zero after a large number of iter-

ations. One example is the function

t(i) = T0λ
bi/nc

where T0 is the initial temperature, n is an integer that controls the

number of subsequent steps with the same temperature, and 0 <

λ < 1 a parameter that determines the cooling rate. The acceptance

function p(∆, t) defines the probability to accept a difference of

∆ = f(x ′) − f(x) for the objective function value when moving

from solution x to x ′. It is usually defined as

p(∆, t) =

1 if ∆ > 0

e∆/t else

(2.1)

which means that better solutions, i. e. with f(x ′) > f(x) and thus

∆ > 0, are always accepted, and that the probability to accept an

inferior neighbour, with ∆ 6 0, exponentially decreases for a larger
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difference in objective function value. Moreover, a worse solution

will more likely be accepted if the current temperature is high.

The temperature and acceptance function, together with the ap-

plied neighbourhood, largely define the behaviour of the simulated

annealing algorithm, and should be fine-tuned for each specific ap-

plication, for example by trying different functions and parameter

values and comparing the results.

parallel tempering Replica exchange Monte Carlo search or par-
allel tempering (Earl andDeem, 2005; Thachuk et al., 2009) is another

advanced local search metaheuristic based on the same principles

as simulated annealing. Here, instead of decreasing the temperat-

ure over time, multiple replicas with a different fixed temperature

are executed in parallel. From time to time these cooperating sub-

searches may exchange their current solution to push the best solu-

tions to the coolest replicas for convergence, and theworst solutions

towards the hottest replicas to be able to escape from local optima.

The parallel tempering method is described in algorithm 2.4 (as

before, for a maximization problem).

The k replicas each have their own initial solution, and are assigned

unique, equally-spaced, and increasing temperatures in the range

[tmin, tmax]. At first, the highest-quality initial solution specified

for any of the replicas is taken as the global best solution. Next,

to improve this global approximation of the optimum, the paral-

lel tempering algorithm repeatedly executes its search loop that

consists of two main phases.

First,n iterations are performed for each replica, following the same

procedure as simulated annealing but with its fixed temperature,

and usually with the default acceptance function p(∆, t) as defined
in equation (2.1). In addition, the best solution found so far across all

replicas is tracked,which is eventually returned as the final solution

of the main search. Because the steps taken by each individual

replica are independent, it is possible to execute these in parallel on

modern computers with multi-core architectures—a major benefit

of the parallel tempering algorithm as this allows to obtain better

solutions with a limited increase in execution time.

Secondly, the current solutions of adjacent replicas r and r+ 1 are

considered to be swapped, based on a swap function q(∆r, tr, tr+1)
that is usually defined as

q(∆r, tr, tr+1) =

1 if ∆r > 0

e
( 1tr−

1
tr+1

)∆r
else
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Algorithm 2.4 Parallel tempering.

Input:
• objective function f(x)

• desired number of search replicas (k)

• series of k initial solutions xi ∈ Ω
• neighbourhood function N(x) : Ω→ P(Ω)

• temperature range [tmin, tmax]
• acceptance function p(∆, t)
• swap function q(∆, t1, t2)
• number of replica steps per iteration (n)

• stop condition

Output: best found solution x∗ ∈ Ω

1: for i from 1 to k do
2: ti ← tmin + i−1

k−1(tmax − tmin)

3: end for
4: xbest ← argmax16i6k f(xi)

5: s← 0

6: repeat
7: for i from 1 to k do
8: repeat n times

9: pick random neighbour x ′i ∈ N(xi)

10: compute ∆i ← f(x ′i) − f(xi)
11: with probability p(∆i, ti): set xi ← x ′i
12: if f(xi) > f(xbest) then
13: xbest ← xi
14: end if
15: end repeat
16: end for
17: r← s+ 1

18: while r < k do
19: compute ∆r ← f(xr+1) − f(xr)

20: with probability q(∆r, tr, tr+1): swap xr and xr+1
21: r← r+ 2

22: end while
23: s← 1− s

24: until stop condition satisfied

25: return xbest
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with ∆r = f(xr+1) − f(xr). This means that, if the current solution

of replica r+ 1 has a better objective function value than that of

the r-th replica, these solutions are always swapped to push the

best solutions to the coolest replicas and vice versa, for reasons ex-

plained above. In addition, similar to the probabilistic acceptance

of inferior neighbours, swaps that push solutions in the opposite

direction may also be performed—yet with a probability that de-

creases for a larger difference in objective function value or a larger

difference in replica temperature.

An auxiliary variable s, whose value alternates between 0 and 1, is

used to ensure that, in a single step, solutions can only migrate to

an adjacent replica. More precisely, in odd iterations of the main

algorithm, swaps are only considered between replicas 1 and 2, 3

and 4, 5 and 6, and so on. On the other hand, even iterations only

allow swaps between replicas 2 and 3, 4 and 5, etc. This approach

ensures a gradual temperature change for each current solution xi
as in the simulated annealing algorithm.

It is important to note that the parallel tempering algorithm—

unlike simulated annealing—incorporates a continuous source of

new variation provided by the hot replicas, which avoids potential

issues such as premature convergence when for example using a

temperature function that cools too rapidly. Therefore, it may be

easier to fine-tune the parameters of parallel tempering as com-

pared to simulated annealing. Furthermore, as each replica starts

with its own initial solution, the parallel tempering algorithm has a

built-inmulti-start feature thatmay on its own already significantly

improve the value of the obtained global solution.

Population-based metaheuristics

Another major class of metaheuristics besides local searches are

population-based approaches such as evolutionary algorithms—the

most popular ones being genetic algorithms (GA; Holland 1975). The

idea behind GA is to mimic natural or artificial selection in order to

improve a population of initial (for example randomly generated)

solutions towards a global optimum—much like how breeders im-

prove plant populations for a trait of interest through repeated

crossing and selection. Usually, solutions are represented as char-

acter strings to which a certain fitness is assigned based on the cor-

respondingobjective functionvalue, similar to a genotype encoding

for observable phenotypes. In every iteration several solutions are

selected as parents to be recombined into new solutions through

crossover of their corresponding string representation, some modi-

fications (called mutations, following biological terminology) are
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possibly applied to these new solutions, and certain solutions are

discarded. The highest-quality solutions have the highest probabil-

ity to be parents and to survive to the next generation, mimicking

Darwin’s survival of the fittest. After a large number of iterations,

the best solution of the population is returned as the final approx-

imation of the optimum.

Other population-based methods, such as particle swarm optimiza-
tion (Kennedy, 2011) and differential evolution (Storn and Price, 1997),

are particularly suited for continuous optimization as theynaturally

represent solutions as vectors of real numbers. Again, a population

of solutions is maintained that together move towards a global op-

timum by iteratively combining characteristics of already obtained

high-quality solutions in a clever way.

In general, population-based algorithms have the advantage of

providing a more global exploration of the solution space as com-

pared to local searches. On the downside they are also more com-

putationally demanding which makes them particularly useful to

deal with problemswhere for examplemany local optima of highly

varying quality are expected, in which case simpler and faster tech-

niques may not yield sufficiently good solutions. There is always a

tradeoff between execution time and solution quality when using

heuristics and the options are endless—several techniques can even

be combined into ahybridheuristic such as a genetic algorithmwith

a local search as mutation operator. When looking for an appropri-

ate optimization algorithm among the huge amount of possibilities,

simple methods should not be forgotten, and the added value of

more complex and slower techniques should be carefully evaluated.

For the problems addressed in this thesis there was no need to use

population-based algorithms. Therefore, we do not provide details

here and refer the interested reader to the references mentioned

above and the excellent Handbook of Metaheuristics (Gendreau and

Potvin, 2010) which also contains descriptions and guidelines for

many local searches.

2.3 multi-objective optimization

Optimization problems often have multiple competing objectives,

inwhich case it is not immediately clearwhat itmeans for a solution

to be optimal. Suppose for example that we want to construct an

efficient crossing scheme to create a new plant variant. Efficiency

could e.g. be measured as the number of required selection cycles,

reflecting time, or the total number of plants that need to be grown

and screened for selection throughout the entire scheme, reflecting



2.3 multi-objective optimization 39

Objective 1

O
bj

ec
tiv

e 
2

Pareto front

Dominated solutions 

Figure 2.5: Illustration of a Pareto front for two objective functions that are

both minimized. Here, the set of feasible solutions Ω is finite

and depicted with circles in the objective space. Filled circles

correspond to the values of Pareto optimal solutions, while the

remaining circles reflect dominated solutions.

cost and required resources. Ideally wemaywant to minimize both

of these measures but likely reducing the available time will lead

to higher costs as this requires to make more progress per cycle, i. e.

this asks for larger population sizes to be able to select rare offspring

of exceptionally high quality. Therefore, we settle to find a good

balance between the two objectives. In case a certain solution can

not be improved in terms of a single objectivewithout deteriorating

at least one other objective it is said to be Pareto optimal. The possibly
infinite set of Pareto optimal solutions forms a so-called Pareto front
in the objective space (figure 2.5) and reflects optimal tradeoffs

between the different objectives.

A multi-objective optimization problem can be formulated as

minimize [f1(x), f2(x), . . . , fn(x)]
subject to x ∈ Ω

where fi(x), i = 1, . . . ,n (> 2), are scalar objective functions and

Ω is, as before, the feasible solution space. A solution x∗ ∈ Ω

is called Pareto optimal if there does not exist any other solution

x ′ ∈ Ω with (a) ∀i : fi(x ′) 6 fi(x
∗); and (b) ∃j : fj(x ′) < fj(x

∗).
If such other solution x ′ does exist, it is said to dominate x∗, as
x ′ is strictly better than x∗ in terms of some objective while still

being at least as good for all other objectives. Similarly, a solution
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x∗ ∈ Ω is called weakly Pareto optimal if there exists no other

solution x ′ ∈ Ω with ∀i : fi(x ′) < fi(x∗), i. e. there does not exist

any solution that is better for all objectives. Each solution evaluates

to a vector of n objective function values, and the Pareto front is the

set of those vectors corresponding to all Pareto optimal solutions,

describing the tradeoffs between the individual objectives. Solving

amulti-objective optimization problemusuallymeans thatwewant

to determine one or a few Pareto optimal solutions satisfying our

preferences.

2.3.1 Weighted index and normalization

One way to obtain Pareto optimal solutions of a multi-objective

optimization problem is through linear scalarization, also known

as the weighted sum method. Here, the problem is converted into

a single-objective optimization problem by minimizing a weighted

index that combines all objectives:

minimize F(x) =

n∑
i=1

wifi(x)

subject to x ∈ Ω

with ∀i : wi > 0 and often

∑n
i=1wi = 1. Weights can either be de-

termined a priori to directly reflect preferences, or multiple Pareto

optimal solutions can be obtained by applying different weights

followed by an a posteriori selection. For each choice of strictly pos-

itive weights an optimum of theweighted sum is Pareto optimal for

the corresponding multi-objective problem. If one or more weights

are zero, a weakly Pareto optimal solutionmay be produced. Unfor-

tunately, however, Pareto optimal solutions located at non-convex

regions of the Pareto front, if any, can not be obtained through a spe-

cific choice of weights (Marler and Arora, 2010). Still, the weighted

sum method is often used due to its simplicity, although in prac-

tice it may not always be easy to determine weights that accurately

model preferences. One key insight is that when weights are set

to reflect relative importance of the objective functions, the latter

should be normalized. Else, some objectives may naturally domin-

ate the sum, which makes the process of setting desirable weights

somewhat arbitrary.

A possible normalization strategy is to linearly rescale the i-th ob-

jective function fi(x) from its original range [li,ui] to [0, 1]:

f ′i(x) =
fi(x) − li
ui − li

.
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There are several options to determine upper and lower bounds

ui and li, respectively, for each objective function. When fi(x) is

minimized, it is evident to use (an approximation of) the minimum

of this individual objective function as its lower bound:

li = minx∈Ω fi(x).

Similarly, we could use its absolute maximum as an upper bound

but this does not necessarily reflect the range of values for Pareto op-

timal solutions, as theremay be solutionswith amuch higher value

for fi(x) than the worst one observed along the Pareto front. There-

fore, in a multi-objective optimization setting where the primary

goal is to identify good tradeoffs between the optimal solutions in

terms of the individual objective functions, it ismore appropriate to

use the Pareto maximum as upper bound (Marler and Arora, 2005):

ui = max16j6n fi(x
∗
j ) with x∗i = argminx∈Ω fi(x).

Toobtain the normalization ranges of all objective functionswe thus

first independently find or approximate the individual minima

x∗i = argminx∈Ω fi(x)

for each function fi(x). Then the ranges are determined as

li = fi(x
∗
i )

ui = max16j6n fi(x
∗
j ).

In case the i-th objective function is to be maximized, the Pareto

minimumand absolutemaximumof fi(x) are used as lower andup-

per bound, respectively, which is equivalent to applying the above

formulation when minimizing −fi(x).

2.3.2 Pareto front generation

The weighted sum method described above yields a single (poten-

tially weakly) Pareto optimal solution for each particular choice of

weights. In situations where it is difficult to determine appropriate

weights a priori, one may choose to generate multiple solutions by

varying the weights, followed by an a posteriori selection among

the generated Pareto optimal solutions. Yet, as mentioned before,

the weighted sum method may not be able to produce solutions

representing the complete Pareto front. This issue can be resolved

by using alternative methods that were specifically developed to

obtain an even representation of the entire Pareto front.

In particular, population-based metaheuristics can be intuitively

adjusted to approximate the Pareto front of a multi-objective optim-

ization problem. Instead of pushing the entire population towards
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an optimum of a single objective function, the population is then

manipulated so that it converges towards an even representation

of the Pareto front. Two state-of-the-art examples of multi-objective

metaheuristics are the strength Pareto evolutionary algorithm (SPEA2;

Zitzler et al. 2001) and the non-sorting genetic algorithm (NSGA-II;

Deb et al. 2002). For combinatorial multi-objective optimization

problems in particular, with a finite number of Pareto optimal solu-

tions, it is possible to construct the full Pareto front—for example

through an exhaustive or branch-and-bound search that keeps track

of the set of currently obtained non-dominated solutions, which

converges towards the Pareto front. Such an approach is of course

only feasible if there are relatively few Pareto optimal solutions.

Other available techniques to generate a representative set of Pareto

optimal solutions include the directed search domain method (Er-

fani and Utyuzhnikov, 2011), successive Pareto optimization (Mueller-

Gritschneder et al., 2009), normal boundary intersection (Das and

Dennis, 1998; Motta et al., 2012), and the normal constraint method

(Messac and Mattson, 2004).

2.4 application to plant breeding problems

Due to the generality of metaheuristics large parts of their imple-

mentation can be reused across different applications. Therefore,

we implemented random descent, parallel tempering, and many

other local searches in a generic Java framework called JAMES (Java

metaheuristics search). We introduce JAMES in chapter 3 and ap-

ply the included local search techniques for core subset selection in

chapter 4, and to balance gain from genomic selection with main-

taining population diversity in chapter 5. Both of these applications

use theweighted summethod and the normalization procedure de-

scribed above to balance multiple objective functions.

In chapter 6 we describe the Gene Stacker algorithm that uses a

breadth-first search algorithm to generate crossing schemes to stack

several genes from multiple parents into a single new individual,

with a minimum number of generations, cost, and linkage phase

ambiguity. We incorporated several bounds and other pruning cri-

teria to solve complex stacking problems with up to ten or more

genes within reasonable time. Many of these pruning criteria are

heuristics, meaning that although Gene Stacker is based on an ex-

haustive enumeration, it is not an exact algorithm as it may happen

that the best solution is missed due to the heuristic pruning.

Gene Stacker approximates the entire Pareto front including all

tradeoffs between the three optimization objectives, which in this
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case generally consists of one or a few schemes per considered

number of generations only. The decision maker can then choose

the most desirable scheme from the set of provided alternatives,

possibly also taking into account additional criteria that are not

modelled by Gene Stacker.





Part II

THE JAMES FRAMEWORK

This part describes JAMES: a Java framework for dis-

crete optimization using local search metaheuristics.

The JAMES framework provides many generic optim-

ization algorithms that can be applied to various prob-

lems by plugging in only the application specific com-

ponents, such as the objective function that is to be op-

timized, an appropriate neighbourhood function, and

the required search parameters. We use JAMES in sub-

sequent chapters to solve multiple optimization prob-

lems related to marker-assisted plant breeding.





3
JAMES : A JAVA METAHEUR I ST ICS FRAMEWORK

summary

This chapter describes JAMES (v1.1): an object-oriented Java frame-

work for discrete optimization using local search algorithms, that

exploits the generality of such metaheuristics by clearly separat-

ing search implementation and application from problem specific-

ation. A wide range of generic local searches are provided, includ-

ing (stochastic) hill-climbing, tabu search, variable neighbourhood

search and parallel tempering. These can be applied to any user-

defined problem by plugging in a custom neighbourhood for the

corresponding solution type. Using an automated analysis work-

flow, the performance of different search algorithms can be com-

pared in order to select an appropriate optimization strategy. Im-

plementations of specific components are included for subset selec-

tion, such as a predefined solution type, generic problem definition

and several subset neighbourhoods used to modify the set of se-

lected items. Additional components for other types of problems GitHub is a popular
online code sharing
platform built on top
of a version control
system called git. It
makes it easy to share
code and collaborate
remotely, and tracks
the full history of
changes. More info
on: https://www.
github.com .

(e. g. permutation problems) are provided through an extensions

module which also includes the analysis workflow. In comparison

with existing Java metaheuristics frameworks, that mainly focus on

population-based algorithms, JAMES has a much lower memory

footprint and promotes efficient application of local searches by tak-

ing full advantage ofmove-based evaluation. Releases of JAMES are

deployed to the Maven Central Repository so that the framework

can easily be included as a dependency in other Java applications.

The project is fully open source and hosted on GitHub. More in-

formation can be found at http://www.jamesframework.org.

3.1 introduction

As discussed in section 2.2.3 many optimization problems are dif-

ficult to solve, e. g. due to NP-completeness, in which case exact

techniques are often not applicable. A common practical approach

to deal with this issue is to use inexact algorithms that find valu-

able approximations of the best solution within reasonable time.

For this purpose, metaheuristics are frequently applied, with the
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48 james: a java metaheuristics framework

major advantage that they can be adjusted easily to solve various

optimization problems arising from different fields, i. e. with the

addition of only the necessary problem specific components such

as neighbourhood functions in case of a local search, or crossover,

mutation and selection operators in case of a genetic algorithm.

In this context, software frameworks are valuable tools to reduce

the effort needed to apply well-established metaheuristics to newly

defined problems. Such frameworks are also helpful for the imple-

mentation of new ideas and comparison with existing algorithms,

and to create hybrid combinations of different search techniques.

Parejo et al. (2012) provide an overview of metaheuristics frame-

works that have been developed over the last few decades, each

targeting a certain class of algorithms and/or specific type of ap-

plications, implemented in a variety of object-oriented program-

ming languages such as C++, C# and Java. For example, ParadisEO

(Cahon et al., 2004) is an extensive C++ framework that supports

both single- and multi-objective optimization using local search

and population-based metaheuristics, with extensions for parallel

and distributed computation. Other options for C++ users include

EasyLocal++ (Di Gaspero and Schaerf, 2003) and MALLBA (Alba

et al., 2007).

Most Java frameworks focus on population-based algorithms and

especially evolutionary algorithms, including JCLEC (Ventura et

al., 2008), ECJ (White, 2012), EvA2 (Kronfeld et al., 2010), Opt4j

(Lukasiewycz et al., 2011),OAT (Brownlee, 2007) and jMetal (Durillo

andNebro, 2011). Some frameworks excel for specific types of evolu-

tionary algorithms. For example, ECJ iswidely usedwithin the field

of genetic programming. Other frameworks, like jMetal, mainly

target multi-objective optimization for which specific population-

based metaheuristics like NSGA-II (Deb et al., 2002) and SPEA2

(Zitzler et al., 2001) have been developed. These are all computa-

tionally demanding techniques that might not be needed when

dealing with single-objective problems of moderate complexity,

for which simpler local search based methods may perform well

enough. To our knowledge, the only available Java framework with

elaborate support for local search metaheuristics is FOM (Parejo

et al., 2003) which unfortunately suffers from issues such as limited

code transparency and has not been updated to use the latest Java

technologies.

The considerations above led to the development of JAMES: a Java 8

framework for discrete optimization using local searchmetaheurist-

ics. The frameworkmainly targets single-objective optimization but

has extensions formulti-objective optimization.As Java is one of the

most used programming languages, JAMES is a valuable addition
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to the currently available tools. It is desirable that such framework is

transparent, flexible, well-documented, easy to use, and preferably

open source (distributed under a permissive license) and hosted

on a generally accessible code sharing platform such as GitHub.

Java has the additional advantage of being easily portable across The Central
Repository is the
largest curated Java
repository and
provides a huge
amount of
open-source
packages. It is the
default for several
build systems such as
Apache Maven and
SBT, and can easily
be used from other
tools including
Apache Ant and
Gradle. Deploying
your project to
Central is free and
ensures that other
people can use it
with mostly zero
configuration. You
can browse the
repository at https:
//goo.gl/sl0A5.

different systems (Windows, Unix). JAMES includes a wide range

ofwell-known local searches such as (stochastic) hill-climbing, tabu

search (Glover and Taillard, 1993), variable neighbourhood search

(Hansen et al., 2010) and parallel tempering (Earl and Deem, 2005;

Thachuk et al., 2009). Releases are deployed to the Maven Central

Repository so that JAMES can easily be included as a dependency

in other Java applications. The project is licensed under the Apache

License v2.0. More information and extensive documentation can

be found at http://www.jamesframework.org.

First, section 3.2 describes the high-level architecture of the JAMES

framework (v1.1). Next, sections 3.3 and 3.4 demonstrate how to

define and solve a simple core subset selection problem using one

of the available local searches. Section 3.5 explains how a new al-

gorithm can be added to the framework, based on two examples.

In section 3.6, we compare several algorithms for the defined core

selection problem, using the provided analysis workflow. Next, sec-

tion 3.7 highlights key differences with existing Java frameworks

and compares the performance of several frameworks through com-

putational experiments. In section 3.8 we assess the applicability of

JAMES to the well-known and extensively studied travelling sales-

man problem (TSP). In particular, we investigate whether good The Apache License
is a permissive
open-source license
that is used for all
Apache projects and
many others in the
Central Repository.
It pretty much allows
to use the software
and code for any
purpose as long as
the required notices
are included. More
info at https:
//goo.gl/iqy0SE.

approximations can be obtained with a simple implementation in

JAMES, formoderately large instances from the travelling salesman

problem library (TSPLIB; Reinelt, 1991). This also demonstrates that

the framework is not limited to subset selection. Finally, we formu-

late our conclusions in section 3.9.

3.2 architecture of james

Figure 3.1 shows the high-level architecture of JAMES. Problem

specification and search application are strongly separated so that

existing algorithms can easily be applied to obtain solutions for

newly implemented problems. Each problemhas a specific solution

type and a search creates solutions of this type to solve the prob-

lem. The search communicates with the problem to obtain random

solutions (e. g. used as the default initial solution of a local search)

and to evaluate and validate constructed solutions. A generic, flex-

ible problem implementation is provided, which is composed of

https://goo.gl/sl0A5
https://goo.gl/sl0A5
http://www.jamesframework.org
https://goo.gl/iqy0SE
https://goo.gl/iqy0SE
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Figure 3.1: High-level architecture of JAMES. Components for problem

specification (left) are strongly separated from those related

to search application (right). The solution representation lies

in between: each problem has a specific solution type and a

search constructs solutions of this type to solve the problem.

data, an objective (for evaluation), possibly some constraints (for

validation) and a random solution generator.

The optimization algorithms are organized hierarchically. The top-

level search definition handles general behaviour such as tracking

the best solution found so far and termination (stop criteria). It

also informs any listeners when certain events have occurred, e. g.

when a new best solution has been found. A local search adds the

concept of a current (and initial) solution which is modified in an

attempt to improve it, meaning that the search moves towards an

optimum along a certain trajectory. The latter is usually performed

by repeatedly sampling moves from one or more neighbourhoods

that slightly change, and hopefully improve, the current solution.

Such algorithms belong to the class of neighbourhood searches. The

applied neighbourhoods should be compatible with the solution

type of the problem being solved and are used to adjust the search

strategy to a specific application.

The lifecycle of a search is depicted in figure 3.2. Each search has a

dedicated stop criterion checker, which is activated upon starting

the search. This checker runs in a separate thread shared by the stop

criterion checkers of all active searches and periodically checks the
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Figure 3.2: Lifecycle of a search terminated by a stop criterion. Upon start-

ing the search, subsequent steps are executed until a stop cri-

terion is satisfied. Stop criteria are checked periodically as

well as after each completed search step. When the search

has terminated, the best solution can be retrieved after which

the search should be disposed so that all resources are prop-

erly released. (image made using online web sequence diagrams:
https://www.websequencediagrams.com)

https://www.websequencediagrams.com
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specified stop conditions (every second, by default). The search

itself runs in the thread where it was started and keeps executing

search steps until it is requested to stop or terminates internally.

After each step, the stop criteria are also checked. When a search

has terminated, the best found solution can be retrieved. If desired,

an idle search can also be restarted in which case it continues from

where it had arrived; in particular, a local search retains its current

solution across subsequent runs. Eventually, a search should always

be disposed so that all resources are properly released.

The implementation of a search step defines the search strategy.

For example, a basic stochastic hill-climber applies a (usually very

large) number of steps, in which it attempts to improve the cur-

rent solution by applying random moves taken from the adopted

neighbourhood. Other searches may perform fewer, computation-

ally more intensive steps, or even just one single step. For example,

JAMES provides a basic parallel search that consists of a single

step in which any possibly heterogeneous collection of searches is

executed concurrently, in separate threads. At any time, the best

solution found by any of the included searches is returned, and

the main search stops when all activated subsearches have com-

pleted, where termination request are forwarded to each of these

subsearches.

JAMES consists of three modules (core, extensions, examples). The
coremodule contains all high-level components shown in figure 3.1,

providing the necessary interfaces and (abstract) classes, as well

as many algorithm implementations. It also includes specific com-

ponents for subset selection, such as a predefined solution type,

extended problem definition, and several subset neighbourhoods.

Similar components can easily be added for other types of problems,

and distributed through the extensions module when needed—the

current version includes additional components for permutation

problems. The extensions also provide an automated analysis work-

flow that can for example be used to compare algorithm perform-

ance, to assess the influence of search parameters or to analyse

different datasets, problem variants, etc. as well as a weighted in-

dex to deal with multi-objective optimization problems, and other

utilities. The examplesmodule bundles a wide range of examples as

described on the website. The next two sections demonstrate how

to implement and solve a basic fixed-size subset selection problem.

See http://www.jamesframework.org for more examples, which

also address other types of problems such as the well-known trav-

elling salesman problem (TSP).

http://www.jamesframework.org
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Listing 3.1: Data for the core selection problem is provided by implement-

ing the IntegerIdentifiedData interface. The data wraps a

distance matrix, where item IDs correspond to the row and

column indices in the matrix.

1 public class CoreSubsetData

2 implements IntegerIdentifiedData {

3

4 private double[][] dist;

5 private Set<Integer> ids;

6

7 public CoreSubsetData(double[][] dist){

8 this.dist = dist;

9 ids = new HashSet <>();

10 for(int id = 0; id < dist.length; id++){

11 ids.add(id);

12 }

13 }

14

15 public double getDistance(int id1, int id2){

16 return dist[id1][id2];

17 }

18

19 public Set<Integer> getIDs(){

20 return ids;

21 }

22

23 }

3.3 problem specification

This section describes the implementation of a simple core subset

selectionproblem.Given a collection of plants and adistancematrix Core subset selection
problems are treated
in detail in chapter 4.
For practical
purposes, there are
more appropriate
measures to evaluate
diversity than
average pairwise
distance. The simple
implementation
discussed here merely
serves as an example.

that describes the dissimilarity of each pair, we want to construct

a diverse fixed-size subset, with maximum average pairwise dis-

tance between selected plants. For such a selection problem, the

predefined components can be used, given that a unique integer

identifier is assigned to each item. This allows to solve any selec-

tion problem by constructing a subset of these IDs.

A solution type SubsetSolution is provided, which tracks the

IDs of the selected and unselected items. The corresponding high-

level SubsetProblem extends GenericProblem, fixing the solution

type to SubsetSolution and specifying a default built-in random

subset solution generator. The data class needs to implement the

IntegerIdentifiedData interface, which defines a single method

getIDs() used to obtain the set of all assigned IDs. Listing 3.1

shows the implementation of a custom CoreSubsetData class that
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Listing 3.2: The core selection objective is defined by implementing the

Objective interface with solution type SubsetSolution (pre-

defined) and data type CoreSubsetData (custom). A given

subset is evaluated by computing the average pairwise dis-

tance between all selected items, which is to be maximized.

1 public class CoreSubsetObjective

2 implements Objective <SubsetSolution , CoreSubsetData >{

3

4 public Evaluation evaluate(SubsetSolution solution ,

5 CoreSubsetData data){

6 int n = solution.getNumSelectedIDs();

7 int num = n*(n-1)/2;

8 double sum = 0.0;

9 int[] sel = new int[n];

10 int t = 0;

11 for (int id : solution.getSelectedIDs()) {

12 sel[t++] = id;

13 }

14 for(int i = 0; i < n; i++){

15 for(int j = i+1; j < n; j++){

16 sum += data.getDistance(sel[i], sel[j]);

17 }

18 }

19 return SimpleEvaluation.WITH_VALUE(sum/num);

20 }

21

22 public boolean isMinimizing() {

23 return false;

24 }

25

26 }

wraps a distance matrix, where the item IDs correspond to the row

and column indices in this matrix.

The objective is defined by implementing the Objective interface

and specifying the solution and data type. As dictated by the

generic subset problem definition, the solution type is fixed to

SubsetSolution. For this specific example, we set the data type

to CoreSubsetData. The objective is responsible for evaluating a

given solution, using thedata, and informs the searchwhether these

evaluations are to be maximized or minimized. Listing 3.2 shows

an implementation of the core selection objective, which evaluates

a subset by computing the average pairwise distance between the

selected items (lines 4 to 20). As this value is to be maximized, we

return false in isMinimizing() so that the applied search knows

that solutions with higher values are preferred (lines 22 to 24).
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In addition to the required full evaluation one may optionally also

specify an efficient delta evaluation, taking into account that a

typical local search evaluates sequences of similar, neighbouring

solutions. Hence, we need not evaluate each visited solution from

scratch when we know that it has been produced by slightly modi-

fying a similar, already evaluated solution. Instead, the current

solution’s evaluation can be updated in correspondence with the

applied modification. The JAMES framework takes full advantage

of such efficient delta evaluations which can significantly speed up

the execution with little additional implementation cost (see sec-

tion 3.7). If no delta evaluation is provided by the user, moves are

automatically evaluated by applying them to the current solution,

followed by a full evaluation after which the move is undone. This

allows for rapid prototyping of a problem specification. An efficient

delta evaluation can easily be added later, if and when needed, for

example to deal with large problem instances.

Listing 3.3 extends the core selection objective with a delta evalu-

ation formoves of type SwapMove (one of the predefinedmove types

for subset solutions; see section 3.4). This delta evaluation runs in

Θ(n) time while the full evaluation has a time complexity ofΘ(n2),

where n is the selection size. Both evaluation methods return a

SimpleEvaluation that wraps a double value. More complicated

evaluation types can be returned as well, for example storing rel-

evant metadata used to compute delta evaluations; examples are

found at the website.

Now that the data and objective have been defined, they can be

combined in a SubsetProblem (listing 3.4). The desired subset size

is specified as well (line 10). There are no additional constraints for

the considered core selection problem, i. e. all possible subsets of

the desired size are valid solutions. Also, since the high-level subset

problem definition is already capable of generating random subset

solutions, this does not need to be addressed here.

3.4 search application

Once a problem has been defined, the various available optimiza-

tion strategies can be explored to obtain high-quality solutions. This

section demonstrates how to apply a basic stochastic hill-climber

(random descent; see section 2.2.4) to the core selection problem as

defined in section 3.3. This method starts from a random solution

and iteratively applies randomly chosenmoves, from a given neigh-

bourhood, tomodify the current solution. Amove is accepted if and

only if it improves the current solution; else, a differentmove is tried
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Listing 3.3: An efficient delta evaluation for specific move types can easily

be added to an objective. Here, the objective is designed to

be used in combination with a neighbourhood that generates

swap moves.

1 public class CoreSubsetObjective

2 implements Objective <SubsetSolution , CoreSubsetData >{

3

4 // ... (same as before)

5

6 public Evaluation evaluate(Move move,

7 SubsetSolution curSolution ,

8 Evaluation curEvaluation ,

9 CoreSubsetData data) {

10

11 SwapMove swapMove = (SwapMove) move;

12

13 // get current evaluation

14 double curEval = curEvaluation.getValue();

15 // undo average to get sum of distances

16 int numSel = curSolution.getNumSelectedIDs();

17 int numDist = numSel * (numSel - 1) / 2;

18 double sumDist = curEval * numDist;

19

20 // retrieve added and removed ID from move

21 int add = swapMove.getAddedID();

22 int del = swapMove.getDeletedID();

23

24 // update distance sum

25 sumDist += curSolution.getSelectedIDs().stream()

26 .mapToDouble(

27 id -> data.getDistance(add, id)

28 - data.getDistance(del, id)

29 ).sum();

30 // correct

31 sumDist -= data.getDistance(add, del);

32

33 // return updated evaluation

34 double newEval = sumDist / numDist;

35 return SimpleEvaluation.WITH_VALUE(newEval);

36

37 }

38

39 }
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Listing 3.4: The core selection problem is finalized by combining the

defined data and objective in a SubsetProblemwith data type

CoreSubsetData and specifying the desired subset size.

1 // specify distance matrix (e.g. read from file)

2 double[][] dist = ...

3

4 // initialize data

5 CoreSubsetData data = new CoreSubsetData(dist);

6 // create objective

7 CoreSubsetObjective obj = new CoreSubsetObjective();

8

9 // specify desired subset size

10 int size = ...

11 // finalize problem

12 SubsetProblem <CoreSubsetData > problem;

13 problem = new SubsetProblem <>(data, obj, size);

(in the next search step). Several predefined subset neighbourhoods

are available, that can be used for any selection problem. Here, a

SingleSwapNeighbourhood is applied, which removes a random

item from the selection and replaces it with a random, currently

unselected item (listing 3.5). This neighbourhood generates moves

of type SwapMove for which an efficient delta evaluation has been

provided in the objective (listing 3.3).

A variety of stop criteria can be used to decide when the search

should terminate, such as a runtime or step count limit, or a max-

imum amount of time or number of steps without finding any

improvements. In this example, a runtime limit of 30 seconds is

set. Calling search.start() (line 12) executes the optimization al-

gorithm in the current thread, after which the best found solution

and correspondingvalue canbe retrieved. Finally, the search should

be disposed so that all resources are properly released (line 19).

For many applications a simple hill-climber may not be powerful

enough to find high-quality solutions because it can not escape

from local optima. However, for the considered core selection prob-

lem it performs very well and there is no need to turn to more

advanced methods (see section 3.6). Examples of more complex

problems (including knapsack, TSP and maximum clique) which

are solved using other techniques such as parallel tempering or

variable neighbourhood search, with both predefined and custom

neighbourhoods, are provided at the website.
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Listing 3.5: A good core subset, in terms of the average pairwise distance

objective, is constructed by applying a simple stochastic hill-

climber (randomdescent) with a single-swap neighbourhood.

1 // create neighbourhood

2 Neighbourhood <SubsetSolution > neigh

3 = new SingleSwapNeighbourhood();

4 // create search to solve problem

5 RandomDescent <SubsetSolution > search

6 = new RandomDescent <>(problem, neigh);

7 // set 30 second time limit

8 StopCriterion sc = new MaxRuntime(30, TimeUnit.SECONDS);

9 search.addStopCriterion(sc);

10

11 // execute search

12 search.start();

13 // print solution and value

14 System.out.println( " So lut ion : "

15 + search.getBestSolution().getSelectedIDs());

16 System.out.println( " Value : "

17 + search.getBestSolutionEvaluation());

18 // dispose search to release resources

19 search.dispose();

3.5 adding new algorithms

To add a new optimization algorithm to the framework it is suf-

ficient to identify the appropriate entry point in the search hier-

archy (see figure 3.1) and to implement the single abstract method

searchStep(). Possible entry points are:

• Search: general search that does not require any additional

predefined functionality. Stores the problembeing solved and

tracks the best found solution. Executes the main search loop

and manages high-level behaviour such as stop criteria and

search listeners. Examples: random search, basic parallel search,
exhaustive search.

• LocalSearch: adds the concept of a current solution and

methods to retrieve and update it. Upon starting the search,

a random initial solution is generated if none has been set.

Examples: piped local search, LR subset search.

• NeighbourhoodSearch: modifies the current solution by ap-

plying moves sampled from one or more neighbourhoods.

Methods are provided to validate and evaluate moves, check

whether a move yields a valid improvement, get the best

move from a collection of generated moves, accept and re-
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Listing 3.6: Implementation of a random sampling strategy.

1 public class RandomSearch <S extends Solution >

2 extends Search<S> {

3

4 public RandomSearch(Problem<S> problem){

5 super( "MyRandomSearch" , problem);

6 }

7

8 protected void searchStep() {

9 Random rnd = getRandom();

10 S sol = getProblem().createRandomSolution(rnd);

11 updateBestSolution(sol);

12 }

13

14 }

ject moves, etc. Any local search that uses generic neighbour-

hoods should extend this class; yet, not directly, but through

one of the more specific subclasses (see below).

• SingleNeighbourhoodSearch: uses a single neighbourhood.

Examples: random descent, steepest descent, tabu search, parallel
tempering.

• MultiNeighbourhoodSearch: uses multiple neighbourhoods.

Examples: variable neighbourhood descent, (reduced) variable neigh-
bourhood search.

The source code of the many provided searches serves as an ex-

ample for those interested in extending the framework with cus-

tom algorithms. The application programming interface (API) that

can be consulted at the website includes detailed documentation

of all predefined utility methods. Here, two simple example imple-

mentations are discussed: a purely random search (top-level) and

the random descent local search strategy (single-neighbourhood)

as applied in section 3.4.

3.5.1 Random search

One very basic search strategy is as follows: in each step, sample

an independent random solution and update the best found solu-

tion accordingly. Of course, this method does not have much direct

practical value but it may, for example, be used to assess the per-

formance of other algorithms compared to random sampling. No

additional functionality is required, so this algorithm is implemen-

ted by extending the top-level Search class (listing 3.6). Searches
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are parameterized on the solution type S of the problem being

solved, which is required to be a subtype of Solution (line 1). The

constructor takes a problem with solution type S, passes it to the

super class and specifies a name for the search (lines 4 to 6). The

actual search strategy is implemented in searchStep() (lines 8 to

12). Each search has a dedicated random generator, that can be re-

trieved with getRandom() and customized using setRandom(rnd).

This generator should be used as the source of randomness in

all randomized search components such as neighbourhoods and

random solution generators. Having a dedicated random number

generator per search avoids contention and consequent perform-

ance losses caused by sharing a global generator between possibly

multiple active searches, that may be executed concurrently, and al-

lows replicability when assigning a custom random generator with

a fixed seed to the applied search(es). Here, it is used to create a

random solution by calling the appropriate method, as defined by

the Problem interface, on the problem that is being solved. The con-

structed solution is then passed to updateBestSolution(...). As

specified in the API, calling this method results in validation and

evaluation of the given solution after which the best found solution

is updated in case the new solution is a valid improvement.

3.5.2 Random descent

Instead of random sampling it is usually better to restrict random-

ness to a certain neighbourhood, in a local search strategy. List-

ing 3.7 shows an implementation of a simple stochastic hill-climber

(random descent; see section 2.2.4). In each step, a random move is

sampled from a given neighbourhood. The move is accepted if it

yields a valid improvement when applied to the current solution.

This algorithm is implemented as a SingleNeighbourhoodSearch,

again parameterized on the solution type S of the problem (line 1).

The constructor now also takes a generic neighbourhood which is

passed to the super class (lines 4 to 7). The neighbourhood needs to

be compatiblewith the solution type S of the search. More precisely,

it is allowed to be defined for any super type of S. This requirement

is sufficient to ensure that the neighbourhood is able to generate

moves applicable to solutions of type S and promotes flexibility.

The actual search strategy is again implemented in the method

searchStep() (lines 9 to 24). First, the neighbourhood is retrieved

and used to sample a random move for the current solution, us-

ing the search’s dedicated random generator (line 10). The precise

move type is unknown, but guaranteed to be compatible with the

solution type S (i. e. defined for a super type of S) as explained as a
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Listing 3.7: Implementation of a random descent stochastic hill-climbing

strategy (single-neighbourhood local search).

1 public class RandomDescent <S extends Solution >

2 extends SingleNeighbourhoodSearch <S> {

3

4 public RandomDescent(Problem<S> problem,

5 Neighbourhood <? super S> neigh){

6 super( "MyRandomDescent " , problem, neigh);

7 }

8

9 protected void searchStep() {

10 Move<? super S> move = getNeighbourhood()

11 .getRandomMove(

12 getCurrentSolution(),

13 getRandom()

14 );

15 if(move != null){

16 if(isImprovement(move)){

17 accept(move);

18 } else {

19 reject(move);

20 }

21 } else {

22 stop();

23 }

24 }

25

26 }

requirement before. In the unusual case that no move could be pro-

duced, the search stops (line 22). Otherwise, it is assessed whether

the move yields a valid improvement (line 16). If so, it is accepted

(line 17); else, it is rejected (line 19). If the move is accepted, it is

applied to the current solution and the best solution is updated

accordingly. If the move is rejected, no specific action is to be taken

but calling reject(move) ensures that the necessary search stat-

istics are updated (for example, the number of accepted/rejected

moves is tracked during execution). A detailed description of each

predefinedmethod used in this example, andmany other methods,

is provided in the API documentation available from the website.

3.6 automated analysis workflow

The extensions module of JAMES includes an automated analysis

workflow that can be used to compare algorithm performance, fine-

tune parameter values, etc. In contrast tomany othermetaheuristics
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frameworks JAMES itself deliberately does not provide analysis fea-

tures such as statistical hypothesis testing. Experiments are set up

and executed in Java and an R package is used to process and visu-

alize the results.We believe that for analysis of the results it is better

to "pass the buck"—using the terminology from Carey and Carlson

(2002)—to a specialized software environment. A sound statistical

analysis requires a careful setup and providing "push-the-button"

statistics within a metaheuristics framework may seduce the user

to apply tests or interpret results incorrectly. By shifting statistical

analysis to R users have full control and can easily cooperate with

statisticians who are used to work with this software. In addition,

R provides a wide range of visualization tools.

This section demonstrates the analysis workflow by comparing the

performance of a simple stochastic hill-climber (random descent)

and the more advanced parallel tempering algorithm—both de-

scribed in section 2.2.4—when applied to the core selection prob-

lem as defined in section 3.3. We have compared the performance

for two datasets: a coconut collection with 1014 entries (Odong et

al., 2011, 2013) and a pea collection containing 1283 items (Smỳkal

et al., 2008). Both distance matrices have been computed based on

genetic marker data (see De Beukelaer et al., 2017; supplementary

datasets 1 and 2).

Because the consideredmetaheuristics are randomized,multiple in-

dependent runs are performed from which important statistics are

inferred such as the average solution quality, variability across runs,

and convergence times. This can easily be achieved in JAMES using

the analysis workflow (listing 3.8). For each dataset, a distinct prob-

lem is added to the analysis, where the data wraps the respective

distance matrix (lines 1 to 28). The size of the selected core sub-

set is relative to that of the entire collection (20%). Each problem

is assigned a unique ID, here “dataset-1” (coconut) and “dataset-
2” (pea). Both applied algorithms use the predefined single-swap

neighbourhood (see section 3.4) and are also assigned a unique

ID, here “Random Descent” and “Parallel Tempering” (lines 31 to 55).

When adding a search to the analysis, a factory is given instead of a

plain search object, which is used to create an instance of the search

given the problem to solve. Both algorithms are executed 10 times

(line 58) with a runtime limit of 2minutes per run (line 35). For each

analysed problem and independent search run, a new instance of

the search will be created using the provided factory. Note that in

the performed analysis, we used the basic objective without delta

evaluation (listing 3.2).
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Listing 3.8: Example code used to execute multiple independent runs of

two algorithms (random descent, parallel tempering) applied

to the core selection problem, for two datasets, using the auto-

mated analysis workflow from the JAMES extensions module.

The size of the selection is relative to that of the entire dataset

(20%). Both algorithms use the predefined single-swap neigh-

bourhood and are executed 10 times, for each dataset, with

a runtime limit of 2 minutes per run. Results are exported in

JSON format.

1 // read dataset files

2 List<String> datasetFiles = Arrays.asList(

3 " coconut/ f i l e /path " , " pea/ f i l e /path "

4 );

5 List<CoreSubsetData > datasets = new ArrayList <>();

6 for(String file : datasetFiles){

7 // read distance matrix (implementation omitted)

8 double[][] dist = ...

9 datasets.add(new CoreSubsetData(dist));

10 }

11

12 Analysis <SubsetSolution > analysis = new Analysis <>();

13

14 // add problems

15 double ratio = 0.2;

16 CoreSubsetObjective obj = new CoreSubsetObjective();

17 for(int d = 0; d < datasets.size(); d++){

18 CoreSubsetData dataset = datasets.get(d);

19 // set size

20 int dataSize = dataset.getIDs().size();

21 int coreSize = (int) Math.round(ratio * dataSize);

22 // create problem

23 SubsetProblem <CoreSubsetData > problem

24 = new SubsetProblem <>(obj, dataset, coreSize);

25 // add to analysis

26 String datasetID = " dataset−" + (d+1);

27 analysis.addProblem(datasetID , problem);

28 }

29

30 // initialize neighbourhood

31 Neighbourhood <SubsetSolution > neigh

32 = new SingleSwapNeighbourhood();

33

34 // set time limit

35 StopCriterion timeLimit = new MaxRuntime(120, TimeUnit.SECONDS);

36

37 // add random descent

38 analysis.addSearch( "Random Descent " , problem -> {

39 Search<SubsetSolution > rd = new RandomDescent <>(

40 problem, neigh

41 );

42 rd.addStopCriterion(timeLimit);

43 return rd;

44 });
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45 // add parallel tempering

46 analysis.addSearch( " P a r a l l e l Tempering " , problem -> {

47 double minTemp = 1e-8;

48 double maxTemp = 1e-4;

49 int nRep = 10;

50 Search<SubsetSolution > pt = new ParallelTempering <>(

51 problem, neigh, nRep, minTemp, maxTemp

52 );

53 pt.addStopCriterion(timeLimit);

54 return pt;

55 });

56

57 // run analysis

58 analysis.setNumRuns(10);

59 AnalysisResults <SubsetSolution > results = analysis.run();

60 results.writeJSON(

61 " comparison . j son " , JsonConverter.SUBSET_SOLUTION

62 );

By default, a single burn-in run is also executed for each combina-

tion of applied algorithm and analysed problem. The results of this

run are discarded. Thus, running the example analysis takes about

1.5 hours (2 datasets × 2 algorithms × 11 runs × 2 minutes). Once

complete, the results are exported in JSON format (seeDeBeukelaer

et al., 2017; supplementary JSONfile) where the specified converter

is used to translate the best found solutions to a JSON represent-

ation. Here, we use a predefined subset solution converter. If no

converter is specified, the produced JSON output will not contain

the actual solutions but only their values as well as the history of

best solution updates (values and times).

To inspect the results we use the R package james.analysiswhichThe Comprehensive
R Archive Network
(CRAN) is more or
less for R what the

Central Repository is
for Java. It is the

default location from
which packages are
installed, and if you
want to truly reach
the R community

with your own
package there is no

better way than
deploying the

package to CRAN.
Our R package

“james.analysis” is
available on https:
//goo.gl/GPbHN0.

can directly load the produced JSON file (listing 3.9). The package

is available on CRAN and can easily be installed from within R

(line 2). After reading the JSON file (line 6) the results can be sum-

marized using the standard R function summary (line 7). For each

combination of analysedproblemand applied search, the summary

reports the number of runs, the mean obtained value and corres-

ponding standard deviation, as well as the respective median and

interquartile range. It is immediately clear that in this case study,

both algorithms are able to construct equally good solutions with

low variability across independent runs, for both datasets.

Next, some plots are made to gain insight into the convergence of

the applied searches (lines 15 to 21; figure 3.3). The random descent

algorithm converges after less than one second for both datasets,

while parallel tempering converges after 1.5 up to 4 seconds for

the coconut and pea dataset, respectively. It is of course expected

that parallel tempering is slower than random descent, since it in-

https://goo.gl/GPbHN0
https://goo.gl/GPbHN0
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Listing 3.9: The R package james.analysis can be used to process and

visualize results obtained using the analysis tools from the

JAMES extensions module. In this example, a JSON file con-

taining analysis results for the example case study is read, the

results are summarized and some plots are made to assess the

convergence of the two applied algorithms (random descent

and parallel tempering) for the two datasets (see figure 3.3).

1 # install (first time only) and load package

2 > install.packages( " james . ana ly s i s ")

3 > library(james.analysis)

4

5 # read JSON and print summary

6 > results <- readJAMES( " comparison . j son ")

7 > summary(results)

8 Problem: Search: Runs: Mean value: St. dev: Median: IQR:

9 --------- ------------------ ----- ----------- -------- -------- --------

10 dataset -1 Parallel Tempering 10 0.776 1.59e-15 0.776 2.66e-15

11 dataset -1 Random Descent 10 0.776 2.76e-15 0.776 3.55e-15

12 dataset -2 Parallel Tempering 10 0.593 1.51e-06 0.593 2.76e-06

13 dataset -2 Random Descent 10 0.593 6.93e-07 0.593 1.26e-06

14

15 # plot convergence curves

16 > plotConvergence(results, problem = " dataset−1" , max.time = 5000)

17 > plotConvergence(results, problem = " dataset−2" , max.time = 5000)

18

19 # box plots (convergence times)

20 > boxplot(results, problem = " dataset−1" , type = " time " , ylim = c(0, 4500))

21 > boxplot(results, problem = " dataset−2" , type = " time " , ylim = c(0, 4500))

volves more intensive computations. The convergence curves from

figure 3.3 (top row) again confirm that both algorithms obtain the

same solution quality. These results suggest that there is no advant-

age when using parallel tempering instead of a simple stochastic

hill-climber to construct core collections with maximum average

pairwise distance, as was already observed in previous research

(De Beukelaer et al., 2012). Box plots similar to those in figure 3.3

(bottom row) can also be made to assess differences in obtained

solution quality. Applicable examples are provided at the website.

Documentation of all available functions for data manipulation,

extraction and visualization is included in the R package.

3.7 comparison with other frameworks

Although existing Java metaheuristics frameworks mainly focus

on population-based algorithms and especially evolutionary al-

gorithms, they often also provide some support for local searches.

Most frameworks include a basic hill-climber and/or simulated an-

nealing. All Java frameworks reviewed by Parejo et al. (2012) except

from JCLEC (Ventura et al., 2008) and ECJ (White, 2012) provide
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Figure 3.3: Convergence curves (top) and convergence time box plots (bot-

tom) of random descent and parallel tempering applied to

sample core collections from the coconut (left) and pea (right)

datasets. The size of the core was set to 20% of the full set.

Values are reported for 10 independent runs (averaged for the

convergence curves). The convergence ratio is set to 0.99 (de-

fault) which means that the point in time is reported at which

99%of theprogress from initial tofinal solutionhas beenmade.

support for local search algorithms: EvA2 (Kronfeld et al., 2010),

Opt4j (Lukasiewycz et al., 2011), OAT (Brownlee, 2007) and FOM

(Parejo et al., 2003).Although the reviewalso claims thatECJ (White,

2012) includes ahill-climberwedidnot findany reference to this fea-

ture in the user manual, examples or class documentation. We also

excluded OAT from the comparison because its architecture does

not allow to plug in custom components like a mutation operator

(neighbourhood) and random solution generator without modify-

ing the search class itself, which hinders a fair comparison of the

original algorithms as provided by the frameworks. On the other

hand, jMetal (Durillo and Nebro, 2011; not covered by Parejo et al.,

2012) provides a local search operator which, although intended

to be used as part of other algorithms, can be executed separately

as well. We thus included the following frameworks for a computa-

tional comparisonwith JAMES: EvA2 (v2.2.0), Opt4j (v3.1.4), jMetal

(v5.0) and FOM (v0.5).
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We have implemented the simple core selection problem from sec-

tion 3.3 in each tested framework and assessed the runtime and

memory usage of a stochastic hill-climbing algorithm applied to

the pea dataset from section 3.6. In EvA2, Opt4j, jMetal and FOM

we used a binary solution encoding which indicates for each item

whether it is selected (1) or not (0). A solution is evaluated by re-

trieving the indices of the selected items, followed by calculating

the average pairwise distance similar to the JAMES objective from

listing 3.2. To create a random neighbour we infer the indices of the

selected and unselected items and perform a random swap, similar

to the SingleSwapNeighbourhood applied in JAMES, which corres-

ponds to two bit flips for a binary encoding. As Opt4j and FOM

do not include a stochastic hill-climber we have created one based

on the provided simulated annealing implementation by removing

the cooling mechanism.

Besides JAMES, onlyFOMincludes the concept of amovement from

one solution to another. In FOM it is mainly used to implement cer-

tain types of tabu search memories, but we were also able to use

this concept to incorporate an efficient delta evaluation by modify-

ing the solution encoding to include the preceding solution and the

applied move. For both JAMES and FOM we considered two ver-

sions of the implementation—with and without delta evaluation.

None of the other frameworks explicitly models moves between

solutions, for the obvious reason that a typical population-based

algorithm does not benefit from such feature. Therefore, the imple-

mentations in these frameworks were restricted to full evaluation

of all generated solutions.

For each framework, we assessed the runtime and memory usage

when varying either the size of the selection or the number of ex-

ecuted search steps (figure 3.4). Memory usage corresponds to the

total sum of allocatedmemory during the execution of the program

and was measured by parsing garbage collection logs. The results

clearly show a big difference in memory consumption of the con-

sidered frameworks (figure 3.4; top left). The memory usage does

not depend on the selection size in any of the frameworks because

the employed solution encodingsmodel both the selected aswell as

unselected items. Therefore, the size of a solution object is determ-

ined by the size of the dataset—not of the selected core. EvA2 is the

least memory efficient framework, followed by Opt4j, jMetal and

FOM, in this order. The latter two consume a very similar amount

of memory. Finally, JAMES has a much smaller memory footprint

than all other frameworks. Interestingly, the memory consumption

of FOM and JAMES does not change when enabling the efficient

delta evaluation. JAMESalways consumesvery littlememory,while

FOMconsistently uses about the same amount ofmemory as jMetal.
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Figure 3.4: Performance of JAMES as compared to that of EvA2, Opt4j,

jMetal and FOMwhen applying a basic stochastic hill-climber

to solve the considered core selection problem. Both memory

usage (left) and execution time (right) are shown for a varying

selection size (top; 500 thousand search steps) or number of

executed search steps (bottom; 250 selected items). Averages

of 5 independent repeats are reported.

This is because JAMES uses the concept ofmoves between solutions

to avoid excessive copying, even when no efficient delta evaluation

is specified, while in FOM the current solution is always copied

when requesting a neighbouring solution. In JAMES, neighbour-

hoods generate moves instead of modified solution copies. If a

move is accepted it is applied to the current solution to modify it in

place. Copies are only made when a new best solution is found so

that it can be stored for later retrieval. On the other hand, FOM gen-

erates neighbouring solution objects, which involves copying, and

only uses moves as an auxiliary concept that for example allows

to specify an efficient delta evaluation and to implement advanced

movement-based tabu search memories. This however does not

reduce the memory consumption. The large memory footprint of

the other frameworks is also mainly attributed to solution copy-

ing, which is inherent to population-based algorithms but can and

should preferably be avoided in local searches.

The great advantage of specifying an efficient delta evaluation be-

comes clear when looking at the execution time for varying subset
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sizes (figure 3.4; top right). As expected, when delta evaluation is

disabled, all frameworks show a quadratic relation between subset

size and runtime due to the computation of the average distance

between eachpair of selected items. EvA2was the slowest of all eval-

uated frameworks, followed by Opt4j, which showed to be faster

for smaller selection sizes. Both jMetal and FOM are notably faster,

with very similar execution times. For small sizes (< 200) JAMES

was faster than jMetal and FOM while it was slower for larger se-

lections. This might be caused by the different solution encodings,

which both have certain advantages (see below).

Enabling the efficient delta evaluation in JAMES and FOM drastic-

ally reduces execution times for both frameworks, with JAMES now

being notably faster than FOM. This is because in FOM solutions

are still copied which does not only largely increase the memory

footprint, as shown before, but also takes time and leads to an in-

creased garbage collection overhead. We conclude that one of the

main advantages of JAMES is that it promotes efficient implement-

ations that take full advantage of move-based evaluation.

When increasing the number of search steps (figure 3.4; bottom)

both the execution time andmemory usage of all frameworks show

a linear increase, as expected. Indeed, each step performs exactly

the same operations meaning that the time and memory per step

do not change during execution. Again, we see that JAMES has a

much smaller memory footprint than the other frameworks, and

allows tomore effectively reduce runtimes by including an efficient

delta evaluation as compared to FOM, which is the only other Java

framework that explicitly models movements.

To further reduce execution time and memory usage one may

design a custom solution encoding tailored specifically to the con-

sidered fixed-size core selection problem. For example, we could

store two arrays containing the IDs of the selected and unselec-

ted items, respectively. Although a binary encoding saves memory

and can be efficiently updated, the alternative encoding has the

advantage that we can sample a random swap in constant time

and that no conversion is needed during evaluation. Such encod-

ing would also improve the performance of JAMES, as the pre-

defined SubsetSolution stores IDs in a Set to support, for example,

variable-size selection and ordered subsets. Since these features are

not used here we could easily strip down the solution represent-

ation. In JAMES, there is no restriction on the solution encoding

and defining a custom solution type is easy and well-documented.

Several examples are provided on the website. Other frameworks,

including EvA2, Opt4j and jMetal, are often confined to variable-

based encodings, which is customary for evolutionary algorithms
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but may be unnecessarily restrictive in the context of a local search.

Also, not all frameworks allow easy definition of custom or exten-

ded solution encodings, e. g. because they do not use generics. For

example, this is the case in EvA2 and the original jMetal (up to v4.5).

However, jMetal is currently undergoing a complete redesign (start-

ing from v5.0) to take full advantage of the latest Java technology.

We took the opportunity to experiment with the new jMetal for our

experiments and believe that the redesign is a great success from

which many users will benefit. The code of our implementation of

the core selection problem in the various frameworks is available

at https://github.com/hdbeukel/james-paper-code.

3.8 tsplib benchmark

Although JAMES provides a series of predefined components for

subset selection problems, the framework is in no way limited

to this type of problem. Other problems can be solved as well,

by defining the necessary custom components such as a solution

encoding and corresponding neighbourhood. In this section, theThe travelling
salesman problem
(TSP) consist of

finding the shortest
tour that visits a
given number of

cities. Each city is to
be visited exactly

once, with the only
exception that the

roundtrip should end
in the city where it

started—this is
where our travelling
salesman lives. There
are many variants of

TSP. Here we
consider a basic

symmetric version
where the travel
distance between

cities is always the
same in both
directions.

performance of a simple implementation in JAMES is assessed

for the well-known symmetric travelling salesman problem (TSP).

Test instances were selected from the TSPLIB benchmark collection

(Reinelt, 1991). From all 111 instances, 14 were discarded:

1. Instance linhp318describes a constrained TSP problem,with

a required edge.

2. The three related instances si175, si535 and si1032 are not

correctly formatted according to TSPLIB instructions.

3. All 10 instances with > 5000 cities were also discarded.

These criteria retained a set of 97 TSPLIB instances, for which the

optimal tour length is known. We compared the performance of

the basic randomdescent andmore advanced parallel tempering al-

gorithms for these instances. Both algorithmsuse abasic 2-optmove

that breaks two edges in the tour and reconnects the respective ver-

tices in the only other valid way. Implementation details, example

code andmore information about how the temperature rangeof par-

allel tempering was chosen, are available at the website (see http:

//www.jamesframework.org/examples/tsp).AsTSPhasbeenvery

extensively studiedovermultipledecades,manyexact andheuristic

approaches have been proposed, along with a wide range of al-

gorithmic tricks to speed up computations (Johnson andMcGeoch,

1997). The implementation that was used here deliberately does not

incorporate any of these tricks. For example, a solution is simply en-

https://github.com/hdbeukel/james-paper-code
http://www.jamesframework.org/examples/tsp
http://www.jamesframework.org/examples/tsp
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30 seconds 5 minutes 1 hour

Random descent 11.57 % 11.30 % 11.27 %

Parallel tempering 2.20 % 1.02 % 0.53 %

Table 3.1: Optimality gap of random descent and parallel tempering for

the 97 considered TSPLIB instances. All experiments were re-

peatedwith threedifferent runtime limits: 30 seconds, 5minutes

and 1 hour. The mean gap of five independent repeats is repor-

ted, averaged over all instances.

coded as a list (permutation) of cities in the order in which they are

visited, a 2-opt move is performed by reversing a subsequence of

this list, and moves are uniformly sampled from all possible 2-opt

moves. This basic implementation fits well in the context of using

a framework with a strong focus on simplicity.

Table 3.1 shows the average gap to optimality of random descent

andparallel temperingwith a runtime limit of 30 seconds, 5minutes

and 1 hour. Detailed results per instance are listed in table 3.2. The

performance of randomdescent is very similar for all three runtime

limits, with an average gap of about 11.5%. This indicates that

random descent has already converged to a local optimum within

less than 30 seconds (often a few seconds; results not shown). The

optimality gap is significantly reduced to 0.5–2.2% when applying

parallel tempering. Here, increasing the runtime limit beyond 30

seconds does yield better approximations. A major advantage of

using a framework like JAMES is that once a problem and the

corresponding search components, such as neighbourhoods, have

been defined, little effort is required to experiment with various

optimization strategies that build upon the defined components. In

particular, for parallel tempering, the only additional requirement

is to set an appropriate temperature range and number of replicas.

Our results suggest that applying parallel tempering with a basic 2-

opt neighbourhoodmay be sufficient to deal with moderately large

TSP problems. Since, in practice, new optimization problems are

frequently identified, solving those problems comes with a quality-

time tradeoff—not only regarding the runtime of the applied al-

gorithms but also for the time and effort needed to implement and

fine-tune the search strategy. During this process, simple methods

should not be forgotten, as argued byDeCorte and Sörensen (2016).

Quite often, overly complex strategies are developed for problems

where much simpler techniques perform equally well.

JAMES reduces the effort needed by researchers and practitioners

to experiment with various well-known local search strategies and
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components, facilitating iterative refinement from a simple starting

point, such as a basic hill-climber. Depending on the application,

such basic approach may already be sufficient for practical needs.

If not, the developed search components can easily be plugged into

a more advanced search strategy, such as parallel tempering, an-

d/or additional time can be spent to refine these components them-

selves (e. g. delta evaluation, neighbourhood, solution encoding,

etc.). During this process, the benefit of adding additional complex-

ity should be carefully validated, which is also facilitated by using

a framework like JAMES with an automated analysis workflow, as

demonstrated in section 3.6.

Table 3.2: Relative optimality gap (%) of randomdescent and parallel tem-

pering for all unconstrained symmetric TSPLIB instances with

6 5000 cities. Reported gaps are averages with standard devi-

ations (±. . . ) of 5 independent repeats, for a series of different

runtime limits (30 seconds, 5 minutes, 1 hour).

Random descent Parallel tempering

Instance 30 sec 5 min 1 hour 30 sec 5 min 1 hour

a280 17.26 ±2.30 15.36 ±1.71 12.89 ±2.22 0.07 ±0.10 0.00 ±0.00 0.00 ±0.00

ali535 14.01 ±2.80 13.14 ±4.05 15.58 ±2.23 4.12 ±0.28 2.90 ±0.40 1.82 ±0.55

att48 5.08 ±1.30 4.66 ±2.38 4.62 ±2.49 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

att532 10.91 ±1.16 12.11 ±1.66 12.20 ±2.06 2.15 ±0.35 0.79 ±0.18 0.35 ±0.11

bayg29 3.33 ±2.04 5.22 ±2.07 6.29 ±1.75 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

bays29 4.18 ±3.15 3.98 ±2.97 5.82 ±3.38 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

berlin52 10.56 ±3.03 12.15 ±1.99 11.43 ±1.43 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

bier127 13.55 ±4.78 10.29 ±1.49 9.99 ±1.25 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

brazil58 4.09 ±1.38 5.34 ±1.81 3.85 ±2.87 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

brg180 25.13 ±5.88 28.72 ±2.66 26.26 ±6.25 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

burma14 2.94 ±3.51 1.40 ±2.49 3.20 ±2.63 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

ch130 9.10 ±1.67 10.90 ±2.52 9.23 ±0.91 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

ch150 13.59 ±2.18 12.71 ±1.18 14.18 ±3.65 0.17 ±0.14 0.00 ±0.00 0.00 ±0.00

d1291 21.09 ±2.68 20.97 ±1.32 22.09 ±1.86 7.50 ±0.32 3.95 ±0.41 2.81 ±0.27

d1655 17.68 ±1.66 17.34 ±1.09 17.69 ±0.26 6.53 ±0.81 3.58 ±0.38 2.15 ±0.23

d198 5.11 ±1.04 5.32 ±0.99 6.27 ±0.83 0.07 ±0.03 0.00 ±0.00 0.00 ±0.00

d2103 23.57 ±1.44 23.33 ±1.52 23.07 ±1.55 11.72 ±0.99 5.73 ±0.64 1.61 ±0.28

d493 11.74 ±1.51 11.14 ±0.97 11.20 ±1.64 1.66 ±0.16 0.71 ±0.14 0.16 ±0.07

d657 13.48 ±1.57 12.52 ±0.79 13.80 ±0.22 2.27 ±0.33 0.68 ±0.04 0.25 ±0.04

dantzig42 10.27 ±2.53 5.64 ±2.62 7.12 ±1.49 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

dsj1000 13.54 ±1.52 13.74 ±2.89 14.65 ±1.73 3.37 ±0.46 1.85 ±0.27 0.75 ±0.06

eil101 9.48 ±3.40 11.57 ±2.02 10.08 ±0.58 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

eil51 10.14 ±5.92 8.03 ±2.21 5.49 ±2.35 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

eil76 10.00 ±3.54 9.48 ±3.64 10.71 ±1.93 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

fl1400 10.39 ±3.12 9.36 ±1.34 10.24 ±2.20 4.58 ±1.29 2.90 ±0.63 3.20 ±0.76

fl1577 21.55 ±1.48 18.34 ±4.34 17.48 ±2.57 6.09 ±1.44 2.06 ±0.41 1.35 ±0.82

fl3795 19.39 ±2.87 17.96 ±1.19 18.69 ±4.41 15.08 ±1.49 6.04 ±0.76 2.90 ±1.48

fl417 9.62 ±1.61 7.78 ±4.28 8.86 ±3.04 0.96 ±0.52 0.69 ±0.33 0.41 ±0.28

fnl4461 13.43 ±0.49 13.61 ±0.21 13.43 ±0.53 15.00 ±0.29 6.10 ±0.36 3.33 ±0.37
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fri26 4.44 ±4.09 5.27 ±4.43 3.42 ±3.68 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

gil262 13.04 ±1.61 11.58 ±1.95 12.49 ±0.95 0.29 ±0.13 0.00 ±0.00 0.00 ±0.00

gr120 9.23 ±1.93 7.23 ±0.84 9.00 ±2.98 0.07 ±0.10 0.00 ±0.00 0.00 ±0.00

gr137 9.23 ±1.93 10.66 ±2.61 11.45 ±2.65 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

gr17 1.56 ±1.81 0.72 ±1.13 2.12 ±1.58 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

gr202 9.95 ±0.74 10.88 ±3.25 9.69 ±1.16 0.14 ±0.10 0.00 ±0.00 0.00 ±0.00

gr21 6.87 ±7.95 5.54 ±2.79 3.21 ±4.80 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

gr229 10.91 ±2.38 10.53 ±1.84 11.31 ±2.29 0.45 ±0.14 0.04 ±0.02 0.00 ±0.00

gr24 4.45 ±3.00 4.81 ±3.30 4.09 ±5.15 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

gr431 12.59 ±1.51 9.82 ±1.63 12.13 ±2.40 2.32 ±0.41 1.32 ±0.67 0.43 ±0.23

gr48 5.10 ±3.50 4.84 ±2.25 6.41 ±1.97 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

gr666 15.09 ±1.40 14.20 ±1.43 14.32 ±0.99 3.79 ±0.58 1.99 ±0.55 0.96 ±0.34

gr96 8.34 ±2.18 9.40 ±2.21 8.88 ±2.34 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

hk48 9.17 ±3.11 8.46 ±2.72 5.97 ±2.56 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

kroA100 9.80 ±3.73 11.59 ±1.76 8.85 ±2.83 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

kroA150 12.10 ±1.32 10.66 ±4.33 12.38 ±4.27 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

kroA200 11.43 ±2.58 11.43 ±2.79 11.43 ±1.71 0.20 ±0.07 0.00 ±0.00 0.00 ±0.00

kroB100 8.77 ±2.02 7.92 ±2.95 9.65 ±2.66 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

kroB150 8.07 ±1.60 10.44 ±1.68 10.83 ±3.83 0.01 ±0.01 0.00 ±0.00 0.00 ±0.00

kroB200 12.07 ±2.74 10.84 ±2.88 10.41 ±1.20 0.11 ±0.05 0.00 ±0.00 0.00 ±0.00

kroC100 6.64 ±1.48 9.51 ±0.65 9.45 ±4.13 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

kroD100 9.35 ±3.59 8.81 ±3.76 7.98 ±1.73 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

kroE100 8.22 ±3.60 8.84 ±5.21 12.07 ±3.47 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

lin105 10.38 ±3.24 7.00 ±2.11 10.12 ±2.13 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

lin318 13.85 ±1.19 11.55 ±1.06 11.03 ±3.59 1.34 ±0.44 0.50 ±0.14 0.04 ±0.06

nrw1379 13.15 ±0.69 13.17 ±0.96 12.79 ±0.71 6.14 ±0.85 3.08 ±0.26 1.66 ±0.21

p654 10.06 ±1.76 7.97 ±1.64 10.67 ±3.47 3.31 ±0.85 2.04 ±0.60 0.86 ±0.55

pa561 14.01 ±2.65 14.84 ±1.32 13.81 ±2.15 2.28 ±0.37 0.77 ±0.08 0.28 ±0.07

pcb1173 15.92 ±0.74 15.98 ±1.09 15.37 ±0.94 4.75 ±0.20 2.15 ±0.09 0.91 ±0.07

pcb3038 15.37 ±0.56 15.79 ±0.67 15.78 ±0.76 11.59 ±0.64 5.23 ±0.50 2.99 ±0.08

pcb442 14.96 ±1.34 15.05 ±1.42 13.85 ±2.01 1.30 ±0.41 0.25 ±0.11 0.02 ±0.01

pr1002 13.72 ±1.32 14.04 ±1.52 14.55 ±1.09 3.84 ±0.43 1.81 ±0.09 0.79 ±0.14

pr107 6.30 ±2.43 7.90 ±2.97 10.80 ±2.31 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

pr124 5.49 ±4.12 7.47 ±6.82 3.99 ±1.50 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

pr136 10.14 ±2.32 12.07 ±1.83 10.24 ±2.66 0.23 ±0.08 0.01 ±0.01 0.00 ±0.00

pr144 11.23 ±3.57 4.83 ±4.26 8.87 ±5.59 0.06 ±0.09 0.00 ±0.00 0.00 ±0.00

pr152 6.51 ±2.47 5.12 ±0.83 5.45 ±2.62 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

pr226 7.83 ±3.98 7.46 ±4.80 8.36 ±3.59 0.41 ±0.42 0.17 ±0.11 0.06 ±0.13

pr2392 16.11 ±1.19 16.53 ±0.60 17.49 ±1.80 9.37 ±1.27 4.37 ±0.41 2.58 ±0.51

pr264 15.12 ±3.66 15.03 ±3.55 14.21 ±1.42 0.16 ±0.26 0.00 ±0.00 0.00 ±0.00

pr299 15.46 ±1.28 13.13 ±1.61 12.28 ±1.47 0.36 ±0.17 0.01 ±0.01 0.00 ±0.00

pr439 15.50 ±1.72 13.80 ±1.60 13.83 ±1.99 2.35 ±0.52 1.11 ±0.34 0.84 ±0.52

pr76 6.31 ±1.81 7.86 ±2.17 7.19 ±2.55 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

rat195 12.94 ±0.53 13.05 ±2.31 13.38 ±0.86 0.47 ±0.12 0.09 ±0.04 0.00 ±0.00

rat575 11.79 ±1.53 12.22 ±1.00 13.68 ±1.28 2.76 ±0.47 1.29 ±0.13 0.38 ±0.09

rat783 13.86 ±0.63 14.07 ±1.16 13.35 ±1.05 3.25 ±0.24 1.54 ±0.10 0.57 ±0.10

rat99 13.25 ±4.79 13.06 ±2.36 9.64 ±3.71 0.02 ±0.04 0.00 ±0.00 0.00 ±0.00

rd100 12.97 ±3.47 9.90 ±3.25 11.65 ±2.86 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

rd400 13.01 ±1.48 11.97 ±2.08 12.56 ±2.27 1.28 ±0.25 0.34 ±0.04 0.05 ±0.02

rl1304 18.53 ±1.73 16.16 ±0.77 18.04 ±2.55 7.04 ±1.01 3.95 ±0.51 2.46 ±0.22

rl1323 18.10 ±1.33 16.88 ±2.71 16.25 ±2.03 6.08 ±0.84 3.03 ±0.42 1.41 ±0.30

rl1889 16.64 ±2.52 18.01 ±1.09 16.52 ±1.29 8.83 ±1.16 4.91 ±0.62 2.73 ±0.30
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st70 9.54 ±4.03 9.51 ±2.64 7.50 ±2.64 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

swiss42 8.01 ±3.16 11.04 ±3.24 6.79 ±3.29 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

ts225 8.21 ±1.35 9.42 ±1.60 6.41 ±2.71 0.09 ±0.03 0.00 ±0.00 0.00 ±0.00

tsp225 12.22 ±1.33 13.73 ±1.40 12.92 ±1.50 0.94 ±0.19 0.13 ±0.17 0.00 ±0.00

u1060 13.15 ±1.15 14.49 ±1.21 13.43 ±1.06 3.26 ±0.09 1.51 ±0.34 0.66 ±0.13

u1432 15.64 ±0.71 16.59 ±0.94 15.96 ±1.27 5.03 ±0.63 2.76 ±0.53 1.71 ±0.31

u159 12.57 ±0.82 11.18 ±4.45 13.20 ±3.03 0.08 ±0.19 0.00 ±0.00 0.00 ±0.00

u1817 22.51 ±1.35 21.37 ±1.52 20.62 ±1.33 7.92 ±1.05 3.26 ±0.30 1.60 ±0.15

u2152 21.82 ±0.98 21.46 ±0.91 20.02 ±1.49 8.80 ±0.81 3.80 ±0.33 1.93 ±0.34

u2319 9.30 ±0.25 9.09 ±0.43 9.32 ±0.37 3.41 ±0.36 1.40 ±0.12 0.91 ±0.06

u574 13.88 ±1.13 13.03 ±0.52 13.37 ±0.74 2.23 ±0.18 0.83 ±0.18 0.13 ±0.02

u724 13.80 ±1.83 13.60 ±1.23 13.81 ±0.88 2.84 ±0.28 1.14 ±0.05 0.40 ±0.04

ulysses16 0.48 ±0.68 1.83 ±1.57 0.44 ±0.58 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

ulysses22 2.73 ±1.73 2.20 ±1.30 2.02 ±1.84 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

vm1084 14.30 ±1.73 14.01 ±1.38 13.43 ±1.45 5.09 ±0.28 2.60 ±0.26 1.07 ±0.11

vm1748 14.63 ±1.59 15.42 ±0.74 14.21 ±1.04 7.38 ±0.77 3.56 ±0.44 2.05 ±0.09

3.9 conclusions

In this chapter we described JAMES (v1.1): an object-oriented Java

framework for discrete optimization using local search metaheur-

istics. By clearly separating problem specification from search ap-

plication the provided algorithms can easily be used to solve newly

defined problems, as was demonstrated for a simple fixed-size core

selection problem. We showed how new algorithms can be added,

and how to compare the performance of several algorithms us-

ing the automated analysis workflow included in the extensions. A

comparisonwithother Javametaheuristics frameworks, thatmainly

focus on population-based algorithms but have some support for

local search techniques, revealed that JAMES has a much lower

memory pressure because it avoids excessive solution copies by

explicitly modelling moves and maximally exploiting this concept.

Avoiding copies also reduces execution time, which can be signi-

ficantly further improved through an efficient move-based delta

evaluationmechanism. Although JAMES includes predefined com-

ponents for subset selection, the framework is in no way limited

to selection problems. To demonstrate that other problems can be

solved as well, we applied JAMES to the well-known travelling

salesman problem (TSP). We showed that a simple implementation

was able to find good approximations for moderately large TSP

instances from the TSPLIB benchmark.

In all, the JAMES framework is a valuable addition to the currently

available Java metaheuristics optimization tools, which mainly fo-

cus on population-based algorithms, and its efficiency is achieved

by specifically focusing on local searches. Future work includes
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the addition of new algorithms and, when needed, components to

model other common optimization problems. The latter will be dis-

tributed as part of the extensions module. In chapters 4 and 5 we

use JAMES to solve several selection problems, with applications

in plant breeding and genetics in general.

implementation and hardware

Experiments were implemented in Java 8 and executed on a Linux

computing server with two 2.6 GHz 8-core Intel E5-2670 (Sandy

Bridge) CPUs and 32 GB RAM. Results were analysed in R, version

3.2.1 (R Core Team, 2015).





Part III

PLANT BREED ING PROBLEMS

In the main part of this thesis we address three optimiz-

ation problems related to marker-assisted plant breed-

ing: core subset selection, long-term genomic selection

strategies, and marker-assisted gene pyramiding. Each

of these applications uses genetic marker data to make

better decisions in practical plant breeding schemes.





4
MULT I - PURPOSE CORE SUBSET SELECT ION

summary

This chapter describes Core Hunter 3: a flexible tool to sample

core collections from genetic resources. Such cores represent the di-

versity of the full collection, with minimum redundancy, and allow

to effectively utilize large resources. Many methods and measures

have been proposed to sample and evaluate core collections. Core

Hunter uses local search algorithms to optimize one or more cri-

teria, depending on the purpose of the core. Distance-based evalu-

ations are often used because they are easy to interpret and can be

computed for both genetic marker data and phenotypic traits. Core

Hunter 2 (CH2) maximized average and minimum distance but it

was later suggested to instead maximize average entry-to-nearest-

entry (E-NE) distance to obtain diverse cores, or to minimize aver-

age accession-to-nearest-entry (A-NE) distance to maximally rep-

resent all individual accessions from the entire collection. Core

Hunter 3 (CH3) was designed to include these improved measures.

We show that the E-NE criterion can be effectively optimized with

a simple stochastic hill-climbing algorithm. Still, the diversity of

the core is slightly further increased, and variability across inde-

pendent samples further reduced, by using the parallel tempering

algorithm. Amore complex algorithm like themixed replica search

used by CH2 is not needed to optimize this measure. Core Hunter

3 yields higher E-NE values than CH2 while still ensuring a high

minimum distance, and is faster for large datasets. A comparison

with two existing methods revealed that CH3 can sample equally

representative cores as GDOpt, which was specifically designed for

this purpose, and is able to construct cores that are simultaneously

more diverse, and either are more representative or have higher

allelic richness, than those obtained by SimEli.

In all, Core Hunter 3 is a flexible, fast and very broadly applicable

core subset selection tool that samples multi-purpose cores based

on geneticmarker data or phenotypic traits. It combines and outper-

forms the strengths of other methods and can easily be extended

withnewevaluationmeasureswithout theneed to alter theunderly-

ing optimization algorithms. For more information about the open-

source Core Hunter 3 project, visit http://www.corehunter.org.
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4.1 introduction

Most of the diversity found in cultivated plant species is not dir-

ectly used for agricultural purposes. Yet, it is very important toIn an effort to
preserve agricultural
biodiversity, seeds of

major crops are
stored in so-called
gene or seed banks.

These genetic
resources do not only

include modern
cultivars but also
many historical

landraces and wild
relatives. One of the
most famous gene

banks is probably the
Svalbard Global Seed

Vault in Norway,
which stores backups
of seeds held in gene
banks worldwide, as
a protection against
potential losses in

case of, for example, a
large-scale crisis at
one of these other

locations. The
Svalbard vault is

built inside a
sandstone mountain

on Spitsbergen
Island and highly
secured. Recently,

the initiative proved
useful when, due to

the Syrian Civil War,
a local gene bank was
forced to move from

Aleppo to Beirut.
Because of the

difficulties they
encountered when
transferring their

original collections,
the Svalbard vault
authorized the first

backup seed
withdrawal in its

history.

maintain this diversity so that plant breeders and researchers can

keep looking for novel traits in conserved germplasm. Over time,

the collections stored in gene banks have grown enormously, which

prohibits the effective characterization and utilization of the full

collections. Therefore, Frankel (1984) proposed to sample smaller

so-called core collections which represent the diversity of the entire

collectionwithminimum redundancy. These cores offer an efficient

way to effectively characterize andutilize large genetic resources for

future crop improvement.

A variety of measures have been used to evaluate core collections

based on genetic marker data or phenotypic traits, including pair-

wise distances and allelic diversity. As argued byOdong et al. (2013)

the choice of the most appropriate evaluation measure depends on

the purpose of the core collection. For example, breeders are often

interested in cores in which all accessions are sufficiently different

from each other, whereas gene bank curators and geneticists in gen-

eral may prefer to retain rare alleles. Sometimes core collections are

sampledbasedon a combination of both genotypes andphenotypes

(Borrayo et al., 2016; Franco et al., 2010; Wang et al., 2006).

Many methods have been proposed to sample high-quality core

collections according to the measure(s) of interest. The first meth-

ods were stratified sampling techniques that cluster the data and

then select several accessions from each cluster using a certain al-

location method. Brown (1989) suggested to randomly select either

a constant (C) number of accessions per cluster, or a number pro-

portional (P) to the size or logarithm (L) of the size of the cluster,

and argued that the L-method is preferred. Franco et al. (2005) later

showed that more diverse cores are obtained when the number of

included accessions is proportional to the within-cluster diversity.

Another allocation method, the M-method, maximizes the probab-

ility to retain all observed alleles in order to construct cores with

high allelic richness (Schoen and Brown, 1993). This idea led to the

development of the MSTRAT software, which implements a gener-

alized M-method that directly samples from the entire collection

to maximize allelic richness with a simple hill-climbing algorithm

(Gouesnard et al., 2001). Other heuristicswork by repeatedly remov-

ing one of the two most similar accessions from the collection until

the desired core size is obtained, either randomly (least distance

stepwise sampling; Wang et al., 2007), or using a specific elimina-

tion criterion maximizing the distance to the remaining accessions
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or expected heterozygosity of the reduced collection (SimEli; Krish-

nan et al., 2014). Odong et al. (2011) designed the genetic distance

optimization strategy (GDOpt) to construct highly representative

cores, in which each accession from the entire collection is repres- A medoid is a
representative item
in a group of data,
whose average
dissimilarity to all
other items is
minimal. In contrast
to a centroid, a
medoid is required to
be an actual member
of the dataset.

ented by a similar core entry. GDOpt partitions the data around

a number of identified medoids which are then selected as the

core entries. Methods for variable-size core sampling have also

been developed. PowerCore minimizes the size of the core while

covering all observed marker alleles and/or trait values (Kim et

al., 2007). The genetic distance sampling strategy constructs cores

with a given minimum distance between selected accessions by re-

peatedly including a random accession and removing all others

within a certain sampling radius (Jansen and Van Hintum, 2007).

Core Hunter was developed to meet the variety of criteria used

to evaluate core collections for different purposes, and provides

multiple objectives that are optimized using flexible local search

algorithms (Thachuk et al., 2009). Core Hunter allows to construct

core collections for specific applications, or to combine multiple

objectives to bring the different perspectives closer together, for

example by simultaneously maximizing pairwise genetic distance

and allelic richness. Although Core Hunter is mainly focused at

fixed-size core selection, version 1 and 2 allowed to specify a min-

imum and maximum size and preferred smaller cores with the

same value. Core Hunter was shown to outperform other methods

including stratified sampling strategies, MSTRAT and PowerCore.

It has been suggested that, to obtain a diverse core, the average

distance between its entries should be maximized (Franco et al.,

2005; Thachuk et al., 2009). However, a high average entry-to-entry

distance does not guarantee that selected accessions are sufficiently

different and it is known that maximizing this criterion overrepres-

ents extreme values (De Beukelaer et al., 2012; Odong et al., 2013).

Core Hunter 2 (CH2) deals with this issue by also maximizing the

minimumdistance between selected accessions (De Beukelaer et al.,

2012). Although average distance and allelic richness can be effect-

ively optimized using simple and fast local search algorithms such

as stochastic hill-climbing, a more complex and slowermixed replica
search (MixRep) was required to maximize minimum distance in

the Core Hunter framework.

Another approach to maximize diversity while at the same time

avoiding inclusion of too similar accessions at the extremes of the

distribution is tomaximize the average distance between each entry

and the closest other entry in the core (Odong et al., 2013). The

SimEli algorithmwas shown to outperform Core Hunter 2 in terms

of this entry-to-nearest-entry (E-NE) objective. Alternatively, one
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may desire to optimally represent the individual accessions instead

of the whole range of diversity. In such case, it is recommended

to minimize the average distance between each accession in the

full collection and the closest core entry. The GDOpt algorithm

was specifically developed to minimize this average accession-to-

nearest-entry (A-NE) distance and shown to outperform both Core

Hunter 2 and SimEli for this purpose (Krishnan et al., 2014; Odong

et al., 2011).

We introduce Core Hunter 3 (CH3) which incorporates the im-

proved E-NE and A-NE criteria proposed by Odong et al. (2013),

and can sample fixed-size cores based on molecular marker data,

phenotypic trait data, a precomputed distance matrix, or a com-

bination of these. The distance matrix can be generated using an

appropriate distance measure such as Modified Roger’s distance

for genotypes (Wright, 1987) or Gower’s distance for phenotypes

(Gower, 1971). As in previous versions, Core Hunter 3 can also

maximize allelic richness. In particular, we assess whether the new

distance-based E-NE and A-NE measures can be effectively optim-

ized using fast local search algorithms, and whether maximizing

E-NE indirectly also yields a high minimum distance in the con-

structed core without the need for a more complex algorithm. Fur-

thermore, we assess the ability of Core Hunter 3 to simultaneously

maximize E-NE and A-NE, or E-NE and allelic richness, and com-

pare the results to those obtained with Core Hunter 2, GDOpt, and

SimEli, for three marker datasets with different allelic composition

and varying size, and one phenotypic trait dataset. CoreHunter 3 isThe R package
corehunter is

available on https:
//goo.gl/Dsb311.

available as an R package on CRAN and as an open-source project

on GitHub. A prototype graphical user interface is also provided.

See http://www.corehunter.org for more information.

4.2 history of core hunter

The original Core Hunter software was developed by Thachuk et

al. (2009) to sample diverse core collections from large genetic re-

sources based onmolecularmarker data. CoreHunter 1 (CH1) used

the parallel tempering algorithm described in section 2.2.4 to max-

imize average pairwise genetic distance and several allelic diversityMany of the
algorithms initially

implemented in Core
Hunter 2 finally

found their way into
the JAMES

framework (see
chapter 3).

indices, such as expected heterozygosity (Berg and Hamrick, 1997)

and Shannon’s index (Shannon, 2001).

As a master student I worked on Core Hunter 2 (CH2) and ex-

perimented with alternative optimization engines, including many

local searches and somepopulation-basedmetaheuristics, aswell as

a few simple constructive heuristics. We found that the evaluation

https://goo.gl/Dsb311
https://goo.gl/Dsb311
http://www.corehunter.org
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measures supported by CH1 could effectively be optimized with

a simple stochastic hill-climber (random descent; see section 2.2.4)

without the need for a more complex algorithm such as parallel

tempering. However, we also discovered that maximizing average

pairwise distance tends to overrepresent the extremes of the distri-

bution. As a solution, we suggested to alsomaximize theminimum

distance between any two selected accessions. Unfortunately, max-

imizing this new measure is a big challenge for a local search, as

slightly modifying the current solution in many cases does not

change the minimum distance between selected items. Therefore,

the search is not efficiently guided towards an optimum and may

even just get stuck with its initial random selection. To overcome

this limitation,we used a constructive heuristic called LR (left-right)

search that starts with an empty selection and then iteratively adds

r and removes l < r items, maximizing the objective function with

each addition or removal, until the desired core size is obtained.

The LR heuristic showed to be able to effectively maximize the min-

imum distance between selected items, but is unfortunately quite

slow for large datasets. Therefore, we eventually created a hybrid

mixed replica search (MixRep; De Beukelaer et al. 2012) which runs

multiple algorithms in parallel—including randomdescent and LR

search—and exchanges solutions between subsearches, inspired by

the parallel tempering algorithm. In this way, users interested in

maximizing average genetic distance or allelic diversity quickly get

high-quality results, while users who desire a high minimum dis-

tance will still obtain good core subsets with the same optimization

engine, simply by allowing longer execution times.

Odong et al. (2013) later proposed to sample diverse cores by max-

imizing the average distance between each selected item and the

closest other selected item (entry-to-nearest-entry). Alternatively,

to maximally represent each individual accession in the full collec-

tion, they suggested tominimize the average distance between each

accession and the most similar selected one (accession-to-nearest-

entry). Core Hunter 3 incorporates these new distance-based meas-

ures which, as shown below, can easily be optimized with fast

local searches. Maximizing the entry-to-nearest-entry distance also

yields a high minimum distance, and thus eliminates the need for

the quite complex and slower mixed replica search from CH2.

Furthermore, Core Hunter 3 now also supports phenotypic trait

data in addition to genetic marker data, and various formats in-

stead of a single marker data format. Phenotypic traits are analysed

using Gower’s distance (Gower, 1971), while for marker data users

can choose between the Modified Roger’s (Wright, 1987) or Cavalli-

Sforza and Edwards (Cavalli-Sforza and Edwards, 1967) distances,
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or, alternatively, maximize allelic richness. In addition, a precom-

puted distancematrix can be provided by the user as well. We reim-

plementedCoreHunter 3 from scratch using the JAMES framework

and made the new version easily accessible through an elaborate R

package deployed on CRAN.

4.3 materials and methods

4.3.1 Datasets

We used four datasets of varying size and composition to compare

the performance of different core sampling algorithms:

1. Rice data: 1000 accessions for which 39 phenotypic traits were

recorded, including 28 qualitative and 11 quantitative traits.

Available from the PowerCore project (Kim et al., 2007) and

used before to assess the performance of several other core

sampling algorithms, including SimEli (Krishnan et al., 2014).

2. Coconut data: 1014 accessions characterized using 30 crop-

specific SSRmarkers.Used inmultiple previous core selection

studies (Krishnan et al., 2014; Odong et al., 2011, 2013).

3. Maize data: 1250 accessions characterizedwith 1117 SNPmark-

ers. Distributed as part of the R package synbreedData (Wim-

mer et al., 2015).

4. Pea data: 4428 accessions characterized by 17 RBIP markers

(Jing et al., 2010; Smỳkal et al., 2011). Previously used to

compare the performance of Core Hunter 2 with other core

sampling algorithms for datasets with many accessions (De

Beukelaer et al., 2012).

Within Core Hunter, all supported types of marker data are con-

verted to allele frequencies (see section 1.2.2), which are used to

compute the various objective functions. All cores sampled in the

performed experiments comprise 20% of the full collection for the

rice, coconut, andmaize datasets, and 10% for the large pea dataset.

4.3.2 Evaluation measures

Core Hunter 3 includes various evaluation measures that can be

selected as optimization objectives, including but not limited to

those described below. For an overview of all provided measures,

we refer to the website http://www.corehunter.org.

http://www.corehunter.org
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Distance measures

We used the Modified Roger’s distance (Wright, 1987) to assess the

dissimilarity of accessions based on genetic marker data. For phen-

otypic traits we used Gower’s distance (Gower, 1971) which sim-

ultaneously takes into account qualitative and quantitative traits.

Pairwise distances are aggregated in a certain way to evaluate the

diversity or representativeness of the core (Odong et al., 2013):

• Entry-to-nearest-entry (E-NE): averagedistance between each

selected accession and the closest other core entry. This cri-

terion can be maximized to construct highly diverse cores in

which all accessions are maximally different.

• Accession-to-nearest-entry (A-NE): mean distance between

each accession from the entire collection and themost similar

core entry, including itself in case the accession has been

selected.Minimizing this criterion yields cores that optimally

represent all individual accessions from the full collection.

As shown in figure 4.1 maximizing E-NE tends to select accessions

at cluster edges while minimizing A-NE favours accessions near

cluster centers. When comparing CH3 with CH2 we also evaluated

theminimumdistance (DMIN) between selected accessions but this

is not an objective that candirectly be optimizedbyCH3, for reasons

explained before and further elaborated on in the discussion.

Allelic richness

To evaluate the allelic richness of cores sampled based on genetic

marker data we used the average expected heterozygosity (HE) per

locus (Berg and Hamrick, 1997), calculated as

0 6 HE =
1

L

L∑
l=1

(1−

nl∑
a=1

p̂2la) 6 1

where L is the number of markers (loci), nl is the number of ob-

served alleles at the l-th locus, and p̂2la is the frequency of the a-th

allele at the l-th locus in the selected core collection.

Weighted index and normalization

CoreHunter allows to simultaneously optimize kmeasures bymax-

imizing a weighted index

F(c) =

k∑
i=1

αiFi(c)
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Figure 4.1: Multi-dimensional scaling plots of cores obtained when max-

imizing the entry-to-nearest-entry distance (top) as compared

tominimizing the accession-to-nearest-entry distance (bottom)

for a small generated dataset with 50 accessions, from which

10 are selected. The former objective tends to include acces-

sions at cluster edges to maximize within-core diversity, while

the latter favours accessions near cluster centers to optimally

represent all individual data points.
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where Fi is the i-th included measure and 0 < αi < 1 is the weight

assigned to this objective, with

∑k
i=1 αi = 1. In case of a meas-

ure Fi that is to be minimized, such as A-NE, it is transformed

into a maximization objective F ′i = −Fi when it is included in the

weighted index. By default, the individual measures are also auto-

matically normalized to [0, 1] following the procedure described in

section 2.3.1, to ensure a fair balance between the included object-

ives, independent of their original range.

4.3.3 Core sampling algorithms

Core Hunter 3 uses the random descent and parallel tempering

local search algorithms, described in detail in section 2.2.4 and im-

plemented in the JAMES framework (see chapter 3), to optimize the

chosen evaluation measure or weighted index for a fixed core size.

Both of these algorithms were also included in CH2, and based on

the findings in this chapter CH3 defaults to the parallel tempering

algorithm. The chosen algorithm is executed until a certain stop

condition has been satisfied. Core Hunter 3 allows to specify an

absolute runtime as well as a maximum time without finding any

further improvement over the current selection.

When combining multiple objective functions in a weighted index,

and given that normalization is enabled as in the default setting, the

best solution in terms of each individual measure is approximated

prior to the main optimization. For this purpose, we apply a simple

random descent search to optimize each individual objective—a

potentially rough approximation is usually sufficient to determine

appropriate normalization ranges. These preliminary searches are

executed in parallel, to reduce the computational overhead due to

normalization, andwith the same stop conditions as those specified

for the main search.

Variable-size core sampling is no longer supported because the

provided evaluation measures are not generally applicable to com-

pare cores of different sizes. For example, reducing the core size ar-

tificially increases dissimilarity between selected accessions while

adding more accessions always yields a more representative core.

Also, while CH1 and CH2 preferred the smallest of two cores with

the same value, minimizing the core size may not always be de-

sired depending on the purpose of the core. We therefore believe

that fixed- and variable-size core sampling should be treated as

separate problems.
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Random descent

This basic algorithm starts with a random selection of the desired

size and then iteratively tries to improve its quality by swapping a

randomly chosen selected and unselected accession. The obtained

neighbouring solution is accepted as the new current solution if it

has a higher quality, otherwise another move is tried starting from

the same solution. For a detailed description, see section 2.2.4.

Parallel tempering

This more advanced algorithm, also known as replica exchange

MonteCarlo (REMC), consists ofmultiple cooperating local searches

that are executed in parallel. Each search performs the same pro-

cedure as random descent but may also accept inferior moves to be

able to escape from local optima. The searches are assigned equally-

spaced temperatures in a given range, where a higher temperature

leads to a higher probability to accept inferiormoves. Searcheswith

similar temperature periodically exchange their current solutions to

push themost promising selections towards the coolest searches for

convergence, and the worst solutions towards the hottest searches

to escape from local optima. For formulas and a detailed descrip-

tion of the algorithm, see section 2.2.4. The parallel tempering al-

gorithm used by Core Hunter 3 consists of 10 search replicas with a

temperature range of [10−8, 10−4], and uses the same single-swap

neighbourhood as the random descent procedure described above.

4.3.4 Comparison with GDOpt and SimEli

Because the originalGDOpt implementationdescribedbyOdong et

al. (2011) seemed needlessly complexwe used a different algorithm

based on the same idea, as implemented in the R function pam. This

function largely follows the algorithm of Kaufman and Rousseeuw

(1990) to partition data around automatically identified medoids.

The number of clusters was chosen equal to the desired core size

and the returnedmedoidswere selected as core accessions. Aiming

for the most fair comparison, we also reimplemented SimEli in

R considering both elimination criteria suggested by Krishnan et

al. (2014). In each step, one of the two most similar accessions

was eliminated by maximizing either the average distance to the

remaining accessions (SimEli-A-RA) or the expectedheterozygosity

of the reduced collection (SimEli-HE), until the desired core size

was obtained.
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Random descent Parallel tempering

Rice 0.150 ±2.51e-4 0.151 ±4.69e-6

Coconut 0.575 ±5.63e-4 0.576 ±3.18e-5

Maize 0.433 ±4.26e-4 0.435 ±1.55e-4

Pea 0.333 ±1.59e-3 0.339 ±5.61e-4

Table 4.1: Comparison of random descent and parallel tempering al-

gorithmswhenmaximizing the entry-to-nearest-entry criterion

(E-NE). Mean values and standard deviations are reported for

10 independently sampled core collections, with a runtime limit

of five minutes.
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Figure 4.2: Convergence curves for the large pea dataset showing the E-

NE value of the best found solution at each point in time dur-

ing execution of the random descent and parallel tempering

algorithms, averaged over 10 independent runs. The left plot

reports the progress during the entire run, with a runtime of

five minutes, while the right plot is zoomed in on the point

where both curves intersect.

4.4 results

4.4.1 Optimizing E-NE and A-NE

We sampled 10 cores from each dataset using the random descent

and parallel tempering algorithms configured to maximize E-NE

with a runtime limit of five minutes. Table 4.1 shows mean values

and standard deviations of the obtained cores. The results indic-

ate that parallel tempering is able to construct cores with slightly

higher E-NE values than random descent and reduces the variabil-

ity across independently sampled cores, oftenbyoneormoreorders

of magnitude, although variability is already quite lowwhen using

randomdescent. Figure 4.2 displays the convergence curves of both

algorithms, again averaged over 10 runs, for the pea dataset which
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is the largest of the four considered datasets. These plots show that

both algorithms are able to iteratively improve an arbitrarily bad

random selection to reach a high E-NE value. Again, we see that

parallel tempering yields a slightly higher E-NE value (left), but

also that it is somewhat slower than random descent (right). Still,

after about seven seconds, parallel tempering catches up with ran-

dom descent, after which it keeps improving the quality of the core.

We performed these experiments only for the E-NE measure but

assume that our findings also hold for A-NE due to the very similar

composition of both criteria. Therefore, all following CH3 results

were obtained with the parallel tempering algorithm.

4.4.2 Comparison with Core Hunter 2

To assess whether maximizing E-NE indirectly also yields a high

minimum distance (DMIN) between selected accessions we com-

pared the results of CH3 andCH2.We configuredCH2 tomaximize

a weighted index including both average and minimum pairwise

distance, with equal weight, and CH3 to maximize E-NE. Both

algorithms were terminated when no improvement was found dur-

ing the last 10 seconds. Table 4.2 reports average E-NE, DMIN and

execution time for 10 independent samples, obtained with both

methods, for each dataset except the rice collection because CH2

cannot sample cores based on phenotypic traits.

For all three datasets, CH3 yields higher E-NE andDMIN thanCH2.

However, a detailed inspection of the output of CH2 (not shown)

revealed that the LR replica—included in the MixRep search used

by CH2—did not always complete before CH2 was terminated. As

mentioned before, the LR search is a constructive heuristic that

starts with an empty selection and iteratively adds accessions un-

til the desired core size has been reached, and was specifically

included in CH2 to construct cores with high minimum distance

(De Beukelaer et al., 2012). Therefore, we repeated the CH2 experi-

ments with an absolute runtime limit that was empirically determ-

ined per dataset to ensure that the LR replica terminated in each

run (CH2L). Especially for the large pea dataset significantly more

time was needed in this configuration, due to the quadratic time

complexity of the LR replica. Table 4.2 shows that CH2L is indeed

able to construct cores with much higher minimum distance than

CH2 and also slightly outperformsCH3 in terms of thismeasure, al-

though differences in minimum distance obtained with CH2L and

CH3 are at most 4%. Moreover, CH3 still yields the highest-quality

core collections in terms of the more elaborate E-NE criterion, and

is faster for large datasets.
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E-NE DMIN Time (s)

Coconut

CH2 0.552 ±3.53e-2 0.501 ±9.76e-2 27.6 ±06.0

CH3 0.576 ±9.35e-5 0.540 ±0.00e-0 37.5 ±07.9

CH2L 0.569 ±5.91e-4 0.548 ±0.00e-0 31.0 ±00.1

Maize

CH2 0.416 ±1.52e-2 0.396 ±2.46e-2 78.3 ±10.6

CH3 0.435 ±2.70e-4 0.409 ±3.05e-3 74.3 ±26.5

CH2L 0.429 ±5.00e-4 0.415 ±1.11e-3 78.6 ±02.0

Pea

CH2 0.219 ±1.49e-3 0.000 ±0.00e-0 85.6 ±04.5

CH3 0.338 ±1.04e-3 0.287 ±1.34e-2 154.1 ±49.7

CH2L 0.325 ±8.21e-4 0.297 ±0.00e-0 802.3 ±00.8

Table 4.2: Comparison ofCoreHunter 2 and 3. CH2maximizes aweighted

index including average and minimum pairwise distance, with

equal weight, while CH3 maximizes E-NE. Mean E-NE, DMIN,

runtime, and corresponding standard deviations are reported

for 10 independent executions. The highest obtained E-NE and

DMIN value per dataset is shown in bold. CH3 was terminated

whenno improvementswere foundduring 10 seconds. ForCH2,

two alternatives were considered: (a) the same stop condition

as for CH3 (CH2); and (b) an absolute runtime limit that was

empirically determined per dataset to ensure that the LR replica

of MixRep terminated in each run (CH2L).

4.4.3 Comparison with GDOpt and SimEli

Weapproximated the Pareto front (see section 2.3) obtained byCore

Hunter 3 when simultaneously optimizing E-NE, and either A-NE

or HE with varying weights α1 ∈ [0, 1] and α2 = 1− α1, respect-

ively, and compared the results with those obtained by GDOpt and

SimEli. Note that A-NE is to be minimized, while E-NE and HE

are maximized. As before, CH3 was terminated when no improve-

ment was found during 10 seconds. Figure 4.3 shows that GDOpt

and CH3 are able to construct representative cores with low A-NE,

which is not the case for SimEli. In fact, all cores sampled by SimEli

have a worse A-NE value than those obtained by GDOpt and CH3,

even when the latter is configured to maximize E-NE only. On the

other hand, SimEli scores much better than GDOpt in terms of di-
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Figure 4.3: Simultaneous optimization of entry-to-nearest-entry (E-NE)

and accession-to-nearest-entry (A-NE) distance. These Pareto

front approximations for Core Hunter 3 were obtained by

sampling cores with varying weights α1 ∈ [0, 1] and α2 =

1−α1 assigned to the E-NE and A-NE measures, respectively,

with a step size of 0.05. The quality of the cores constructed by

CH3 is compared with those found by GDOpt and SimEli, in

terms of both criteria. All reported values are averages of 10

independently sampled cores with the same settings.

versity (high E-NE). Still, Core Hunter 3 is able to find cores which

simultaneously have a higher diversity and aremore representative

than those obtained with SimEli. For the maize dataset, SimEli-A-

RA and SimEli-HE found cores of similar quality, while for the

coconut and pea dataset SimEli-A-RA showed to be preferred in

terms of both E-NE and A-NE. For the rice dataset, SimEli-HE was

not included in the comparison because expected heterozygosity

can be evaluated formarker data only. Figure 4.4 shows that GDOpt

yields cores with significantly lower HE than any of the other meth-

ods. SimEli performs better in this respect, especially SimEli-HE,

but as before Core Hunter 3 is able to simultaneously improve over

SimEli in terms of both objectives (E-NE and HE value).
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Figure 4.4: Simultaneousmaximization of entry-to-nearest-entry distance

(E-NE) and expected heterozygosity (HE). These Pareto front

approximations for Core Hunter 3 were obtained by sampling

cores with varying weights α1 ∈ [0, 1] and α2 = 1 − α1 as-

signed to the E-NE and HEmeasures, respectively, with a step

size of 0.05. The quality of the cores constructed byCH3 is com-

pared with those obtained by GDOpt and SimEli, in terms of

both criteria. All reported values are averages of 10 independ-

ently sampled cores with the same settings. The rice dataset is

excluded here because expected heterozygosity can be evalu-

ated for genotypic data only.
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Rice Coconut Maize Pea

GDOpt 14.9 7.1 91.2 350.1

SimEli-A-RA 7.6 7.5 11.5 514.7

SimEli-HE - 15.9 78.0 502.3

CH3 E-NE 45.8 37.5 74.3 154.1

CH3 A-NE 74.6 55.7 133.1 86.7

CH3 HE - 16.6 40.2 62.8

Table 4.3: Average execution times (seconds) of GDOpt, both SimEli im-

plementations, andCH3, for 10 independent samples from each

dataset. Three configurations are considered for CH3: (a) max-

imize E-NE; (b) minimize A-NE; and (c) maximize HE.

Average execution times of GDOpt, SimEli and CH3 (configured to

optimizeE-NE,A-NEorHE) are reported in table 4.3.CoreHunter 3

was slower thanGDOpt andSimEli for the rice and coconutdatasets.

For the maize dataset CH3 was faster than GDOpt and SimEli-HE

when maximizing HE or E-NE but slower when minimizing A-NE

and always slower than SimEli-A-RA. Finally, for the pea dataset,

CH3wasnotably faster thanbothGDOpt andSimEli. CoreHunter 3

was also consistently faster when maximizing HE as compared to

the configurations in which E-NE or A-NE were optimized.

4.5 discussion

Depending on the purpose of a core collection, there are many

possible ways to evaluate its quality. Distance-based measures are

attractive because they are intuitive to understand and can capture

both diversity within the core as well as representativeness of the

individual accessions from the full collection. However, pairwise

distances need to be aggregated in an appropriate way to evaluate

the selected core. Although many studies and methods have used

average pairwise distance to assess the diversity in the core, it is

known that a high average does not guarantee that all selected

accessions are sufficiently different from each other (De Beukelaer

et al., 2012; Odong et al., 2013). Maximizing this criterion tends to

overrepresent the extremes of the distribution.

CoreHunter 2 addressed this issue bymaximizing theminimum in

addition to the average pairwise distance, using a complex mixed

replica method (MixRep) consisting of different cooperating al-

gorithms (De Beukelaer et al., 2012). Previously, the original Core

Hunter software successfully applied the parallel tempering al-
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gorithm tomaximize average distance and allelic richness, but such

local search is not well suited to optimize minimum distance be-

cause this specific measure is very sensitive to the precise selection.

Similar cores may have highly different values, while at the same

time very different cores may have a similar or even the same min-

imumdistance. Thismakes it difficult for a local search to find away

from a randomly generated selection to a high-quality core. In par-

ticular, for a given current solution, many possible modifications

may not affect the minimum distance, meaning that the search has

no clue as to whether these modifications may eventually lead to

an improved solution. To smooth out the objective function, Core

Hunter 2 could be configured to maximize a combination of aver-

age and minimum distance. Also, a constructive heuristic (LR) was

included in theMixRep algorithm, which iteratively extends an ini-

tially empty selection and can thereforemore easilymaintain a high

minimum distance between currently selected accessions. On the

downside however, such constructive approach may become slow

when sampling from large collections, as compared to a local search

that already starts with a random selection which is subsequently

further improved.

Odong et al. (2013) later suggested to instead maximize the aver-

age entry-to-nearest-entry (E-NE) distance. This criterion takes all

accessions into account and can therefore presumably be more ef-

fectively optimized with local searches as compared to minimum

distance, but still focuses on maintaining a high distance between

each pair of closest accessions, which avoids overrepresentation of

extreme values, in contrast to average pairwise distance. Therefore,

in Core Hunter 3, the minimum distance measure was replaced

by the newly proposed E-NE criterion. Another new measure was

also included to sample cores that maximally represent all indi-

vidual accessions from the full collection by minimizing the aver-

age accession-to-nearest-entry (A-NE) distance, again as proposed

by Odong et al. (2013).

We assessed whether the new E-NE measure can indeed be effect-

ively optimized with fast local searches, in an attempt to avoid the

complexity and potential slowness of the MixRep algorithm. We

showed that even a very basic stochastic hill-climber (random des-

cent) can already construct cores with high E-NE value and little

variability in quality across independent samples. Still, the value

of the core is further improved, and variability further reduced,

when using themore advanced parallel tempering algorithm. Since

parallel tempering takes advantage of modern multi-core CPU ar-

chitectures, by executing replicas in parallel, the associated com-

putational overhead is limited. In our experiments, for the large

pea dataset with over 4000 accessions, parallel tempering already
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reached a higher E-NE value than random descent after only 7

seconds. We thus conclude that parallel tempering is preferred,

and that more complex algorithms are not needed to optimize E-

NE, and assume that the same conclusion holds forA-NEdue to the

very similar composition of bothmeasures. Therefore, CoreHunter

3 uses parallel tempering by default, which is also known to effect-

ively optimize the other measures that were already included in

Core Hunter 2 (De Beukelaer et al., 2012). In addition, a fast mode

is provided inwhich the basic randomdescent algorithm is applied,

in case execution time is critical, but it was not used here.

The E-NE criterion was introduced because maximizing average

distance may lead to cores in which too similar accessions are in-

cluded, and maximizing minimum distance is too complex to be

solved with simple and fast local searches. To validate the effective-

ness of this alternative evaluation measure, we assessed whether

maximizing E-NE indirectly also yields a high minimum distance.

A comparisonwith CoreHunter 2, configured to sample cores with

high average and minimum distance, revealed that maximizing E-

NE indeed also leads to a high minimum distance. The minimum

distance obtained with CH3 is slightly lower than for CH2, but

more importantly CH3 yields higher E-NE values because it act-

ively optimizes this criterion. As the minimum distance captures

less information about the core than the E-NE criterion, we believe

that it is better to focus on maximizing E-NE when aiming to con-

struct a core with maximum diversity.

For large datasets, CH3 showed to be notably faster than CH2, due

to the quadratic time complexity of the LR replica (De Beukelaer

et al., 2012). In contrast to all other searches included inMixRep, LR

does not start from a random selection that is iteratively improved,

but from an empty selection towhich accessions are added until the

desired core size is reached. Thismeans that it only produces useful

results if given enough time to complete. Therefore, a potential

issue of CH2 is that the user is responsible to set an appropriate

time limit that allows the LR replica to complete, when aiming at

a high minimum distance. Also, it may be confusing that there is a

possibly large time gap between the last improvement found by the

other replicas and that obtained when the LR replica has finished.

In this respect, CH3 is more user-friendly because it uses a well-

known local search algorithm that gradually improves the average

E-NE value of the selected core. Large gaps between significant

improvements are not expected which makes it much easier to

determine an appropriate time limit and evenmore so to use amore

convenient stop condition such as amaximum timewithout finding

an improvement, in which case the execution time automatically

adapts to the size of the dataset.
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One of the main advantages of Core Hunter 3 and previous ver-

sions is its flexibility. While other methods are often developed

for a specific purpose such as maximizing diversity, representat-

iveness, or allelic richness, Core Hunter is suited for each of these

as it includes a variety of evaluation measures that can directly

be optimized and, if desired, combined in a weighted index. We

compared CH3 with GDOpt, designed to maximize representative-

ness, and SimEli, where the elimination criterion was chosen either

to maximize diversity (SimEli-A-RA) or expected heterozygosity

(SimEli-HE). Core Hunter was configured to optimize a weighted

index including E-NE and either (a) A-NE (figure 4.3); or (b) HE

(figure 4.4), with varying weights, in order to approximate the cor-

responding Pareto front.

The results showed that, as expected, GDOpt is especially suited

to construct cores that optimally represent all accessions from the

entire collection (low A-NE), as it was specifically developed for

this purpose. It is interesting to note that the effectiveness of our

simple version of the GDOpt strategy suggests that the original

implementation by Odong et al. (2011) is indeed needlessly com-

plex. On the other hand, SimEli scores much better than GDOpt in

terms of diversity (E-NE) and allelic richness (HE). From the two

considered elimination criteria, SimEli-HE resulted in the highest

allelic richness, while SimEli-A-RA showed to be most suited to

maximize diversity (E-NE). Again, this was expected and confirms

that the SimEli method can be adjusted to some extent by using

an appropriate elimination criterion depending on the purpose of

the core collection. However, Core Hunter 3 found cores that are

simultaneously more diverse (E-NE), and either are more repres-

entative (A-NE) or have a higher allelic richness (HE), than those

obtained by SimEli. In addition, CH3 was able to construct equally

representative cores as GDOpt, and thus combines and improves

over the advantages of both other methods.

A comparison of execution times showed that CH3 needs less time

to optimize HE as compared to E-NE and A-NE. This is not sur-

prising, as it is known that allelic richness can also be effectively

maximized with a basic stochastic hill-climber (De Beukelaer et al.,

2012). Since we showed that the more advanced parallel temper-

ing algorithm is preferred to optimize E-NE and A-NE, it is clearly

more difficult to find cores with high E-NE or low A-NE than to

maximize allelic richness. Also, CH3 was somewhat slower than

GDOpt and SimEli for smaller datasets, but faster for the large pea

dataset. Here, the main advantage of Core Hunter is again its flex-

ibility. For example, the runtime of SimEli is purely determined

by the dataset and core size. When sampling a small core from a

large collection, many accessions need to be eliminated, and find-
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ing the two most similar accessions in each step as well as deciding

which one to eliminate is a time consuming process. In contrast,

the runtime of Core Hunter can be adjusted by using an appropri-

ate stop condition, which provides a convenient quality-runtime

tradeoff. It is possible to limit the total execution time, but in our

experiments we used an adaptive condition that terminated the

search when no more improvement was found during 10 seconds.

This automatically adjusts the runtime to the size of the dataset, to

some extent, while still offering sufficient flexibility, and largely in-

fluenced the execution times of Core Hunter 3 in our experiments.

Of course, we may be able to further increase the quality of the

core collections sampled from any of our datasets by allowing a

longer runtime, but with the current settings Core Hunter already

outperforms the other sampling algorithms, whose execution time

cannot be controlled.

Overall, each of the tested methods showed to be very fast for

datasets including at least several thousands of accessions. We are

therefore convinced that execution timewill not be an issue in prac-

tical applications, regardless of the chosen algorithm. Still, Core

Hunter is the only one whose runtime can be controlled in vari-

ous ways. The resulting quality-runtime tradeoff allows users to

limit the execution time for large datasets if needed, for example

when quickly exploring various sampling settings. In addition, and

perhaps even more interestingly, it also allows to more thoroughly

explore the solution space if more time is available, which may

yield better cores. Note that although we did not experiment with

genotypic datasets with several tens or hundreds of thousands of

markers, these can easily be dealt with by, for example, precomput-

ing a distance matrix so that only the number of accessions affects

the performance of Core Hunter.

4.6 conclusions

In this chapter we introduced Core Hunter 3 (CH3) and showed

that it constructs core collections with high diversity (high aver-

age entry-to-nearest-entry distance; E-NE) and which maximally

represent the individual accessions from the entire collection (low

average accession-to-nearest-entry distance; A-NE) using flexible

and fast local search algorithms. By default, the parallel tempering

algorithm is used to optimize these and other evaluation measures.

Version 3 improves over Core Hunter 2 (CH2) in multiple ways.

CoreHunter 3 is able to find coreswith a higher E-NE value, within

less time for large datasets, which also have a high minimum dis-
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tance, and without the need for a more complex algorithm like the

mixed replica search from CH2. In addition, CH3 finds similar and

often better cores as compared to GDOpt and SimEli, which were

reported to outperform CH2 in terms of E-NE and A-NE. In partic-

ular, CH3 can create equally representative cores as GDOpt, which

was specifically designed for this purpose, while at the same time

being able to construct cores that are simultaneously more diverse,

and either are more representative or have a higher allelic richness,

than cores obtained with SimEli.

As in previous versions, one of themain strengths of CoreHunter is

its high flexibility. The applied local search algorithms are not con-

fined to a specific evaluation measure and new criteria can easily

be introduced and optimized without the need to alter the underly-

ing algorithms. Moreover, multiple criteria can be simultaneously

optimized and the execution time is controlled by the user through

various stop conditions.We therefore believe that, fromall available

methods, Core Hunter is the most broadly applicable core subset

selection tool with a lot of opportunities to be further extended.
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5
LONG-TERM GENOMIC SELECT ION STRATEG IES

summary

Long-term genomic selection (GS) requires strategies that balance

genetic gain with population diversity, to sustain progress for traits

under selection and to keep diversity for future breeding. In a sim-

ulation model for a recurrent selection scheme we provide the first

head-to-head comparison of two such existing strategies: genomic

optimal contributions selection (GOCS) that limits realized gen-

omic relationship among selection candidates, and weighted gen-

omic selection (WGS) that upscales rare allele effects.

Compared to GS both methods provide the same higher long-term

genetic gain and a similar lower inbreeding rate despite that some

inherent limitations were observed. GOCS does not control a spe-

cific component of the inbreeding rate that is linked to trait selection,

and therefore does not strike the optimal balance between genetic

gain and inbreeding. As such this method becomes less effective

throughout the breeding scheme and particularly so at the begin-

ning where genetic gain and diversity may not yet be competing.

For WGS the truncation selection approach proved suboptimal to

manage rare allele frequencies among the selection candidates.

To overcome these limitations we introduce two new set selection

methods that maximize a weighted index balancing genetic gain

with controlling expected heterozygosity (IND-HE) ormaintaining

rare alleles (IND-RA), and show that these outperform GOCS and

WGS in a nearly identical way. While requiring further testing, we

believe that the inherent benefits of the IND-HE and IND-RAmeth-

ods will transfer from our simulation framework to many practical

breeding settings, and are therefore a major step forward towards

efficient long-term genomic selection.

5.1 introduction

Genomic selection (GS) was initially proposed by Meuwissen et

al. (2001) and uses existing phenotypes and marker information to

obtain breeding values for untested selection candidates (see sec-

101
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tion 1.2.3).With cheap high density genotyping becoming available,

GS was introduced in many animal and plant breeding programs

over the last decade. The added value of GS is generally attributed

to accelerated breeding by shortened generation intervals, and to

higher selection accuracy especially for traits that are difficult to

observe (Daetwyler et al., 2013; Hayes et al., 2009; VanRaden et al.,

2009; Wiggans et al., 2011). Unfortunately, GS also accelerates loss

of genetic diversity due to the quick fixation of large effect loci, and

likely also due to the higher selection accuracy of individuals with

close relationship to the training set (Badke et al., 2014; Wientjes

et al., 2013). Because this loss of diversity limits long-term gain for

the trait under selection (Jannink, 2010) and also jeopardizes future

breeding for other traits, we need GS strategies that balance genetic

gain with diversity.

Animal breeders have widely adopted optimal contributions selec-

tion (OCS; Meuwissen 1997) to manage population diversity dur-

ing long-term selection. OCS maximizes genetic gain under a pre-

defined pedigree-based inbreeding rate by calculating the optimal

contribution of all selection candidates to the next generation byLagrangian
multipliers can be
used to optimize a

continuous function
subject to one or

more equality
constraints, given

that both the
objective function
and all constraints
have continuous
first-order partial
derivatives. For

details about this
method, we refer to
Bertsekas (2014).

means of Lagrangian multipliers. Since its introduction, OCS has

been considerably refined to accommodate operational breeding

constraints such as restricting the number of individuals contribut-

ing to the next generation, and imposing upper or lower limits on

how much an individual contributes. Meuwissen (2002) manages

these additional constraints with an iterative heuristic wrapped

around the original mathematical solution that removes individu-

als with a too low contribution and truncates contributions exceed-

ing the maximum, while repeatedly re-optimizing the remaining

contributions (Woolliams et al., 2015). Alternatively, the operational

constraints can be modelled directly using semidefinite program-

ming, whichmay provide slightly higher gains at the cost of amore

complex problem formulation (Ahlinder et al., 2014; Pong-Wong

and Woolliams, 2007).

A different strategy is to leave the strict constrained optimization

framework and maximize a weighted index that balances genetic

gain and inbreeding (Carvalheiro et al., 2010; Clark et al., 2013).

Optimizing this index with general purpose metaheuristics such as

a differential evolution algorithm (Storn and Price, 1997) allows to

easily accommodate additional constraints and objectives, trading

optimality of solutions for flexibility. This allowed Kinghorn (2011)

to move from assigning individual contributions to identifying op-

timal mating pairs.

The OCS strategy can also handle typical constraints in plant breed-

ing applications that often have a fixed number (n) of selected
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individuals contributing equally to the next cycle. Most straight-

forward is to use the heuristic of Meuwissen (2002) and set both

the minimum and maximum contribution to 1/n. This approach

showed to work well, as a more direct and theoretically exact solu-

tion with a branch-and-bound algorithm (Mullin and Belotti, 2016)

provided only marginally better results that do not justify the addi-

tional complexity and computation time. As such OCS has become

a well-established method that can be used in many if not all prac-

tical animal and plant breeding applications.

In the genomics era the availability of marker data for the selection

candidates allowed a further extension of OCS: genomic OCS or

GOCS (Sonesson et al., 2012). In GOCS the realized genomic rela-

tionship matrix G, computed frommarker data, replaces the expec-

ted additive relationship matrix A, inferred from the pedigree, in

the OCS formulas (Woolliams et al., 2015). Intuitively this makes

a lot of sense as due to selection pressure we expect the realized

relationships to differ from the pedigree-based average as well as

being unequally distributed across the genome. For these reasons

GOCS is the current method of choice for controlling inbreeding in

a GS context.

Avoiding the loss of favourable rare alleles has also received atten-

tion in view of increasing long-term selection gain. For GS, Jannink

(2010) proposed a weighted strategy (WGS) in which the effect of

rare favourable alleles is amplified following theory by Goddard

(2009). Extensions of WGS were proposed with additional para-

meters to balance short- and long-term gain (Sun and VanRaden,

2014) or to dynamically reduce the focus on rare favourable alleles

over a fixed time horizon (Liu et al., 2015). Many other weighting

schemes could be explored, including one derived from the theory

of Liu and Woolliams (2010) that determines the optimal QTL al-

lele trajectory from its initial frequency to fixation, although in our

own comparison based on simulated data these weights provided

very similar results as standardWGS (HDe Beukelaer, G DeMeyer;

personal communication).

Instead of amplifying allele effects in the selection index calculated

for every individual it might be more effective to directly control

rare allele frequencies in the set of selected individuals, following

the approach of Li et al. (2008) to stack known QTL. These authors

applied a differential evolution algorithm to maximize a weighted

index including the summed QTL allele effects and one of several

diversity measures, and found that avoiding loss of rare favourable

allelesmost effectivelymaximized long-termgain.As this approach

has not yet been evaluated in a GS setting, the merit of maintaining

rare favourable alleles for long-term genomic selection cannot be
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fully appreciated. To our knowledge, strategies based on maintain-

ing rare favourable alleles—or rare alleles in general—have not yet

been directly compared to GOCS.

In this chapter, we provide a detailed comparison of several di-

versity management strategies in view of increasing long-term ge-

nomic selection gain and maintaining overall genetic diversity. We

focus on a typical recurrent selection plant breeding scheme, with a

fixed number of individuals selected in each cycle that equally con-

tribute to the next generation. Through simulations, we first com-

pare existing implementations of WGS and GOCS, and assess their

relative improvement over standard GS. Next, we use a unified op-

timization framework that maximizes a weighted index containing

breeding value and a well-chosen population diversity measure, to

contrast WGS and GOCS to new alternative methods that address

some of their inherent limitations. Based on the results, we discuss

the pros and cons of the different selection strategies from both a

practical and theoretical perspective.

5.2 materials and methods

5.2.1 Haplotypes, base populations and genetic trait architecture

To serve as the backbone for the simulationswe derived haplotypes

from genotypes of 192 founder inbred lines from the Oregon StateThrough
chromosome

doubling, haploid
sperm or egg cells
can be transformed
into homozygous

“doubled haploids”
and grown into a
doubled haploid

plant. This provides
a single-generation
shortcut towards

homozygosity which
otherwise requires

about six generations
of conventional

inbreeding. Breeders
like homozygous

inbred lines because
they are stable,

uniform, and can
easily be reproduced.

Universitywinter barley breedingprogram (Blake et al., 2012) using

the consensus map (Close et al., 2009) for marker positions, span-

ning a total of 1091 cM. The raw genotype dataset contained 2591

SNPs and was preprocessed to retain 2031 polymorphic SNPs at

unique positions with more than 99% homozygous values (see ap-

pendixA.1). Haplotypeswere inferred using Beagle (Browning and

Browning, 2009; Browning and Browning, 2007) through synbreed
(Wimmer et al., 2015). Following Sonesson et al. (2012) we posi-

tioned additional artificial identity-by-descent (IBD) markers with

unique founders alleles at an equal distance of 10 cM on all chro-

mosomes. These IBDmarkers were not used for selection or predic-

tion, but only to evaluate inbreeding based on genomic identity-by-

descent. We simulated 200 base populations by randomly mating

the 192 founders, followed by doubled haploid (DH) creation. In

each base population 1000 out of 2031 SNPs were randomly selec-

ted to be additive QTL for a complex trait and removed from the

marker dataset. The remaining 1031 SNPs were used as genetic

markers. QTL effects were sampled from a standard normal distri-

bution. The residual trait variance was derived from the assumed
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heritability and the observed genetic variance in the base popula-

tion, and was kept fixed for the entire simulation run. The heritability of a
trait is the proportion
of observed variance
that is due to genetic
variance. Breeders
like highly heritable
traits because then
good genotypes
consistently yield
high-quality
phenotypes.
Unfortunately
however, many traits
have a quite low
heritability, often
somewhere in the
range from 0.2 to 0.5,
complicating the task
of discriminating
between the good, the
bad, and the ugly in a
breeding program
due to noisy
phenotypic
observations.

5.2.2 Genomic prediction

We used Bayesian ridge regression to estimate marker effects based

on the linear model

y = µ+ Xβ+ e

where y is a vector of phenotypes, µ is the population mean, X
is a design matrix containing the 0/1-coded DH marker data (in-

dividuals × markers), β is a vector of marker effects and e is a

vector of random residuals. The model was fit using the R package

BGLR (Campos and Pérez, 2015) with default prior distributions

and initial values. The genomic estimated breeding value (GEBV)

of prediction individuals with genotypes X was calculated as

GEBV = X · β̂

where β̂ is the vector of estimated marker effects.

5.2.3 Breeding program simulations

For all four combinations of a low (h2 = 0.2) and high (h2 = 0.5)
heritability as well as a small (TP = 200) and large (TP = 1000) initial

training population we performed 200 simulations of the breeding

program defined by Jannink (2010) for the duration of 30 cycles.

Each simulation run starts from a different base population that

serves as the initial selection population and as the training popu-

lation (TP) to fit an initial genomic prediction (GP)model. In case of

a large training population, the base population was complemen-

tedwith 800 additional phenotyped individuals that were obtained

from the founder dataset using the same procedure (as described

above) but thesewere not considered candidates for selection. Input

for the predictionmodel are themarker genotypes and phenotypes,

inferred from the summedQTL effects and a randomerror sampled

from a normal distribution with variance equal to the residual trait

variance under the assumed heritability.

Using standard GS or alternative selection strategies (see below)

20 individuals are selected for random intermating followed by

doubled haploid creation to generate 200 new selection candidates.

In cycle 2 the same selection procedure is applied using the original

GP model while in parallel the 200 selection candidates are pheno-

typed to augment the model for use in cycle 3 (Jannink, 2010). The

process then iterates for 30 cycles (see figure 1.5).
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For each simulation scenario, several variables were extracted and

averaged over the 200 replicates. The first tracked variable is (cumu-

lative) genetic gain, expressed as the increase in average true genetic

value as compared to the base population. Prior to calculating gain,

genetic values were normalized to [−1, 1] based on the minimum

andmaximumattainable value over all possible genotypes.We also

tracked the inbreeding rate (Falconer et al., 1996)

∆F =
Ft − Ft−1
1− Ft−1

where Ft is operationalized as the average expected homozygos-

ity of either the artificial IBD markers (∆FIBD) or the actual SNP

marker panel (∆FIBS):

Ft =
1

m

∑
i

∑
j

p2ij

where pij is the frequency of the j-th allele of the i-th marker—IBD

or SNP—andm is the total number of the respective kindofmarkers.

In this way, inbreeding is expressed as the relative decrease in ex-

pected heterozygosity based on either identity-by-descent (∆FIBD)

or identity-by-state (∆FIBS). At selection population level we also

tracked the number of favourable QTL alleles lost and their total

effect, the mean QTL favourable allele frequency, and the number

of SNP alleles lost in general.

5.2.4 Standard and weighted genomic selection

Both standard (GS) and weighted (WGS) genomic selection rank

individuals according to their (w)GEBV and select then candidates

with the highest value. With WGS, marker effects are scaled to

obtain weighted breeding values

wGEBV = X ·


w1β̂1

.

.

.

wnβ̂n


where β̂i is the estimated effect of the i-th marker and wi is the

weight assigned to that marker. We used the weights

wi = f
−0.5
i

as defined by Jannink (2010) where fi is the favourable allele fre-

quency of the i-th marker, in the selection population.
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5.2.5 Optimal contributions selection

For GOCS (Sonesson et al., 2012; Woolliams et al., 2015) optimal

contributions ct are assigned to the selection candidates by maxim-

izing the expected genetic level gt+1 in the next generation under

a constraint that aims to realize a predefined target inbreeding rate

Ct+1 = ∆Ftarget:

max gt+1 = cᵀt GEBVt

with Ct+1 =
cᵀt Gtct

2
.

Here, GEBVt is a vector with breeding values in generation t and

the realized genomic relationshipmatrix Gt is used to constrain the

expected inbreeding in the next generation.We followedVanRaden

(2008) to calculateGt = ZtZ
ᵀ
t /[2
∑
pj(1−pj)]whereZt contains ref-

erence allele counts relative to the population mean (Woolliams et

al., 2015). As opposed to OCS where Ct+1 is increased over gen-

erations to account for accumulated absolute inbreeding using the

formula Ct+1 = 1− (1−∆Ftarget)
t
(Grundy et al., 1998) a fixed

value Ct+1 = ∆Ftarget is set over all generations in GOCS as,

unlike the expected pedigree-based relationship matrix A, the real-

ized genomic relationship matrix G is naturally scaled relative to

the population mean. More details are provided in appendix A.2.1.

To match the simulated breeding scheme that crosses n parents

with equal contribution, we imposed a minimum and maximum

contribution of cmin = cmax = 1/n, using the iterative heuristic

of Meuwissen (2002). This algorithm discards individuals with a

too low contribution and truncates those exceeding the maximum,

while repeatedly re-optimizing the remaining contributions. Due

to the operational constraint it is not always possible to achieve

precisely the desired value for Ct+1. Therefore, at a certain iter-

ation, our implementation of the applied heuristic may switch to

minimizing realized genomic relationship to assign the remaining

contributions, as explained in detail in appendix A.2.2.

5.2.6 Unified set selection framework

To obtain a truly fair comparison between existing strategies, and

somenewalternatives,we implemented them in a unified optimiza-

tion framework that uses general purposemetaheuristics to identify

optimal subsets. We selected a set of individuals by maximizing a

weighted index

F(S) = (1−α) · V(S) +α ·D(S)
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where S is a subset of the selection candidates and α ∈ [0, 1] is a

weight used to balance genetic merit V(S), defined as the average

GEBV of the selection, and diversity D(S). Both components are

dynamically normalized to [0, 1] using the procedure described in

section 2.3.1. We experimented with three different diversity meas-

ures, including minimization of the realized genomic relationship

as used in OCS to control inbreeding (IND-OC):

DOC(S) = −
cᵀt Gtct

2

where ct is a vector with 1/n for each selected parent in S, and 0 for

each remaining individual (Lindgren and Mullin, 1997). A second

version (IND-HE) balances gain and expected heterozygosity, in an

attempt to control the inbreeding rate when defined as the relat-

ive decrease in expected heterozygosity computed from the SNP

markers (∆FIBS):

DHE(S) =
1

m

m∑
i=1

2pi(1− pi)

where pi is the minor allele frequency of the i-th marker, in the

selected set S, and m is the number of markers. Finally, IND-RA

directly manages rare alleles using a criterion similar to one that

was previously shown to be effective in a context with known QTL

and effects (Li et al., 2008):

DRA(S) =
1

m

m∑
i=1

log (pi)

where pi andm are again the minor allele frequency and the num-

ber of markers, respectively. In contrast to Li et al. (2008) we con-

sider all alleles and not only the favourable ones. The logarithm

was truncated at

log (0) := −(log (n) + 1) (5.1)

to avoid that all selections in which at least one allele becomes fixed

would be incomparably evaluated at minus infinity (n being the

selection size).

As optimization engine we used the parallel tempering local search

metaheuristic as described in section 2.2.4, with ten replicas, a tem-

perature range of [10−8, 10−3], and a neighbourhood that randomly

swaps one selected and unselected item in an attempt to improve

the quality of the selection. The algorithm terminated when no im-

provement was found during five seconds. For normalization pur-

poses, we composed the best possible selection in terms of breed-

ing value only by selecting the n items with the highest individual
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IND

GOCS (Ct+1) OC (α) HE (α) RA (α)

Scenario 1 0.05 0.35 0.35 0.35

Scenario 2 0.02 0.65 0.35 0.35

Table 5.1: Considered parameter values when using the optimal con-

tributions selection (OCS) method, and when maximizing a

weighted index containing average breeding value and a spe-

cific diversity measure (IND-OC, IND-HE, IND-RA).

value. In addition, we used the same parallel tempering algorithm

as for the main optimization procedure to approximate the best

selection whenmaximizing diversity only—allowing nomore than

three secondswithout finding any further improvement. These two

extreme solutions were then used to determine the normalization

ranges of V(S) andD(S), as described in section 2.3.1. Selectionwas

implemented using the JAMES framework presented in chapter 3.

5.2.7 Parameter values

For GOCS, IND-OC, IND-HE and IND-RA we considered two val-

ues for the parameters Ct+1 and α, respectively. First, we searched

for the lowest value of Ct+1 (highest α) that still yields at least the

same short-term gain as WGS. Secondly, we determined parameter

values that resulted in roughly the same observed inbreeding rate

∆FIBS for these fourmethods. The optimal values for both scenarios

(table 5.1) were determined empirically, through a grid search with

α ∈ [0, 1] and a step size of 0.05 for IND-OC, IND-HE and IND-RA,

and Ct+1 ∈ [0.01, 0.1] with a step size of 0.01 for GOCS.

5.3 results

5.3.1 Simulation framework

We compare several long-term selection strategies in the GS-based

recurrent selection plant breeding scheme from Jannink (2010). Sim-

ulations were performed on a genome with 2031 SNPs allowing

the positioning of a 1000 QTL quantitative trait while leaving the

remaining 1031 SNPs (about 1 SNP per cM) to be used for selection

and diversity management. Because for some selection strategies

genetic gain was still observed beyond the 20 cycles considered by
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Jannink (2010) we extended the scheme to 30 cycles to fully appre-

ciate the long-term dynamics.

In our simulation framework trait heritability (h2 = 0.2 vs. h2 =

0.5) had a major effect on the GS genetic gain (figure 5.1) with,

as expected, a higher genetic gain plateau for the high heritability.

We also observe significant inbreeding under GS which is more

pronounced for ∆FIBS as compared to ∆FIBD. Varying the size

of the training population (TP = 200 vs. TP = 1000) to build the

initial genomic predictionmodel had less effect on genetic gain over

time in general, and on the relative performance of the selection

strategies in particular. Therefore, we provide the results for TP =

200 in appendix A.

5.3.2 Weighted GS and genomic OCS

We observe that irrespective of the trait heritability WGS slightly

reduces the short-term genetic gain as compared to GS—by at most

one cycle—to achieve a significantly higher long-term gain (fig-

ures 5.1 and A.1; left panel). This goes hand in hand with a gen-

eral control of the inbreeding rate, with minor differences between

∆FIBS and ∆FIBD but with a clear dependency on the training

population size and heritability, as higher inbreeding rates were

observed in case of a low heritability and/or small TP. At the first

cycle the inbreeding rate is exceptionally lower and even negative

for ∆FIBS.

Moreover, GOCS—with a constraint set at 0.05 to mimic the WGS

short-term gain—performed very similar to WGS in terms of long-

term gain as well (figures 5.1 and A.1; right panel). GOCS also

reduced the inbreeding as compared to GS, and more consistently

than WGS. In particular, GOCS provides more stable inbreeding

rates across cycles, that are independent of the training population

size and heritability. Yet, as opposed toWGS, the GOCS inbreeding

rate ∆FIBS is higher than ∆FIBD. Also, the response during the

first cycles is different, with GOCS gradually building up to a stable

valuewhileWGSonlyhada lowspike at thefirst cycle.Most notably,

over generations, the GOCS inbreeding rate consistently deviates

from the constraint value of Ct+1 = 0.05 that should match the

inbreeding rate ∆F, despite that this constraint was always closely

reached in the optimization routine (results not shown).

To explore possible underlying mechanisms causing the latter ob-

servation we also ran our simulations without genomic selection—

i. e. with a random selection of 20 individuals in each cycle—as

well as with a selection size of 50 instead of 20 (figure A.2). In
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Figure 5.1: Cumulative genetic gain (top) and inbreeding rate (IBS:

middle; IBD: bottom) for weighted genomic selection (WGS;

left) and genomic optimal contributions selection (GOCS;

right) as compared to standard genomic selection (GS). Res-

ults are reported for a low (h2 = 0.2) and high (h2 = 0.5)
heritability with a large initial training population (TP = 1000)

and are averages of 200 simulation runs. The inbreeding rates

are reported until at least half of the simulation runs have lost

all variability for the SNP marker panel used.
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the absence of selection both ∆FIBS and ∆FIBD remained constant

at 0.05, which is the expected drift (1/20) when randomly mating

20 doubled haploid plants. Exactly the same average value of 0.05

was observed when evaluating the GOCS criterion cᵀt Gtct/2 in this

setting. When selecting 50 individuals, GOCS moves towards the

∆F = 0.05 plateau for ∆FIBD, but not for ∆FIBS which still exceeds

the target inbreeding rate.

In summary we conclude that WGS and GOCS achieve similar

long-term genetic gain but have different behaviour at the level

of the inbreeding rate where in particular GOCS does not control

inbreeding at the target level.

5.3.3 Unified set selection framework

In order to more directly compare selection strategies that control

inbreeding or manage rare alleles we evaluated these in a unified

optimization framework that maximizes a weighted index of aver-

age breeding value and a diversity measure chosen to either min-

imize realized genomic relationship (IND-OC), maximize expected

heterozygosity (IND-HE), or retain rare alleles (IND-RA).

In a first scenario with GOCS and the index-based methods para-

meterized for a short-term genetic gain comparable to WGS (fig-

ure 5.2; left panel) IND-OC provides a genetic gain profile similar

to GOCS andWGS, while IND-RA and IND-HE give clearly higher

long-term gains. IND-OC also roughly parallels GOCS in terms of

inbreeding rate (except for ∆FIBS in the last few cycles) again with

clearly higher values for ∆FIBS as compared to ∆FIBD. IND-RA

and IND-HE give similar inbreeding rates below those of IND-OC

andGOCS. In addition there is almost no difference between∆FIBS
and ∆FIBD, and in contrast to IND-OC and GOCS a strongly neg-

ative inbreeding rate ∆FIBS is observed in the first generation. This

pattern closely resembles that observed for WGS (figure 5.1) but

with much less variability.

In a second scenariowithGOCSand IND-OCparameterized so that

the realized inbreeding rate ∆FIBS does not exceed that of IND-RA

and IND-HE during the entire simulation (figure 5.2; right panel)

the higher long-term gain obtained by both GOCS and IND-OC

comes with a major penalty on short-term gain, and is still outper-

formed by IND-RA and IND-HE. In this setting, with a less pro-

nounced selection for the simulated trait, inbreeding rates ∆FIBS
and ∆FIBD of GOCS and IND-OC are more similar and, although

also more stable over time, still clearly deviate from the expected
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Figure 5.2: Cumulative genetic gain (top) and inbreeding rate (IBS:

middle; IBD: bottom) of selection strategies that maximize

a weighted index containing breeding value and a diversity

measure chosen to control inbreeding (IND-OC, IND-HE) or

to avoid loss of rare alleles (IND-RA). Results for GS,WGS, and

GOCS are provided as a reference. For clarity, inbreeding rates

of GS andWGS are omitted. Two scenarios were considered to

set the parameters Ct+1 and α: maintain the same short-term

gain as WGS (left), or achieve a similar inbreeding rate ∆FIBS
(right). Results are reported for a low heritability (h2 = 0.2)
with a large initial training population (TP = 1000) and are

averages of 200 simulation runs.
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value of 0.02. Very similar results are observed for the small TP

(figure A.3) and h2 = 0.5 settings (figures A.4 and A.5).

Overallwe conclude that IND-RAand IND-HEare roughly equival-

ent long-term selection strategies that outperformWGS and GOCS

in our simulation framework.

5.3.4 Drift and selection at locus level

To better understand the underlying mechanisms operating in fig-

ure 5.2 we quantified the loss of favourable QTL alleles, the corres-

ponding QTL effect, the increase of favourable QTL allele frequen-

cies, and the number of SNP alleles lost in general (figure 5.3). In the

strong short-termgain scenario, on the left panel, IND-RAand IND-

HE retained clearly more favourable QTL alleles than WGS, GOCS,

and IND-OC that in turn retained considerably more favourable al-

leles than standard GS. This allowed IND-RA and IND-HE, and to

a lesser extentWGS, GOCS, and IND-OC, to increase the frequency

of these favourable alleles to higher levels beyond cycle 10 as com-

pared to GS, in a pattern that closely resembles genetic gain. For

maintaining SNP alleles in general, which reflects a combination

of what happens near QTL and at neutral loci, all methods show a

very similar trend as for the favourable QTL alleles. As compared

to IND-HE, IND-RA managed to retain slightly more alleles both

for SNPs in general and favourable QTL alleles in particular.

When a stronger restriction on inbreeding is imposed for GOCS

and IND-OC (figure 5.3; right panel) these methods retain slightly

more favourable QTL alleles, accounting for a similar total effect

and presumably thus with similar effect distribution, as compared

to IND-HE and IND-RA. A parallel increase is observed for the

number of maintained SNP alleles in general. Yet, these improve-

ments are combined with a lower performance for increasing the

favourable QTL allele frequencies, suggesting that IND-RA and

IND-HE achieve a better balance between selection and avoiding

drift as compared to the OC-based methods GOCS and IND-OC.

5.4 discussion

5.4.1 Genomic OCS increases gain without full inbreeding control

We used a simulation framework based on a recurrent selection

plant breeding scheme to compare several long-term genomic se-

lection strategies. In this breeding scheme GOCS outperforms GS
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Figure 5.3: Number of favourable QTL alleles lost (first row), total QTL

effect lost (second row), mean QTL favourable allele frequency

(third row), and number of SNP alleles lost (fourth row) with

the simulated selection strategies. Two scenarios were con-

sidered to set the parameters Ct+1 and α: maintain the same

short-term gain as WGS (left), or achieve a similar inbreeding

rate ∆FIBS (right). Results are reported for a low heritability

(h2 = 0.2) with a large initial training population (TP = 1000)

and are averages of 200 simulation runs.
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for long-term genetic gain and also results in a lower inbreeding

rate, which is in line with earlier observations (Woolliams et al.,

2015). Nearly identical results were obtained with the standard it-

erative algorithm (figure 5.1; right) and an index-based implement-

ation of the same criterion (IND-OC; figure 5.2) which confirms

that maximizing genetic gain while controlling inbreeding can also

be achieved by optimizing an index that weighs both objectives,

instead of maximizing gain while constraining inbreeding (Carval-

heiro et al., 2010; Clark et al., 2013). The similar results of GOCS and

IND-OC also suggest that in our special case, with a fixed number

of selected individuals and equal contributions, the iterative heur-

istic of Meuwissen (2002) wrapped around OC’s core optimization

works well, as previously observed by Mullin and Belotti (2016).

Yet, despite that all simulations closely reach the imposed GOCS

constraint Ct+1 = ∆Ftarget, the observed inbreeding rates ∆FIBS
and ∆FIBD significantly deviate from this target level over gener-

ations. This differs from previous results by Sonesson et al. (2012)

whodid find thatGOCS controls∆FIBD at the constraint value. The

fact that the GOCS criterion Ct+1 = ct
ᵀGtct/2 does equal the in-

breeding rate when no genomic selection is performed (figure A.2;

left panel) suggests that the observed discrepancy is linked to se-

lection. This hypothesis is confirmed by the theoretical expression

of ∆FIBS in terms of allele frequencies and their changes (see ap-

pendixA.2) showing that the inbreeding rate is the sumof ct
ᵀGtct/2

and a second term involving cross products ∆j(2pj− 1) of frequen-

cies and deltas. The latter term is expected to be close to zero when

allele frequencies and their changes are independent such as in a

scenariowithout selection. Under genomic selection, however, it be-

comes positive and increases over generations as selection pushes

favourable alleles towards fixation. Once the frequency of a favour-

able allele exceeds 0.5, a beneficial ∆j has the same sign as 2pj − 1,

making their product positive. As such the inbreeding rate can

be seen as the sum of a first component relating to the frequency

changes at all loci in general, which is constrained by GOCS, and a

second component that captures additional inbreeding due to spe-

cific selection pressure, which is not controlled by GOCS. The latter

explains why the observed inbreeding rates generally exceed the

target level when constraining Ct+1 = ct
ᵀGtct/2 to ∆Ftarget.

Knowing that GOCS does not fully control inbreeding under gen-

omic selection still leaves the questionwhy thiswas not observed by

Sonesson et al. (2012)whoonly evaluated genomic IBD.Here thede-

tails of the simulation framework become important. We followed

the same approach as Sonesson et al. (2012) to calculate genomic

IBD, by working with a large collection of unique founder alleles

positioned at equal distances across the genome. These founder al-
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leles are specified irrespective of the QTL meaning that the same

QTL allele can be linked to different founder alleles. As a result

inbreeding at loci with favourable QTL can go undetected because

the linked founder alleles are different, particularly when many

founder alleles are still around in the population. This is likely the

case in the simulations of Sonesson et al. (2012) where 200 indi-

viduals are selected in every generation and not in our setting, with

only 20 individuals selected and therefore maximally 20 founder

alleles per population except for the base population. In our sim-

ulations the effect of the large number of different founder alleles

at the IBD markers is visible in the one-generation lag of ∆FIBD as

compared to ∆FIBS (figure 5.1) and a less pronounced deviation of

∆FIBD from the target inbreeding rate. Moreover, when selecting

50 instead of 20 individuals in every generation (figure A.2) ∆FIBD
starts below the target of 0.05—due to the large selection intensity

it is impossible to achieve this fairly high inbreeding rate in early

cycles—and then converges to the target level, as previously ob-

served by Sonesson et al. (2012), while ∆FIBS is still not controlled

at the target level.

Along the lines we also conclude that ∆FIBS measured with the

actual marker panel will best represent loci under selection, while

the multi-allelic IBD markers with unique founder alleles may bet-

ter represent loci that are not under selection (although it is hard

to imagine that these really exist with a 1000 QTL trait).

Taken togetherGOCS increases long-termgenetic gain as compared

to GS through better control of inbreeding, with the restriction of

only fully controlling inbreeding at loci not subjected to selection.

5.4.2 Weighted genomic selection

The WGS method, which amplifies rare favourable allele effects

when calculating GEBVs, also outperforms GS for genetic gain (fig-

ure 5.1; left panel) to a similar extent as in previous simulations

by Jannink (2010)—thus confirming earlier results and validating

our simulation framework. Compared to GS, WGS not only clearly

controls the inbreeding rate but also yields very similar ∆FIBS and

∆FIBD (figure 5.1) suggesting that it operates equally onneutral loci

and loci under selection, which is further supported by the parallel

pattern for loss of favourableQTL alleles and SNPs (figure 5.3). This

general effect on inbreeding is somewhat surprising because WGS

only pushes frequencies of rare favourable alleles. Considering that

the effect estimates for rare alleles in the genomic prediction model

are likely very imprecise and might often even be of the wrong
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sign, we can imagine that WGS in fact operates on rare alleles in

general—at least in our setting with a 1000 QTL trait. It remains un-

clear, however, whetherWGSwould operate in amore trait-specific

way when used for less complex traits. The intrinsic variability in

the individual allele effect estimates might also be a reason for the

somewhat unstable inbreeding control by WGS (figure 5.1) and

makes this method highly dependent on external factors such as

the trait heritability and training population size, suggesting that

WGS may not always work as well as in our simulations.

Comparing WGS and GOCS we find that these methods provide

the same short- and long-term genetic gain (figure 5.1) although

it should be noted that both approaches can be further tweaked

through parameter settings. Overall WGS appears a valid strategy

to combine genetic gain with inbreeding control, and performs

similarly as GOCS albeit with some hints of intrinsic instability.

5.4.3 New index-based selection strategies

Weexploredpossible improvements onGOCSandWGS in aunified

optimization framework with an objective that weighs genetic gain

versus a diversity metric that is specific for the selection strategy.

The optimal set of individuals to select is then approximated using

the powerful parallel tempering local search metaheuristic, that

maximizes the weighted index objective (see section 2.2.4).

A first strategy, IND-HE, aims to control inbreedingmore generally

than GOCS by also addressing the component specifically related

to loci under selection. IND-HE does so by balancing genetic gain

with high expected heterozygosity in the selected set. This is equi-

valent to minimizing the IBS-based inbreeding rate ∆FIBS defined

as relative decrease in expected heterozygosity.

In our simulation framework IND-HE clearly outperforms GOCS

and IND-OC under various settings. In the scenario with similar

short-term gain (figure 5.2; left panel) IND-HE realizes the same

genetic gain during the first 10 cycles but with a lower inbreed-

ing rate. This is likely because the IND-HE objective specifically

quantifies inbreeding under selection, and as such captures the un-

avoidable penalty of fixing favourable alleles intrinsically linked to

genetic gain. Therefore, to maintain gain, IND-HE leads towards

selections where this inevitable additional inbreeding near QTL is

compensated with lower inbreeding at neutral loci and at loci not

yet under selection. As such, IND-HE is able to achieve the same

genetic gain with less total inbreeding as compared to GOCS and

IND-OC, due to which it retains more SNP alleles in general and
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more favourable QTL alleles in particular (figure 5.3). The latter en-

ables higher long-term gain in later cycles, when these conserved

favourable alleles also start to move towards fixation. In conclusion,

it seems that IND-HE provides a better balance between genetic

gain and inbreeding control as compared to GOCS and IND-OC.

When keeping the realized inbreeding rates of GOCS and IND-OC

below the level of IND-HE (figure 5.2; right panel) both methods

retain a similar amount of favourable QTL alleles as IND-HE (fig-

ure 5.3). Yet, in this scenario GOCS and IND-OC show a consid-

erably lower short-term gain than IND-HE without leading to a

significant increase in long-term gain. We see two main reasons

for this observation. First, to keep the realized inbreeding rate be-

low that obtained with IND-HE, over all generations, we manually

needed to correct for the additional inbreeding due to selection

that is ignored by GOCS. As such, the target value for GOCS was

considerably reduced from 0.05 to 0.02, resulting in a lower in-

breeding rate than IND-HE up to cycle 10 (except from the first

cycle) which impedes gain. In addition, GOCS limits squared al-

lele frequency changes regardless of their direction, assuming that

deviations from the current frequency always erode diversity due

to inbreeding. The latter holds when pushing favourable allele fre-

quencies already above 0.5 towards fixation. However, especially

in early cycles, both gain and diversity could be simultaneously

improved at certain loci, by amplifying favourable alleles with a

frequency currently below 0.5. For such loci, the inbreeding term

∆j(2pj − 1) linked to selection is negative and may therefore com-

pensate larger deltas at other loci. Yet, this term is ignored byGOCS

due to which allele frequency changes may be overly constrained,

potentially resulting in lower genetic gains. Also in this scenario

we conclude that IND-HE is a more effective alternative for GOCS

that provides a better inbreeding control, in particular also at loci

under selection, and as such a better balance between genetic gain

and diversity management.

The fact that the criterion used by GOCS and IND-OC ignores the

direction of allele frequency changes is immediately visible in the

first generation of our simulations, where IND-HE simultaneously

realizes a strongly negative inbreeding rate and a high genetic gain

(figure 5.2), which is similar to observations for WGS (figure 5.1)

but outperforms GOCS and IND-OC (figure 5.2). We believe this

is possible due to the presence of several large effect favourable

alleles at very low frequencies in the population, in which case a

strong selection for the trait can go hand in hand with increasing

population-level heterozygosity. WGS and IND-HE are able to ad-

apt to this situation and exploit this benefit while constraint-based

methods like GOCS do not have the flexibility to go below the tar-
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get inbreeding rate. This is a particular advantage for populations

new to GS, as they are more likely to encounter positive large effect

rare alleles as compared to populations already exposed to long-

term GS. Even when relaxing the constraint to cᵀt Gtct/2 6 Ct+1
instead of cᵀt Gtct/2 = Ct+1, following e. g. Pong-Wong andWoolli-

ams (2007), GOCSwould only go for an average squared frequency

change below the target level if this yields higher immediate gain,

which is unlikely, and still fails to recognize that amplifying rare

favourable alleles is beneficial for both gain and diversity. The latter

is inherent to the criterion used and thus also applies to IND-OC.

Therefore, the start of a GS program may well be a point with a

particularly pronounced difference between the OC-based meth-

ods and IND-HE because of the somewhat atypical situation with

potentially many low frequency alleles, which may be addressed

more effectively with a flexible index-based approach as compared

to constraint-based strategies, and clearly requires methods that

precisely model inbreeding also at loci under selection.

In an attempt to improveWGSwe accommodated the specific focus

on rare alleles in the diversity component of the index-based selec-

tion framework using the metric from Li et al. (2008), adjusted to

operate onminor instead of favourable allele frequencies (IND-RA).

The precise metric used is the mean of the log-transformed minor

allele frequencies calculated in the set of selected individuals, with

the log-transformation giving additional weight to rare alleles as

compared to IND-HE. For genetic gain as well as for controlling the

inbreeding rate IND-RA clearly outperforms WGS (figure 5.2).

We see two reasons for this observation. First, and likely most im-

portantly, IND-RA resolves an intrinsic shortcoming of WGS, i. e.

that truncation selection based on scores assigned to selection can-

didates cannot guarantee that the optimal set is selected. For ex-

ample it is possible that multiple individuals carrying the same

beneficial rare allele are selected while it might be better to choose

complementary individuals that carry different rare alleles. The lat-

ter is favoured by IND-RA because the rare allele frequencies are

evaluated at the level of the selected set. A second advantage is

that IND-RA makes the management of rare alleles independent

of the estimation of their effects in the genomic prediction model,

that come with a high error and are dependent on external factors

such as the trait heritability and training population size. This is

likely the reason why IND-RA gives a more stable inbreeding rate

than WGS (figures 5.1 and 5.2), and brings the additional benefit

that rare alleles are managed in general and not specific for the trait

under genomic selection and its genetic architecture. We conclude

that IND-RA is superior to WGS for a selection strategy that avoids

loss of rare alleles.
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We do note that if desired it is possible to modify IND-RA to penal-

ize loss of favourable alleles only, resulting in a more trait-specific

approach, like WGS. However, experimenting with such alternat-

ives (H De Beukelaer, G De Meyer; personal communication) gave

similar or slightly worse gains suggesting that the simulated trait

has too many underlying QTL to benefit from focusing on favour-

able alleles, due to inaccurate individual effect estimates.

Contrasting the IND-HE and IND-RA methods, that best repres-

ent their respective selection strategies, we find that both perform

almost identically across a wide range of conditions (figures 5.2

and 5.3). This is not too surprising as avoiding loss of alleles is a

specific aspect of controlling inbreeding. Both methods push to-

wards high expected heterozygosity at population level and the

main difference is their exponentially (IND-RA) versus quadrat-

ically (IND-HE) increasing focus on rare alleles. IND-RA indeed

retains slightly more alleles than IND-HE (figure 5.3) but this is

likely not important enough to affect long-term genetic gain within

30 cycles. Experiments with a different founder dataset (HDe Beuk-

elaer, G De Meyer; personal communication) having fewer QTL

(100) and SNP markers (about 800) revealed that in such case there

was a slight benefit of IND-RA over IND-HE when looking at long-

term gain, likely because then 30 cycles were sufficient to realize

some of the additional potential gained by retaining more favour-

able QTL alleles.

Overall, we conclude that IND-RA and IND-HE better balance ge-

netic gainwith avoiding loss of rare alleles, and controlling inbreed-

ing in general, as compared toWGS andGOCS. Because our results

indicate that general underlyingmechanisms are at play, we believe

that their relevance will extend from our simulation framework to

many practical breeding settings.

5.4.4 Practical considerations for implementing IND-RA and IND-HE

Although the index-based optimization objectives for IND-RA and

IND-HE are straightforward to compute for a given set of selection

candidates, these methods need to identify the best subset from a

huge number of possibilities. Achieving thiswithin reasonable time

requires intelligent combinatorial optimization algorithms, which

is a major complication as compared to WGS where only wGEBV

for all candidates have to be calculated, and as compared to GOCS

where specific software is available. To allow high flexibility in

terms of diversity metrics we used a general purpose metaheur-

istic to approximate the optimal selection, and chose for the par-
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allel tempering algorithm because it is ideally suited for discrete

optimization—as in the adopted breeding scheme where a fixed

number of individuals are crossed with equal contribution. For

breeding schemes involving unequal contributions other, continu-

ous optimization algorithmsmight bepreferred, such asdifferential

evolution (Carvalheiro et al., 2010; Clark et al., 2013) or Lagrangian

multipliers (Woolliams et al., 2015). In any case several practical

tools are available for high-level heuristic optimization, including

the JAMES framework described in chapter 3, that allow the user

to specify any type of optimization objective that suits the breeding

scheme at hand, and the type of diversity metrics deemed relevant.

We also note that the time needed for the search is not limiting—in

our simulations it takes only a few seconds, and thatwould increase

to at most a few minutes for e. g. multiple ten thousands of mark-

ers, because computation times increase linearly with the number

of markers for the diversity measures used. Once the heuristic is

in place it is straightforward to refine the objective function, for ex-

ample by exploring other diversitymetrics or including phenotypic

diversity for relevant breeding objectives not yet under selection, or

combinations of the above as the breeding program requires.

Furthermore, it should be mentioned that the log-criterion used

by IND-RA could be further refined, for example by modifying the

penalty assigned to losing an allele due to selection in equation (5.1).

It is also possible to adjust the IND-RA and IND-HE methods for

breeding schemes that allow unequal contributions by calculating

the respective diversity metrics for the expected frequencies in the

offspring, instead of the frequencies in the selection, and using a

continuous optimization engine to find the contributions that best

balance gain and diversity.

Finally, we note that in practice it may not be easy to find the

best weight α, and that an index-based selection strategy does not

allow to impose a predefined inbreeding rate. On the other hand

Woolliams et al. (2015) argue that it is also not straightforward to

set the target inbreeding rate in an OC-based approach, and we

believe that simulating the breeding scheme at hand from its actual

base population may be the most effective way to find appropriate

parameter values, resulting in the desired balance between genetic

gain and diversity, when using any selection strategy.

5.5 conclusions

We investigated the performance of several long-term genomic se-

lection strategies to balance genetic gain and population diversity,
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in a simulation framework for a recurrent selection plant breeding

scheme with equal contributions of a fixed number of individuals

in each generation.

Genomic optimal contributions selection (GOCS), which extends

pedigree-based OCS and constrains the realized genomic relation-

ship among selected individuals, unexpectedly did not control the

inbreeding rate at the target level. This happens because GOCS ig-

nores the specific increase in inbreeding due to selection pressure

at loci linked to QTL, which renders GOCS suboptimal for com-

bining genetic gain with inbreeding control. We showed that this

issue can be resolved with an index-based method (IND-HE) that

balances genetic gain with expected heterozygosity in the selected

set. IND-HE provides better results under a variety of settings, and

is particularlymore effective during the first cycles of a GS breeding

program where gain and diversity may not yet be competing.

We also showed that weighted genomic selection (WGS), which

amplifies rare allele effects when calculating GEBVs, is not fully

effective at maintaining these rare alleles, or controlling inbreeding

in general, because it was implemented as a truncation selection.

An alternative method IND-RA that weighs genetic gain with rare

allele frequencies in the set of selected individuals outperforms

WGS with results that are very similar to IND-HE.

Both IND-HE and IND-RAprovide a clearly better balance between

genetic merit and diversity than GOCS or WGS and proved stable

and effective irrespective of trait heritability and initial training

population size. While requiring further testing in other breeding

schemes, we believe that the inherent benefits of the IND-HE and

IND-RA methods will transfer from our simulation framework to

many practical breeding settings, and are a major step forward

towards efficient long-term genomic selection.
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lations and analysis were performed in R 3.2.1 (R Core Team, 2015).

Table A.1 provides a complete list of used R packages and their

versions. Wemaximized the weighted indices of IND-OC, IND-HE

and IND-RA in Java 8 using the JAMES framework (v1.2) presen-

ted in chapter 3. Java code was executed within R using the rJava
package (Urbanek, 2015).
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MARKER-ASS I STED GENE PYRAMID ING

summary

Some traits, including many disease and pest resistances, are con-

trolled by a small number of genes. For such simple traits, breeders

can target a fixed allele configuration at a small number of causal

or linked loci. Efficiently obtaining this genetic ideotype from a

given set of parental genotypes is known as the marker-assisted

gene pyramiding problem. Existing methods either impose strong

restrictions or use black box integer programming solutions, while

we explore the power of an explicit heuristic approach that exploits

the underlying genetic structure to prune the search space.

Gene Stacker combines an explicit directed acyclic graph model

with a simple generation algorithm, providing both exact and heur-

istic pruning criteria to reduce the number of generated crossing

schemes. We show that Gene Stacker yields good solutions for

stacking problems of varying complexity. For more complex prob-

lems, the heuristics allow to obtain valuable approximations. Oth-

erwise, fewer heuristics can be applied, resulting in an interesting

quality-runtime tradeoff.Gene Stacker is competitivewith previous

methods and often finds better and/or additional solutions within

reasonable time, because of the powerful heuristics.

The inherent flexibility of this approach allows to easily address im-

portant breeding constraints so that the obtained crossing schemes

can be used in practice without major modifications. In addition,

the ideas applied for Gene Stacker can be incorporated in and

extended for a plant breeding context that for example also ad-

dresses complex quantitative traits or conservation of genetic back-

ground. The open-source Gene Stacker software is freely available

at http://genestacker.ugent.be. The website also provides doc-

umentation and examples of how to use Gene Stacker.

6.1 introduction

The breeding scheme simulated in chapter 5 was used to maximize

yield, which is one of the most important but also most complex
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x
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Grow and cross parental genotypes A & B

Screen offspring for
target genotype D,
cross with parental
genotype C

Screen offspring for ideotype I

A B

D C

I

Figure 6.1: General crossing scheme layout (example). In each generation,

a number of plants are grown and screened for the desired

target genotypes. Crossings are then performed to provide

new offspring to be grown, genotyped, and selected for use

in the next generation. All crossings and selection targets are

fixed in advance.

traits. Current marker-based plant breeding strategies designed to

manage such complex traits focus on prediction, using hundreds

or thousands of genome-wide markers, rather than on causality

of individual markers. When breeding for simple traits however,

such as many disease or pest resistances, we can go much further

than just prediction of genetic value. Because such simple traits

are controlled by a small number of genes we can precisely define

the breeding target, looking at the few involved genes only, and

predesign a detailed crossing scheme to efficiently obtain this so-

called ideotype from the available resources.

In this chapter we develop an explicit framework to deal with such

foregroundmarkers. The objective is to design a crossing scheme that

efficiently stacks a small number of favourable trait alleles (causal

or tightly linked) present in a set of parental genotypes. This is

known as the marker-assisted gene pyramiding or gene stacking

problem. A crossing scheme consists of a number of generations in

which plants are grown and screened to identify desired genotypes.

These targets are selected for crossings, generating offspring to be

grown, genotyped, and selected for use in the next generation, until

the ideotype is obtained. An example with 3 parental genotypes

is given in figure 6.1. Because the number of possible crossing

schemes grows exponentially with the number of loci and parental

genotypes, it is very challenging to design good schemes. With n

loci, even a single crossing may produce a vast amount of up to

O(4n) possible offspring which are all candidates to be selected.
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There are twomain aspects that define a crossing scheme: the target

genotypes aimed for in each generation (selection problem) and the

crossings to be performed with these selected targets (scheduling

problem). Important properties of a crossing scheme are the num-

ber of generations (time) and the size of the offspring (cost) that

needs to be grown and screened to obtain the target genotypes in

each generation. The latter is inversely proportional to the probab-

ility of observing these targets among the offspring.

Previous research on this topic has mainly focused on providing

general guidelines for plant breeders (Ishii and Yonezawa, 2007;

Ye and Smith, 2008) while only few papers offer a systematic al-

gorithmic approach. Servin et al. (2004) considered restricted par-

ental genotypes and represented crossing schemes as binary trees.

For each crossing, the progeny that inherits all favourable alleles

from both parents is selected, i. e. the selection problem is not op-

timized. An exhaustive algorithm is applied to generate all pos-

sible crossing schemes by iteratively combining smaller schemes

through new crossings. Later, integer programming approaches The CPLEX studio
sold by IBM is a
well-known tool for
various types of
mathematical
optimization.
Academics and
students can use it
for free. For more
info, see http:
//cplex.com .

were developed that use general purpose solvers like CPLEX to con-

struct optimal schemes. Xu et al. (2011) perform a multi-objective

optimization to fix desirable alleles while maintaining genetic vari-

ability at some remaining loci when possible. Only the selection

problem is considered: each target allele in the ideotype is assigned

an originating parental genotype and arbitrary minimum-depth

binary trees are used to stack the genes according to this assignment.

Canzar and El-Kebir (2011) provide a more powerful mixed integer

programming (MIP) implementation were crossing schemes are

modelled as directed acyclic graphs (DAGs) that allow reuse of ma-

terial. Both the selection and scheduling problem are considered

and themodel incorporates a constraint on the number of offspring

generated from one crossing, taking into account that the number

of seeds produced per crossing strongly differs across plant species.

We introduceGene Stacker,which combines an explicit DAGmodel,

extending that of Canzar andEl-Kebir (2011), with a pruned genera-

tion algorithm, inspired by the simple exhaustive search of Servin et

al. (2004).We demonstrate that this works for small problemswhile

more complex problems require supplementary heuristic pruning

criteria that exploit the genetic structure to skip well-chosen parts

of the search space. The proposed heuristics provide an interesting

quality-runtime tradeoff. Gene stacker is not only a flexible and

performant marker-assisted gene pyramiding tool with direct prac-

tical applications, but also a framework that can be extended, for

example to also optimize for complex quantitative traits.

http://cplex.com
http://cplex.com
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6.2 mathematical modelling

6.2.1 Encoding of genotypes

A diploid phase-known genotype G = (G1, . . . ,Gk) consists of an
ordered sequence of k > 1 chromosomes, each represented by a

2× ni matrix Gi of alleles, where ni is the number of considered

loci on the i-th chromosome. The rows Gi,1 and Gi,2 of matrix GiIn this context,
calling a genotype

“homozygous"
indicates that all of
the few considered

loci are homozygous.
This does not say

anything about the
entire genome and
should for example

not be confused with
fully homozygous

inbred lines.

are called haplotypes and each correspond to one of the two homo-

logous chromosomes of a diploid species. Note that interchanging

the haplotypes (rows) of a chromosome Gi ∈ G does not affect the

genotype. The columns Gi(j), j = 1, . . . ,ni, correspond to the con-

sidered loci in chromosomeGi and binary values (0/1) indicate the

absence or presence of specific alleles. At every locus 0 6 j 6 ni− 1
of chromosomeGi there are two allelesGi,1(j) andGi,2(j). This j-th

locus is homozygous if Gi,1(j) = Gi,2(j), else it is heterozygous. A

genotype is said to be homozygous if all considered loci in each

chromosome are homozygous.

6.2.2 Recombination rates

When crossing two diploid genotypes P and Q, each parent pro-

duces a haploid gamete and fusion of these gametes yields the

diploid genotype of the child. A gamete H = (H1, . . . ,Hk) pro-

duced by genotype P = (P1, . . . ,Pk) consists of a series of hap-

loid chromosomesHi which each comprise a single haplotype and

which are each (independently) obtained from the respective dip-

loid chromosome Pi. A diploid chromosome can yield a number

of different haplotypes due to recombination of alleles (crossover

events). Given that we know the distance between any pair of loci

on the same chromosome, we can convert these distances to cros-

sover rates ri,p,q corresponding to the probability that a crossover

will occur between loci p and q on the i-th chromosome, e. g. us-

ing the mapping function of Haldane (1919). Then, the probability

Pr[Pi,Qi → Gi] that chromosomes Pi and Qi will yield haplo-

types which together form the new chromosome Gi is computed

using formulas described by Canzar and El-Kebir (2011). For de-

tails, see appendix B.1. As Gene Stacker explicitly models multiple

chromosomes, the final probability Pr[P,Q→ G] of producing the

entire phase-known genotype G when crossing parents P and Q is
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computed by multiplying the probabilities with which each chro-

mosome is independently produced:

Pr[P,Q→ G] =

k∏
i=1

Pr[Pi,Qi → Gi].

6.2.3 Population size

Each genotype among the possible outcome of a crossing is a can-

didate to be selected in the next generation. However, such target

genotype can only be selected if it actually occurs among the off-

spring. Thus, a sufficient amount of offspring should be generated

so that the targets are expected to be produced. Consider a cross-

ing of genotypes P andQ and a target genotypeG that is produced

with probability ρ = Pr[P,Q→ G]. Given a desired success rate γ ′,
the corresponding population sizeN(ρ,γ ′) indicates the number of

offspring that has to be generated so that the probability of obtain-

ing at least one occurrence of G is at least γ ′ (Canzar and El-Kebir,

2011; Servin et al., 2004):

N(ρ,γ ′) =


⌈

log (1− γ ′)

log (1− ρ)

⌉
if ρ < 1

1 otherwise

(6.1)

Gene Stacker ensures a global success rate γ (e. g. 95%) by setting

a success rate γ ′ = n
√
γ for each individual target, where n is the

total number of targets obtained from crossings that can produce

more than one possible child (i. e. crossings with uncertainty about

the outcome). The total population size of a crossing scheme is

equal to the sumof the population sizes required to obtain all target

genotypes aimed for through the scheme and reflects the cost of the

scheme. When several different genotypes or multiple occurrences

of a specific genotype are targeted among offspring grown from the

same seed lot, it is possible to compute a (lower) joint population

size expressing the number of offspring that has to be generated to

simultaneously obtain all targets (see appendix B.2).

6.2.4 Extended DAG model

Gene Stacker models a crossing scheme as a directed acyclic graph

(DAG) with three types of nodes:

• Seed lot nodes: represent seeds obtained from a crossing, mod-

elling the probability distribution of all phase-known geno-
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types that may be produced. The source nodes of the graph

are seed lot nodes from which the parental genotypes are

grown. These initial seed lot nodes are assumed to be genet-

ically uniform, i. e. they contain only one fixed phase-known

genotype, and never to be depleted. Every internal seed lot

node has a single crossing node as its parent. Edges leaving

from a seed lot node are directed towards one or more plant

nodes in any subsequent generation.

• Plant nodes: represent target genotypes to be selected from

offspring grown from a specific seed lot. A plant node is

labeled with its phase-known genotype and required pop-

ulation size (groups of plant nodes that are simultaneously

obtained from the same seed lot are labeledwith the required

joint population size instead). If more than one occurrence of

the respective genotype is targeted, the desired number of

duplicates is indicated. Every plant node has a single seed

lot node as its parent. Edges leaving from plant nodes lead to

crossing nodes in the same generation.

• Crossing nodes: represent crossings with two plants from the

same generation, resulting in a seed lot available in the next

and all following generations. A crossing node is labeledwithCrossing a plant
with itself is referred
to as “selfing". The

fact that this is
possible for many

plant species is one
very important

difference between
animal and plant

breeding.

the number of times that the crossing is to be performed (if

more than once). Every crossing node has two (not necessarily

distinct) plant nodes as its parents. A single edge leaves from

every crossing node to a seed lot node in the next generation.

Figure 6.2 shows a crossing scheme with 3 generations and a total

population size of 1197. It is assumed here that every crossing

provides about 250 seeds and that each plant can be crossed twice

(or selfed once). Circular nodes represent seed lot nodes, rectan-

gular nodes are plant nodes, and diamonds are crossings. Nodes

which are aligned at the same vertical level are part of the same

generation. The source nodes cover the 0-th generation, and each

subsequent level of seed lot nodes starts the next generation. Gene

Stacker’s model allows reuse of plants (within a generation) as well

as remaining seeds (across generations) and is an extension of the

original DAGmodel from Canzar and El-Kebir (2011) which uses a

single node type corresponding to Gene Stacker’s plant nodes.

6.2.5 Linkage phase ambiguity

Gene Stacker is entirely based on phase-known genotypes as this

allows to infer the distribution of possible offspring from a crossing.

However, in practice, the linkage phase of a genotype is not directly
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Overall LPA: 0%
# Plants: 1197

1 1

4523

278 144

318

S1

[0][0 0][0][0][0][1 1]
[0][0 0][1][1][1][1 1]

x3

S2

[0][0 0][0][0][0][0 0]
[1][0 0][0][0][0][0 0]

S3

[0][0 1][0][0][0][0 0]
[0][1 0][0][0][0][0 0]

2

S4

[0][0 0][0][0][0][0 0]
[1][1 1][0][0][0][0 0]

2

S5S6

[0][0 0][0][0][0][0 0]
[1][1 1][1][1][1][1 1]

[0][0 0][1][1][1][1 1]
[0][0 0][1][1][1][1 1]

2

S7

[0][0 0][1][1][1][1 1]
[1][1 1][1][1][1][1 1]

BA

C D
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I

Figure 6.2: An example crossing scheme according to Gene Stacker’s DAG

model, with 3 generations and a total population size of 1197

(sum of population sizes required to obtain all target geno-

types, as indicated at the corresponding plant nodes). It is

assumed that every crossing yields about 250 seeds and that

each plant can be crossed twice (or selfed once). First, parental

genotypes A and B are crossed. This crossing is performed

twice to provide a sufficient amount of seeds to obtain the

target genotype D among the offspring. Subsequently, D is

crossed with the third parental genotype C and the latter is

also crossed with itself (twice). To be able to perform each of

these crossings, 3 duplicates of C are grown. Finally, E and F

are crossed to produce the ideotype I.
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observed (Browning andBrowning, 2011). Therefore, it is important

to monitor the linkage phase ambiguity (LPA) which expresses the

probability that a genotype will have an undesired linkage phase.

The observed allele frequencies of a genotype G are referred to as

G̃. When crossing genotypes P andQ, the probability Pr[P,Q→ G̃]

of obtaining any genotype with the same allele frequencies as G is

computed as follows:

Pr[P,Q→ G̃] =
∑

G ′,G̃ ′=G̃

Pr[P,Q→ G ′].

Then, the linkage phase ambiguity of G is equal to

LPA[P,Q→ G] = 1−
Pr[P,Q→ G]

Pr[P,Q→ G̃]
.

For target genotypeswith non-zero linkage phase ambiguity, the in-

ferred LPA is included in the label of the corresponding plant node.

The overall LPA of a crossing scheme is defined as the probability

that at least one target genotype aimed for through the scheme will

have an undesired linkage phase, and can easily be computed from

the individual, independent ambiguities.

6.3 optimization strategy

6.3.1 Approximated Pareto front

Gene Stacker approximates the Pareto front of crossing schemes

with a minimum number of generations, total population size, and

overall linkage phase ambiguity, possibly subject to a number of

crop specific and practical constraints. Upper limits can be set for

(a) the number of generations (required); (b) the overall linkage

phase ambiguity; (c) the total number of crossings; (d) the popula-

tion size per generation; and (e) the number of crossings with each

plant. Also, the expected number of seeds obtained from a cross-

ing can be specified. As described in section 2.3, the Pareto front

contains all solutions within the constraints that are not dominated

by any other valid solution, where a scheme S ′ dominates another

scheme S if it is at least as good for every objective and better for

at least one objective. All non-dominated schemes are optimal in

some sense as they provide tradeoffs with respect to the different

objectives. The Pareto front approximation constructed by Gene

Stacker contains all obtained schemes for which no dominating

other solution has been found.
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6.3.2 Optimization algorithm

The main generation algorithm used by Gene Stacker is a breadth-

first search (see section 2.2.1) similar to the exhaustive strategy from

Servin et al. (2004),where exact andheuristic pruning criteria are ap-

plied to reduce the number of generated schemes. The search space

is traversed as a tree by starting with the smallest possible schemes,

i. e. those which simply grow one of the parental genotypes, and

iteratively extending schemes through additional crossings. There

are two types of extensions: (a) selfing the final plant of a scheme; or

(b) combining two schemes through a crossing of the final plants of

both schemes. Every phase-known genotype among the offspring

is then considered as a selection target, yielding a (possibly huge)

number of extended schemes.With each node in the search tree cor-

responds a partial crossing scheme that is extended in all possible

ways, either through a selfing or by combining it with any of the

previously obtained partial schemes, i. e. those found at the nodes

that were visited so far. This means that the number of branches

per node rapidly increases while traversing the tree and that each

generated partial scheme needs to be stored so that we can later

combine it with other schemes. The generation strategy thus has an

inevitable high memory pressure and intuitively corresponds to a

breadth-first search approach.

When combining two schemes, their generations can be aligned in

different ways. Plant or seed lot nodes occurring in both schemes

which are aligned in the same generation of the combined scheme

are dynamically reused. Gene Stacker greedily discards any align-

ments that are not Pareto optimal. Therefore, the main algorithm

is already not entirely exact. However, the impact of this greedy

approach on the solution quality is expected to be small—it mainly

prevents the introduction ofmost likely redundant generations and

favours alignments with the highest amount of reuse leading to a

reduced total cost.

Figure 6.3 shows two equally good alternatives of the same scheme,

i. e. with the same number of generations, total population size,

and linkage phase ambiguity, that were obtained from a different

alignment of the generations of the two combined smaller schemes.

Both alignments are retained and will be considered for further

extension.Different alignmentsmay also provide tradeoffs between

objectives, as shown in figures 6.4 and 6.5. Such Pareto optimal

alignments are again each queued for further extension. In contrast,

figures 6.6 and 6.7 both show two alternative alignments where one

is greedily discarded (right) because it is dominated by the other
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Figure 6.3: Alternatives of the same scheme, obtained from a differ-

ent alignment of generations when combining two smaller

schemes. Both alternatives are equally good in terms of all

three considered objectives (number of generations, total pop-

ulation size, and overall linkage phase ambiguity). Both altern-

atives are retained andwill be considered for further extension.
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Figure 6.4: Alternative alignment of generations for the crossing scheme

shown in figure 6.5. This option has one less generation but

grows the sameplant twice from seed lot S3, in two subsequent

generations,which requires a repeated screening and therefore

slightly increases the total cost (population size).
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Overall LPA: 0%
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Figure 6.5: Alternative alignment of generations for the crossing scheme

shown in figure 6.4. This option reuses the plant grown from

seed lot S5—which corresponds to seed lot S3 in figure 6.4—to

perform two crossings in the same generation. As a result, the

total population size is decreased but this comes at the cost

of an additional generation. Therefore, both Pareto optimal

alignments are retained and considered for further extension.
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Figure 6.6: This figure shows two alternative alignments of generations in

a crossing scheme, where the left alignment is preferred over

the right alignment since it has a lower total population size,

the same number of generations, and the same overall linkage

phase ambiguity. By already crossing the two initial parents

in the first generation (left) one of these can be reused for a

simultaneous selfing, while this plant has to be regrown if the

former crossing is postponed to the second generation (right).

Reuse of material is often very beneficial, especially when it

has been obtained at a high cost. The left alignment is retained,

but the right alignment is greedily discarded.
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Figure 6.7: This figure provides a second, more complex example of two

alternative generation alignments where, again, the left align-

ment reduces the total population size through reuse of plants,

now with about 10%, without affecting the number of gener-

ations. Therefore, only the left alignment is retained, and the

other option is greedily discarded by Gene Stacker.
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alignment (left) which has a smaller population size, and the same

number of generations and linkage phase ambiguity.

If an extension yields a new scheme in which the ideotype is ob-

tained, the Pareto front is updated accordingly. Else, the scheme

is queued for further extension, unless it is predicted that every

completed extension will either be dominated by an already ob-

tained solution or violate the constraints. Such pruning reduces

the number of constructed schemes and therefore the runtime and

memory footprint of the algorithm. Gene Stacker includes several

heuristics that further reduce the search space by exploiting the

underlying genetic structure to skip non-promising branches of the

search tree. Well-designed heuristics may result in large speedups

with only a slightly higher probability of obtaining suboptimal

solutions, which are often still close to the optimum. The search ter-

minates when there are no more schemes to be further extended.

Algorithm 6.1 provides the main pseudocode of the Gene Stacker

algorithm. Given a set of parental genotypes G and the desired

ideotype I, Gene Stacker approximates the Pareto front F contain-

ing several high-quality schemes that provide tradeoffs in terms of

the different objectives. The queue Q contains those schemes that

still have to be extended and the algorithm iteratively dequeues

partial schemes S from Q to create larger schemes Snew by (a) self-

ing the final plant of S; and (b) combining S with each previously

extended scheme S ′ through a crossing of the final plants of both

schemes. Every element C ∈ Q consists of a series of a > 1 al-

ternatives S[0], . . . ,S[a− 1] of the same scheme. These alternatives

arise because, as described above, there are several ways to align

the generations of two smaller schemes S and S ′ when combining

them into a larger scheme Snew. Each generation of Snew contains

either a single generation from S or S ′, or consists of the alignment

of two generations; one from each of the smaller schemes.

Whenever a crossing or selfing is performed to extend a scheme, the

corresponding seed lot S is constructed by (a) inferring all possible

haplotypes that can be produced from each chromosome of both

parents; (b) creating all pairwise combinations, per chromosome,

of haplotypes produced by both parents; and (c)making all combin-

ations of the obtained chromosomes. This yields the set of possible

offspring. During generation, the corresponding probabilities and

linkage phase ambiguities are computed.

In case the final plant of a partial scheme S has been selfed, Gene

Stacker considers each genotype G in the constructed seed lot S

to be fixed as a possible selection target. For each genotype G, the

alternatives of a larger scheme Snew are created by attaching the
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Algorithm 6.1 Pseudocode of the generation algorithm used by Gene Stacker.

function GeneStacker(G, I)
Q← [ ] . queue of schemes to be extended

P← [ ] . previously extended schemes

F ← [ ] . current Pareto front approximation

for all parental genotypes P ∈ G do
add minimal scheme growing P to Q . queue all minimal schemes for extension

end for
while Q not empty do
S← dequeue element from Q . scheme to be extended (> 1 alternatives S[i])
S← Self(final plant of S) . compute seed lot obtained by selfing

for all genotypes G ∈ S do . consider each genotype in S as next target

Snew ← [ ]

for i = 0, . . . , |S|− 1 do . consider all alternatives of S

Snew[i]← attach selfing, S and G to S[i] . extend S[i] to create Snew[i]

end for
RegisterScheme(Snew, I, F, Q) . register new scheme (all alternatives)

end for
for all S ′ ∈ P do . combine with previous schemes

A← [ ]

for i = 0, . . . , |S|− 1 do . align alternatives of S and S ′ (pairwise)

for j = 0, . . . , |S ′|− 1 do
B← Align(S[i],S ′[j]) . construct all alignments of S[i] and S ′[j]
Add all B ′ ∈ B to A . store constructed alignments

end for
end for
FilterAlignments(A) . remove suboptimal alignments

S← Cross(final plant of S, final plant of S ′) . compute seed lot obtained from crossing

for all genotypes G ∈ S do . consider each genotype in S as next target

Snew ← [ ]

for i = 0, . . . , |A|− 1 do . consider all retained alignments

Snew[i]← attach G to A[i] . complete A[i] to create Snew[i]

end for
RegisterScheme(Snew, I, F, Q) . register new scheme (all alternatives)

end for
end for
Add S to P . add S to list of already extended schemes

end while
return F . return final Pareto front approximation

end function

function RegisterScheme(Snew, I, F, Q)

for i = 0, . . . , |Snew|− 1 do . consider all alternatives of Snew
ResolveDepletedSeedLots(Snew[i]) . resolve any depleted seed lots

if ideotype I obtained and constraints satisfied then
Update F with new solution Snew[i] . update Pareto front

Remove Snew[i] from Snew . discard alternative (complete)

else if Prune(Snew) then . check (heuristic) pruning criteria

Remove Snew[i] from Snew . discard alternative (pruned)

end if
end for
if |Snew| > 0 then . check if any alternatives remain

Add Snew to Q . queue scheme for further extension

end if
end function
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performedselfing, theobtained seed lotS and the targetedgenotype

G to each alternative S[i] of S.

When combining two partial schemes S and S ′ through a cross-

ing of their final plants, Gene Stacker first creates all alignments A

of all pairs of alternatives S[i] and S ′[j]. Alignments are construc-

ted bottom-up: first, the new crossing node is created, joining the

crossed plants, and then the alignments are further completed by

repeatedly inserting the previous generation from either S[i], S ′[j],
or both. Plant nodes and seed lot nodes occurring in both smaller

schemes, which end up being aligned in the same generation of the

new scheme, are dynamically reused.Of all constructed alignments

within the constraints, only Pareto optimal ones are retained. Other

alignments are greedily discarded. Then, for every genotype G in

S, the alternatives of a larger scheme Snew are created by attaching

G as the next target to each retained alignment A[i].

For each alternative of every newly created scheme Snew it is

checked whether there are any depleted seed lots, i. e. seed lots

fromwhich more seeds are taken than the amount provided by the

performed crossing(s). In such case, Gene Stacker indicates that the

crossing should be performedmultiple times to provide additional

seeds. For this, it may be necessary to have several duplicates of the

crossed genotypes, taking into account the number of crossings that

can be performed with a single plant. This affects the population

sizes and may introduce new depleted seed lots. Therefore, this

process is iterated until all depleted seed lots have been resolved.

When the ideotype I is obtained, each alternative Snew[i] for which

all constraints are satisfied is registered in the Pareto front F. If

Snew[i] is not dominated by any other solution currently contained

in F, it is added to F and all schemes dominated by Snew[i] are

removed from F. If the ideotype is not yet obtained, Snew is ad-

ded to the queue Q for further extension, where some alternatives

Snew[i] may be discarded by one of the applied heuristics, or if it

is predicted that all extensions will violate the constraints or will

be dominated by an already obtained solution (pruning). Note that

in the actual implementation, some pruning criteria are checked

at other points in the code to enable early pruning, for example

when computing the seed lot obtained from a crossing, when com-

bining two specific partial schemes, or when considering to fix a

specific genotype G as the next selection target. These technical im-

plementation details do not modify the general search strategy and

are best explained by looking at the source code, available from

http://genestacker.ugent.be.

Gene Stacker continues until the queue Q is empty. Termination

is guaranteed because of a required constraint on the number of

http://genestacker.ugent.be
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generations, whichwill eventually always be violatedmeaning that

no new schemes are added to the queue.

6.3.3 Exact pruning criteria

Because the number of generations, total population size and over-

all linkage phase ambiguity are monotonically increasing, any par-

tial scheme which is dominated by a previously obtained solution

orwhich already violates the corresponding constraintsmay be dis-

carded. In addition, some basic bounds are applied. For example,

when combining two partial schemes, it is predicted whether this

may yield a valid improvement over the current Pareto front ap-

proximation by inferring the minimum combined population size

and linkage phase ambiguity from the set of non-overlapping plant

nodes and seed lot nodes occurring in both schemes. Also, the

minimum increase in population size and ambiguity caused by tar-

geting any genotype among the offspring of the performed crossing

is taken into account. Although these are local bounds that predict

the impact of a single extension, they often cause significant spee-

dups as creating all extensions of a given scheme is a very time

consuming and memory intensive process.

Constructed seed lots are filtered based on the constraints. Gen-

otypes with higher linkage phase ambiguity than the maximum

allowed overall ambiguity are removed. Also, if at most m plants

per generation are allowed, a genotypeG obtained from crossing P

and Q is discarded if

Pr[P,Q→ G] < 1− (1− γ ′)
1
m .

Given that at most g generations are allowed, Gene Stacker prunes

a significant number of branches when creating schemes with g− 1

or g generations. At generation g− 1 only genotypes from which

the ideotype can be obtained through a single crossing are con-

sidered as possible selection targets, i. e. genotypes that can pro-

duce one of both desired haplotypes for every chromosome of the

ideotype. Furthermore, in this penultimate generation, only those

crossings which can produce the complete ideotype are performed.

Obviously, in the final generation g, only the ideotype itself is con-

sidered as a target. These pruning criteria are very effective and

yield huge speedups in the last two levels of the search tree.



6.4 heuristics 143

6.4 heuristics

In order to further reduce the search space we propose several

heuristics that exploit the underlying genetic structure of the gene

stacking problem. These heuristics can be switched on or off to

control the balance between execution time and solution quality.

6.4.1 Improvement-based heuristics

Several of the provided heuristics are based on improvement of

phase-known genotypes towards the ideotype. Improvement is ex-

pressed within a chromosome and a genotype is considered to be

an improvement if at least one chromosome has improved. Gene

Stacker uses two different improvement criteria: weak and strong
improvement. First, the definitions of desired stretches and alleles

are introduced.

Definition 6.1 (desired stretch). Given a chromosome C with k

loci, take any of both haplotypes H of C. Then, the stretch SHi,j,

0 6 i 6 j 6 k − 1, is defined as the part of H comprising the

consecutive alleles at loci i, i+ 1, . . . , j. The length of the stretch is

denoted as |SHi,j| = j− i+ 1. A stretch SHi,j is desired if the respective

chromosome of the ideotype contains a haplotype H ′ for which

∀l, i 6 l 6 j,H(l) = H ′(l).

Definition 6.2 (desired allele). A desired stretch of length one is

also simply referred to as a desired allele. Informally, an allele is

desired at a certain locus of a chromosome if that allele occurs at

that locus in the respective chromosome of the ideotype.

Example 6.1. Given an ideotype chromosome[
1 0 0

1 1 1

]

only the 1-allele is desired at the first locus, while both alleles are

desired at the second and third locus. The chromosome[
0 0 0

1 0 1

]

thus still lacks one desired allele, i. e. the 1-allele at the second

locus, and also contains an undesired 0-allele at the first locus. The

top haplotype H = [0 0 0] contains two desired stretches of length

one, corresponding to the desired alleles at the last two loci, which

together form a desired stretch SH1,2 = [0 0] of length two. Similarly,
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all three alleles contained in the bottom haplotype H = [1 0 1] are

desired. In addition, the larger stretch SH0,1 = [1 0] spanning the first

two loci is also desired, but not the full haplotype.

As a second example, take the chromosome[
1 0 1

1 1 0

]
which already contains all desired alleles at all loci. However, not

all desired stretches have yet been obtained, because a different

linkage phase is desired. 4

The definition of weak improvement then follows.

Definition6.3 (weak improvement). Given twochromosomesC,C ′

and the ideotype I, C is a weak improvement over C ′ towards I, de-

noted as C �I
w C ′, if either (a) one of both haplotypes H of C

contains a desired stretch SHi,j which is not present in any of both

haplotypes of C ′; or (b) C homozygously contains a desired allele

which does not occur in C ′ in homozygous state.

The first case favours the introduction of new or extended desired

stretches and the second case rewards stabilization of desired alleles

to prevent them from being lost during subsequent crossings.

Example 6.2. Take three chromosomes

C =

[
0 0 0 0

0 0 1 1

]
, C1 =

[
1 0 0 0

0 0 1 1

]
and C2 =

[
0 0 1 0

0 0 1 1

]
and a respective ideotype chromosome

I =

[
1 1 1 1

1 1 1 1

]
.

Then C1 and C2 are both weak improvements over C towards the

ideotype, becauseC1 contains a desired 1-allele at the first locus not

found in C, and because C2 stabilizes the already present desired

1-allele at the third locus, respectively. For the same reasons, C1

and C2 are also both weak improvements over each other. 4

In addition to weak improvement, Gene Stacker also uses the fol-

lowing concept of strong improvement.

Definition6.4 (strong improvement). Givena chromosomeC, define

M as the set containing all desired stretches SHi,j occurring in any

haplotype H that can be produced from C with at most one cros-

sover. Then define the tuple (lC,pC) as

lC = max{|SHi,j|;S
H
i,j ∈M}
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and

pC = max{Pr[C→ SHi,j];S
H
i,j ∈M & |SHi,j| = lC}

where Pr[C → SHi,j] is the probability that C will produce any hap-

lotype containing the stretch SHi,j. Now, take two chromosomes C

and C ′, and an ideotype I. Then C is a strong improvement over C ′

towards I, denoted as C �I
s C
′
, if

(lC > lC ′) ∨ (lC = lC ′ ∧ pC > pC ′).

To detect strong improvement, chromosomes are first compared

based on the length of the longest desired stretch that may be pro-

duced with at most one crossover—an idea which has been previ-

ously proposed by El-Kebir et al. (2009). In case of equal lengths, the

highest probability with which any such maximal desired stretch

is produced from the two chromosomes, respectively, is compared.

Example 6.3. Take the same three chromosomes

C =

[
0 0 0 0

0 0 1 1

]
, C1 =

[
1 0 0 0

0 0 1 1

]
and C2 =

[
0 0 1 0

0 0 1 1

]

and respective ideotype chromosome

I =

[
1 1 1 1

1 1 1 1

]

as in the previous example. While C1 is a weak improvement over

C, it is not a strong improvement because the newly introduced de-

sired 1-allele at the first locus is separated from the already present

desired stretch of 1-alleles at the last two loci. Therefore, neither the

length of the maximal desired stretch that can be obtained with at

most one crossover, nor the associated probability has increased. In

contrast, C2 is not only a weak but also a strong improvement over

C because stabilizing the 1-allele at the third locus increases the

probability of producing a gamete that contains the desired stretch

of 1-alleles found at the last two loci. For the same reason, C2 is a

strong improvement over C1.

Unlike C1, both chromosomes

C3 =

[
0 1 0 0

0 0 1 1

]
and C4 =

[
0 0 0 0

0 1 1 1

]

are strong improvements over C, as well as over C1 and C2, as the

length of the maximal desired stretch that can be produced with at

most one crossover has increased from two to three. 4
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All strong improvements are also weak improvements, but not vice

versa. Thus, using strong improvement as a condition in the heur-

istics introduced belowwill prunemore branches of the search tree.

The rationale behind the definition of strong improvement is that

selection targets requiring multiple crossovers are usually to rare

to be considered, i. e. selecting them would require a too large pop-

ulation size. Therefore, introducing new isolated desired alleles or

stretches, as allowed by the definition of weak improvement, is as-

sumed not to be very beneficial if they can not be joined with a

single crossover. Also, strong improvement is more demanding in

terms of monotonicity. For weak improvement it is sufficient that

a new desired allele is introduced somewhere in the genome, and

it is allowed that previously obtained desired stretches are lost in

the process. In contrast, strong improvement requires that continu-

ously growing desired stretches are obtained. Again, stabilization

of desired alleles or stretches into a homozygous state is rewarded

by comparing based on the probability with which the maximal

desired stretches are produced, when they have equal lengths.

Gene Stacker includes three heuristics which are based on improve-

ment of genotypes towards the ideotype. The first heuristic (H0) is

applied once to filter the parental genotypes G.

HeuristicH0 (parental genotype filter). Discard each parental gen-

otype G ∈ G for which ∃G ′ ∈ G,G ′ 6= G, where G ′ is a strict weak

improvement over G, i. e. G ′ �I
w G ∧ ¬(G �I

w G
′).

The other heuristics are repeatedly applied to prune non-promising

branches of the search tree.

Heuristic H1 (improvement over ancestors). Each genotype G is

required to be an improvement over all ancestors, i. e. G �I
... A

for each genotype A occurring on any path from a source node to

G. It is also allowed that G = A if G has a smaller linkage phase

ambiguity, or occurs with a higher probability than A among the

respective seed lot. The applied improvement criterion �I
... can be

either weak (H1a) or strong improvement (H1b) .

Heuristic H2 (seed lot filter). When crossing genotypes P and Q,

discard any genotype G from the obtained seed lot S for which

∃G ′ ∈ S, G ′ 6= G, with

G ′ �I
... G ∧ ¬(G �I

... G
′)

and both

Pr[P,Q→ G ′] > Pr[P,Q→ G]

LPA[P,Q→ G ′] 6 LPA[P,Q→ G].

Again, the applied improvement criterion �I
... can be either weak

(H2a) or strong improvement (H2b) .
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Heuristic H2 removes genotypes from S if a strictly better genotype

is also available which requires equal or less effort to be obtained

from S, in terms of population size (probability) and linkage phase

ambiguity.

6.4.2 Optimal subschemes

The following heuristic (H3) assumes that an optimal scheme con-

sists of optimal subschemes.

Heuristic H3 (optimal subschemes). A distinct Pareto front F(G)

is maintained for each genotypeG, consisting of schemes with final

genotype G. Such scheme S is only queued for further extension

if it is not dominated by a previous scheme S ′ ∈ F(G). Moreover,

extensions are only constructed if S is still contained in F(G)when

it is dequeued. As an exception, selfing a homozygous genotype is

always allowed.

The exception made in heuristic H3 allows efficient reuse of homo-

zygous genotypes across generations with only a small increase in

the number of explored branches of the search tree. Experiments

showed that applying this heuristic generally results in very large

speedups, but regularly also yields worse Pareto front approxima-

tions because the assumption that optimal schemes consist of op-

timal subschemes does not hold when reusing material. Therefore,

we designed two dual run strategieswhereH3 is enabled in the first

run only. The second run then benefits from the availability of an

initial Pareto front approximation, which for example allows earlier

pruning. Heuristic H3s1 follows this basic dual run strategy. Heur-

istic H3s2 also applies an additional seed lot filter in the second

run that restricts the possible haplotypes for each chromosome to

those occurring in a solution found in the first run. The overhead

of the first run is usually much smaller than the speedup obtained

in the second run, due to the availability of an initial Pareto front

estimation, and the additional filter in case of H3s2.

6.4.3 Pareto optimal seed lot

The next heuristic (H4) requires that a genotype is obtained from

a Pareto optimal seed lot in terms of the corresponding probability

and linkage phase ambiguity.

Heuristic H4 (Pareto optimal seed lot). Each genotype G is re-

quired to be obtained from a Pareto optimal seed lot S in terms
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of probability and linkage phase ambiguity, among all seed lots

available up to the respective generation.

Once a seed lot has been obtained from a crossing, it remains avail-

able in all subsequent generations. A targeted genotype may thus

be contained in multiple seed lots. In such case it seems logical to

use seeds from the seed lot which contains the desired genotype

with the highest frequency, or which yields the lowest ambiguity.

Although at first sight, this might appear to be an exact pruning

criterion, forcing genotypes to be grown from specific seed lots

may increase the cost required to provide a sufficient amount of

seeds. Especially in case of a tight constraint on both the maximum

number of crossings per plant and the number of seeds produced

per crossing, heuristic H4 may thus in theory lead to suboptimal

solutions, although this is expected to rarely happen in practice.

6.4.4 Heuristic seed lot construction

The number of possible offspring from a crossing grows exponen-

tially with the number of (heterozygous) loci in the parents. There-

fore, it can take a significant amount of time and memory to con-

struct the entire seed lot. Although Gene Stacker includes several

seed lot filters, this filtering stepmay also be time consuming. There-

fore, we provide heuristics that reduce the number of haplotypes

produced from the chromosomes of the crossed genotypes, by only

considering promising crossovers. These heuristics (H5 and H5c)

assume that a crossover is difficult to obtain and should therefore

result in an obvious improvement.

Heuristic H5 (heuristic seed lot construction). Take a chromo-

some C with k loci of which l 6 k are heterozygous with ordered

indices s = (ν1, . . . ,νl). Also, take a haplotype H that is produced

from C through m < l crossovers between consecutive heterozyg-

ous loci (νi1−1,νi1), . . . , (νim−1,νim). SplitH into a series ofm+ 1

corresponding stretches

H = (SH0,(νi1)−1
,SHνi1 ,(νi2)−1

, . . . ,SHνim ,k−1)

where each stretch SHi,j ∈ H originates from one of both haplotypes

of C. For every stretch SHi,j originating from the top haplotype C1,

i. e. SHi,j = S
C1
i,j , the bottom haplotype C2 contains an alternative

stretch S
C2
i,j 6= SHi,j and vice versa. Produce only those haplotypes

from C for which every stretch in H contains at least one desired

allele which is not present in the alternative stretch.
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Example 6.4. Consider the following chromosome

C =

[
0 0 1

1 1 0

]
with respective ideotype chromosome

I =

[
1 1 1

1 1 1

]
.

Because all three loci in C are heterozygous, a total of eight hap-

lotypes can be produced from this chromosome. However, when

applying heuristic H5 half of the options are discarded. For ex-

ample, the possible haplotypeH = [0 1 0] that is produced through

a single crossover between the first and second locus, consists of

two stretches

H = (SH0,0 = [0],SH1,2 = [1 0])

where SH0,0 = S
C1
0,0 originates from the top haplotype C1 of C, while

SH1,2 = SC21,2 originates from the bottom haplotype C2. The alternat-

ive for the first stretch would be S
C2
0,0 = [1] as found in the bottom

haplotype C2. Since S
C1
0,0 = [0] does not contain any desired allele

that is not present in the alternative stretch S
C2
0,0 = [1] the crossover

needed to produce H seems to be a waste of resources. The altern-

ative haplotypeH ′ = [1 1 0] is likely a better target, because it more

closely matches the ideotype, while also being more frequently

observed in the offspring since no crossover is needed. Therefore,

haplotype H is not produced when using heuristic H5.

Similarly, the possible haplotypeH = [0 1 1] contains three stretches

H = (SH0,0 = S
C1
0,0 = [0],SH1,1 = S

C2
1,1 = [1],SH2,2 = S

C1
2,2 = [1])

originating from alternating haplotypes ofC and obtained through

two crossovers—one between each consecutive pair of loci. The

second and third stretch contain a desired 1-allele not present in

the alternative stretch found at the other haplotype of C, but again

this is not the case for the first stretch, meaning that aiming for

the first crossover is likely an unnecessary waste of resources. The

alternative haplotype H ′ = [1 1 1] seems to be a better choice, since

it requires only a single crossover and fully matches the target

haplotype of the ideotype chromosome.

Due to the same reasoning haplotypes [0 0 0] and [1 0 0] are also not

considered here when heuristic H5 is enabled. 4

Heuristic H5c (consistent heuristic seed lot construction). This

heuristic is a stronger version of H5 that requires consistent im-

provement within all stretches towards a fixed haplotype of the

corresponding ideotype chromosome.
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Example 6.5. Consider the same chromosome

C =

[
0 0 1

1 1 0

]

as in the previous example but nowwith a respective heterozygous

ideotype chromosome

I =

[
0 0 1

1 1 1

]
.

As before, the haplotype H = [0 1 0] can be produced from C

through a crossover between the first and second loci. Even when

heuristic H5 is enabled, this haplotype would be considered here,

because the first stretch SH0,0 = S
C1
0,0 = [0] contains a desired 0-

allele not found in the alternative stretch S
C2
0,0 = [1], and the second

stretch SH1,2 = S
C2
1,2 = [1 0] contains a 1-allele that is desired at

the second locus of the ideotype chromosome but not found in

S
C1
1,2 = [0 1]. Thus, both stretches contain a desired allele not present

in the alternative stretch and therefore heuristic H5 will consider

this haplotype. However, if we look closer, we notice that S
C1
0,0 = [0]

is better than the alternative S
C2
0,0 = [1] in terms of the top haplotype

I1 = [0 0 1] of I, while the second stretch S
C2
1,2 = [1 0] is only

advantageous over the alternative stretch S
C1
1,2 = [0 1]when aiming

for the bottom target haplotype I1 = [1 1 1]. Such inconsistencies

are not allowed by heuristic H5c, which will therefore discard the

haplotype H = [0 1 0]. This makes sense because the best way

to obtain the top target haplotype I1 = [0 0 1] in the offspring

is simply to aim for no crossovers at all, since the top haplotype

C1 = [0 0 1] of C is already equal to this target. Likewise, the

haplotype C2 = [1 1 0] better matches the bottom target haplotype

I2 = [1 1 1] as compared toH = [0 1 0], and will be more frequently

observed without requiring any crossovers.

For the given chromosome and heterozygous ideotype, heuristic

H5 only discards haplotypes [0 0 0] and [1 0 0], while H5c will also

not produce [0 1 0] and [0 1 1]. 4

For a homozygous ideotype, H5c degenerates to H5. To be able

to compute linkage phase ambiguities, a heuristically constructed

seed lot S is further extended to include all phase-known genotypes

with the same allele frequencies as any genotype already contained

in S. Heuristics H5 and H5c also provide an option to limit the

number of simultaneous crossovers per chromosome, to further

reduce the number of generated haplotypes if necessary.
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6.4.5 Approximate population size bound

Finally, heuristic H6 computes an approximate lower bound on

the population size of any completed extension of a given partial

scheme, based on the probabilities of those crossovers that are ne-

cessarily still required to obtain the ideotype.

HeuristicH6 (approximatepopulation sizebound). For each chro-

mosome I of the ideotype I, having nI loci, the set of desired

stretches of length two is defined as

DI =
{
SHi,i+1;H = I1 ∨ I2 & 0 6 i < nI − 1

}
.

From DI all stretches that occur in the respective chromosome

of a parental genotype G ∈ G are discarded. For each retained

stretch SHi,i+1 a crossover is necessarily required between loci i

and i+ 1 to obtain the ideotype. Now, given a partial scheme, it

is checked, for all chromosomes, which of the crucial stretches are

not yet present in any genotype occurring in this scheme. The sum

of the minimum population sizes required to obtain each of the

corresponding crossovers is used as a lower bound for the increase

in total population size of any completed extension of this scheme.

Example 6.6. Consider a problem with two initial parents

G1 =

[
1 1 0

1 1 0

]
and G2 =

[
0 0 1

0 0 1

]

and ideotype

I =

[
1 1 1

1 1 1

]
.

The set of desired stretches of length two for the single involved

chromosome is then defined as

D =
{
S0,1 = [1 1],S1,2 = [1 1]

}
.

The first of these two desired stretches is already present in initial

parent G1, but the second is not yet found in any of the two par-

ents. Therefore, a crossover between the second and third loci is

necessarily required somewhere in the scheme, and as long as it

has not occurred the minimum additional population size that will

be required to aim for this crossover is used to compute a lower

bound on the eventual total population size.

Suppose that the second and third loci are tightly linked at a dis-

tance of 3 cM,meaning that there is about a 3% chance of observing

a crossover between these loci. If, for example, we want to be 95%
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Preset Enabled heuristics Dual run

Best none

Better H0, H1a, H2a, H3s1 X

Default H0, H1a, H2a, H3s1, H4, H5, H6 X

Faster H0, H1b, H2b, H3s2, H4, H5c, H6 X

Fastest H0, H1b, H2b, H3, H4, H5c, H6

Table 6.1: Heuristic presets combining well-chosen heuristics.

sure to find the corresponding crucial stretch among the offspring

of some crossing, this will require a population size of at least⌈
log (1− 0.95)
log (1− 0.015)

⌉
= 199

for that crossing. In other words we know that completing any

scheme that still has avoided this expensive crucial crossover will

require to grow and screen at least about 200 more plants, which

may allow earlier pruning of branches in the search tree once some

solutions have already been found. 4

It might seem that heuristic H6 implements an exact bound but

this is not guaranteed as Gene Stacker computes a joint population

size when targeting multiple genotypes among offspring obtained

from the same seed lot (see appendix B.2). It is therefore possible

that multiple crucial stretches are simultaneously obtained with a

lower total cost. However, it is expected that this will rarely occur,

which makes heuristic H6 a nearly exact bound.

6.4.6 Presets

Several well-chosen combinations of heuristics provide tradeoffs

between solution quality and execution time. Presets are named

best, better, default, faster and fastest, ordered by the amount and

restrictiveness of the applied heuristics (table 6.1). In the default set-
ting some less restrictive heuristics are applied compared to those

enabled when switching to presets faster and fastest. On the other

hand, preset better drops some heuristics and preset best does not
apply any (optional) heuristics at all. Presets better, default and faster
perform two runs as they apply one of the dual run heuristics H3s1

or H3s2, while preset fastest applies H3 in a single run.
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6.5 results and discussion

This section presents results of applying Gene Stacker to both gen-

erated and real stacking problems. First, we highlight some advant-

ages of the extended DAG model. Then, the power of the applied Experiments with
CANZAR were run
on the SURFsara
Lisa computing
system (see https:
//goo.gl/OGzV4c)
by Mohammed
El-Kebir.

optimization strategy in combination with the proposed heuristics

is assessed. We conclude by providing some practical guidelines

for users of Gene Stacker. Results are compared to those obtained

by Canzar and El-Kebir (2011). Their method, further referred to as

CANZAR, minimizes the total population size, number of genera-

tions, and total number of crossings. As minimizing the number of

crossings is not explicitly considered as an objective inGene Stacker,

only the schemeswith the lowest total population size among those

with the same number of generations, produced byCANZAR,were

selected for comparison with Gene Stacker.

6.5.1 Advantages of the extended model

We first highlight some advantages of our extended DAG model,

based on two constructed examples and a complex real stacking

problem from cotton.

Constructed examples

Consider an example with two heterozygous parental genotypes

G1, G2 and a heterozygous ideotype I:

G1 =

[
0

1

][
0 0 0

0 0 1

]
,

G2 =

[
0

0

][
0 1 0

1 0 1

]
,

I =

[
1

1

][
1 0 1

1 1 1

]
.

The distance between the loci on the second chromosome is 31 and

42 cM, respectively. Five solutions were reported when running

Gene Stacker in default mode, setting an overall success rate of

γ = 0.95, and allowing amaximumof 4 generations and 10%overall

linkage phase ambiguity (appendix B.3; figures B.1 to B.5).

Figure 6.8 (left) shows the best non-ambiguous three generation

long scheme obtained by Gene Stacker, with a total population size

https://goo.gl/OGzV4c
https://goo.gl/OGzV4c
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of 275, as well as the respective best three generation long solution

found by CANZAR (right), which has a higher total population

size of 363. The leftmost target aimed for in the penultimate gener-

ation of the latter scheme has a linkage phase ambiguity of 23.1%,

which is not reported nor taken into account during optimization

by CANZAR, while Gene Stacker’s solution is guaranteed to be

non-ambiguous. Gene Stacker provides a way to avoid such high

ambiguities by carefully monitoring them and considering ambi-

guity as an additional objective to be minimized.

This example also shows how computing joint population sizes

when simultaneously targeting multiple genotypes among the off-

spring grown from the same seed lot may significantly reduce the

total population size (seed lot S3 in figure 6.8). This approach en-

abled Gene Stacker to find an alternative scheme with a reduction

of more than 24% in the total population size as compared to the

scheme constructed by CANZAR.

Another advantage of representing plants and seed lots with dis-

tinct nodes is that (re)use of plants and seeds is differentiated. Gene

Stacker only allows crossingswith plants from the same generation,

which is justified by the fact that almost all field crops flower only

once, for a short time. Also for crops that flower multiple times or

for a longer period—such as tomato—crossings with plants from

distinct generations are usually not considered because of the high

logistic impact. To repeatedly cross over multiple generations, it is

thus preferred to reproduce the respective genotype, for example

by regrowing it from remaining seeds. In such case, the corres-

ponding cost is accounted for by Gene Stacker. Note that this does

not limit the flexibility of Gene Stacker’s model but ensures that

the computed cost of the constructed schemes closely reflects plant

breeding practice.

The second example has specifically been constructed to show the

advantage of modelling multiple chromosomes. It consists of the

following two parental genotypes and ideotype:

G1 =

[
0

0

][
0

1

][
0

1

][
0

1

][
0

1

][
0

1

]
,

G2 =

[
0

1

][
0

1

][
0

1

][
0

1

][
0

1

][
0

0

]
,

I =

[
0

1

][
0

1

][
0

1

][
0

1

][
0

1

][
0

1

]
.
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Overall LPA: 0%
# Plants: 275

11

158

68

47

S1

[0][0 1 0]
[0][1 0 1]

S2

[0][0 0 0]
[1][0 0 1]

S3

[0][0 0 1]
[1][0 1 1]

[0][0 0 1]
[1][1 0 1]

S4

[1][0 1 1]
[1][1 0 1]

S5

[1][1 0 1]
[1][1 1 1]

0 0 1 0 0
0/0
00 1 0 1

1 0 0 1 61
1/1
610 1 0 1

61

1 1 0 1 221
2/2
2210 0 1 1

160

0 0 0 0 0
0/0
01 0 0 1

61

160

1 1 0 1 129
2/2
1291 1 0 1

68 68

1 1 0 1 363
3/4
3631 1 1 1

74 74

Figure 6.8: Best non-ambiguous three generation long scheme obtained

withGene Stacker (left) in defaultmode for the first constructed

example, as compared to the respective best three generation

long solution reported by CANZAR (right).
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Wedo not need to specify distances between consecutive loci on the

same chromosome, as each chromosome contains only one locus

of interest. Running Gene Stacker with any preset and γ = 0.95
resulted in the scheme fromfigure 6.9 (left) which consist of a single

generation in which a single crossing is performed. It is possible

to immediately obtain the ideotype from this crossing because the

order of haplotypes within a chromosome is arbitrary, which is

taken into account when computing the probability of observing a

genotype among the offspring (see appendix B.1).

Previous methods, including CANZAR, modelled only a single

chromosome and specified a recombination rate of 0.5 between

loci that actually reside on different chromosomes. This requires

to fix an arbitrary order of haplotypes in each actual chromosome

and artificially increases the complexity of the problem. Figure 6.9

(right) shows Gene Stacker’s solution for the same example when

combining all loci on such artificial chromosome. This scheme is

significantly worse: it has an additional generation and a much

higher total population size.Although this examplewas specifically

constructed and is somewhat extreme in the sense that it has six loci

on six different chromosomes, it clearly shows the general benefits

of explicitly modelling multiple chromosomes.

Dealing with tight constraints

Tight constraints might apply for specific crops. For example, cot-

ton plants can be used for two crossings only (or one selfing) and

each crossing yields a small amount of about 250 seeds. With the

extended model such important operational constraints can eas-

ily be taken into account. Crossings are performed multiple times

if necessary to provide a sufficient amount of seeds, where some-

times several duplicates of the same genotype are needed to be able

to make all crossings. Population sizes are computed in such way

that at least the required number of occurrences of each targeted

genotype is expected among the offspring (see appendix B.2).

We now consider a real example from cotton with six parental gen-

otypes, 11 loci spread across five chromosomes and a heterozygous

ideotype (for a full description, see appendix B.4). The overall suc-

cess ratewas set toγ = 0.95, and thenumber of generations, number

of plants per generation, and overall linkage phase ambiguity were

limited to 5, 5000, and 10%, respectively. We applied a time limit

of 24 hours. The number of crossings per plant and seeds obtained

per crossing were set to 2 and 250, respectively, to precisely reflect

the tight constraints of cotton breeding.
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Overall LPA: 0%
# Plants: 193

1 1

191

S1

[0][0][0][0][0][0]
[0][1][1][1][1][1]

S2

[0][0][0][0][0][0]
[1][1][1][1][1][0]

S3

[0][0][0][0][0][0]
[1][1][1][1][1][1]

Overall LPA: 0%
# Plants: 4191

11

4174

15

S1

[0 0 0 0 0 0]
[0 1 1 1 1 1]

S2

[0 0 0 0 0 0]
[1 1 1 1 1 0]

S3

[0 1 1 1 1 1]
[1 1 1 1 1 0]

[0 0 0 0 0 0]
[0 0 0 0 0 0]

S4

[0 0 0 0 0 0]
[1 1 1 1 1 1]

Figure 6.9: Best scheme obtained for the second constructed example

when explicitly modelling multiple chromosomes (left), as

compared to the best solution found when combining all loci

on one artificial chromosome (right). In the latter case a cros-

sover rate of 0.5 is specified between pairs of consecutive loci

that actually reside on different chromosomes (in this example

between all loci).



158 marker-assisted gene pyramiding

Running Gene Stacker with preset fastest completed after 2 hours

and 15 minutes, and reported four solutions with 3–5 generations,

a total population size of 7256–1077 and an overall linkage phase

ambiguity of 0–3.14% (see appendixB.5; figures B.6 to B.9).All other

presets ran out of memory (64 GB). When restricting the number of

generations to four instead of five, preset faster reported a different

four generation long solution, that has a lower total population

size (1400) than the respective scheme found by preset fastest (1534)
before being interrupted when the time limit of 24 hours had been

exceeded (appendix B.5; figure B.10). All solutions contain at least

one crossing that is performed multiple times, to produce enough

seeds, and/or a genotype of which multiple duplicates are grown,

to be able to complete all crossings. It was not possible to obtain

solutions within the constraints using CANZAR as this method

does not provide a way to accurately impose and work around

such operational constraints.

6.5.2 Optimization power and heuristics

We first explore the limits of the optimization strategy and the

power gained by applying additional heuristics, based on exper-

iments with a large number of randomly generated problem in-

stances. Then, the obtained quality-runtime tradeoff is assessed for

various complex, real stacking problems.

Limits of the optimization strategy

We experimented with a variety of 240 randomly generated stack-

ing problems. Of these, 120 have a homozygous ideotype and the

remaining 120 have a heterozygous ideotype. All instances have 4–

14 loci, taking steps of two, and 20 instances were created for every

number of loci and for both types of ideotype. Each instance has

been independently generated by (i) picking a random number of

1–8 chromosomes, limited by the number of loci; (ii) randomly as-

signing each locus to one of the available chromosomes, with amin-

imum of 1 locus per chromosome; (iii) setting a random distance

of 1–50 cM between pairs of consecutive loci on the same chromo-

some; (iv) randomly creating 2–8 parental genotypes, where each

allele is set to 1 or 0 with equal probability; and (v) generating a

random ideotype. The haplotypes of the ideotype’s chromosomes

were created by copying alleles from one of both haplotypes of the

respective chromosome of a randomly chosen parental genotype

(independently for every locus). To obtain a homozygous ideotype,

one haplotype is created for each chromosome and included twice.
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Figure 6.10: This figure indicates the number of randomly generated in-

stances with a homozygous ideotype for which the different

presets of Gene Stacker completed within the applied time

limit of 24 hours. Experiments were repeated with a max-

imum of 4–6 generations. Instances have 4–14 loci, spread

across 1–8 chromosomes, and 2–8 parental genotypes. In total,

20 instances were generated for each number of loci.

For heterozygous ideotypes, two independent haplotypes are cre-

ated and combined for every chromosome.

Figure 6.10 shows results of running each preset of Gene Stacker

on the 120 instances with a homozygous ideotype. We repeated all

experimentswith amaximumof 4, 5 and 6 generations, and applied

a runtime limit of 24 hours, together with an overall success rate

of γ = 0.95 and a maximum of ten thousand plants per generation,

four crossings per plant, five thousand seeds per crossing, and

20% overall linkage phase ambiguity. For every combination of

the maximum number of generations (rows), the number of loci

(columns) and the applied preset (bars) it is reported for howmany

out of 20 instances Gene Stacker completed within the time limit of

24 hours.
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Without applying any heuristics (preset best), Gene Stacker solves

only 42.5%, 35% and 28.34% of all instances when limiting the num-

ber of generations to 4, 5 and 6, respectively. Interestingly, solutions

are obtained for about 95% of all instances when applying all heur-

istics (preset fastest) regardless of the limit on the number of gener-

ations. As expected—and desired—the power of the other presets

(better, default, faster) lies somewhere in between. The problem com-

plexity obviously increases with the number of loci as well as the

maximum number of generations. Without any heuristics, Gene

Stacker solved almost no problems with more than 8 loci: solutions

were obtained for less than half of the instances when the number

of loci exceeded 8, 6 and 4 with a limit of 4, 5 and 6 generations,

respectively. Yet, Gene Stacker can cope with many more complex

problems with up to at least 14 loci using the proposed heuristics.

Of course, using these heuristics may yield worse Pareto front ap-

proximations, so it is preferred to enable them only if necessary

to find solutions within reasonable time. In this way, the heurist-

ics offer a convenient quality-runtime tradeoff and allow to obtain

(approximate) solutions for complex problems.

Figure 6.11 shows similar results for the 120 instanceswith a hetero-

zygous ideotype. It is clear that these are generally more complex,

as compared to those with a homozygous ideotype, since signific-

antly fewer instances were solved within the time limit. One reason

for this higher complexity is that each heterozygous chromosome

in the ideotype contains two different target haplotypes, i. e. two

competing goals, that have to be obtained simultaneously. Also, the

heuristics are less effective for heterozygous ideotypes. For example,

improvement towards any of both haplotypes of a heterozygous

ideotype chromosome is rewarded. Therefore, heuristics based on

such improvement are less effective in case of two distinct target

haplotypes in a single chromosome.

Without applying any heuristics, Gene Stacker now solves 22.5–

37.5% of all instances for a varying limit on the number of genera-

tions. Less than half of the instances were solved when the number

of loci exceeded 4–6. When all heuristics are enabled, solutions are

obtained for 65–72.5% of the instances (for less than half of the in-

stances when exceeding 10 loci). Although the currently proposed

heuristics are clearly less powerful when aiming for a heterozyg-

ous ideotype, they allowed to find solutions for many complex

problems with up to 10 loci. Nevertheless, the challenge remains to

develop better heuristics in this respect.

We conclude that the applied optimization strategy can effectively

be used to find solutions for a wide range of stacking problems.

Without extra heuristics, some smaller problems with 4–8 or 4–6
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Figure 6.11: This figure indicates the number of randomly generated in-

stances with a heterozygous ideotype for which the different

presets of Gene Stacker completed within the applied time

limit of 24 hours. Experiments were repeated with a max-

imum of 4–6 generations. Instances have 4–14 loci, spread

across 1–8 chromosomes, and 2–8 parental genotypes. In total,

20 instances were generated for each number of loci.

loci in case of a homozygous or heterozygous ideotype, respect-

ively, can already be tackled, depending on the maximum number

of generations. To deal with more complex problems, additional

heuristics are required. The proposed heuristics allow to obtain

(approximate) solutions for problems with up to at least 10–14 loci.

Quality-runtime tradeoff

Now we assess the quality-runtime tradeoff obtained by applying

different combinations of heuristics for real stacking problems, ori-

ginating from tomato and rice breeding (for a full specification, see

appendix B.4). For all experiments, we set an overall success rate

of γ = 0.95, and restricted the number of generations and plants

per generation to 5 and 5000, respectively. The amount of seeds pro-
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duced per crossing and maximum number of crossings per plant

were set to reflect the specific properties of each crop, as specified

below. We selected only solutions with zero linkage phase ambi-

guity, and report approximated Pareto fronts in terms of the total

population size and number of generations.

The two considered stacking problems from tomato both consist of

the same four parental genotypes with eight loci spread across six

chromosomes. The first (Tomato-1) and second (Tomato-2) example

have a homozygous andheterozygous ideotype, respectively. Toma-

toes can easily be crossed several dozens of times and every cross-

ing yields a large number of seeds. Therefore, we set the maximum

number of crossings per plant and the amount of seeds obtained

from one crossing to 24 and 20.000, respectively. A time limit of 12

hours was imposed, after which the algorithms were interrupted

and the solutions found until then were inspected.

Figure 6.12 (top left) shows the Pareto front approximations ob-

tained for Tomato-1 with Gene Stacker, using presets default, faster,
and fastest, as well as CANZAR. Gene Stacker and CANZAR ob-

tained exactly the same scheme with four generations. The small

difference in the reported population size is explained by the fact

that both methods follow a different approach to derive a success

rate per targeted genotype (γ ′) from the desired overall success rate

(γ). Solutionswith five generationswere also found. Those reported

by Gene Stacker have a lower population size as compared to the

one obtained byCANZAR, evenwhen applying preset fastestwhich

completes after only 28 seconds. Presets default and faster reported
exactly the same solutions, and the five generation long scheme

found here improves over the respective scheme obtained by pre-

set fastest. Yet, these two presets took significantlymore time (about

6–8 hours). These results again show how the proposed heuristics

provide convenient tradeoffs between solution quality and execu-

tion time, and that they are capable of finding good solutions for a

complex, realistic problem within reasonable time. CANZAR was

interrupted when exceeding the time limit of 12 hours.

Similar results for Tomato-2 are presented in figure 6.12 (top right)

where only preset fastest has been applied since the other presets

ran out of memory (64 GB). Gene Stacker completed in about five

hours while CANZAR was interrupted when the time limit had

expired. Three solutions were reported by Gene Stacker with 3–5

generations and CANZAR obtained two solutions with 4–5 genera-

tions. The four generation long schemes reported by both methods

slightly differ (results not shown) but have approximately the same

total population size. Conversely, Gene Stacker found a somewhat

better schemewith five generations and an additional solutionwith
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Figure 6.12: Pareto front approximations of real stacking problems from

tomato and rice: (top left) first example from tomato (Tomato-

1; homozygous ideotype); (top right) second example from

tomato (Tomato-2; heterozygous ideotype); (bottom left) first

example from rice (Rice-1; homozygous ideotype); (bottom

right) second example from rice (Rice-2; heterozygous ideo-

type). Full descriptions of the example problems are provided

in appendix B.4.

only three generations. The difference in runtime, as compared to

Tomato-1, and the fact that all other presets ran out of memory,

again confirm that with the current heuristics it is more difficult

to solve stacking problems with a heterozygous ideotype. Yet, the

heuristics made it possible to find three good solutions within a

few hours, using a transparent optimization strategy.

We also experimented with two other examples, originating from

rice breeding. Both consist of the same eight parental genotypes

with ten loci spreadacross six chromosomes.Again, thefirst (Rice-1)

and second (Rice-2) example have a homozygous and heterozygous

ideotype, respectively. About 300 seeds are obtained from each

crossing and rice plants can be crossed no more than 5 times. For

these examples, a time limit of 24 hours was set.
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Figure 6.12 (bottom left) shows results for Rice-1 obtained with

Gene Stacker, using presets better, default, faster, and fastest, as well

as CANZAR. Preset fastest completed after only four seconds and

reported three solutions with 3–5 generations. Presets default and
faster terminated after about 30 seconds and found a better scheme

that dominates both the four and five generation long schemes

obtained by preset fastest. Preset better completed after about 12

minutes and found an additional five generation long scheme with

a slightly lower total population size. These results again show how

theheuristics offer a convenient quality-runtime tradeoff.CANZAR

did not complete within the time limit of 24 hours but was able to

obtain a single scheme with four generations that dominates all

four and five generation long schemes obtained by Gene Stacker. It

is inevitable that the heuristics sometimes make wrong decisions

in which case valuable parts of the search space may not have been

explored. In this specific example, heuristic H0 (included in all

presets except best) removed a parental genotype that is needed to

find the slightly better scheme obtained by CANZAR. Still, results

are close to those of CANZAR, especially when applying presets

faster, default or better, a significant speedup is obtained, and an

additional solution with only three generations is found.

Similar results for Rice-2 are shown in figure 6.12 (bottom right)

where only preset fastest has been applied as the other presets

either ran out of memory or did not find any solutions within the

time limit. Gene Stacker completed after 5–6 minutes while CAN-

ZAR was interrupted after exceeding the time limit of 24 hours.

Three solutions were reported by Gene Stacker, with 3–5 genera-

tions. CANZAR found a single solution with four generations and

a higher population size than the respective scheme obtained by

Gene Stacker. Again, the runtime and memory footprint of Gene

Stacker is significantly higher for this problemwith a heterozygous

ideotype as compared to Rice-1 which has a homozygous ideotype.

Yet, preset fastest outperforms CANZAR and is able to provide a

valuable approximation of the Pareto front within a few minutes.

6.5.3 Practical guidelines

Basedonourfindingswepropose the followingpractical guidelines

for using Gene Stacker. It is advised to first try the default settings,

specifying the required parameters (maximum number of gener-

ations and overall success rate) and those constraints that are im-

portant for the specific application, such as the number of seeds

produced from a crossing and maximum number of crossings per

plant, with a reasonably high runtime limit (e. g. 24 hours). If Gene
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Stacker is too slow or requires too much memory, consider setting

additional or tighter constraints (e. g. maximum plants per genera-

tion, maximum overall linkage phase ambiguity, ...) and/or using

preset faster or fastest. The latter may yield worse solutions which

should be avoided when possible. In case the default setting is

more than fast enough consider running presets better and best as
well to check whether this produces better schemes, as the heurist-

ics might have missed something. Usually, differences between the

latter presets and the default setting are very small (if any) except

for the runtime which is significantly increased. More details and

practical examples are given at http://genestacker.ugent.be.

In case QTL intervals need to be stacked one can use flankingmark-

ers to delimit the target locus. The Tomato-1 problem (appendix B.4)

is a case in point. On the sixth chromosome, a small region of 10 cM

has been identified in which a target gene is located. In this setting

it is necessary to make sure that the required haplotype is present

in at least one of the parents, and to verify that it is maintained

throughout the crossing scheme. There always remains a small risk

of a double cross-over within the interval in a single generation

which one can either ignore or monitor by saturating the interval

with additional markers.

6.6 conclusions

The proposed transparent, flexible, and easily extensible approach

tomarker-assisted gene pyramidingwas confirmed to be feasible in

combination with heuristics to address realistic, complex stacking

problemswithup to at least 10–14 loci,while taking into account im-

portant operational breeding constraints. Carefully designed heur-

istics allow to find better or additional solutions within reasonable

time as compared to previousmethods. The proposedheuristics are

certainly not perfect nor complete. For example, they are less effect-

ive for problems with a heterozygous ideotype. Still, even for these

more complex problems Gene Stacker is able to find approximate

solutions with high practical value within reasonable time. Future

work may include the design of additional or improved heuristics

as well as extension of the ideas applied in Gene Stacker for a more

general plant breeding context that also addresses complex traits

and conservation of genetic background.

http://genestacker.ugent.be
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Plant breeding is as old as agriculture itself. For thousands of years,

farmers selected seeds from good looking plants and stored them

for planting in the next season. As such—mostly unknowingly—

these early breeders createdmany landraces that are highly adapted

to their local environment. After the Middle Ages scientist started

to unravel the sexuality of plants andwere able to perform artificial

crossings providing an additional source of variability for selec-

tion. Not much later, commercial plant breeding companies were

established that continuously improved plant varieties through re-

peated crossing and selection based on observable characteristics

(the phenotype) and sold their enhanced seeds to the farmers.

Starting with the work of the famous Gregor Mendel in the 19th

century, several important discoveries followed that revealed the

underlying genetics responsible for the diversity of characteristics

observed in all living organisms, including plants. Methods were

developed to extract DNA fragments to get a view on the genetic

architecture—the genotype—of an animal or plant. This genetic in-

formation can be used by breeders tomake better decisions, as their

ultimate goal is to gather a maximum of beneficial genes in a single

plant variety so that it will maximally develop desirable traits. Es-

pecially during the last few decades genotyping costs significantly

decreased to a point where they are no longer limiting, and now

the main question is how to optimally use genetic data in practical

breeding schemes.

In this thesis we applied discrete optimization algorithms to solve

several problems related to genomics-assisted breeding. In the first

two chapters we provided a broad background of both of these dis-

ciplines, describing important concepts needed to understand the

breeding problems addressed and optimization techniques applied

in the following chapters.

Next, in chapter 3 we presented the JAMES framework, an object-

oriented Java framework for discrete optimizationwith local search

metaheuristics, that is used in subsequent chapters to solvemultiple

problemswith the sameoptimization engines. JAMESdifferentiates

from existing Java metaheuristics frameworks in its focus on local

searches, which had significant impact on its design and core fea-

tures, such as an efficient movement-based evaluation mechanism.

169
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A computational comparison with other frameworks showed that

our efforts clearly paid off, as the results were very much in favour

of JAMES in terms of both execution time and memory usage.

One very appealing direction for further development of JAMES

would be to also include population-based algorithms. Although

this may seem a bit contradictory to the fact that JAMES has been

built specifically for efficient applicationof local searches, thedesign

of the framework does not yield any limitations for also including

population-based methods. The latter do not need sophisticated

low-level features such as movement-based evaluation, but these

can easily be ignored, and any new high-level components needed

for population-based algorithms—such as interfaces defining cros-

sover, mutation, and selection operators for a genetic algorithm—

can easily be added on top of the core design. Not only would it be

very valuable to have more types of optimization algorithms in the

same framework, so that users can select the most effective method

for their application, in addition, this for example also allows to

compose advanced hybrid methods, such as a genetic algorithm

that applies a local search as its mutation operator. In the latter

case, the specific features of JAMES for use in local searches can

again be exploited. One may wonder if it would not also be easy to

add efficient local searches to other, existing frameworks currently

focused at population-based methods. We are convinced that this

would be a much more difficult task, requiring a significant refact-

oring of the core design of these frameworks, because they lack

important low-level features that are not easily introduced, though

essential for efficient local searches.

Since much of the biodiversity that exists in cultivated plant spe-

cies is not directly used for agricultural purposes, breeders often

rely on the availability of large genetic resources stored in gene

banks to keep improving their products. These collections contain

a huge amount of varieties—including historical landraces,modern

cultivars, and wild relatives—of all major crops, and are very use-

ful resources for breeders and plant researchers in general. Due to

their size, however, the entire collections cannot be characterized in

full detail, nor effectively utilized or distributed. Therefore, smaller

core collections are often composed that represent the diversity of

the full collection with minimum redundancy, and allow efficient

access to large genetic resources for future crop improvement.

In chapter 4 we introduced Core Hunter 3: a flexible tool for multi-

purpose core subset selection. CoreHunter samples diverse subsets

whose entries have a highly dissimilar genetic or phenotypic pro-

file, as well as cores that maximally represent each individual plant

from the full collection. In addition, Core Hunter can maximize
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allelic richness, for example to avoid loss of rare alleles (rare gene

variants). To optimize the chosen evaluationmeasure, or aweighted

index that balances multiple measures, Core Hunter uses fast local

search algorithms from the JAMES framework. Core Hunter is ex-

tremely flexible, and new criteria can easily be introduced without

theneed to change theunderlyingoptimization engine.Moreover, it

outperforms other algorithms thatwere developed to construct spe-

cific types of core collections. Although core subset selection was

introduced in the context of gene bank management, the potential

of Core Hunter reaches far beyond this application. For example, it

can also be used to compose diverse trainingmaterial for a genomic

prediction model (see below).

Currently, Core Hunter focuses on fixed-size core sampling, where

the size is specified by the user. Although previous versions of

Core Hunter allowed to specify a size range and favoured smaller

cores, we believe that minimizing the core size might not always be

desired and that the employed evaluation measures are not appro-

priate to compare cores of different sizes. Therefore, we removed

this feature. A fairly common requirement however is to construct

a core of minimum size that still covers all or most of the observed

alleles or traits. Specific algorithms have been proposed for this

purpose, but experiments with the first version of Core Hunter re-

vealed the potential of local search algorithms to improve on these

existing methods. To properly address this kind of variable-size

core sampling within Core Hunter we could for example start a

local search from the full collection, minimizing the core size while

taking into account that the coverage cannot drop below a user

specified threshold. In any case, we are convinced that fixed- and

variable-size core sampling should be treated as separate problems,

with different optimization objectives.

Another unexplored potential of Core Hunter is core sampling

based on a combination of genetic data and phenotypic traits. Al-

though it is currently already possible to load both genotypes and

phenotypes, and to optimize aweighted index that balances genetic

and phenotypic diversity, the main challenge here is to determine

appropriate weights. The most straightforward approach would

be to assign equal weights to both data sources, but they might

overlap—perhaps even asymmetrically—inwhich case a bias could

be introduced towards diversity at certain parts of the genome. It

would be very interesting to experiment with Core Hunter to ana-

lyse datasets for which both genetic data and several phenotypes

have been recorded, and to assess the need for intelligent weights

that optimally exploit and balance both data sources.
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Once the starting material has been composed, plant breeders typ-

ically go through several generations of crossing and selection to

accumulate beneficial genes from different parents in a single en-

hanced variety. Unfortunately, quantitative traits—such as yield,

height or size—usually have a complex genetic architecture where

many genes spread across the genome have a small additive ef-

fect on the expressed value. Scientists are working hard to identify

all responsible genes for important traits in major crops and veget-

ables. If all these causal genes were known, breeders could focus on

concentrating them in a single genotype to improve the expressed

phenotype. However, because so many genes are involved, it is

difficult to find them all.

A practical solution is to characterize the genome with dense ge-

netic markers from which an individual’s breeding value can be

predicted, based on a training population for which both geno-

types and phenotypes are available, in the hope that the effect of

most causal genes will be picked up by a marker in its vicinity.

This technique, known as genomic selection, is one of the major

marker-assisted selection trends in modern molecular breeding. It

has the advantage of accelerating the selection cycle—the costly

and time consuming phenotypic evaluation can be skipped or at

least postponed—and improves selection accuracy, especially for

traits that are difficult to observe. However, it is known that gen-

omic selection also more rapidly depletes diversity due to which,

although short-term gain can be significantly increased, long-term

improvement is hindered.

Therefore, in chapter 5 we evaluated several existing and new

strategies for long-term genomic selection, that balance gain and

diversity. Existing strategies either aim to maximize gain under

a predefined inbreeding rate (genomic optimal contributions selec-

tion;GOCS) or amplify the predicted effect of rare favourable alleles

(weighted genomic selection; WGS) to avoid that they are lost due

to selection. Our simulations indicate that both methods have in-

herent limitations: GOCS does not control inbreeding at the target

level because it ignores an important component of the inbreeding

rate that occurs only under selection, and WGS is suboptimal be-

cause it is implemented as a truncation selection, i. e. it evaluates

and selects individuals instead of managing diversity at the level

of the selected set. We showed how both approaches can be im-

proved and unified by optimizing a weighted index that balances

gain with a diversity measure that either minimizes inbreeding

or aims to maintain rare alleles—using the flexible local searches

provided by the JAMES framework. Both of these strategies yield

similar results that outperform GOCS and WGS, as they provide a
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better balance between genetic merit and inbreeding control, and

as such between short- and long-term gain.

Although the long-term genomic selection strategies proposed in

chapter 5 require further testing in other breeding schemes, we be-

lieve that their inherent characteristicswill transfer fromour simula-

tions tomanypractical breeding settings. Apossible next step could

be to move from selecting individuals to selecting crosses, i. e. spe-

cific pairs of individuals to cross, as has already been successfully

done for selection strategies based on the optimal contributions the-

ory. We expect that, in particular, the advantages of the proposed

strategies using the suggested alternative diversity measures will

transfer to this related problem and outperform existing methods,

but further research is required to validate this expectation.

For simple traits controlled by a small number of genes, such as

many disease resistances, we can go much further than prediction

of breeding value from genetic marker data. Because few genes

are involved we can fully define the genetic profile of the breed-

ing target at these particular loci and predesign a detailed crossing

scheme to obtain this target from the available material, with min-

imum cost and within minimum time. Such crossing scheme tells

the breeder in advance precisely which individuals to cross, and

which genetic profiles to select from the produced offspring, in

each generation. Because there are a huge number of possibilities,

predesigning crossing schemes in such great detail is only feasible

for simple traits and requires intelligent algorithms to explore the

search space in order to identify optimal schemes.

In chapter 6we introducedGene Stacker: a flexible crossing scheme

generator used to efficiently stack genes found in multiple existing

varieties into a single new individual. Gene Stacker uses an ex-

haustive generation algorithm that iteratively combines crossing

schemes to build larger schemes through additional crossings, and

applies many exact and heuristic pruning criteria to reduce the

number of explored schemes. The ultimate goal is to find schemes

with a minimum number of generations (time) and total number of

plants to grow and genotype (cost) while also taking into account

several operational and crop specific constraints. However, these

objectives are largely conflicting, meaning that reducing the time

usually increases the cost and vice versa. Therefore, Gene Stacker

constructs multiple schemes reflecting optimal tradeoffs between

the different objectives.

Gene Stacker strongly relies on carefully designed heuristics to deal

with complex stacking problems with up to ten or more genes. Al-

though our experiments prove the value of the currently included

heuristics, these are certainly not perfect nor complete—for ex-
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ample, they are less effective for heterozygous breeding targets.

Therefore, an important direction for future work on Gene Stacker

is the design of improved or additional heuristics, in particular for

heterozygous target profiles.

Another major future challenge is to unify Gene Stacker’s approach

for simple traitswith genomic selection strategies for complex traits.

Unfortunately it is not computationally feasible to track a complex

genetic background—potentially made up of hundreds or thou-

sands of genes—in as much detail as the few foreground markers.

However, we believe that it should be possible to at least track the

average genetic value of plants selected throughout the breeding

scheme, using genomic prediction models, and maybe also the as-

sociated variance. Such augmented model would allow to pursue

the additional objective of maximizing genetic value, while still

ensuring that the desired foreground marker profile is obtained

and minimizing time and cost—effectively unifying the emerging

marker-assisted breeding approaches for complex and simple traits.

It is expected that the world population will approach ten billion

by 2050. Feeding all these people poses a big challenge and will

require to keep pushing the limits to produce more food on less

land. At the same time, we need to fight climate changes due to

global warming. Besides mitigation of climate change by reducing

greenhouse gas emissions, for example through the use of altern-

ative renewable energy sources, it is also very important to adapt

to currently observed and predicted changes. Whether we like it

or not—and we really shouldn’t—scientists agree that the average

global temperature will rise with at least 1.5 to 2 degrees Celsius

as compared to pre-industrial times, which will have a significant

impact on life and agriculture.

Marker-assisted selection is one of themajor technologieswithhuge

potential to lead to further successes in coping with this changing

environment and vastly growing world population. Plant breeding

used to be an art but science is now increasingly taking the guess-

work out. Currently, molecular breeding techniques use genetic

markers to improve selection and are being implemented around

the globe in all major crops. One of the main future challenges is to

move from per generation decision making towards effective com-

putational breeding where genotypes are truly predesigned and

created through detailed predefined crossing schemes, following

the approach of Gene Stacker for simple traits.

We are confident that our work will be valuable for breeders and

plant researchers, and in particular that it will support the pending

transition frommolecular towards computational breeding for sus-

tainable crop improvement in the 21st century.
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Reeds sinds de opkomst van de landbouw, meer dan tienduizend

jaar geleden, selecteerden boeren jaar na jaar zaden vanplantenmet

goede eigenschappen om te zaaien in het volgende seizoen. Op die

manier creëerden deze eerste plantenveredelaars—hoofdzakelĳk

zonder het zelf te beseffen—een waaier aan lokale variëteiten die

heel sterk aangepast zĳn aan hun omgeving. Na de Middeleeuwen

begonnen onderzoekers de voortplantingsmechanismen van plan-

ten te ontcĳferen, en slaagde men erin om manueel kruisingen uit

te voeren, die een bĳkomende bron van variatie boden om uit te

selecteren. Niet veel later werden dan ook de eerste commerciële

plantenveredelingsbedrĳven opgericht die voortdurend nieuwe en

betere variëteiten wisten te ontwikkelen door herhaaldelĳk te krui-

sen en te selecteren op basis van uiterlĳke kenmerken (het fenotype)
en hun zaden verkochten aan landbouwers.

Het werk van de beroemde Gregor Mendel in de 19de eeuw zette

een nieuw tĳdperk in. Verschillende belangrĳke ontdekkingen volg-

den elkaar op, waarbĳ de onderliggende genetica werd blootgelegd

die verantwoordelĳk is voor de diversiteit aan eigenschappen die

we aantreffen in alle levende organismen, waaronder planten. Er

werden methoden ontwikkeld om DNA-fragmenten te extraheren

uit planten en dieren, om zo een zicht te krĳgen op hun genetische

architectuur—het zogenaamde genotype. Veredelaars kunnen deze

genetische informatie goed gebruiken ombetere beslissingen tema-

ken, aangezien hun ultieme doel is om een maximum aan gunstige

genen (of in feite gunstige varianten van genen, wat men allelen
noemt) te verzamelen, zodat de plant zoveel mogelĳk goede ei-

genschappen zal ontwikkelen. Voornamelĳk tĳdens de laatste paar

tientallen jaren zĳn de kosten om het genotype van planten te be-

palen enorm gezakt, tot op een punt waar de vraag vooral is hoe

men deze genetische data optimaal kan gebruiken in praktische

veredelingsprogramma’s.

In deze thesis passen we discrete optimalisatie-algoritmes toe om

verschillende problemen op te lossen die gerelateerd zĳn aan mo-

derne moleculaire plantenveredeling, gebruik makend van geneti-

sche informatie. De eerste twee hoofdstukken schetsen een brede

achtergrond van deze beide disciplines, en beschrĳven belangrĳke
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concepten die nodig zĳn om de opgeloste problemen en toegepaste

technieken in de volgende hoofdstukken te begrĳpen.

Vervolgens introduceert hoofdstuk 3 het JAMES framework, een ob-

jectgeoriënteerd Java framework voor discrete optimalisatie met lo-

kale zoekmethoden. Dergelĳke benaderingsalgoritmes verkennen

de zoekruimte van een gegeven optimalisatieprobleem door te star-

ten van een bepaalde (bĳvoorbeeld random gekozen) oplossing en

deze herhaaldelĳk lichtjes aan te passen, in de hoop een eindre-

sultaat te bekomen dat dicht aanleunt bĳ het optimum, d.w.z. bĳ

de best mogelĳke oplossing. Het JAMES framework wordt in de

volgende hoofdstukken gebruikt om verschillende problemen op

te lossen met dezelfde optimalisatietechnieken.

Aangezien veel van de biodiversiteit die voorkomt in geteelde ge-

wassen niet rechtstreeks gebruiktwordt voor landbouwdoeleinden,

berusten veredelaars vaak op de beschikbaarheid van de diversiteit

aan zaden die wereldwĳd opgeslagen wordt in grote zaadbanken.

Naast moderne producten die door veredelaars gecreëerd werden,

houdt men hier ook zaden bĳ van bĳvoorbeeld wilde verwante

planten en historische lokale variëteiten. Deze vormen samen een

onmisbare bron van diversiteit voor veredelaars en plantenonder-

zoekers in het algemeen. Ondertussen zĳn de opgeslagen collecties

echter zo groot geworden dat het moeilĳk wordt om ze in hun ge-

heel gedetailleerd te karakteriseren, en om gebruikers toegang te

verlenen tot de volledige collecties. Daarom stelt men vaak kleinere

zogenaamde core collecties samen, die de diversiteit van de volledige

verzameling weerspiegelen met zo weinig mogelĳk overtolligheid.

In hoofdstuk 4 introduceren we Core Hunter 3: een flexibel softwa-

reprogramma voor het samenstellen van core collecties voor ver-

scheidene doeleinden. Afhankelĳk van de toepassing kan men met

Core Hunter de diversiteit binnen de geselecteerde deelverzame-

ling maximaliseren, of de mate waarin elke individuele plant uit

de volledige collectie weerspiegeld wordt door de selectie, of ten

slotte de rĳkdom aan bewaarde allelen. Core Hunter maakt ge-

bruik van lokale zoekstrategieën uit het JAMES framework om de

gekozen doelfunctie, of een gewogen combinatie van meerdere ob-

jectieven, te optimaliseren. Een van de voornaamste voordelen van

Core Hunter is de inherente flexibiliteit. Zo kunnen bĳvoorbeeld

eenvoudignieuwe criteria toegevoegdworden, zonderdegebruikte

optimalisatie-algoritmes aan temoetenpassen. Bovendienpresteert

Core Hunter even goed of beter dan andere methodes die specifiek

ontwikkeld werden voor bepaalde toepassingen van core collecties.

Van zodra het startmateriaal verzameld is, gaan plantenveredelaars

typischdoormeerdere generaties vanherhaaldekruising en selectie

om gunstige genen van verschillende bronnen op te stapelen in een
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nieuw, verbeterd product. Jammer genoeg hebben kwantitatieve

eigenschappen—zoals hoogte, grootte of opbrengst—doorgaans

een complexe genetische architectuur waarbĳ veel genen verspreid

over het genoom elk een klein additief effect hebben op de kwa-

liteit van de plant. Wetenschappers zĳn daarom druk in de weer

om alle genen te identificeren die een effect hebben op essentiële

eigenschappen in de belangrĳkste gewassen. Indien al deze genen

gekend zouden zĳn, kanmen zich er immers op toespitsen omdeze

allemaal te verzamelen in een enkel genotype om zo het ontwik-

kelde fenotypemaximaal te verbeteren. Helaas zĳn er zoveel genen

betrokken bĳ deze complexe eigenschappen dat het zeer moeilĳk

is om ze allemaal te lokaliseren.

Een praktische oplossing is om het genotype van een plant te karak-

teriseren aan de hand van een grote hoeveelheid zogenaamde gene-

tische merkers verspreid over het hele genoom. Dergelĳke merkers

zĳn kleine fragmentjes DNA die men gemakkelĳk kan opsporen

en die variëren tussen individuen. Op basis van de merkers die we

aantreffen in een bepaalde plant kan de kwaliteit van deze plant

dan voorspeld worden. Hiervoor traint men een predictiemodel op

een verzameling planten waarvoor zowel het genetisch profiel (de

gedetecteerde merkers) en de kwaliteit gekend is. In de hoop dat

het effect van de meeste causale genen opgepikt wordt door een

nabĳgelegen merker, kan zo’n predictiemodel vrĳ nauwkeurig de

kwaliteit voorspellen van andere genetische profielen, zonder te

moeten weten waar de causale genen precies gelegen zĳn.

Selecteren op basis van dergelĳke voorspelde kwaliteit wordt ge-
nomische selectie genoemd en is een van de belangrĳkste trends bĳ

de opkomst van moleculaire veredeling doormiddel van merker-
gebaseerde selectietechnieken voor complexe eigenschappen. Een

van de grote voordelen is dat de selectiecyclus versneld wordt—

de dure en tĳdrovende stap voor het vaststellen van de uiterlĳke

kenmerken van (vaak volwassen) planten kan namelĳk overgesla-

gen of op zĳn minst uitgesteld worden—terwĳl tegelĳkertĳd ook

de nauwkeurigheid van de selectie verbetert, voornamelĳk voor

kenmerken die moeilĳk te observeren zĳn. Helaas is het ook reeds

geweten dat genomische selectie ervoor zorgt dat de diversiteit in

de populatie sneller uitgeput raakt. Zonder diversiteit om uit te

selecteren is er geen vooruitgang meer mogelĳk. Bĳgevolg kan het

gebruik van genomische selectie de vooruitgang op lange termĳn

belemmeren, niettegenstaande dat er op korte termĳn doorgaans

sneller meer winst geboekt wordt.

In hoofdstuk 5 bespreken we enkele bestaande en nieuwe strate-

gieën voor genomische selectie op lange termĳn, die onmiddellĳke

vooruitgang afwegen tegenover het behoud van diversiteit. Een
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eerste bestaande methode maximaliseert vooruitgang onder een

beperkte, vooropgestelde mate van inteelt. Een tweede alternatief

versterkt artificieel het geschatte effect van zeldzame gunstige al-

lelen in het predictiemodel, om te voorkomen dat deze tĳdens de

selectie verloren gaan. Onze simulaties tonen aan dat beide metho-

den intrinsieke beperkingen hebben: de eerste strategie slaagt er

niet in om de inteelt effectief te beperken tot het gewenste niveau,

omdat ze een belangrĳke component negeert die enkel optreedt on-

der selectie, en de tweede aanpak is suboptimaal omdat zewerkt op

het niveau van de individuen in plaats van diversiteit rechtstreeks

te beheren voor de gekozen verzameling. Wĳ tonen hoe beide stra-

tegieën verbeterd en verenigd kunnen worden door een gewogen

index te optimaliseren die vooruitgang balanceert met een diversi-

teitsmaat die ofwel inteelt minimaliseert, of ernaar streeft om zeld-

zame allelen te behouden. Opnieuw maken we hiervoor gebruik

van de flexibele lokale zoekalgoritmes die voorzien zĳn in het JA-

MES framework. Beide nieuwe selectiemethodes presteren in onze

simulaties gelĳkaardig, en beter dan de bestaande technieken, aan-

gezien ze een betere balans vinden tussen onmiddellĳke winst en

behoud van diversiteit, d.w.z. een betere balans tussen vooruitgang

op korte en lange termĳn.

Voor eenvoudige kenmerken die bepaald worden door een klein

aantal genen, zoals bĳvoorbeeld heel wat ziekteresistenties, kun-

nen we veel verder gaan dan het voorspellen van kwaliteit op basis

van genetischemerkers. In dat geval is het namelĳkmogelĳk omhet

genetisch profiel dat wewillen bekomen volledig te definiëren voor

deweinige betrokken genen. Bĳgevolg kunnenwe op voorhand een

gedetailleerd kruisingsschema opstellen dat dit doel zo goedkoop

mogelĳk en binnen zo weinig mogelĳk tĳd bereikt. Een dergelĳk

kruisingsschema vertelt de veredelaar op voorhand precies welke

individuen gekruist moeten worden, en welke genetische profielen

geselecteerd moeten worden uit de nakomelingen, in elke genera-

tie. Omdat er ongelofelĳk veel mogelĳkheden zĳn, is het enkel voor

eenvoudige kenmerken doenbaar om kruisingsschema’s in zo’n de-

tail op te stellen, en hebben we intelligente algoritmes nodig om de

zoekruimte te verkennen en optimale schema’s te identificeren.

In hoofdstuk 6 introduceren we Gene Stacker: een flexibele gene-

rator van kruisingsschema’s om efficiënt genen uit verschillende

bestaande individuen te verzamelen in een enkele nieuwe plant.

Gene Stacker gebruikt een exhaustief generatie-algoritme dat ite-

ratief kruisingsschema’s combineert om grotere schema’s te bou-

wen door extra kruisingen toe te voegen. Om het aantal geconstru-

eerde schema’s enigszins te beperken worden hierbĳ verschillende

exacte en benaderende (zogenaamde heuristische) snoeicriteria ge-

bruikt, die delen van de zoekruimte overslaan. Het hoofddoel is
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om schema’s te vinden met een minimum aantal generaties (mi-

nimale tĳd) en om zo weinig mogelĳk planten te moeten kweken

en screenen (minimale kost) terwĳl ook rekening gehouden dient

te worden met enkele operationele en plantspecifieke beperkingen,

zoals het maximaal aantal planten dat men in een generatie kan

kweken en het aantal zaden dat een kruising normaal gezien op-

levert. De twee hoofddoelen zĳn echter grotendeels conflicterend,

wat betekent dat schema’smetminder generaties doorgaans een ho-

gere kost hebben en omgekeerd. Daarom construeert Gene Stacker

meerdere schema’s die de verschillende doelen optimaal tegenover

elkaar afwegen. De kracht van Gene Stacker berust voor een groot

deel op de vele doordachte heuristieken. Deze slaan delen van de

zoekruimte overwanneer het onwaarschĳnlĳk is dat daar eengoede

oplossing gevonden zal worden, met als doel om zoveel mogelĳk

tĳd te winnen en zo weinig mogelĳk in te boeten in de kwaliteit

van de gevonden oplossingen. Dit resulteert in een interessante

afweging tussen uitvoeringstĳd en kwaliteit van de voorgestelde

schema’s, die het toelaat om complexe problemen met tien of meer

genen aan te pakken, zoals blĳkt uit onze experimenten.

Naar verwachting zal de wereldpopulatie in 2050 tegen de tien mil-

jard aanleunen. De grote uitdaging om al deze mensen van voedsel

te voorzien zal ervoor blĳven zorgen datmen steedsmeer gewassen

moet produceren opminder land. Tegelĳkertĳdmoetenwe strĳden

tegen klimaatverandering als gevolg van de opwarming van de

aarde. Bovenop initiatieven om verdere opwarming tegen te gaan,

door bĳvoorbeeld de uitstoot van broeikasgassen te verminderen,

moeten we ons ook weten aan te passen aan de reeds vastgestelde

en voorspelde veranderingen. We mogen ons niet laten vangen

door wat sommige bronnen durven te beweren of te ontkennen:

wetenschappers zĳn het er algemeen over eens dat de gemiddelde

globale temperatuur met minstens 1.5 tot 2 graden Celsius zal stĳ-

gen in vergelĳking met preïndustriële tĳden, wat een significante

impact zal hebben op ons leven en op de landbouw in het bĳzonder,

en de mensheid heeft hier een duidelĳke rol in gespeeld.

Merker-gebaseerde selectie is een van de belangrĳkste technolo-

gieën met een zeer groot potentieel om tot verdere successen te lei-

den bĳ onze opdracht om de snelgroeiende wereldbevolking van

voedsel te blĳven voorzien, in tĳden van klimaatverandering. Ge-

durende lange tĳd was plantenveredeling voornamelĳk een kunst,

maar dankzĳ de wetenschap is het giswerk meer en meer aan het

verdwĳnen. Op dit moment worden steeds meer moderne mole-

culaire technieken toegepast die genetische informatie gebruiken

om betere selecties te maken. Een van de grootste uitdagingen voor

de toekomst is om over te gaan van generatie-per-generatie beslis-

singen naar effectieve computationele veredeling, waarbĳ nieuwe
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genetische configuraties werkelĳk in detail ontworpen zĳn en ver-

volgensgecreëerdwordenvia specifiekeopvoorhandgedefinieerde

kruisingsschema’s, zoals Gene Stacker momenteel doet voor een-

voudige kenmerken en de enkele betrokken genen.

We hebben er vertrouwen in dat ons werk waardevol zal zĳn voor

veredelaars en plantenonderzoekers, en dat het in het bĳzonder

zal bĳdragen aan de aanstaande overgang van moleculaire naar

computationele veredeling,met het oogopduurzameontwikkeling

van verbeterde gewassen in de 21e eeuw.
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a.1 data preprocessing details

The founder dataset, consisting of 192 individuals and 2591 SNPs,

was cleaned and preprocessed as follows:

1. Remove markers (223) with unknown position in the genetic

map at hand.

2. Removemarkers (46) and individuals (0) withmore than 20%
missing values.

3. Recode markers as number of copies of minor allele (0,1,2).

4. Impute missing values using Beagle 3.3.2 (Browning and

Browning, 2009; Browning and Browning, 2007) through the

R package synbreed (version 0.10-5) (Wimmer et al., 2015).

Beagle uses a hidden Markov model (HMM) to reconstruct

missing values based on flanking markers.

5. Filter redundant markers (291). Markers were considered re-

dundant if they had the same map position and the same

allele was observed in all individuals. From each set of re-

dundant markers, only one was retained.

6. Spread remaining markers mapped to same position at 0.1

cM intervals in arbitrary order.

This procedure retained 2031 polymorphic SNPs and all 192 indi-

viduals.

a.2 genomic optimal contributions selection

a.2.1 Genomic inbreeding control

Here, we formally derive how the inbreeding rate ∆F relates to

SNP allele frequencies in the population and the changes of these

frequencies over time, and to the GOCS constraint Ct+1. First we

183
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express Ct+1 in terms of SNP allele frequencies starting from its

definition

Ct+1 =
cᵀt Gtct

2
.

Here, ct is a vector of assigned contributions (under optimization)

and Gt is the realized genomic relationship matrix of the selection

candidates in generation t, defined as

Gt =
ZtZ

ᵀ
t

2
∑m
j=1 pj(1− pj)

where m is the number of markers, pj is the reference allele fre-

quency of the j-th marker in the population of selection candidates

and Zt is the centered marker matrix of the selection candidates:

Zt = Xt − 2Pt

where Xt is the original marker matrix containing reference allele

counts (0/1/2) and Pt is a matrix whose j-th column contains the

current allele frequency pj of the j-th marker:

Pt =


p1 p2 · · · pm
p1 p2 · · · pm
.
.
.

.

.

.

.
.
.

.

.

.

p1 p2 · · · pm

 .

As such, the values of Zt represent reference allele counts relative

to the population mean and each of its columns sums to zero. It

follows that (Woolliams et al., 2015)

Zᵀ
t ct = 2


∆1

∆2
.
.
.

∆m


where ∆j is the expected allele frequency change when mating the

individuals from the selection population according to the assigned

contributions ct. Therefore

cᵀt ZtZ
ᵀ
t ct = 4

m∑
j=1

∆2j

and thus

Ct+1 =
cᵀt Gtct

2
=

cᵀt ZtZ
ᵀ
t ct

4
∑m
j=1 pj(1− pj)

=
1

2m

cᵀt ZtZ
ᵀ
t ct

Ht
=

2

mHt

m∑
j=1

∆2j
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where Ht =
1
m

∑m
j=1 2pj(1− pj) is the expected heterozygosity in

the selection population.

Now we also express the inbreeding rate ∆F in terms of the SNP

allele frequencies and their changes, starting from its definition:

∆F =
Ft+1 − Ft
1− Ft

with (for the SNP marker panel used)

Ft =
1

m

m∑
j=1

p2j + (1− pj)
2

and 1− Ft = Ht.

It follows that

∆FIBS =
1

mHt

 m∑
j=1

(pj +∆j)
2 + (1− pj −∆j)

2 −

m∑
j=1

p2j + (1− pj)
2


=

1

mHt

m∑
j=1

p2j + 2pj∆j +∆
2
j + (1− pj)

2 − 2(1− pj)∆j +∆
2
j − p

2
j − (1− pj)

2

=
1

mHt

m∑
j=1

2∆2j + 2pj∆j − 2(1− pj)∆j

=
1

mHt

m∑
j=1

2∆2j + 4pj∆j − 2∆j

=
2

mHt

m∑
j=1

∆2j +
2

mHt

m∑
j=1

∆j(2pj − 1)

=
cᵀt Gtct

2
+

2

mHt

m∑
j=1

∆j(2pj − 1)

= Ct+1 +
2

mHt

m∑
j=1

∆j(2pj − 1).

As such, the inbreeding rate ∆FIBS defined for SNP markers is the

sum of the GOCS constraint Ct+1 = cᵀt Gtct/2 and an additional

term
2

mHt

∑m
j=1∆j(2pj − 1) that is not constrained by GOCS.

a.2.2 Selection procedure

The optimal contributions selection (OCS) strategy was originally

presented in an animal breeding context by Meuwissen (1997)

where it is required that the contributions of males and females

both sum to 1/2. In our plant breeding scheme such constraint
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does not apply and all contributions must simply sum to one, i.e.∑
ct = 1. This slightly changes the optimization formulas of GOCS

based on Lagrangian multipliers to

ct =
G−1

t (GEBVt − λ)

2λ0

λ =
1ᵀG−1

t GEBVt − 2λ0
1ᵀG−1

t 1

λ20 =
GEBVt

ᵀ(G−1
t −

G−1
t 11ᵀG−1

t
1ᵀG−1

t 1 )GEBVt

8Ct+1 −
4

1ᵀG−1
t 1

.

Any negative contributions are eliminated by setting the most neg-

ative value to zero and iteratively re-optimizing the remaining con-

tributions. Following Meuwissen (2002) a minimum and/or max-

imum contribution, cmin and cmax, respectively, may be imposed.

As a special case we set cmin = cmax = 1/n to select n indi-

viduals with equal contribution. To deal with these additional con-

straints, contributions exceeding themaximumvalue are truncated

and those individuals with a too low contribution are discarded. In

each step of the algorithm, the following rules are applied to adjust

the contributions, after which the remaining ones are re-optimized:

1. Discard the individual with the most negative contribution,

if any, by fixing its contribution to zero.

2. Else, if any contribution exceeds the imposedmaximum cmax,

truncate the largest contribution to cmax and exclude the cor-

responding individual from the optimization. In addition,

all individuals that were previously discarded, if any, are re-

included in the optimization.

3. Else, if any selected individual has a contribution below the

imposed minimum cmin, discard the individual with the

smallest positive contribution.

Meuwissen (1997) explained in an appendix how to extend the

formulas to optimize the remaining contributions co when some
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have already been fixed to cf, in our case to either zero or cmax =

1/n. Adjusting the formulas for our plant breeding scheme yields

co =
G−1

oo (GEBVo − 2λ0Gofcf − λ)

2λ0

λ =
1ᵀG−1

oo (GEBVo − 2λ0Gofcf) − 2λ0s

1ᵀG−1
oo 1

λ20 =
1

4

GEBVo
ᵀ P GEBVo

K+ L−M−N

where

s = 1−
∑

cf

P = G−1
oo −

G−1
oo 11ᵀG−1

oo
1ᵀG−1

oo 1

K = 2Ct+1 − cf
ᵀGffcf

L = cf
ᵀGfoPGofcf

M =
s2

1ᵀG−1
oo 1

N =
2s1ᵀG−1

oo Gofcf

1ᵀG−1
oo 1

.

Here, GEBVo is a vector of genomic estimated breeding values of

the individuals under optimization, and Gxy is the genomic rela-

tionship matrix restricted to rows x and columns y. Applying these

formulas optimizes the remaining contributions co tomaximize the

expected genetic gain co
ᵀGEBVo while constraining

Ct+1 =
ct
ᵀGtct

2
=
1

2
[co

ᵀGooco + 2co
ᵀGofcf + cf

ᵀGffcf]

to the target inbreeding rate Ct+1 = ∆Ftarget, with∑
ct =

∑
(co + cf) = 1.

It may happen that, in a certain step of the iterative heuristic, this

constraint cannot be satisfied for the remaining individuals. In such

case, we assign the remaining contributions by minimizing the

corresponding realized genomic relationship, in order to approach

the requested constraint value as closely as possible. Formulas for
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Table A.1: Used R packages and versions.

Package Version Reference(s)

BGLR 1.0.4 Campos and Pérez (2015)

coda 0.17-1 Plummer et al. (2006)

rrBLUP 4.3 Endelman (2011)

synbreed 0.10-5 Wimmer et al. (2015)

hypred 0.5 Technow (2014)

gdata 2.17.0 Warnes et al. (2015)

Hmisc 3.16-0 Harrell et al. (2015)

rJava 0.9-7 Urbanek (2015)

setRNG 2013.9-1 Gilbert (2014)

the latter optimization problem are also obtained with Lagrangian

multipliers by minimizing ct
ᵀGtct/2 with

∑
ct = 1:

co = G−1
oo (

1

2
λ− Gofcf)

λ =
2(1−

∑
cf + 1ᵀG−1

oo Gofcf)

1ᵀG−1
oo 1

.

a.3 supplementary figures and tables

Table A.1 lists all R packages that were used for this study and

figures A.1 to A.5 provide results for additional simulation settings.
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Figure A.1: Cumulative genetic gain (top) and inbreeding rate (IBS:

middle; IBD: bottom) for weighted genomic selection (WGS;

left) and genomic optimal contributions selection (GOCS;

right) as compared to standard genomic selection (GS). Res-

ults are reported for a low (h2 = 0.2) and high (h2 = 0.5)
heritability with a small initial training population (TP = 200)

and are averages of 200 simulation runs. The inbreeding rates

are reported until at least half of the simulation runs have lost

all variability for the SNP marker panel used.
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Figure A.2: Cumulative genetic gain (top) and inbreeding rate (IBS:

middle; IBD: bottom) when no selection is performed (RS;

left), i.e. where 20 individuals are chosen randomly in each

cycle, and for genomic optimal contributions selection with a

larger selection consisting of 50 individuals (GOCS50; right),

as compared to GOCSwith the default selection size (20). Res-

ults are reported for a low (h2 = 0.2) and high (h2 = 0.5)
heritability with a large initial training population (TP = 1000)

and are averages of 200 simulation runs.
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Figure A.3: Cumulative genetic gain (top) and inbreeding rate (IBS:

middle; IBD: bottom) of selection strategies that maximize

a weighted index containing breeding value and a diversity

measure chosen to control inbreeding (IND-OC, IND-HE) or

to avoid loss of rare alleles (IND-RA). Results for GS, WGS,

and GOCS are provided as a reference. For clarity, inbreeding

rates of GS and WGS are omitted. Two scenarios were con-

sidered to set the parameters Ct+1 and α: maintain the same

short-term gain as WGS (left), or achieve a similar inbreeding

rate ∆FIBS (right). Results are reported for a low heritability

(h2 = 0.2) with a small initial training population (TP = 200)

and are averages of 200 simulation runs.
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Figure A.4: Cumulative genetic gain (top) and inbreeding rate (IBS:

middle; IBD: bottom) of selection strategies that maximize

a weighted index containing breeding value and a diversity

measure chosen to control inbreeding (IND-OC, IND-HE) or

to avoid loss of rare alleles (IND-RA). Results for GS, WGS,

and GOCS are provided as a reference. For clarity, inbreeding

rates of GS and WGS are omitted. Two scenarios were con-

sidered to set the parameters Ct+1 and α: maintain the same

short-term gain as WGS (left), or achieve a similar inbreeding

rate ∆FIBS (right). Results are reported for a high heritability

(h2 = 0.5) with a small initial training population (TP = 200)

and are averages of 200 simulation runs.
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Figure A.5: Cumulative genetic gain (top) and inbreeding rate (IBS:

middle; IBD: bottom) of selection strategies that maximize

a weighted index containing breeding value and a diversity

measure chosen to control inbreeding (IND-OC, IND-HE) or

to avoid loss of rare alleles (IND-RA). Results for GS, WGS,

and GOCS are provided as a reference. For clarity, inbreeding

rates of GS and WGS are omitted. Two scenarios were con-

sidered to set the parameters Ct+1 and α: maintain the same

short-term gain as WGS (left), or achieve a similar inbreeding

rate ∆FIBS (right). Results are reported for a high heritability

(h2 = 0.5) with a large initial training population (TP = 1000)

and are averages of 200 simulation runs.
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b.1 distribution of generated offspring

When crossing two genotypes P and Q a number of possible off-

spring can be produced due to crossover events, eachwith a certain

probability. Here we describe how to compute these probabilities

from the recombination rates ri,p,q between the p-th and q-th loci

of the it-h chromosome, as inferred from the genetic map.

Take the i-th chromosome Pi of genotype P and any haplotype Hi
with the same number of loci as Pi. Suppose that Pi contains l

heterozygous loci with ordered indices s = (ν1, . . . ,νl). Then, the
probability Pr[Pi → Hi] that haplotype Hi is produced from chro-

mosome Pi is computed following Canzar and El-Kebir (2011):

• If Hi contains at least one allele which does not occur at

the respective locus in Pi then Pr[Pi → Hi] = 0, i. e. it is

impossible that Hi has been produced from Pi.

• Else, if all loci are homozygous (s is empty): Pr[Pi → Hi] = 1.

• Else

Pr[Pi → Hi] =
1

2

l−1∏
j=1


ri,νj,νj+1 in case of a crossover

between loci νj and νj+1

1− ri,νj,νj+1 otherwise

where there has been a crossover between loci νj and νj+1 if

Hi(νj) = Pi,1(νj) ∧ Hi(νj+1) = Pi,2(νj+1), or
Hi(νj) = Pi,2(νj) ∧ Hi(νj+1) = Pi,1(νj+1).

The factor of 1/2 is introduced because every sequence of

crossovers defines two complementary haplotypes which are

inherited with equal probability.

Now, take any chromosomeGi with the same number of loci as the

i-th chromosomes Pi and Qi of the two parents P and Q, respect-

ively. The probability Pr[Pi,Qi → Gi] that chromosomes Pi andQi

195
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will produce haplotypes which together form a chromosome Gi is
computed as follows:

Pr[Pi,Qi → Gi] =


Pr[Pi → Gi,1] · Pr[Qi → Gi,2] if Gi,1 = Gi,2

Pr[Pi → Gi,1] · Pr[Qi → Gi,2] if Gi,1 6= Gi,2
+Pr[Pi → Gi,2] · Pr[Qi → Gi,1].

The second case accounts for the fact that the haplotypes might

swap their originating parents. As Gene Stacker explicitly models

multiple chromosomes, the probability Pr[P,Q → G] of obtain-

ing the entire phase-known genotype G from crossing the phase-

known parents P and Q, with k chromosomes, is computed by

multiplying the independent chromosome probabilities:

Pr[P,Q→ G] =

k∏
i=1

Pr[Pi,Qi → Gi].

Note that this will account for up to 2k identical phase-known

genotypesG depending on howmany haplotype pairs might swap

their originating parents.

b.2 joint population sizes

Sometimes several different genotypes or multiple occurrences of

the same genotype are simultaneously targeted among offspring

grown from the same seed lot. In such case it is possible to compute

a joint population size, i. e. the number of offspring that needs to

be generated so that at least the number of desired occurrences

of each targeted genotype are expected to be obtained. The same

individual and overall success rates are still guaranteed, but the

computed joint population size is often much smaller than the

sum of the number of offspring required to obtain each targeted

genotype individually. This procedure may therefore significantly

reduce the total population size.

Suppose that m distinct phase-known genotypes G1, . . . ,Gm are

targeted among the offspring, where f1, . . . , fm occurrences of the

respective targets are desired, with fi > 1, ∀i = 1, . . . ,m and∑m
i=1 fi = f. The joint population size N is then calculated as

follows:

1. Compute the population sizes Ni required to obtain each

target Gi individually using equation (6.1).

2. Set

N = max{Ni|i = 1, . . . ,m}
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and compute the joint probability of success (see below)

P = Pr[|G1| > f1 & · · · & |Gm| > fm;N].

3. If P < (γ ′)f, adjust N with a binary search in the interval

I = [max{Ni|i = 1, . . . ,m},
m∑
i=1

(fi ·Ni)]

to find the smallest N ∈ I for which P > (γ ′)f.

Taking themaximum in step 2 ensures a success rate of at leastγ ′ for
every individual target. If needed, step3 further increases this initial

estimate of the joint population size to guarantee a joint success rate

of at least (γ ′)f so that this joint trial with f targets still contributes

a factor of (γ ′)f to the overall success rate—just as if f independent

Bernoulli trials would have been performed. Such independent

trials would require a population size of

∑m
i=1(fi ·Ni) to obtain all

targets, which is the upper bound of the interval I. By considering

a joint trial, the total population size can be significantly reduced

while both the same individual and overall success rates are still

guaranteed. Experiments showed that in practice step 3 rarely has

to be executed, leading to a significant reduction in population size

with almost no computational overhead. Furthermore, when step 3

is neededwe can efficiently adjustN through a binary searchwithin

its bounds, because we know that a larger population size always

yields a higher probability to observe all targets.

The joint success probability Pr[|G1| > f1 & · · · & |Gm| > fm;N] of
obtaining each targeted phase-known genotypeGi at least fi times,

when growing N plants in total, is computed as

Pr [|G1| > f1 & · · · & |Gm| > fm;N]

= 1 − ¬Pr[|G1| > f1 & · · · & |Gm| > fm;N]

= 1 − Pr[|G1| 6 (f1 − 1) ∨ · · · ∨ |Gm| 6 (fm − 1);N]

= 1 −
∑

i1∈[1,m]

Pr[|Gi1 | 6 (fi1 − 1);N]

+
∑

(i1 ,i2)∈[1,m]2

i1<i2

Pr[|Gi1 | 6 (fi1 − 1) & |Gi2 | 6 (fi2 − 1);N]

−
∑

(i1 ,i2 ,i3)∈[1,m]3

i1<i2<i3

Pr[|Gi1 | 6 (fi1 − 1) & |Gi2 | 6 (fi2 − 1)

& |Gi3 | 6 (fi3 − 1);N]

+ · · ·

· · ·

+ (−1)m Pr[|G1| 6 (f1 − 1) & · · · & |Gm| 6 (fm − 1);N]
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with

Pr [|Gi1 | 6 fi1 & · · · & |Gik | 6 fik ;N]

=

fi1∑
n1=0

· · ·
fik∑
nk=0

N · (N− 1) · · · (N−n1 − · · ·−nk + 1)
n1! · · ·nk!

p
n1
Gi1
· · ·pnk

Gik

· (1− pGi1
− · · ·− pGik

)N−n1−···−nk

where pGi is the probability of observing Gi among the offspring.

These formulas follow from the multinomial probability distribu-

tion. The joint success probability is computed through its com-

plement because the fi’s are expected to be small—often they are

all equal to one—while N is expected to be much larger. Also, m

is expected to be relatively small. Therefore, a direct computation

would require to sum over significantly more terms, as compared

to this computation through the complement.

b.3 full results for the first constructed example

Figures B.1 to B.5 show an overview of all five reported solutions for

the first constructed example, when runningGene Stacker in default
mode with an overall success rate of γ = 0.95 and a maximum of

4 generations, 10% overall linkage phase ambiguity, 4 crossings

per plant, 5000 plants per generation, and 2500 seeds obtained

from each crossing. Three schemes are non-ambiguous, while the

remaining two schemes have a small linkage phase ambiguity of

8.28% which in turn yields a (slightly) lower total population size.

The approximatedPareto front clearly reflects the tradeoffs between

the three objectives: minimizing the total population size, number

of generations, and overall linkage phase ambiguity.

b.4 specification of real stacking problems

This section gives a full description of all discussed problems from

cotton, tomato and rice.

Cotton

We used one stacking problem from cotton, consisting of six par-

ental genotypes and a heterozygous ideotype with 11 loci spread

across five chromosomes:
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Overall LPA: 0%
# Plants: 580

11

495

83

S1

[0][0 1 0]
[0][1 0 1]

S2

[0][0 0 0]
[1][0 0 1]

S3

[0][0 0 1]
[1][1 1 1]

[0][0 0 1]
[1][1 0 1]

S4

[1][1 0 1]
[1][1 1 1]

Figure B.1: First reported solution for the first constructed example, when

running Gene Stacker in default mode with an overall success

rate of γ = 0.95, and a maximum of 4 generations, 10% overall

linkage phase ambiguity, 4 crossings per plant, 5000 plants per

generation, and 2500 seeds obtained from each crossing.
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Overall LPA: 0%
# Plants: 275

11

158

68

47

S1

[0][0 1 0]
[0][1 0 1]

S2

[0][0 0 0]
[1][0 0 1]

S3

[0][0 0 1]
[1][0 1 1]

[0][0 0 1]
[1][1 0 1]

S4

[1][0 1 1]
[1][1 0 1]

S5

[1][1 0 1]
[1][1 1 1]

Figure B.2: Second reported solution for the first constructed example,

when running Gene Stacker in default mode with an overall

success rate of γ = 0.95, and a maximum of 4 generations,

10% overall linkage phase ambiguity, 4 crossings per plant,

5000 plants per generation, and 2500 seeds obtained from each

crossing.
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Overall LPA: 8.28%
# Plants: 274

11

6872

38

94

S1

[0][0 0 0]
[1][0 0 1]

S2

[0][0 1 0]
[0][1 0 1]

S3 S4

[1][0 0 1]
[1][0 0 1]

[0][0 1 1]
[0][1 0 1]

LPA: 8.28%

S5

[0][0 0 1]
[1][1 1 1]

[0][0 0 1]
[1][1 0 1]

S6

[1][1 0 1]
[1][1 1 1]

Figure B.3: Third reported solution for the first constructed example,

when running Gene Stacker in default mode with an overall

success rate of γ = 0.95, and a maximum of 4 generations,

10% overall linkage phase ambiguity, 4 crossings per plant,

5000 plants per generation, and 2500 seeds obtained from each

crossing.



202 gene stacker: formulas, figures & data

Overall LPA: 8.28%
# Plants: 201

1

711

17 39

36

36

S1

[0][0 0 0]
[1][0 0 1]

S2

[0][0 1 0]
[0][1 0 1]

S3

[0][1 0 1]
[0][1 0 1]

[0][0 1 1]
[0][1 0 1]

LPA: 8.28%

S4S5

[0][1 0 1]
[0][1 1 1]

[0][0 0 1]
[1][1 0 1]

S6

[0][1 0 1]
[1][1 1 1]

S7

[1][1 0 1]
[1][1 1 1]

Figure B.4: Fourth reported solution for the first constructed example,

when running Gene Stacker in default mode with an overall

success rate of γ = 0.95, and a maximum of 4 generations,

10% overall linkage phase ambiguity, 4 crossings per plant,

5000 plants per generation, and 2500 seeds obtained from each

crossing.
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Overall LPA: 0%
# Plants: 236

1

721

40

72

50

S1

[0][0 1 0]
[0][1 0 1]

S2

[0][0 0 0]
[1][0 0 1]

S3

[1][0 0 1]
[1][0 0 1]

S4

[0][0 0 1]
[1][0 1 1]

[0][0 0 1]
[1][1 0 1]

S5

[1][0 1 1]
[1][1 0 1]

S6

[1][1 0 1]
[1][1 1 1]

Figure B.5: Fifth reported solution for the first constructed example, when

running Gene Stacker in default mode with an overall success

rate of γ = 0.95, and a maximum of 4 generations, 10% overall

linkage phase ambiguity, 4 crossings per plant, 5000 plants per

generation, and 2500 seeds obtained from each crossing.
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G1 =

[
0

1

][
0 0 1

0 0 1

][
0 0

0 0

][
0 0

0 0

][
1 0 0

1 0 0

]
,

G2 =

[
0

0

][
1 1 0

0 0 0

][
0 0

0 0

][
0 0

0 0

][
0 0 0

0 0 0

]
,

G3 =

[
0

0

][
0 0 0

0 0 0

][
1 1

1 1

][
0 0

0 0

][
0 0 0

0 0 0

]
,

G4 =

[
0

0

][
1 1 0

0 0 0

][
1 1

0 0

][
0 0

0 0

][
0 0 0

0 0 0

]
,

G5 =

[
0

0

][
0 0 0

0 0 0

][
0 0

0 0

][
1 1

1 1

][
0 1 1

0 1 1

]
,

G6 =

[
0

0

][
1 1 0

1 1 0

][
0 0

0 0

][
1 1

0 0

][
0 0 0

0 0 0

]
,

I =

[
0

1

][
1 1 1

1 1 1

][
0 0

1 1

][
1 1

1 1

][
1 0 0

1 1 1

]
.

The genetic map states the following distances between subsequent

loci on the same chromosome:

• 2nd chromosome: 15 cM, 10 cM

• 3rd chromosome: 10 cM

• 4th chromosome: 8 cM

• 5th chromosome: 45 cM, 10 cM

Tomato

Both considered stacking problems from tomato consist of the same

four parental genotypes with eight loci spread across six chromo-

somes:

G1 =

[
1

0

][
0 0

0 0

][
0

0

][
0

0

][
0

0

][
0 0

0 0

]
,

G2 =

[
0

0

][
0 0

0 0

][
0

1

][
0

1

][
0

1

][
1 1

1 1

]
,



B.4 specification of real stacking problems 205

G3 =

[
0

0

][
0 1

0 1

][
0

0

][
0

0

][
0

0

][
0 0

0 0

]
,

G4 =

[
0

0

][
1 0

1 0

][
0

0

][
0

0

][
0

0

][
0 0

0 0

]
.

The genetic map states the following distances between subsequent

loci on the same chromosome:

• 2nd chromosome: 4 cM

• 6th chromosome: 10 cM

The first problem (Tomato-1) has a homozygous ideotype

I =

[
1

1

][
1 1

1 1

][
1

1

][
1

1

][
1

1

][
1 1

1 1

]
while the second problem (Tomato-2) has a heterozygous ideotype

I =

[
0

1

][
1 1

1 1

][
0

1

][
0

1

][
0

1

][
1 1

1 1

]
.

Rice

The two considered problems from rice have the same eight par-

ental genotypes with ten loci spread across six chromosomes:

G1 =

[
0

0

][
1

1

][
1 1

1 1

][
0 0

0 0

][
1 1 1

0 0 0

][
1

1

]
,

G2 =

[
1

0

][
1

0

][
1 1

0 0

][
0 0

0 0

][
1 0 0

0 0 0

][
0

0

]
,

G3 =

[
0

0

][
1

1

][
1 1

1 1

][
0 0

0 0

][
1 0 0

1 0 0

][
0

0

]
,

G4 =

[
0

0

][
1

1

][
1 1

1 1

][
0 0

0 0

][
0 0 0

0 0 0

][
1

1

]
,

G5 =

[
1

0

][
1

0

][
1 1

0 0

][
0 0

0 0

][
0 0 0

0 0 0

][
0

0

]
,

G6 =

[
0

0

][
1

1

][
1 1

1 1

][
0 0

0 0

][
0 0 0

0 0 0

][
0

0

]
,
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G7 =

[
0

0

][
1

1

][
1 1

1 1

][
1 1

1 1

][
1 0 0

1 0 0

][
0

0

]
,

G8 =

[
1

1

][
0

0

][
0 0

0 0

][
0 0

0 0

][
0 0 0

0 0 0

][
0

0

]
.

The genetic map states the following distances between subsequent

loci on the same chromosome:

• 3rd chromosome: 5 cM

• 4th chromosome: 9 cM

• 5th chromosome: 50 cM, 8 cM

The first problem (Rice-1) has a homozygous ideotype

I =

[
1

1

][
1

1

][
1 1

1 1

][
1 1

1 1

][
1 1 1

1 1 1

][
1

1

]

while the second problem (Rice-2) has a heterozygous ideotype

I =

[
1

1

][
1

1

][
1 1

1 1

][
0 1

1 1

][
0 0 0

1 1 1

][
1

1

]
.

b.5 solutions for real stacking problem from cotton

Figures B.6 to B.9 showall solutions reported for the cotton example

when applying preset fastest with a maximum of five generations.

Running this preset took 2 hours and 15 minutes to complete; all

other presets ran out of memory.

Because only 250 seeds are produced per crossing, some crossings

are performed multiple times to provide a sufficient amount of

seeds so that all selection targets are expected among the offspring.

Furthermore, a cotton plant can only be crossed twice (or selfed

once). Therefore, for some genotypes, several duplicates are grown

to be able to perform all crossings. Population sizes are computed

in suchway that at least the required number of occurrences of each

selection target is expected among the offspring (see appendix B.2).

When restricting the number of generations to four instead of

five, preset faster finds a different scheme with four generations,

as shown in figure B.10, before being interrupted when the time

limit of 24 hours is exceeded. This solution has a lower population

size as compared to the respective scheme found by preset fastest.
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Overall LPA: 0%
# Plants: 7256

1 2 1

352 8948

2837 1443

2780

S1

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

x3

S2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

S3

[0][0 0 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][0 0 0]

S4

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S5S6 S7

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][1 0 0]

x3

[0][0 0 1][0 0][0 0][0 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

x6

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x6

612

S8S9

[0][0 0 0][0 0][0 0][0 1 1]
[0][1 1 1][1 1][1 1][1 0 0]

x6

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

x6

12

S10

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure B.6: Three generation long scheme for the cotton example. Some

crossings are performed 6 up to 12 times to provide a suffi-

cient amount of seeds. For most genotypes occurring in the

scheme, several duplicates are targeted to be able to perform

all crossings.
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Overall LPA: 0%
# Plants: 1534

1 21

1 215256 24

1115270119

215 292

364

S1

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

S2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

S3

[0][0 0 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][0 0 0]

S4

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S5S6 S7 S8

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][1 1][0 0 0]

[0][0 0 1][0 0][0 0][0 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

2

S9S10 S11 S12

[0][0 0 0][0 0][0 0][0 1 1]
[0][1 1 1][0 0][1 1][1 0 0]

[0][1 1 0][1 1][1 1][0 0 0]
[0][1 1 0][1 1][1 1][0 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

2

S13 S14

[0][1 1 0][0 0][1 1][0 0 0]
[0][1 1 1][1 1][1 1][1 1 1]

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

2

S15

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure B.7: Four generation long scheme for the cotton example. Some

crossings are performed twice to obtain a sufficient amount of

seeds. For two genotypes occurring in the scheme, two duplic-

ates are targeted to be able to perform all crossings.
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Overall LPA: 0%
# Plants: 1210

1121 1

154 125 1

124 54 54 56

1 25140140

95 225

307

S1

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

S3

[0][0 0 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][0 0 0]

S4

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

S5

[0][0 0 0][1 1][0 0][0 0 0]
[0][0 0 0][1 1][0 0][0 0 0]

S6 S7 S8 S9

[0][1 1 0][0 0][1 1][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2
[0][0 0 1][0 0][0 0][0 0 0]
[1][1 1 0][0 0][0 0][1 0 0]

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][0 0 0][0 0][0 0][0 0 0]
[0][0 0 0][1 1][1 1][0 1 1]

S10S11 S12 S13

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 0][0 0][0 0][1 0 0]

[0][0 0 1][0 0][0 0][1 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

S14 S15 S16

[0][1 1 0][0 0][0 0][0 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][0 0][0 0][0 1 1]
[0][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][1 1][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

S17 S18

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][0 0][1 1][0 1 1]
[0][1 1 1][1 1][1 1][1 1 1]

2

S19

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure B.8: Five generation long scheme for the cotton example with zero

linkage phase ambiguity. Only the final crossing is performed

twice to provide a sufficient amount of seeds. For two geno-

types occurring in the scheme, two duplicates are targeted to

be able to perform all crossings.
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Overall LPA: 3.14%
# Plants: 1077

11 12 1

121 53119 1

1117 5355

24 13679

173 218

119

S1

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

S2

[0][0 0 0][0 0][0 0][0 0 0]
[0][1 1 0][1 1][0 0][0 0 0]

S3

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

S4

[0][0 0 0][1 1][0 0][0 0 0]
[0][0 0 0][1 1][0 0][0 0 0]

S5

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S6 S7S8 S9

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][0 0 0][0 0][0 0][0 0 0]
[0][0 0 0][1 1][1 1][0 1 1]

[0][0 0 1][0 0][0 0][0 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

S10S11S12

[0][0 0 1][0 0][0 0][1 0 0]
[0][1 1 0][0 0][0 0][1 0 0]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

[1][0 0 1][0 0][0 0][1 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

S13S14S15

[0][0 0 0][0 0][0 0][0 1 1]
[0][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][1 1][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

[1][0 0 1][0 0][1 1][1 0 0]
[1][1 1 0][0 0][1 1][1 0 0]

LPA: 3.14%

S16S17

[0][0 0 0][0 0][1 1][0 1 1]
[0][1 1 1][1 1][1 1][1 1 1]

[1][1 1 0][0 0][1 1][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

S18

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure B.9: Five generation long scheme for the cotton example with an

overall linkage phase ambiguity of 3.14%. In return, a reduc-

tion in the total population size is obtained as compared to the

reported non-ambiguous scheme with five generations. No

crossings are performed multiple times in this scheme, as a

single crossing always provides enough seeds to obtain all

targeted genotypes.
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Overall LPA: 0%
# Plants: 1400

11 1 2

2 268 191

53 576 140

215 88

267

S1

[0][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

x2

S2

[0][1 1 0][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][0 0 0]

S3

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][0 0][1 1][0 1 1]

x2

S4

[0][0 0 0][1 1][0 0][0 0 0]
[0][0 0 0][1 1][0 0][0 0 0]

S5S6 S7 S8

[0][0 0 1][0 0][0 0][0 0 0]
[0][1 1 0][0 0][1 1][1 0 0]

x2
[0][0 0 0][0 0][0 0][0 0 0]
[0][0 0 0][1 1][1 1][0 1 1]

[0][0 0 0][0 0][0 0][0 1 1]
[1][0 0 1][0 0][1 1][1 0 0]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][0 0][1 0 0]

3

S9S10 S11

[0][0 0 0][0 0][1 1][0 1 1]
[0][1 1 1][0 0][1 1][1 0 0]

[0][0 0 0][0 0][1 1][0 1 1]
[0][0 0 0][1 1][1 1][0 1 1]

[1][0 0 1][0 0][0 0][1 0 0]
[1][0 0 1][0 0][1 1][1 0 0]

S12 S13

[0][0 0 0][0 0][1 1][0 1 1]
[0][1 1 1][1 1][1 1][1 1 1]

[0][0 0 1][0 0][1 1][1 0 0]
[1][1 1 1][0 0][1 1][1 0 0]

2

S14

[0][1 1 1][0 0][1 1][1 0 0]
[1][1 1 1][1 1][1 1][1 1 1]

Figure B.10: Additional four generation long scheme for the cotton ex-

ample, reported by preset fasterwhen restricting the number

of generations to four instead of five. This scheme has a lower

total population size as compared to the solution with four

generations that is found by preset fastest.
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