846 research outputs found

    Working together: a review on safe human-robot collaboration in industrial environments

    Get PDF
    After many years of rigid conventional procedures of production, industrial manufacturing is going through a process of change toward flexible and intelligent manufacturing, the so-called Industry 4.0. In this paper, human-robot collaboration has an important role in smart factories since it contributes to the achievement of higher productivity and greater efficiency. However, this evolution means breaking with the established safety procedures as the separation of workspaces between robot and human is removed. These changes are reflected in safety standards related to industrial robotics since the last decade, and have led to the development of a wide field of research focusing on the prevention of human-robot impacts and/or the minimization of related risks or their consequences. This paper presents a review of the main safety systems that have been proposed and applied in industrial robotic environments that contribute to the achievement of safe collaborative human-robot work. Additionally, a review is provided of the current regulations along with new concepts that have been introduced in them. The discussion presented in this paper includes multidisciplinary approaches, such as techniques for estimation and the evaluation of injuries in human-robot collisions, mechanical and software devices designed to minimize the consequences of human-robot impact, impact detection systems, and strategies to prevent collisions or minimize their consequences when they occur

    Safe physical HRI: Toward a unified treatment of speed and separation monitoring together with power and force limiting

    Full text link
    So-called collaborative robots are a current trend in industrial robotics. However, they still face many problems in practical application such as reduced speed to ascertain their collaborativeness. The standards prescribe two regimes: (i) speed and separation monitoring and (ii) power and force limiting, where the former requires reliable estimation of distances between the robot and human body parts and the latter imposes constraints on the energy absorbed during collisions prior to robot stopping. Following the standards, we deploy the two collaborative regimes in a single application and study the performance in a mock collaborative task under the individual regimes, including transitions between them. Additionally, we compare the performance under "safety zone monitoring" with keypoint pair-wise separation distance assessment relying on an RGB-D sensor and skeleton extraction algorithm to track human body parts in the workspace. Best performance has been achieved in the following setting: robot operates at full speed until a distance threshold between any robot and human body part is crossed; then, reduced robot speed per power and force limiting is triggered. Robot is halted only when the operator's head crosses a predefined distance from selected robot parts. We demonstrate our methodology on a setup combining a KUKA LBR iiwa robot, Intel RealSense RGB-D sensor and OpenPose for human pose estimation.Comment: 8 pages, 6 figure

    Energy-based control approaches in human-robot collaborative disassembly

    Get PDF

    Occupational health and safety issues in human-robot collaboration: State of the art and open challenges

    Get PDF
    Human-Robot Collaboration (HRC) refers to the interaction of workers and robots in a shared workspace. Owing to the integration of the industrial automation strengths with the inimitable cognitive capabilities of humans, HRC is paramount to move towards advanced and sustainable production systems. Although the overall safety of collaborative robotics has increased over time, further research efforts are needed to allow humans to operate alongside robots, with awareness and trust. Numerous safety concerns are open, and either new or enhanced technical, procedural and organizational measures have to be investigated to design and implement inherently safe and ergonomic automation solutions, aligning the systems performance and the human safety. Therefore, a bibliometric analysis and a literature review are carried out in the present paper to provide a comprehensive overview of Occupational Health and Safety (OHS) issues in HRC. As a result, the most researched topics and application areas, and the possible future lines of research are identified. Reviewed articles stress the central role played by humans during collaboration, underlining the need to integrate the human factor in the hazard analysis and risk assessment. Human-centered design and cognitive engineering principles also require further investigations to increase the worker acceptance and trust during collaboration. Deepened studies are compulsory in the healthcare sector, to investigate the social and ethical implications of HRC. Whatever the application context is, the implementation of more and more advanced technologies is fundamental to overcome the current HRC safety concerns, designing low-risk HRC systems while ensuring the system productivity

    Responsible AI in Africa

    Get PDF
    This open access book contributes to the discourse of Responsible Artificial Intelligence (AI) from an African perspective. It is a unique collection that brings together prominent AI scholars to discuss AI ethics from theoretical and practical African perspectives and makes a case for African values, interests, expectations and principles to underpin the design, development and deployment (DDD) of AI in Africa. The book is a first in that it pays attention to the socio-cultural contexts of Responsible AI that is sensitive to African cultures and societies. It makes an important contribution to the global AI ethics discourse that often neglects AI narratives from Africa despite growing evidence of DDD in many domains. Nine original contributions provide useful insights to advance the understanding and implementation of Responsible AI in Africa, including discussions on epistemic injustice of global AI ethics, opportunities and challenges, an examination of AI co-bots and chatbots in an African work space, gender and AI, a consideration of African philosophies such as Ubuntu in the application of AI, African AI policy, and a look towards a future of Responsible AI in Africa. This is an open access book

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Safety analysis on human-robot collaboration in heavy assembly task

    Get PDF
    Manufacturing assembly industry has traditionally utilized human labor to perform assembly tasks manually. With the introduction of industrial robots, fully automated solutions have provided an opportunity to perform complex and repetitive tasks and assist in the assembly of heavy components. In recent years, improvement in robot technologies and changes in safety legislation have enabled new human-robot collaboration (HRC) concepts which have drawn attention of manufacturers. HRC uses characteristics of dexterity and flexibility of human and repeatability and precision of robots to increase the flexibility of the system, decrease the cost of labor in production and improve ergonomics in the design of shared workspace. The operator safety is one of the challenges inside the HRC environment. The safety concerns could be altered with different levels of physical interactions between robot and human. This thesis aimed to develop solution for analyzing the safety functions on different human-robot interaction (HRI) levels. The approach was started with the classification of tasks between human and robot. In this thesis, assembly sequences were designed to fulfill the requirements of each interaction levels of HRI. These experiments were providing evaluation tables for analyzing the safety functions in HRI levels. The primary objective of this thesis is to design the HRC system with suitable safety functions. The safety of the workstation was developed using a combination of hardware and software. Laser scanners employed to detect the presence of a human in hazard areas and ABB SafeMove add-on were configured to exploit safety signals to the robot controller for adopting safety functions such as safety-rated monitored stop, and speed and separation monitoring. In this thesis, time work study analysis was demonstrated that the implementation of HRC decreases the fatigue and the injury risks of the operator and enhances the ergonomics for the operators. The study of safety functions through different HRI levels proved that with an increase of physical interactions it was necessary to employ multiple safety functions to prohibit collisions between robot and human

    Responsible AI in Africa

    Get PDF
    This open access book contributes to the discourse of Responsible Artificial Intelligence (AI) from an African perspective. It is a unique collection that brings together prominent AI scholars to discuss AI ethics from theoretical and practical African perspectives and makes a case for African values, interests, expectations and principles to underpin the design, development and deployment (DDD) of AI in Africa. The book is a first in that it pays attention to the socio-cultural contexts of Responsible AI that is sensitive to African cultures and societies. It makes an important contribution to the global AI ethics discourse that often neglects AI narratives from Africa despite growing evidence of DDD in many domains. Nine original contributions provide useful insights to advance the understanding and implementation of Responsible AI in Africa, including discussions on epistemic injustice of global AI ethics, opportunities and challenges, an examination of AI co-bots and chatbots in an African work space, gender and AI, a consideration of African philosophies such as Ubuntu in the application of AI, African AI policy, and a look towards a future of Responsible AI in Africa. This is an open access book

    A non-holonomic, highly human-in-the-loop compatible, assistive mobile robotic platform guidance navigation and control strategy

    Get PDF
    The provision of assistive mobile robotics for empowering and providing independence to the infirm, disabled and elderly in society has been the subject of much research. The issue of providing navigation and control assistance to users, enabling them to drive their powered wheelchairs effectively, can be complex and wide-ranging; some users fatigue quickly and can find that they are unable to operate the controls safely, others may have brain injury re-sulting in periodic hand tremors, quadriplegics may use a straw-like switch in their mouth to provide a digital control signal. Advances in autonomous robotics have led to the development of smart wheelchair systems which have attempted to address these issues; however the autonomous approach has, ac-cording to research, not been successful; users reporting that they want to be active drivers and not passengers. Recent methodologies have been to use collaborative or shared control which aims to predict or anticipate the need for the system to take over control when some pre-decided threshold has been met, yet these approaches still take away control from the us-er. This removal of human supervision and control by an autonomous system makes the re-sponsibility for accidents seriously problematic. This thesis introduces a new human-in-the-loop control structure with real-time assistive lev-els. One of these levels offers improved dynamic modelling and three of these levels offer unique and novel real-time solutions for: collision avoidance, localisation and waypoint iden-tification, and assistive trajectory generation. This architecture and these assistive functions always allow the user to remain fully in control of any motion of the powered wheelchair, shown in a series of experiments
    • 

    corecore