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ABSTRACT 
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Manufacturing assembly industry has traditionally utilized human labor to perform 
assembly tasks manually. With the introduction of industrial robots, fully auto-
mated solutions have provided an opportunity to perform complex and repetitive 
tasks and assist in the assembly of heavy components. In recent years, improve-
ment in robot technologies and changes in safety legislation have enabled new 
human-robot collaboration (HRC) concepts which have drawn attention of man-
ufacturers. HRC uses characteristics of dexterity and flexibility of human and re-
peatability and precision of robots to increase the flexibility of the system, de-
crease the cost of labor in production and improve ergonomics in the design of 
shared workspace. 
 
The operator safety is one of the challenges inside the HRC environment. The 
safety concerns could be altered with different levels of physical interactions be-
tween robot and human. This thesis aimed to develop solution for analyzing the 
safety functions on different human-robot interaction (HRI) levels. The approach 
was started with the classification of tasks between human and robot. In this the-
sis, assembly sequences were designed to fulfill the requirements of each inter-
action levels of HRI. These experiments were providing evaluation tables for an-
alyzing the safety functions in HRI levels.  
 
The primary objective of this thesis is to design the HRC system with suitable 
safety functions. The safety of the workstation was developed using a 
combination of hardware and software. Laser scanners employed to detect the 
presence of a human in hazard areas and ABB SafeMove add-on were config-
ured to exploit safety signals to the robot controller for adopting safety functions 
such as safety-rated monitored stop, and speed and separation monitoring. 
 
In this thesis, time work study analysis was demonstrated that the implementation 
of HRC decreases the fatigue and the injury risks of the operator and enhances 
the ergonomics for the operators. The study of safety functions through different 
HRI levels proved that with an increase of physical interactions it was necessary 
to employ multiple safety functions to prohibit collisions between robot and hu-
man. 
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1. INTRODUCTION 

In the last decade, the human-robot interaction (HRI) and human-robot collaboration 

(HRC) topics have gained the significant interests among researchers in manufacturing 

assembly process. Traditionally, assembly process was performed by the operator in a 

workstations that results in massive injuries and ergonomic issues leading to a social cost 

of labor in the factory [1]. By introducing the industrial robots with repeatability, 

precision, and high payload characteristics, new opportunities emerged to adopt robots in 

assembly workstations. However, this trend brought some issues such as positioning 

robots inside workstation with barriers such as fences and safeguarding walls. Robots 

with low intelligence (manually programmed by the expert) cannot operate with the 

complexity of products and sufficient flexibility during the assembly process. 

Therefore, with adopting human cognitive capabilities such as dexterity and flexibility 

and robot’s characteristics mentioned above, there is a possibility to create flexible 

workstations, decrease the cost of manufacturing and provide a better ergonomic solution 

for operators. The increased interaction between human and robot is expected to enhance 

the assembly process in shared workspace. In this case operator may guide robot by hand 

and robot bring power assistance to the operator [1]. With the help of semi-automated 

assembly workstation industrial robots can cooperate with the operator as a team to take 

advantge of their combination capabilities [2]. 

The HRC concepts have been implemented mainly in academia, but unfortunately, there 

are only few implementations in industrial premises. The challenge is on ensuring human 

safety inside shared workspace at all times. The most common existing solution is to 

monitor the operator’s position in a shared workspace and continuous assessment of 

movement speed. Recently, the International Organization for Standardization (ISO) has 

published standards to provide safety requirements and guidance for industrial robots 

inside HRC application. Standards such as ISO 10218-1/2 [3],[4] provide outline safety 

requirements of industrial robot and robot system integration for the collaborative 

workplace, and ISO/TS 15066 [5] grant additional guidelines for implementing safety in 

HRI. 

On this thesis, HRC application in industrial cases is examined where operator and 

industrial robot together assemble the diesel engine’s components. Assembly tasks are 

classified with proposed factors for each assembly task between human and robot. 

Afterward, scenarios of assembly respected to the fourth interaction levels [6] are created 

to analyze smoothness of workflow inside HRC based on different interaction levels. 

Later on, the safety of the operator is concerned by using two SICK laser scanners [7] and 
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ABB Safemove feature [8]. The study is repeated for each interaction levels, the results 

of the safety analysis for selecting suitable safety function, and time work study analysis 

are presented in the resulting chapter. 

1.1 Research Gap  

Recently, research in the field of HRC in assembly has been focused on inherently safe 

robots such as KUKA iiwa [9],[10], ABB Yumi [11],[12], and Baxter [13],[14] with small 

payloads. The current applications for these type of collaborative robots (cobots) are 

relating primarily for assisting the operator to hand-over the small tools or  light-weight 

components. However, the needs in the industry are also for handling mid and/ or heavy-

weight components. The industrial robots can have high payload capability and with good 

reachability. Due to the safety reasons, industrial robots are seperated from human 

operators by fences or barriers in the factory floor. The technological changes as well as 

changes in standardization are expected to allow HRC implemented in mid and/ or heavy 

assembly tasks. The indentified research gap relates to use of industrial robot experiments 

in HRC tasks. There are less studies about how to employ industrial robots in HRC shared 

workspace with heavier parts, due to the fact that implementation of safety for the bigger 

robot is challenging and dangerous. 

Other problem that is addressed here is that in the research field of HRC, there is quite a 

few cases where researchers consider the interaction levels between the robot and human 

inside HRC shared workspace. In this thesis, the interaction levels between industrial 

robot and operator for the assembly process is studied, and their impacts on safety 

implementation are analyzed.  

1.2 Research Objectives and Outline of the Thesis 

On this thesis, implementing a hybrid assembly workstation for assembly process of 

product is investigated. Hence, the objectives of the thesis are following: 

- Detection of the factors that are suitable for task allocation between robot and operator 

- Selection and implementation of the safety devices which is suitable for each 

interaction level safety based on standards guideline 

- Determination of the scenarios that match with interaction levels and create smooth 

workflow inside the shared workspace 

The thesis includes following chapters and sections. In the chapter 2, an overview of 

manufacturing assembly, HRC and industrial robot markets are discussed. Next, the 

current studies in the field of robotics safety are reviewed. The details of the use case 

development such as design of workstation, design of tools, task allocation and safety 

implementation are provided in the chapter 3. Finally, the results related to the 

implemented solution is explained in the chapter 4. 
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1.3 Research Questions and Limitations  

The research questions of this thesis can be listed as follows: 

RQ1: How to allocate task between the robots and human in HRI levels? 

RQ2: What kind of safety functions should be implemented for workstation based on the 

HRI levels? 

RQ3: Is it possible with proper resource allocation to enhance productivity? 

During the research of this thesis, the emerged limitations are as following:  

- Due to the recent development of classification of HRI level, there has been a gap 

between scholar researches and practical studies. 

- There is a limitation to access all of the engine components due to the method of 

manufacturing of the engine which made the disassembly of all the components chal-

lenging. Therefore, defining tasks related to interaction levels are limited to specific 

components. 

- Lack of access to a tool changing systems, only two grippers were selected for assem-

bly tasks which decreased the flexibility of choosing the components for robot’s task. 

- The focus of thesis was not on the layout design, gripper or feeder strategies, thus the 

existing available equipment was used. 

1.4 Research Methodology 

Based on the research questions mentioned in the previous subsection; different methods 

have been tested to fulfill the research outcomes. The Figure 1 demonstrates the research 

questions and utilized methods for each one and ultimately the results and outcomes are 

presented. 
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Figure 1. Research Methodology Diagram 

Two methods have been employed, “Assembly Stage Decomposition Model” and 

“Classification of Task Allocation” in the chapters 3.2 and 3.3, for the first reseach 

question to investigate the subject. With the help of the assembly stage decomposition 

model [15], assembly sequences are identified and workstation tasks has been allotted by 

classification of task allocation method. The outcome of these two methods provides tasks 

allocation between robot and human based on four factors: task complexity, ergonomic, 

payload, repeatability. 

To explore the reseach question number two, the method of Evaluation Table on Safety 

Functions for Interaction Levels (in the chapter 4.1.3) is used to identify the required 

safety functions and Test Bench Implementation (in the chapter 3.5) is applied in the 

experiment section to test the outcomes of the previous method. Ultimately, the outcomes 

(4) of the mentioned methods resulted in satisfaction of safety requirement of three of 

HRI levels. 

The Time Work Study (in the chapter 4.1.1) and Test Bench Implementation (in the 

chapter 3.5) methods are used to in parallel to scrutinize the productivity between manual 

assembly and HRC system to observe the results.  

Finally, the method is proposed for evaluating HRC safety in assembly systems with 

considering different HRI levels. 
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2. LITERATURE REVIEW 

In this chapter, the state of art of different type of assembly in the manufacturing industry 

will be reviewed. Then, the introduction to the human-robot collaboration will be 

discussed and also industrial robots history and applications will be explained. 

Afterwards, the essence of machine directive and related standards for human-robot 

collaboration will be explained and overview of standards related to the industrial robot 

safety will be addressed. 

2.1 Assembly systems in the manufacturing industry 

The industrial assembly is affected by elements such as rapid product changes, growing 

number of variants and short planning time of the client. In the particular the workload of 

manual work in the factories can affect the cost pressure within low-wage countries. In 

practice, the mentioned challenges can occur, through a rationalization approach to the 

industrial assembly, flexible assembly technology and highly trained staff. There are dif-

ferent existing concepts that are suitable for competing productivity demand and flexibil-

ity; however, these concepts rely on the product complexity, variant diversity and output 

rate which has to be considered [16]. 

Within sufficient technology in industrial assembly, the assembly of products take from 

15 to 70 % of total manufacturing time [16],[17]. The varying volume of products and an 

increasing number of variants can be hard to manage. Since products have a small period 

of usage on the market due to the rapid technology change, the funding for the variant 

dependant part and product of assembly system can decrease. There are numbers of ideas 

to satisfy these requirements in the industry.  

The classification of assembly systems in the manufacturing domain used in this thesis, 

is provided by [16] and explained in this section. Figure 2 demonstrates the three most 

vital assembly systems for utilization area in the industry, the following systems are man-

ual assembly, hybrid assembly and automated assembly [18]. 
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Figure 2. Utilization area for manual, hybrid and automated assembly [16] 

 

Figure 2 depicts the fact while the assembly design is changed from manual to automated 

assembly system; the productivity of the system increases. With considering variant di-

versity and quantity factors such as sales duration, production rate per unit and the mar-

ket’s demand it is shown that hybrid assembly has higher flexibility compared to the au-

tomated assembly system. Manual flow assembly, manual single place assembly, one-

piece-flow assembly, hybrid assembly, automated single place assembly and automated 

flow assembly are six basic types (depicted in Figure 3)  which have been made to en-

counter the diversity of jobs during the development of industrial assembly systems [19].  

Rigid and flexible assembly system are two classifications that are demonstrated in Figure 

3. Afterwards, two categories are defined based on product output (pieces/hour) and their 

complexity (expressed in number of assembled pieces). The essential contrast could be 

observed between two groups where in the rigid automated system, the concentration is 

on technical design and in the flexible manual system, the arrangement of workers is more 

important [16]. 
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Figure 3. Classification of assembly system based on output and complexity [16] 

2.1.1 Flexible manual assembly  

The core of this kind of assembly system is operator, where operator uses the intelligence 

and speed skills of their hand beside aid such as tools, jigs, fixtures, gauges etc., to per-

form the assembly procedure. In this system, the output rate relies on the ergonomic de-

sign of the workplace, environments, light, and etc [19].  Workplace design that does not 

follow ergonomic concepts such as bending and standing up repetitively should come up 

with a better solution to prohibit fatigue and assembly errors. Moreover, these solutions 

will improve the level of efficiency in workstation and create an environment suitable for 

an elder worker or for the ones with reduced performance [16]. However, if a design is 

created for a small work place with correct ergonomically solution then these solutions 

are suitable for assemblies of small goods with less complexity [20]. Therefore, complex 

goods can be assembled in a workstation that is divided to smaller sections. These work-

station can be linked together. It worth mentioning that there is another solution called 

set-wise assembly flow which would be explained. Three forms of manual assembly in 

manufacturing systems are as following [16]: 

- Single Station Assembly with Set-Wise Assembly Flow 

- Single Station Assembly According to the One-Piece-Flow Principle 

- Multi-Station Assembly According to the One-Piece-Flow Principle 
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In Single Station Assembly with Set-Wise Assembly Flow, the product is assembled step 

by step before the next product is started. In set-wise assembly flow, the first item will be 

assembled for the whole production set, the second item for the entire product set and so 

on [18]. For this purpose, there is an idea to use two turntables (such as Figure 4), one for 

the products and one for items need to be assembled on the product in the set of ware 

bins. Therefore, each item that need to be assembled will be rotated to the area that is 

ergonomic and close to the worker [21],[16]. The forced repetitiveness of movements, a 

short distance for grasping items can be an advantage of this arrangement. In addition, 

each part is supplied equivalent to the pattern of assembly. Therefore the total assembly 

time will be declined about 30-50%. However, there is a limitation for use of this method 

based on a number of variants, and the size of tables [19]. 

 

Figure 4. Assembly station with set-wise sequencing for an electrical componentry [16] 

Principle in assembly lines with a various number of components and product variants, it 

requires to provide unique parts and tools accessible. One of the rational methods for this 

purpose is a single workstation with one-piece flow concept (Figure 5). In this method, 

the worker will walk along the line and use number of supply bins to assemble part piece 

by piece and finalize it at the end of workstation [21],[16]. 

 

When the product variant is growing and product amount escalates to the 100000 

pieces/year and the demands for the delivery lot are from 1 to 100 pieces, then the 

previous solution cannot be used. The solution suggested here is to divide the supply of 

variant dependent pieces from variant independent pieces [16]. 
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Figure 5. One-piece flow assembly station with different part supplies [16] 

 

This strategy Multi-Station Assembly According to the One-Piece-Flow can be used. 

The suitable design for this solution would be dividing section into two sections: 

commissioning area and assembly line itself (Figure 6). The variant dependent parts 

are preserved in commissioning area such as supermarkets and variant independent 

pieces are accessible along assembly line [21],[16]. 

 

Figure 6.  Assembly layout for a various number of products [16] 



10 

2.1.2 Flexible Automated Systems: 

The automatic assembly can be recalled in the application of indexing tables and feeder 

in a fixed or hard automation. Briefly, soft automation utilizes programmable assembly 

machines in parallel with robotic assembly cells such as single or a multi-station robotic 

where all movement sequences of robot’s system are controlled by a programmable logic 

controller (PLC) or computer system [22]. 

Recently, the main factors for applying automation are technological practicality and cost. 

In addition, automation can accomplish a function more efficiently, reliably, or accurately 

than the operator, or further exchange the operator at a lower cost [23]. Another study 

from an industrial Delphi survey [24] demonstrates that the top three answers based on 

the advantages of automation are cost savings, achieving higher efficiency and increasing 

competitiveness. 

Figure 3 depicts that in a system with output rate over 720 pieces per hour, there are 

demands for an automated system. Linear transfer assembly lines are suitable for assem-

bly of product with 20 kg and surface area of 300x400 mm, which employs standardize 

necessary modules. This will create a platform called process modules where you behave 

operations such as screwing, welding or testing. If a linkage can be created between 

process module and basic module, an automated station can be shaped. The process mod-

ule contains a variety of product from basic platform or customized product. Based on 

the movability of process modules, changing the layout of the assembly process can finish 

in less than an hour. In comparison, modifying a rigid system can occupy time more than 

a couple of days. Other components such as manual modules can be combined within the 

system [16]. 

 

 

Figure 7. Modular system for linear transfer assembly lines [16] 

As Figure 7 demonstrates, a system comprise of different modules make the manual and 

automated stations able to merge. Depending on relative high capital cost, customers can 
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state increase or decrease of the system with a change in demand along lifecycle. Hence, 

the growing phase of new good can initiate with small system layouts such as one or two 

manual modules and one automated workstation. If the production increases during the 

next period, the assembly system could be integrated other extension modules to their 

system as shown in Figure 8. 

The capability of change based on production rate is assured by modifying manual sta-

tions to automatic and/or adding or removing the modules. There might be disadvantages 

caused by the high price of process modules if they will not be needed later on. However, 

if the span of products is shorter than a practical span of the modules using the modules 

will be troublesome[16]. 

 

Figure 8. Extension stages of linear transfer assembly lines [16] 

 

2.1.3 Hybrid Assembly Systems:  

As mentioned before when the number of parts is growing, the manual workstations have 

not enough capacities. Before encountering a fully automated system, another layout 

needs to be discussed called a mixed manual assembly or hybrid systems. In this system, 

the assembly units from automated workstations are mixed with manual workstation, 

based on a number of items, variant diversity, productivity and flexibility they would be 
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placed between the two mentioned systems [25]. Building a hybrid system begins with 

complete manual assembly and regarding the degree of automation of each assembly task, 

the operation will be allocated to the manual or automated workstation. For instance, for 

assembly operation which required high flexibility level, it will be wise to allocate it to 

the manual workstation [18]. 

Another advantage of the hybrid system is that by utilizing the number of extension work-

stations, the degree of automation of system can modify within product rate in the period 

of the total service life. The further extensions could be implemented on real sales number 

while the total potential of one stage is worn out. It is vital to produce neutral products 

for the hybrid systems, so rising the ratio of system modules that could be usable after the 

end of product lifespan [16]. 

2.2 Industrial Robotics History 

In 1954, George Devol invented the first industrial robots for part handling application. 

This invention led to acquiring their robots in General Motors company in 1961 [26]. The 

company ASEA (nowadays called ABB) built their own industrial robot named IRB6, 

which consist of a microcomputer controller in 1973. This robot employed continuous 

path motioning which provide applications in the automotive industry for welding and 

material handling [27]. In 1978, Makino from Yamanashi University of Japan invented 

the four-axis robot arm called Selective Compliance Articulated Robot Arm (SCARA) 

which was suitable for fast assembly of small components that mostly used in electrical 

manufacturing [28].  

By optimization of robot dynamics and accuracy of SCARA robot, they were able to build 

AdeptOne robot in 1984 [29]. During recent years, a hot topic emerged for researchers to 

decrease the mass and inertia of serial robots. KUKA introduced their 7- Degree of Free-

dom (DOF) robot arm prototype in 2006 which included torque-control capabilities in its 

joints to increase performance and safety in industrial robot application [30]. One of 

significant differences between industrial robots and human was human’s dexterity. Ro-

bot manufacturers in years introduced robots to compensate human dexterity in their per-

formance. This aspect motivated manufacturers to develop two-arm robots where it could 

increase productivity, capabilities and ergonomic quality to manual workstations 

[31][32]. 

Dual arm robot such as Yumi from ABB was built for small parts assembly solution such 

as electronic part assembly, toy industry and watch industry that could work side by side 

with a human because of forcing sensor as an inherent safety feature (Figure 9). Each arm 

of Yumi had a payload of 0.5 kg, and it had an integrated vision with the product itself 

[33].  
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Figure 9. Yumi robot from ABB [34] 

Another example was Baxter from Rethink Robotics, which was the world’s first two-

arm collaborative robot in 2012. It had a wide range of applications like line loading, 

machine tending, packaging, and material handling. Against conventional industrial ro-

bots that was costly in safeguarding, programming and integrating to a single task, Baxter 

could be trained by programming and installation was quickly and fast. Therefore, it was 

suitable for lower volume and higher mix environment where determined the vast part of 

the manufacturing task nowadays. This robot was fulfilled safety by inherent design with 

power and force limited compliant arm (Figure 10) that contained elastic actuators and 

embedded sensors [35].  

 

Figure 10. Baxter from Rethink Robotics [36] 

 



14 

2.3 Human-Robot Collaboration 

Regard to a significant number of customized products in the assembly lines, the need of 

adjustment of assembly tasks based on maximizing flexibility and adaptability are in-

creasing. Ergo, human-robot collaboration has numerous advantages over full-automated 

processes [37]. The complexity of processes decreases while worker guide the robot and 

the robot bring power aid to the labor [1]. Hybrid assembly lines keep pace with industrial 

demands for advanced production solutions, improvement of quality of the product, in-

crease the flexibility of production, reduce the costs and enhancement of ergonomics [38]. 

In general, labors and robot have their own advantages in assembly processes. The robot 

can perform tasks without break, fatigue and operate simple task more productive. Alt-

hough the robot faces restrictions such as cumbersome programming, dealing with com-

plex shape components. However, a human can handle complex parts and quickly adapt 

to the new task. But, a human has a lack of sufficient force and precision [1]. 

Nowadays, weight compensator or balancers are employed for the assembly of heavy 

components. Due to lack of inertial force compensator in such systems, injuries can occur 

by slight mistakes [39]. According to statistics published by the Occupational Safety & 

Health Department (OSHA) of the US Department of labor [40], over 30 % of European 

manufacturing labors face significant consequences such as social and economic cost 

with lower back pain injuries. 

Due to the significant investment in hybrid and automated assembly, the demands for 

employing robotics in manufacturing processes is increasing. Industrial robots play a big 

role in satisfying the mentioned demands. Robots are used in large volume in automotive, 

electronics and electric product industries [29]. Generally, a robot workstation contains 

one or more robots with their controllers and other relevant tools such as grippers, sensors, 

safety devices and material handling components for transferring the parts inside work-

station between different stages of manufacturing. 

During recent years, numerous scientists and researchers studied on implementation of 

industrial applications focused on human and robots. They aimed to come up with a so-

lution upon a shared workspace where human and robots can work together in a safe 

environment without barriers such as fences and cooperate to gain high product custom-

ization by implementing flexible and reconfigurable production system.   

Several ISO standards have been published in recent years to accomplish the safe shared 

workspace. ISO 10218-1/2 cover safety requirements of human-robot collaboration work-

spaces to help acquire further collaboration between industrial robots with humans. Tra-

ditionally the direct interaction between human and robots was prohibited. In 2016, 

ISO/TS 15066 introduced additional guides and numerous safe methods as a supplement 

to the previous standard [6]. 

The requirement to increase efficiency, flexibility, and productivity in the production line 
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along with the need to reduce the stress level of human and its workload, would make the 

improvement of HRI obligatory [41]. HRI systems have been classified into “workspace 

sharing,” and “time-sharing” by earlier studies depending on their functionality [6],[1]. 

In workspace sharing HRI system, robot and human both are working in the same work-

place and both responsible for handling and assembly task. The interaction between them 

is restricted to the collision avoidance of the robot with a human where the robot will stop 

moving if the distance between human and robot is lower than secure distance [5]. In a 

time-sharing interaction system, the task is shared between human and robot to accom-

plish the shared task at the same time, the interaction of the robot with a human is more 

important than just avoid collision between them [5]. Bdiwi [6], proposed a new 

classification method for interaction levels between human and robot in industrial 

application which divided into four sections: 

a) Shared workspace without shared task: in this level of interaction, human and 

robot do their own task separately, and there is no interference between each 

other’s task by the opponent. Based on the physical limitation or process flow, the 

environment uses the fenceless workstation. Workspace is defined in two zones, 

one related to the human and one related to the robot. A human can freely move 

in the human workspace, but if a human wants to enter the robot workspace, the 

robot shall be stopped. 

b) Shared workspace, shared task without physical interaction: in this level, a 

task will be shared between human and robot, but there is no direct contact be-

tween them. Furthermore, another zone will be added to the workspace as a “co-

operate zone” where the robot could assist the human just by holding the part so 

the human can operate on it; as an example the human do the assembly on the 

part. If human works in the cooperate zone, the robot shall decrease its speed re-

gard to the distance between human and robot. 

c) Shared workspace, shared task “handing-over”:  in this level, the shared task 

between robot and human includes the direct handing-over. For example, the ro-

bot will pick a component from the assembly line and hand it to human directly. 

d) Shared workspace, shared the task with physical interaction: here a complete 

physical interaction happens between robot and human. For instance, the robot 

could pick up a heavy part from the line and bring it to the point near assembly 

line and then a human can use hand-guiding devices to move the robot to the pre-

cise position for assembly and release the part [6]. 

2.3.1 Industrial Robotics Markets 

International Federation of Robotics (IFR) publishes a report of robotics market annually. 

A recent report on industrial robotics market in September of 2017 [42], announced that 

robotics turnover during 2016 was about 40 billion dollars. They estimated that by 2020 

there would be 1.7 million new industrial robots in the market. In 2016, 294 thousand 

units acquired in the industry in global markets (Figure 11). The major industries that 
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employ the industrial robot were automotive industry and electrical/electronics. The au-

tomotive industry had 6 percent growth in 2016, and the electrical industry had 41 percent 

growth within one year (Figure 12). 

 

Figure 11.  Estimated annual worldwide supply of Industrial robots 2008-2016 and 

2017-2020 [42] 

 

 

Figure 12. Major industries usage [42] 

 

It is predicted that by 2020 there will be 3 million industrial robots in operation compared 

to 2016 where 1.8 million industrial robots operated by industries. Total supply market 

within the top 15 countries in 2016 is depicted in Figure 13; China exploited around 87 

thousand units only by itself and took the first place among other countries. China, Re-

public of Korea, Japan, United States and Germany in overall include 74 percent of total 

supply. The estimation for global supply concludes that China will have 40 percent of 

global supply by 2020. 
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Figure 13.  Global markets of the industrial robot by countries [42] 

 

2.3.2 Industrial Robotics Applications 

From industrial application perspective, there are many solutions to employ industrial 

robotics in factories. The report from IFR [42] stated that most application of industrial 

robots is in the automotive and electronic industries. The typical industrial robot 

application are reviewed with their majority usage as following:  

a) Handling: One of the enormous usages is in handling of the component in factory 

layout. It includes vast processes such as grasping, transporting, packaging, 

palletizing and picking. These processes have been used in most of the 

workstations and specifically in logistics. The main challenge in this domain are 

designing the gripper and related grasping strategies. However, it remarkably 

depends on the geometry property of workpieces and their location in workstation 

[29]. Currently, the most applicable potential for the industrial robot is palletizing 

and lifting components to reduce ergonomic issues for operator and the existing 

limitation due to payload by load handling regulations [43](Figure 14). For 

designing gripper, additive manufacturing and 3D printing technology provide an 

easy solution to implement a reliable solution for complicated grippers. 
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Figure 14.  KR Quantec PA series from KUKA for palletizing [44] 

  

b) Welding: welding process play an important role in car body assemblies where 

two material can join by applying heat or pressure (Figure 15). Typically, 

workpieces melt at contact locations with another filler material. Spot welding 

and gas-shielded metal arc welding (GMAW) are common robot-based welding 

use cases. Fumes, ergonomic working position issues, heat, and noise are common 

hazardous risks in manual GMAW welding processes [29]. Based on industrial 

robot advantages such as high repeatability and position accuracy, experts 

exchange human operator with industrial robots even in smaller lot sizes to 

prevent risks in workstation. Through modern robot calibration methods, 

repeatability reaches ± 0.05mm, and position accuracy gained better values than 

± 1.0mm [45]. 
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Figure 15.  KUKA Spot Welding [46]  

c) Assembly: the assembly process is one of the most practical applications in fac-

tory floor that consists up to 80 % of product’s manufacturing cost [47]. The as-

sembly process is defined as a combination of subassembly component to other 

components of the system through joining [48]. For instance, in the automotive 

industry, there are many applications where industrial robots assemble compo-

nents or handle heavy components to a precise position for operator to finalize 

assembly by joining processes such as screwing. Industrial robots specially em-

ploy in high-throughput manufacturing lines to provide flexible workstation and 

versatile tools for the operators [29] (Figure 16). Traditionally, these robots oper-

ated with fences all around the workstation to equip safety environment for human 

workers, but collaborative robots paved the path to be utilized in shared 

workspace without fences to create human-robot collaboration workspace.  

 

Figure 16. Assembly Application of Industrial Robot [49]  
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d) Painting: one of the other applications that implemented in the automotive indus-

try to reduce hazardous working conditions for the operator is painting. This pro-

cess initially developed by a Norwegian company called Trallfa in 1969. The ro-

bots spray paint for bumpers and other car body parts, nowadays it is employed 

to paint the whole body of the car to substitute the traditional way of paint bath 

[50] (Figure 17). Today’s industrial robot’s design provide electrical robots which 

prevents the explosion in painting workstation, robots are designed with custom 

gripper to open and close hoods and door while painting the body. The movement 

of the robots is replicated from operators, and the robot programming of the 

process is done by offline simulations to enhance paint deposition, thickness, and 

coverage area [29]. 

 

‘  

Figure 17. Painting Application of Industrial Robots [29] 

 

2.4 Machine Directive and Safety Standards 

2.4.1 Machine Directive 

Today’s machinery sector plays a significant role in the engineering industry and consists 

of various assembly processes in the factory layout; the power of these machineries come 

from sources other than human or animal effort. Meanwhile, in decades engineering in-

dustry faced many accidents regarding operating machinery by a human. Some of these 

accidents were so hazardous that in some cases led to the death of a person. There are a 

couple of accidents that operator stuck between robot and the wall and crushed the person 

and resulted to fatality. Another unfortunate example, is an industrial robot malfunctioned 
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and started to move outside of its safe area and loaded a massive car part onto the head 

of the operator [51].  

 ‘

 

Figure 18. Workplace accidents in Europe in 2012 [52] 

Figure 18 Depicts a workplace accidents in Europe in 2012 [52]. In Finland, there were 

32 fatal accidents; the report also showed that manufacturing sector had 17% of fatal 

accidents and 22% of non-fatal injuries. These social costs of the numerous accident could 

decrease by implementing the safe design of machinery and also by proper installation 

and maintenance procedure. Therefore, the EUROPEAN PARLIAMENT and the 

COUNCIL of the EUROPEAN UNION provided Machinery Directive 89/392/EEC in 

1989 for the first time, the latest version of the directive was 2006/42/EC, which was 

published on 9 June of 2006 and became applicable on 29 December of 2009 [53]. 

According to Machine Directive [53], this directive targets on the market of industrial 

machinery to provide Essential Health and Safety Requirements (EHSR) of general ap-

plication of machinery. The goals of machinery directive are to ensure free movement of 

machinery on the EU market, to assure the safety of operators against the risk of machin-

ery and to ensure safety by design consideration of system. The scope of this directive 
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applies to products such as “a) machinery, b) interchangeable equipment, c) safety com-

ponents, d) lifting accessories, e) chains, ropes, and webbing, f) removable mechanical 

transmission devices and g) partly completed machinery for example industrial robots” 

[53]. Some exceptions are mentioned in the directive, for instance, a) equipment that de-

signed to use in amusement parks, b) weapons, c) machinery that produced for military 

or police purposes, d) machinery that designed for research goals, etc.  

According to the directive, the manufacturer was defined as any natural or legal person 

who was responsible for designing and/or producing machinery or partly completed 

machinery. The manufacturer should provide the conformity of the machinery with this 

directive wherever aimed to put the product on the market based on his/her name or trade-

mark. In the absence of a person any natural or legal person who wanted to employ ma-

chinery into the service should cover this directive for the machinery. For this purpose, 

the manufacturer should provide Conformité Européene (CE) marking label on his/her 

machinery as a guarantee of that machinery conforms to the requirements of machine 

directive. Therefore, it was the requirement to obtain three steps consist of risk assess-

ment, risk reduction and proof before conformity assessment. Consequently, the manu-

facturer should define which essential health and safety requirements were suitable to 

his/her machinery and depending on that, what kind of measure should be taken into the 

account. 

There were multiple annexes alongside this directive and most of the important ones re-

lated to industrial robots were: 

- Annex I: Essential health and safety requirements relating to the design and construc-

tion of machinery 

- Annex III: CE Marking 

- Annex V: indicative list of the safety components 

- Annex VI: assembly instructions for partly completed machinery 

According to Annex I [53], the manufacturer or authorized representative was responsible 

for ensuring to do the following steps: 

- Distinguish the boundary of product whether it is intended for use or any other rea-

sonable foreseeable misuse of the machinery 

- Recognize the hazardous risk that produced by the machinery and other dependent 

hazardous situation  

- Evaluate the severity of possible harm and the possibility of the occurrence caused by 

risk 

- Regarding the directive, measure the existing risk require the risk reduction process 

- With the use of protective measures mention in the directive, remove the hazards and 

lower the related risk 
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For ensuring the Essential Health and Safety Requirements regarding Annex I, There 

were standards to help the manufacturer to fulfill these requirements, perform risk assess-

ment, and employ safety components in the machinery. These safety standards were cat-

egorized into three types: 

- Type A standards: there are basic standards that determine the fundamental principle 

to attain the safety of machinery 

- Type B standards: there are universal standards that give guidelines about specific 

safety aspects such as safety distances and separating distances, protective devices 

like laser scanners or light curtains 

- Type C standards: there are machine standards that clarify in-depth safety require-

ments for special machinery such as industrial robots. 

Figure 19, It demonstrated the related standards to use alongside machine directive; it 

depicted the essential standards for manufacturer to ensure essential health and safety 

requirements. 
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Figure 19.  Machinery safety standards based on their categories [54] 

2.4.2 EN ISO 12100 

One of the vital tasks of the manufacturer for conducting CE marking for machinery is 

risk assessment and risk reduction. This procedure of these aspects is described in EN 

ISO 12100 [55]. To do a risk assessment and risk reduction the manufacturer shall take 
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consider the following steps in order to understand how to implement safety for his ma-

chinery: 

- Regarding intended use and any reasonable foreseeable misuse of his machinery, he 

should define the limits of his machinery 

- Recognize the hazardous and associated hazardous risk due to machine situations 

- Calculate the risk level of each identified hazard risk 

- Assess the identified risk and make decision based on the need of risk reduction  

- Remove the hazard risk or decrease the associated risk with the help of protective 

measures 

Action A to D is related to risk assessment, and E is based on risk reduction. In general, 

risk assessment consists of logical steps to analyze and evaluate the risks that exists with 

the current state of machinery. If there is a need to reduce risk after a risk assessment, this 

process can be iterated until the risk level is decreased to a practicable level in order it 

can be implemented. In Figure 20, the process of risk assessment and risk reduction is 

represented; it starts by determination of limits that exist in the machinery, continues to 

the process of hazard risk identification and estimation of the level of risk. Afterwards, 

with risk analysis, it concludes the risks that can be avoided by changing in design or 

structure of machinery. Otherwise, it enters to the risk reduction phase to find suitable 

protective measures for the machinery. 

Determination of machinery limitation is divided to use limits, space limits, time limits 

and other limits relevant to properties of the material that should be processed, such as 

level of cleanliness and environmental conditions. Use limits consist of the intended use 

and the reasonably foreseeable misuse of machinery by operators, maintenance personnel, 

trainees and other attendees in the working area of machinery. Space limits take into ac-

count the range of movement, space required by the operator to interact with the machin-

ery during machine process and maintenance period, human interaction with the machine 

and the power supply of the machinery. Time limits consider the lifetime of machinery 

and its components as well as service intervals. 

In order to identify hazards, the risk assessment is the essential step of machinery after 

determining the limits. It is mandatory to identify all operations of machinery and all the 

tasks that the operator should perform with the machine and consider the parts, mecha-

nism or all the functions of the machine that is interacting with an operator. The hazards 

that manufacturer shall consider in the risk assessment process consist of a) operator in-

teraction in the whole life cycle of the machine b) possible state of the machine c) 

reasonable foreseeable misuse of the machine. 
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Figure 20. Representation of the risk reduction process including iterative three-step 

method [55] 

 



27 

Risk estimation shall be done after hazard identification for each hazard situation by de-

fining the elements of the risk. The risk of the hazard situation depends on: a) severity of 

harm b) the probability of occurrence of that harm which is a function of the exposure of 

a person to hazard, the possibility of occurrence of a hazardous situation and the possi-

bility of avoiding or limiting the harm by technical solution or human caution. The pro-

cedure of this evaluation is depicted in Figure 21. 

 

Figure 21.  The element of risk [55] 

Ultimately, the risk reduction is an essential part of risk analysis. The objective of risk 

reduction can accomplishe by removing the risks. There are three-step methods for im-

plementing protective measures for reducing risk. 

- Step 1: Inherent safe design measures: this process, ensure the possibility to reduce 

risk by implementing a suitable choice of design features of the machine itself. 

- Step 2: Safeguarding and/or complementary protective measures: Considering 

the intended use and the reasonably foreseeable misuse, safeguarding and protective 

measures can reduce hazard when it is not practicable to remove hazard by the 

previous step. 

- Step 3: Information for use: even after implementing the first two steps, there are 

still hazards that remain in the system. Thus, the solution for this is to provide infor-

mation about hazards and risks for the operators of the machine. This information can 

include, information about operating procedure for the use of the machinery, recom-

mended safety practices and training to demonstrate how to use the machinery, warn-

ing sign and information for all phases of machinery life cycle and the instruction 

about what kind of protective equipment that the operator should use in the machine 

process. 
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2.4.3 ISO 10218 

In this part, ISO 10218 [3], [4] will be explained which is related to the safety of industrial 

robots. This standard is part of type C standards, describes the hazards that exist within 

the use of industrial robots and industrial robot systems. There is a difference between 

the provision of type C standard with type A or type B standards, therefore “the provisions 

of the type C standard take precedence over the provisions of other standards for machines 

that have been designed and built in accordance with the provisions of type C standard.” 

[3]. 

Hazards that rely on the robots are well known in the industry, but the source of these 

risks depends on the particular use case of the robot system. Based on the character of 

automation process and difficulty of the robot’s installation, the number, and type of haz-

ard are dependent on these two factors. But the hazards that rely on these system changes 

with the different types of robot are used in workstation.  

ISO 10218 is divided into two parts; first, supply the guidance to ensure safety in the 

design and production of robots. Second, provides the guidance about safeguarding for 

personnel while working with robots inside shared workspace. ISO 10218-1 [3], provides 

requirements and guidelines for inherent safe design, protective measures, and infor-

mation for the use of industrial robots. It demonstrates the primitive hazards while em-

ploying industrial robots and how to eliminate or decrease these hazards. One of the most 

critical section of this standard is about requirements of collaborative operation. 

Robots that work in collaborative operation shall provide a visual indication when a robot 

operates in collaborative operation and shall fulfill one or more of below requirements: 

a) Safety-rated monitored stop: This situation happens when human enters the col-

laborative workspace then robots shall stop its movement. For this purpose, the 

robot would start to decrease its speed and lead to a category two, stop, by IEC 

60204-1 [56]. Meanwhile, if human exits the collaborative workspace, the robot 

may resume its automatic operation. It worth to mention that if there is fault hap-

pens in safety-rated monitored stop function, the robot shall stop in a category 0. 

b) Hand-guiding: robots that provide the requirement of hand-guiding function for 

their movement shall locate the hand-guiding equipment near to the end-effector 

and shall be equipped with an emergency stop and an enabling device. 

c) Speed and separation monitoring: in this set-up whenever human wants to get 

near to the robot, robot shall maintain a determined speed and separation distance 

from the human. In the case of failure robot shall result in a protective stop. The 

robot itself inside shared workspace is just a component, and safety of robot only 

cannot fulfill the safety of whole system where during collaborative operation 

there are dynamic task happens inside the collaborative workspace. Therefore the 

risk assessment shall be done during the design of the system. In addition, it is 
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vital to notify personnel by information for use about implementing speed values 

and separation distances. 

d) Power and force limiting by inherent design or control: During contacts be-

tween the robot and human, the robot can only impart limited static and dynamic 

forces to avoid any harm to the human, if any of these parameters exceed their 

limits, robots shall result in a protective stop. 

As mentioned above, through the implementation of some of the collaborative workspace 

there is a need to identify the hazard and perform a risk assessment. The risk assessment 

shall provide particular consideration to the following objective: 

- The intended use of the robot, including teaching, maintenance, setting and cleaning 

- Unexpected starting of the robot 

- Consider the possibility of personnel access from any direction 

- Reasonably foreseeable misuse of the robot 

- Take consideration of system failure during operation 

- Hazards that associated based on specific robot application 

These risk shall be removed or decreased by design or substitution in design, and 

afterwards if it is needed safeguarding and other protective measures shall be used. Also, 

another residual risk shall be reduced by information use such as warnings, signs or train-

ing. In Annex I of ISO 10218-1, there is a list of possible hazards with different categories 

such as mechanical, electrical, thermal, noise, vibration, material substances, ergonomics 

hazards or combination of them. 

According to ISO 10218-2 [4], Safety requirements for industrial robots is about specify-

ing the safety requirements for the integration of industrial robots and industrial robot 

system. This integration consist of the following sections: 

- the design, manufacturing, installation, operation, maintenance and decommissioning 

of the industrial robot system or cell; 

- mandatory information needed for all processes above 

- Component devices of the industrial robot system or cell. 

ISO 10218 discuss the possible hazardous situation related to the industrial robot system 

and provide requirement on how to reduce these hazards. It worth to mention, cause the 

robot by itself produce noises in workstation. Therefore, a noise hazard is removed from 

the risk assessment process. 

The layout design of these system workstation is playing a significant role to reduce haz-

ard risk. For this purpose, it needs to consider the following factors while designing the 

robot systems, a) set-up the physical limits of workstation, b) identify the workspaces, 

access, and clearance, c) providing manual access control outside of safeguarding, d) 

considering the ergonomics and human interface with equipment, e) considering 
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environmental conditions, f) the process of changing tools or workpieces, g) take into 

account perimeter safeguarding, h) consider the requirement to install the emergency 

stops in the location that needed, i) provide enabling device near to the robots, j) consider 

the intended use of all equipment. 

Based on the ISO 10218 standard, we can define spaces in shared workspace as follows: 

- Maximum Space: it demonstrates the workspace that the robot can reach to the area. 

- Operating Space: the workspace that the operation is done and the robot is not in its 

safe limitation. 

- Restricted Space: it demonstrates the safe workspace of the area where the robot uses 

it as a mechanical limitation on its axis 1, 2 or 3. Also, it can be achieved by software 

limitation, for example, the Safemove from ABB robots. 

- Safeguarded Space: the area, which designed to have safety component such as safe-

guarding or light curtains. 

All of these spaces are depicted in Figure 22. 

 

Figure 22.  Definition of shared workspace areas [57]  

Safeguarding implements in the case that the hazard risk cannot be eliminated by design, 

so safeguards such as guards, fences and protective devices shall protect the hazardous 

area in station like the light curtains. The sensitive protective devices are usually utilized 

when an operation requires frequent access to the operator, operator interacts with the 

machinery or more importantly while it is not ergonomic to use fix guarding such as 

fences. 
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2.4.4 ISO-TS 15066 

Besides ISO 10218 part I and II, there is one technical specification that recently has been 

published, ISO-TS 15066 [5]. This technical specification determines the safety require-

ments for the collaborative industrial robots and workspaces. It is a complement to the 

guidelines of ISO 10218 about safety requirements and safety integration of industrial 

robots and industrial robot systems. Some relevant terms and definition in HRC based on 

this technical specification are: 

- Collaborative operation: it is a condition where the industrial robot and human work 

together inside the collaborative workspace. 

- Collaborative workspace: a workspace near to the robot workspace where a human 

can also perform the tasks at the same time the robot works. 

- Quasi-static contact: it defines the contact that happens between the human and ro-

bot system and leads to human clamped between the robot and another fix or moving 

part of shared workspace. 

- Transient contact: it defines contact between operator and robot’s system where a 

human can retract from moving components of the robot system. 

Generally, the difference between collaborative operation and traditional robotcell is  

where in collaborative operation human can perform the associated tasks in close distance 

with robot system and also has direct contact with the robot while robot’s actuator is still 

active (Figure 23). 

 

Figure 23. Collaborative workspace Example [5] 
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To ensure safety for collaborative robot system, it is needed to utilize the system with 

proper protective measure while the operator works inside collaborative workspace all 

the time. Therefore, a risk assessment shall be done to recognize all possible hazards re-

lated to the collaborative operation and afterward the suitable risk reduction can be 

picked. 

The following factor shall be considered while designing the collaborative application 

that can help for reducing the hazard inside shared workspace: 

- set-up the physical limits of workstation 

- identify the workspaces, access, and clearance 

- considering the ergonomics and human interface with equipment 

- declaring the use limits for the operator 

- determine the transition or time limits of collaborative operation 

The minimum factors that shall be considered during the hazard identification process are 

robot related hazards, hazards depend on the robot systems and hazards that depend on 

the application of operation by itself. The robot related hazards consist of robot charac-

teristics, quasi-static contact situation in the robot system and operator distance from ro-

bot workspace. As a process of identifying hazards depends on robot system, following 

elements can be noticed such as hazards related to the end-effector and workpiece, oper-

ator movements regard to the location of components and orientation of structures, and 

specifying the type of contact between human body and parts. 

Finally, after all of the hazards are determined, the risks related to the collaborative robot 

system shall be assessed before considering the risk reduction measures. These measures 

are achieved from the ISO 10218 part II: firstly, remove hazards by applying the essential 

safe design. Secondly, using protective measures to prohibit access of personnel to danger 

zone or control the hazards before the operator enters the hazards environment. Thirdly, 

providing complementary protective measures such as information for use, training or 

personal protective devices, etc. 

2.5 Review and Classification of Safety in HRC 

In this subchapter, challenges in the research field of safety systems is mentioned and 

current trend of the subject is reviewed for better understanding of existing methods and 

safety measures applied in other studies. The Table 1 illustrates the trend of methods and 

provide a comprehensive references for further investigation of outcomes and challenges 

of the methods and sensor types in different fields.   

One of the major issues in robot workstations is when presence of multiple persons or 

large components lead to situation where human in shared workspace cannot be detected. 

This can lead to critical problem about safety of operator with harmful injuries. Several 
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author on their researches have demonstrated that these risks of occlusion can be reduced 

by employing several sensors. For instance, 2D vision cameras have studied and shown 

that their capability for component detection and identification in shared workspace. But 

some environmental conditions such as dust and light will cause disturbance in the detec-

tion of objects. Therefore, there were some authors studied the possibility of multiple 

camera usage (e.g.  Multiple Kinects). 

Laser scanners or light curtains are monitored planes in the defined zones, the challenges 

raised with these sensors are where operator or other worker obstruct the beams for car-

rying out their daily work. In another hand, 3D cameras, such as SafetyEYE are studied 

to protect the access of operator or objects with 3D scanning of danger zones. The ad-

vantage can be mentioned as this three-dimensional sensor is capable of scanning differ-

ent zones simultaneously. In addition, there are limitation for use of this sensor, the zones 

are defined for workstation is not dynamic and for reconfiguration of zone it is needed to 

redo whole process from beginning. Other issue is about the location of sensor for setup 

which with changes in the workstation it should be relocated again and calculate the zones 

and also environmental elements such as light have effect on the precision of its camera.  

Then, other investigation is projector and safety system where the zone of workspace is 

projected on surface and with depth camera sensor the presence of human or object can 

be detected. The challenge for this system is that in industrial application there can be 

disturbances such as tables, fences, components, etc. for projection on the surface. Plus, 

the resolution of depth camera is low for such large work area. The some of these studies 

is summarized in Table 1. 

In the majority of studies, the tool center point (TCP) collision with human body part or 

object is investigated. For such system, vision cameras and force sensor for robot’s grip-

per are used. There is lack of research about collision of human or components with other 

robot joints. In addition, there is demand to more detailed implementation of real-time 

collision avoidance and motion planning. Heavy industrial robots cause latencies between 

control system and delays in motion, also there is a gap of safety system implementation 

for such robots. 

Table 1. Summary of reviewed methods 

Method Reference 
Sensor 

type 
Safety- function 

Safety EYE 

Michalis et al 2015 [58], 

Jalba et al 2017 [59], 

Vivo et al 2017 [60], 

3D cam-

era 
Safety-rated monitored stop 

Safety EYE Thomas et al [61] 
3D cam-

era 

Safety-rated monitored stop, 

Robot speed control ( dis-

tance between robot and hu-

man) 
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Projector and 

safety system 

Vogel et al. 2017, 2013, 

2011 [62],[63],[64],   

Leso et al 2015 [65], 

Hietanen et al 2017 [66] 

2D cam-

era 
Safety-rated monitored stop 

Depth space 

distance calcu-

lation 

Flacco et al 2017, 

2014,2012 [67],[68],[69] 

Multiple 

RGBD 

Robot speed control ( dis-

tance between robot and hu-

man) 

real-time hu-

man tracking 
Morato et al [70] 

Multiple 

Kinects 

Safety-rated monitored stop, 

Robot speed control ( dis-

tance between robot and hu-

man) 

Collision 

avoidance in 

an augmented 

environment 

Mohammed et al. 2017 

[71],                     

Schmidt et al. 2014 

[72],[73],                  

Wang et al. 2013 [74] 

RGBD 

Safety rated monitored stop, 

robot position control, robot 

speed control (distance be-

tween robot and human) 

Triple stereo-

vision system 

and colour 

markers 

Tan and Arai [75] 

Multiple 

stereo 

camera 

Near field vision system : 

Monitoring upper body 

function, wrist function 

Sensor for de-

tecting human 

presence 

Zaeh et al [76] 

SICK 

Laser 

scanner 

and pres-

sure mat 

robot speed control (dis-

tance between robot and-

human) 

Multi-Objec-

tive  Convolu-

tional  Neural  

Networks 

Miseikis et al [77] 
2D cam-

era 
Robot position estimation 

Level 3 of HRI Bdiwi et al [6] 

RGBD 

and ste-

reo cam 

All (Robot position, Robot 

speed, Near field vision sys-

tem, Detection of faulty 

events) 

Presence of 

human in the 

HRC area 

Antonelli et al 2017 [78] 

SICK 

Laser 

scanner 

robot speed control (dis-

tance between robot and-

human) 

Hand safety in 

assembly 

phase 

Cherubini et al. 2016[79] 
2D cam-

era 

Near field vision system: 

hand function 

 

2.6 Literature Review Summary 

In this chapter, the three types of assembly in the manufacturing industry, manual assem-

bly, fully automated assembly system, and hybrid assembly system are explained. In ad-

dition to this, the history of the development of industrial robots and their market share 

until 2020 is reviewed. Then, most used applications of the industrial robot such as han-

dling, welding, assembly, and painting are discussed. In the next, the essence of machine 
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directive is addressed and afterwards the harmonized standards for industrial robots ISO 

10218, ISO/TS 15066 are shortly specified. Finally, the challenges of employing different 

safety system in current trend of researches are explained.  
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3. DEVELOPMENT / EXPERIMENT 

In this thesis experiment, the goal is to create human-robot collaboration workstation for 

assembly of heavy components. As mentioned earlier, in the current applications, collab-

orative robots used in HRC to assist the operator to handover the tools or small compo-

nents but there is a gap in the assembly of bigger components with employing large in-

dustrial robots in HRC. In this study, we decide to implement use-case for industrial ap-

plication of large robots in HRC.  

3.1 Experiment’s Equipment and design 

The selected case derives from the tractor industry and deals with the assembly of a diesel 

engine (Figure 24). The diesel engine assembly station is one of the most challenging 

stages of assembly process which is mostly done manually in the factory. The assembly 

process performed by the operator with the help of portable tools and it is divided into 

subtasks. The time estimate of the assembly of this product is 70 engines in two shifts. 

 

Figure 24.  Product: Diesel Engine 

The robot used in this case was placed in Mechanical Engineering and Industrial System 

(MEI) laboratories at Tampere University of Technology (TUT). The robot was ABB 

IRB 4600 with a payload capability of 60 kg and reachability of 2.05 m. The robot was 

equipped with the IRC5 controller and robot control software, RobotWare. RobotWare 
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supported every characteristic of the robot system, such as motion control, development, 

and implementation of application programs, communication, etc. 

 

Figure 25.  ABB IRB 4600-60 [80] 

The existing prototype jigs for components were used for robot tasks. These components 

were a motor frame, head cover, pushrods, and rockershaft. It was assumed that the robot 

would pick the components from a table in workstation, so the jigs were mounted on the 

planar surface.  

 

Figure 26. Motor Frame and Head Cover Jigs 
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For the pushrods and rockershaft, the design contained the combination of plywood holes 

and 3D print part as a holder by MakerBot Replicator machine. The plywood holes con-

sidered as a holder for the cubic shape of rockershaft and for the pushrod the cylindrical 

feeding system was used and afterwards, design of jigs improved by adopting grove shape 

feeding system (Figure 27).  

 

Figure 27.  From Top Left: First Design, Improved Design, Final Implementation 

The ABB IRB 4600 robot in laboratory had pneumatic air source for implementation of 

grippers. The pneumatic grippers provided sufficient grasp force for the components in 

the assembly process. That parameters for selecting the gripper for the aspect of this pro-

ject were the stroke of finger jaws and a total payload of the gripper.  

 

Figure 28. Left: SCHUNK PGN-plus-P 100-1 [81], Right: SCHUNK PGN-plus-P 80-2 

[82] 

 

In the phase of selection of grippers, a multi-gripper with the capability of two grippers 

for the purpose of picking multiple components was designed. The selected grippers were, 

SCHUNK PGN-plus-P 100-1 and SCHUNK PGN-plus-P 80-2 (Figure 28).  The PGN-
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plus-P 100-1 had a stroke per jaw of 10mm and a maximum payload of 4.35 kg, and the 

PGN-plus-P 80-2 had a stroke per jaw of 4mm and a maximum payload of 5.5 kg. The 

used end-effector had two multi-functional fingers (Figure 29). 

 

Figure 29. Left: Fingers Designed for the motor frame and headcover, Right: Fingers 

Designed for pushrods and rockershaft 

 

The rail material was selected due to sufficient strength of structure. Further, plates were 

designed for grippers to enable movement of the grippers alongside structure. The whole 

end-effector was mounted on the robot flange in 6th axis of the robot (Figure 30).  

 

Figure 30. Multi-gripper Final Design 

3.2 Engine Components Analysis 

In the first step, the components of an engine should be analyzed to figure out which of 

the components could be used in the assembly process. For this aspect, the disassembly 

of components procedure took out. Some of the components could not be disassembled 

because of the complexity of the assembly process, and it required special tools. In the 

next step, the assembly stage decomposition model [15] was drawn. In this diagram, the 

engine was divided into two section, the engine block (which the component could not 
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be disassembled) and engine head. Afterwards, the assembly process of the components 

was analyzed and shown in the assembly stage decomposition model diagram (Figure 

31). 

 

Figure 31. Assembly Stage Decomposition Model for Engine Components 

From the disassembly process and assembly stage decomposition analysis, the compo-

nents in Table 2 were considered for the assembly process of the experiment. 

Table 2. List of assembly components 

No Components Weight(g) Number 

1 Exhaust cover of the engine 6170 1 

2 Pushrods 100 8 

3 Rocker arm 69 8 

4 Electric kit and washer 158 1 

5 Motor frame 1830 1 

6 Screws 16-60 22 

7 Nuts 60 3 

8 Rocker shaft 4300 1 

9 Headcover 1340 1 

3.3 Task Allocation 

Based on assembly stage decomposition model and list of components, the stages of as-

sembly was provided and assembly tasks were determined. In the next step, an analysis 
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method were provided to determine which tasks could be done by human and which tasks 

could be done by a robot. A study had conducted in an article from Helander [83] about 

multiple factors such as task complexity, equipment layout, specific type of robotics, load 

capacity, reachability, repeatability memory ,ergonomics, job satisfaction and degrees of 

freedom of motion considered in task allocation between the robot and the human. There-

fore, four factors had been chosen for evaluating the assembly tasks in this thesis.  

These factors were task complexity, ergonomics, payload, and repeatability. Task com-

plexity evaluated based on the geometry of components, and how much it was complex 

to grasp the component. Design of new gripper fingers was needed to be considered, be-

cause there was a limitation of using multiple tools in the system. The ergonomic of the 

operator considered if it was violated by the assembly process, and if picking up the com-

ponent could be easily assigned to a robot. Payload factor related to the value of the 

weight of components, for heavy components robot assigned to handle them and for 

lighter components operator could handle the components. For the last factor, repeatabil-

ity, it was about the consideration of repeating the assembly task in the daily routine of 

assembly (whole shift) and also took into account that how other factors affected when 

there was a chance of high repeatability.  

For each assembly task, each factor was considered and evaluated as a negative or posi-

tive effect on the system for both human and robot separately. For instance, considering 

the assembly of exhaust cover, the component itself had a complex geometry which was 

difficult to design gripper for picking the component, so it was a negative point for the 

robot. Meanwhile, the geometry of exhaust cover was simple for human cause operator 

could pick the component easily by using of two hands, so it was a positive point for a 

human. 

For ergonomics, the robot did not face ergonomic issues because it was a large machine 

and could operate for a long period, while this component was heavy for human and in 

the longer run, it would cause back injuries for the operator. For payload, the robot ca-

pacity for the payload was 60 kg therefore it did not face an issue while performs assem-

bly of this component. The weight of the component was around 6kg which considered 

as a heavy part for the operator to carry it on during whole shift. By considering the re-

peatability, it was obvious that by a large robot for bigger components and simple geom-

etry, it would not face issue to redo the process at all. But for human, the effect of weight, 

geometry, and number of operation would cause errors and fault during working time per 

day. Also, it should be considered that high repetitive tasks for human could impact on 

tiredness and fatigue of operator. 

All factors for this analysis were shown in Table 3 . To sum up the result, the points gave 

for each assembly task was collected. In the summary of negative points column, the 

number of negative points for each robot and human was added together. Therefore, the 

task allocation could be given to the resource which had less negative points. In a case 
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where the negative points were equal for both, it considered that the assembly task could 

be given to the robot or the human. There was one special case for rocker shaft, the com-

ponent had a complexity of geometry and also the complexity of assembly process. There-

fore it might be the best choice if the assembly of this component could be assigned as a 

combination of human and robot work. 
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Table 3.  Task Allocation analysis 

   Task complexity Ergonomic Payload Repeatability 

Summary 

of negative 

points 

  

No Task Robot Human Robot Human Robot Human Robot Human RN HN Task allocation 

1 
Assembly of 

exhaust cover 
- + + - + - + - 1 3 Robot 

2 
Assembly of 

push rod 
+ + + + + + + + 0 0 Robot or Human 

3 
Assembly of 

rocker arm 
+ + + + + + + + 0 0 Robot or Human 

4 
Assembly of 

electric kit 
- + + + + + - + 2 0 Human 

5 
Assembly of 

motor frame 
+ + + - + - + + 0 2 Robot 

6 

Assembly of 

screws and 

nuts 

- + + + + + - + 2 0 Human 

7 
Assembly of 

rocker shaft 
- + + - + - - + 2 2 Robot & Human 

8 

Assembly of 

engine head 

cover 

+ + + - + - + + 0 2 Robot 
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3.4 Cell Design and Simulation 

For the purpose of cell design, the HRC workspaces were considered. Therefore, robot 

workspace, human workspace, and cooperation workspace were three parts of this col-

laboration environment. In the beginning, the engine was transferred to the laboratory. 

Then, two tables were placed in the shared workspace. One of them was providing the 

components for the robot in robot workspace, and another one was providing the compo-

nents for human for assembly in the human workspace. With this arrangement, the engine 

was placed in the middle of both tables to provide equal distances. The height of the 

engine was adjusted to 90mm which was the average height of elbow based on anthropo-

metric data (Figure 32). 

 

Figure 32. Cell Design in MEI Laboratory 

For initial testing about robot movements inside workstation, it was decided to simulate 

the environment in Visual Components software. Visual Components had capability to 

simulate the workstation and programming robots. The software had virtual commission-

ing feature to upload program of the robot to the real robot controller. Therefore, the 

whole workstation was simulated with basic movements in software, and tested on the 

real robot at the laboratory (Figure 33). 

After the performing virtual commissioning, some information were collected from im-

plementation. Firstly, the range of robot movements was observed, and it had shown that 

the robot could cover the two table zones and the engine zone. Secondly, the initial infor-

mation for defining the workspaces for the workstation was collected. From Figure 34, it 
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Figure 33. Layout Simulation in Visual Components 

was depicted the robot workspace in blue colors which shows the reachability of the robot. 

For the human workspace, it was determined that human should start his assembly process 

from behind the table for the safety purposes. For the assembly of components, two zones 

were determined for human, the zone 1 which most of the components should be assem-

bled from this zone to prevent collision between robot and human. There was only one 

exception for a sequence of assembly (exhaust cover) which should be assembled from 

zone 2. 

 

Figure 34. Cell Workspaces 
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3.5 Assembly Sequence based on Interaction Level 

Based on task allocation which was discussed beforehand, assembly sequence related to 

the human and robot needed to be determined. Due to the design and implementation of 

the gripper for the components, there was a limitation to allocate every task to the robot. 

Hence, some of the tasks were assigned to a human instead of robots. 

For instance, the exhaust cover had a complex geometry for picking it up with grippers, 

so it required a specific design for itself to the able robot for assembly. However, if robots 

assigned to assemble exhaust cover, it was required to assemble the bolts at the same time 

otherwise because of the position of assembly it could fall to the ground. So there were 

two solutions for this challenge, the first solution could be that human assemble the com-

ponent bolts while robot holding the component which brings the danger for human. If 

the robot malfunctions, human might collide with robot arm or clamp between robot and 

table. The second solution could be to design more complex gripper which needed special 

design of fingers for holding the component and also a nut-runner to assemble the bolts. 

This solution might decrease the flexibility of designing other grippers while in the im-

plementation there was no access to the tool racks. 

Based on the same explanation, the primitive idea of task allocation was shown in Table 

4. The only exception over here would be for assembly of rockershaft which depended 

on the interaction level of the system. 

Table 4. Primary of Task Allocation 

Assembly Process Task Allocation 

Assembly of Exhaust Cover Human 

Assembly of Rocker Arms Human 

Assembly of Motor Frame Robot 

Assembly of Electric Kit Human 

Assembly of Pushrods Robot 

Assembly of Rockershaft Robot + Human 

Assembly of Head Cover Robot 

Assembly of Bolts and Nuts Human 

 

Due to the classification of interaction levels which was reviewed in section 2.3 on page 

15, the scenarios were determined based on each interaction level characteristics and de-

fined the assembly sequence for each of the interaction levels. In the following, the sce-

nario for these interaction level was described. 
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3.5.1 First Interaction Level Scenario 

Based on the first interaction level, robot or human could provide components in inter-

mediate storage for each other to continue the assembly. For the implementation of this 

interaction, the motor frame was considered as a component for locating in intermediate 

storage (table 2). Then, the human would continue the process of assembly by placing the 

electric kit on the frame and at final step place the motor frame on the engine. The assem-

bly sequence followed by the Table 5. 

Table 5. First Interaction level Assembly Sequence 

Assem-

bly Se-

quence 

Assem-

bly Task 
Instruction Image 

1 

Assem-

bly of 

Exhaust 

Cover 

Human as-

semble ex-

haust cover 

from behind 

of engine 

and tight 

two of bolts 

just to hold 

the compo-

nent  

2 

Assem-

bly of 

Bolts of 

Exhaust 

Cover 

Human tight 

the bolts to 

finish the as-

sembly of 

exhaust 

cover 
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3 

Assem-

bly of 

Rocker 

Arms 

Human as-

semble the 

rocker arms 

from the 

front of the 

engine 

 

4 

Assem-

bly of 

Motor 

Frame 

Robot pick 

from table 1 

and place it 

on table 2 

 

5 

Assem-

bly of 

Electric 

Kit 

Human as-

semble the 

electric kit 

on the table 

and 

afterward 

place the 

motor frame 

on the en-

gine  

6 

Assem-

bly of 

Motor 

Frame 

Screws 

Human tight 

screws of 

motor frame 

to the engine 
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7 

Assem-

bly of 

Pushrods 

The robot 

picks push-

rods from 

the table and 

places it in 

the engine 

 

8 

Assem-

bly of 

Rock-

ershaft 

Human 

picks up the 

rockershaft 

from table 2 

and places it 

on the en-

gine 

 

9 

Assem-

bly of 

Nuts of 

Rock-

ershaft 

Human 

tights the 

nuts and bolt 

of rock-

ershaft 

 

10 

Assem-

bly of 

Head-

cover 

The robot 

picks the 

head cover 

from the 

table and 

places it on 

the top of 

the motor 

frame 
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11 

Assem-

bly of 

Head-

cover 

Bolts 

Human 

tights the 

bolts of the 

headcover 

 

 

The timing diagram for this assembly sequence was depicted in Figure 35, it demonstrated 

that the human-robot collaboration task was on a low level because the robot and the 

human were not allowed to have any interaction with each other. In the first interaction, 

the robot picked up the defined components and waited for the confirmation of the human. 

The operator after completing the tasks, gave permission signals to the robot by the phys-

ical button to further continue the task. This process replicated for each robot’s task. 

 

Figure 35. Timing Diagram for the First Interaction Level Sequence 

3.5.2 Second Interaction Level Scenario 

As discussed before, in the second interaction level, robot should provide a component 

for a human to start assembly of another component on it. However, in this case, there 

should not be any physical interaction between robot and human. For this purpose, the 

robot picked up the motor frame, placed it on table 2 and waited for a human to finish the 

electric kit assembly. At the same time, the physical button the light would be turned on. 

This would indicate for an operator that it would wait for confirmation from operator to 

continue the assembly process. Therefore, after finishing the assembly of electric kit, hu-

man would push the physical button and stand behind the table. The robot would continue 

the assembly process by placing the motor frame on the engine. Table 6 demonstrated the 

sequence of this interaction level. 
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Table 6. Second Interaction Level Assembly Sequence 

Assem-

bly Se-

quence 

Assem-

bly Task 
Instruction Image 

1 

Assem-

bly of 

Exhaust 

Cover 

Human as-

semble ex-

haust cover 

from be-

hind of en-

gine and 

tight two of 

bolts to 

hold the 

component  

2 

Assem-

bly of 

Bolts of 

Exhaust 

Cover 

Human 

tight the 

bolts to fin-

ish the as-

sembly of 

the exhaust 

cover 

 

3 

Assem-

bly of 

Rocker 

Arms 

Human as-

semble the 

rocker arms 

from the 

front of the 

engine 
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4 

Assem-

bly of 

Motor 

Frame 

Robot picks 

from table 

1 and 

places it on 

table 2 and 

waits for a 

human to 

assemble 

electric kit 
 

5 

Assem-

bly of 

Electric 

Kit 

Human as-

sembles the 

electric kit 

on the table 

and 

afterward 

press the 

physical 

button to 

trigger ro-

bot to 

places the 

motor 

frame on 

the engine 

 

6 

Assem-

bly of 

Motor 

Frame 

Screws 

Human 

tights 

screws of 

motor 

frame to the 

engine 

 



53 

 

 

7 

Assem-

bly of 

Pushrods 

The robot 

picks push-

rods from 

the table 

and places 

it in the en-

gine 

 

8 

Assem-

bly of 

Rock-

ershaft 

Human 

picks up the 

rockershaft 

from table 

2 and 

places it on 

the engine 

 

9 

Assem-

bly of 

Nuts of 

Rock-

ershaft 

Human 

tights the 

nuts and 

bolt of 

rockershaft 

 

10 

Assem-

bly of 

Head-

cover 

The robot 

picks the 

head cover 

from the 

table and 

places it on 

the top of 

the motor 

frame 
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11 

Assem-

bly of 

Head-

cover 

Bolts 

Human 

tights the 

bolts of the 

headcover 

 

 

For this sequence, the timing diagram was shown in Figure 36. It could be seen that in 

this level, a human had more engagement in the robot tasks and there was more depend-

ency between robot and human to perform their tasks. The robot picked up motor frame 

in task four and brought it on human workspace. Then, operator assembled the electric 

kit on the motor frame and with physical button sent confirmation signal for robot to 

continue placing the motor frame on the engine. Also, the signal confirmation replicated 

for assembly of pushrods and headcover. 

 

Figure 36. Timing Diagram of Second Interaction Level Sequence 

3.5.3 Third Interaction Level Scenario 

Regarding the classification of interaction levels, in the third level robot would hand over 

the components for a human. Hence, the robot and human had a physical interaction with 

each other, but it might not engage the complete physical contacts. In this scenario, two 

component were considered for hand over scenarios, the motor frame, and the rockershaft. 

As stated before in Table 2, these components were assumed as heavy components in the 

assembly process. In addition, carrying these components by a human during the whole 

shift would increase the fatigue. Ergo, in this scenario by carrying the object with the 

robot, the time of holding object inside workstation for human could be decreased. An-

other reason for picking rocker shaft for this scenario was that assembly of rockershaft 

requires precise locating the component. The rockershaft needed to align with three bolts 
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on the engine which if it might be wanted to be fully automatic that would require image 

processing tools and more complex gripper’s finger design. 

The process of this scenario was as follows, in the sequence of assembly of the motor 

frame, the robot picked up the motor frame from table 1 and brought it toward the collab-

oration zone. After robot reached to the collaboration zone, the physical button light 

would be turned on. Human might enter to the collaboration workspace from zone 1 (Fig-

ure 34), press the physical button and after 5 seconds the robot release the component. 

Then, human would continue the assembly process by placing the motor frame on the 

engine. The same routine would occur for the rockershaft too. 

Table 7. Third Interaction Levels Assembly Sequence 

As-

sembly 

Se-

quence 

As-

sem-

bly 

Task 

Instruc-

tion 
Image 

1 

As-

sembly 

of Ex-

haust 

Cover 

Human as-

sembles 

exhaust 

cover from 

behind of 

engine and 

tights two 

of bolts to 

hold the 

component  

2 

As-

sembly 

of 

Bolts 

of Ex-

haust 

Cover 

Human 

tights the 

bolts to fin-

ish the as-

sembly of 

the exhaust 

cover 
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3 

As-

sembly 

of 

Rocker 

Arms 

Human as-

sembles 

the rocker 

arms from 

the front of 

the engine 

 

4 

As-

sembly 

of Mo-

tor 

Frame 

Robot picks 

from table 1 

and hands it 

over to hu-

man and hu-

man pushes 

physical but-

ton to release 

the part and 

places the 

motor frame 

on the engine 

 

5 

As-

sembly 

of 

Elec-

tric Kit 

Human as-

sembles 

the electric 

kit on the 

motor 

frame of 

the engine 

 

6 

As-

sembly 

of Mo-

tor 

Frame 

Screws 

Human 

tights 

screws of 

motor 

frame to 

the engine 
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7 

As-

sembly 

of 

Push-

rods 

Robot 

picks push-

rods from 

the table 

and place it 

in the en-

gine 

 

8 

As-

sembly 

of 

Rock-

ershaft 

Robot 

picks rock-

ershaft 

from table 

1, hands it 

over to hu-

man and 

human 

pushes 

physical 

button to 

release the 

part and 

places the 

rockershaft 

on the 

engine 

 

9 

As-

sembly 

of 

Nuts 

of 

Rock-

ershaft 

Human 

tights the 

nuts and 

bolt of 

rockershaft 
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10 

As-

sembly 

of 

Head-

cover 

The robot 

picks the 

head cover 

from the 

table and 

places it on 

the top of 

the motor 

frame 
 

11 

As-

sembly 

of 

Head-

cover 

Bolts 

Human 

tights the 

bolts of the 

headcover 

 

 

The timing diagram of this level of interaction was depicted in Figure 37. In this level, 

the engagement of robot in the assembly was more than the previous interaction levels. 

One of the challenge here was that assembly of pushrod by robots brought delays between 

task 6 and task 8. Therefore, the waiting time for the human would be increased. The 

characteristic of this interaction level was to hand over components for operator. There-

fore, robot brought the motor frame and rockershaft near to the engine, the operator would 

reach to the engine from the front. After sending permission signal, robot would release 

the component after five seconds and operator would continue the assembly of compo-

nent. 

 

Figure 37. Timing Diagram for Third Interaction Level Sequence 
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3.6 Safety Implementation 

3.6.1 Laser Scanners 

Laser scanners are the most frequently used safety sensors in the field of robotics. These 

sensors are utilized in a shared workspace to detect an object (in our case the human) with 

optical sensing. It can scan the environment in a 2D- horizontal field of view and send 

infrared laser beams in the area. It uses the Time of Flight (TOF) principles where scan-

ners send out short pulses of light, and at the same time, a stopwatch is started. When 

objects hit the beams of light, the light is reflected and pulses received by a laser scanner. 

While intrusion occurs, from the time between sending and reception, scanners determine 

the distance to the object and send stopping signal to its controller. Afterwards, the signal 

will be transferred to the robot controller and send stop signal for robot movements. In 

the laser scanner, a mirror is set up inside the device which by rotating at a constant speed 

it will deflect the light pulses. By this method, scanners can cover more field of view and 

detect an object in a desired field. The laser scanners can be chosen regarding the protec-

tive field range, scan angles, number of fields, etc. 

The laser scanner S3000 from the SICK Company (Figure 38) was selected for this ex-

periment. It provided a protective field range of 4.70mm and 5.5 m, and a scanning angle 

of 190 degrees. The response time of scanners were 120ms and number of field sets could 

be defined up to 4 fields. 

 

Figure 38.  SICK S3000 Laser Scanner 

 

The laser scanners beams had interference with the objects such as the engine and the 

tables in workstation. Therefore, two laser scanners were set up in positions where facing 

each other. So the beams could cover both areas of the front and behind the engine (Figure 
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39). The height of laser scanners adjusted to the 220mm, so it could detect operator’s leg 

above the ankle and prohibit operator to crawl under the scanners. The resolution of pro-

tective field was set to 70mm for leg detection. Regarding the height of scanner set up, 

the circumstances such as errors in detecting the ankle of leg while laser beam got wider 

in the distance were avoided. The resulting range for the protective field was adjusted to 

5.5m. 

 

Figure 39. Laser Scanners Set Up in Workstation 

 

There were two kinds of field sets in the laser scanner, protective field, and warning field. 

The protective field protected the hazardous area on a machine (in our case robot). The 

warning field could be defined in a state where the detection of the human might occur 

before the human enter to the hazardous area. In this implementation, for each scanner 

two fields were defined, the one field for protective field and another one for warning 

field. 

 

Figure 40.  Protective and Warning Definition for Wall Mounted Scanner 
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For the wall-mounted laser scanner, the area in front of the engine, and area between table 

1 and robot were hazardous area based on robot movements. Therefore, as it could be 

seen in Figure 40 these hazardous area covered by protective field. 

 

Figure 41. Protective and Warning Definition for Robot Mounted Scanner 

For the scanner that mounted on the base of the robot, the hazardous area was defined in 

two section, the first zone was behind the engine where there was a chance for clamping 

of human between robot and table 2, and second zone was between table 1 and the engine 

where there was a chance for clamping of human too (Figure 41). 

For the implementation of laser scanners, the safety-rated monitored stop function was 

considered as a primarily use case of this implementation. So in this process, if human or 

any objects violated the protective field, the light pulses would be received to the laser 

scanners. Then the signal would be sent to the controller of the laser scanner and activated 

the stop function signal which would be sent directly to the robot controller and force the 

robot to the stop states. After that, if the object was removed or human walked out of the 

protective field, the operator by physical button could resume the sequence of the robot. 

In addition, the speed limiting function was implemented for the warning fields. Hence, 

if human might enter to the zone of warning field, the robot speed would be decreased to 

50% of their real-time speed. This would avoid robot movement with high acceleration 

where human was near to the hazardous area. 

The indication lights was set up in workstation for demonstrating the states of operations. 

The green light would show that there was no object existed inside workstation and robot 

would move smoothly. The yellow light demonstrated the violation of warning field, so 

the operator would notice of why robot speed was decreased. Moreover, the red light 

would show that the operator violated the protective field and entered the hazardous area, 

and that was the identification of why the robot was stopped. 
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3.6.2 ABB SafeMove 

One of the safety controllers exists in the robot system is provided from ABB called 

SafeMove for some range of their industrial robots. The SafeMove is an add-on for ABB 

RobotStudio software while it is connected to the IRC5 controller. The primary goal of 

SafeMove is ensured high safety level in shared workspace with using supervision func-

tions. These functions are activated from a digital input of safety devices such as laser 

scanners, light curtain, etc. However, these functions are capable of stopping robot move-

ments by setting digital output signals. With utilizing the robot system with safety PLC, 

the input and output signals are transferred to the PLC and can control the characteristic 

of robot movements. Some of the supervision functions are as follows: 

- Safe Zones:  This supervision provides optimization of cell size and process of in-

stallation of safeguarding will be simplified. 

- Safe Axis Ranges: This supervision can be exchanged with electro-mechanical posi-

tion switches. This function can provide more flexibility and control on robot axis 

movements. 

- Safe Robot Speed:  It supervises speed of tool center point and robot axis to protect 

human who work close to the robot workspace 

In this thesis, when human entered to the protective field or warning field, a laser scanner 

sent digital signal outputs, this signal could be utilized to control robot program either to 

stop the robot movements or to reduce the speed of robot system. For the first step, re-

garding the trajectory of the robot inside assembly tasks, the safety axis ranges was ad-

justed for the robot. The required values were demonstrated in Figure 42. Violating these 

values would cause the category 1 stop for the robot. The category 1 stop was a controlled 

stop state where the power was available for the actuators to achieve the stop. Power 

would be removed from the actuators when the stop was completed. The axis 4, 5 and 6 

were not limited because the design of the multi-gripper for enabling the reachability of 

required angles and positions needed to be considered. 



63 

 

 

 

Figure 42.  Safety Range Axis Properties from ABB SafeMove 

In the next phase, the tool of the robot was simulated with boxes and capsules to utilize 

the position of the tool when entered to the safety zones. Tool position function required 

the definition of safety zones. Hence, five safety zones were determined in RobotStudio 

environment, Table1, manual1, manual2, engine, and table 2 (Figure 43). If the robot 

movements exceeded their path because of malfunctioning and violated the zones, 

SafeMove would stop the robot in category 1. Meanwhile, the outputs from the laser 

scanners field were collected in SafeMove function to monitor the violation of field which 

led to robot stop function or reduced the speed of the robot path. 

 

Figure 43. Safety Zone Definition in ABB RobotStudio 

In the case of violations, the related indication light would be turned on as guidance for 

the operator for understanding the states of safety in shared workspace. In the state of 

stopping of the robot, after the object removed from safety zones with the help of a 

physical button the robot program could be resumed. 
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4. RESULTS 

4.1.1 Time Work Study Analysis 

For studying the impact of human-robot collaboration on productivity of system, the time 

work study was conducted. Therefore, the comparison of time study between manual as-

sembly process and HRI scenarios was required. The manual assembly process was im-

portant in this case because nowadays in the industry the most part of engine assembly 

process was performed by an operator. For this study, an operator with some experience 

with components was used. The assembly process repeated three times to have a reliable 

experience with respect to the agility of the operator. The collected data was shown in 

Table 8. 

Table 8. Time Study of Manual Assembly Sequence 

Assembly 

Sequence 
Assembly Task First Try(s) Second Try(s) Third Try (s) 

Average 

Time (s) 

1 
Assembly of Exhaust 

Cover 
23.15 24.35 25.82 24.44 

2 
Assembly of Bolts of 

Exhaust Cover 
89.49 85.04 82.20 85.58 

3 
Assembly of Rocker 

Arms 
34.30 36.17 32.58 34.35 

4 
Assembly of Motor 

Frame 
15.78 15.76 18.36 16.63 

5 
Assembly of Motor 

Frame Screws 
47.40 47.45 49.79 48.21 

6 
Assembly of Electric 

Kit 
33.67 33.23 34.57 33.82 

7 
Assembly of Push-

rods 
19.13 23.00 23.39 21.84 

8 
Assembly of Rock-

ershaft 
29.05 30.45 30.13 29.88 

9 
Assembly of Nuts of 

Rockershaft 
48.87 43.99 44.93 45.93 

10 
Assembly of Head-

cover 
16.33 16.83 16.19 16.45 

11 
Assembly of Head-

cover Bolts 
61.77 57.53 63.30 60.87 

Total time  418.00 
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In the next step, the time study was performed for each interaction levels. The robot speed 

was set to the 200 mm/s. Also, the delay time of operator in reaction of performing robot 

program was considered. The time study of three interaction levels were as following in 

Table 9, Table 10, and Table 11. 

Table 9.  Time Study of First Interaction 

Level of HRC Sequence 

Assembly 

Sequence 
Assembly Task 

Average 

Time (s) 

1 
Assembly of Ex-

haust  Cover 
24.44 

2 
Assembly of Bolts 

of Exhaust Cover 
85.58 

3 
Assembly of 

Rocker Arms 
34.35 

4 
Assembly of Motor 

Frame(robot) 
48.40 

5 
Assembly of Motor 

Frame(human) 
9.58 

6 
Assembly of Motor 

Frame Screws 
21.60 

7 
Assembly of Elec-

tric Kit 
13.85 

8 
Assembly of Push-

rods 
133.12 

9 
Assembly of Rock-

ershaft 
20.18 

10 
Assembly of Nuts 

of Rockershaft 
32.01 

11 
Assembly of Head-

cover 
36.21 

12 
Assembly of Head-

cover Bolts 
45.29 

Total 

Time 
  504.61 

 

 

 

 

Table 10. Time Study of Second Interac-

tion Level of HRC Sequence 

Assembly 

Sequence 

Assembly Task Average 

Time (s) 

1 
Assembly of Ex-

haust Cover 
24.44 

2 
Assembly of Bolts 

of Exhaust Cover 
85.58 

3 
Assembly of 

Rocker Arms 
34.35 

4 
Assembly of Mo-

tor Frame (robot) 
48.40 

5 
Assembly of Mo-

tor Frame (human) 
9.58 

6 
Assembly of Mo-

tor Frame Screws 
21.60 

7 
Assembly of Elec-

tric Kit 
15.76 

8 
Assembly of Push-

rods 
133.12 

9 
Assembly of 

Rockershaft 
20.18 

10 
Assembly of Nuts 

of Rockershaft 
32.01 

11 
Assembly of 

Headcover 
36.21 

12 
Assembly of 

Headcover Bolts 
45.29 

Total 

Time 
 506.52 
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Table 11. Time Study of Third Interaction Level of HRC Sequence 

Assembly 

Sequence 
Assembly Task 

Average 

Time (s) 

1 
Assembly of Exhaust 

Cover 
24.44 

2 
Assembly of Bolts of Ex-

haust Cover 
85.58 

3 Assembly of Rocker Arms 34.35 

4 
Assembly of Motor 

Frame(robot) 
37.60 

5 
Assembly of Motor 

Frame(human) 
6.15 

6 
Assembly of Motor Frame 

Screws 
21.60 

7 Assembly of Electric Kit 13.85 

8 Assembly of Pushrods 133.12 

9 
Assembly of Rock-

ershaft(robot) 
33.76 

10 
Assembly of Rock-

ershaft(human) 
11.92 

11 
Assembly of Nuts of 

Rockershaft 
32.01 

12 Assembly of Headcover 36.21 

13 
Assembly of Headcover 

Bolts 
45.29 

Total Time  515.88 

 

It could be seen that total time of assembly process was increasing while the physical interaction 

between robot and human rises too. The implementation of HRC in three different interaction 

levels might not decrease the total time of assembly process in this case. However, by studying 

working time of human inside workstation, the big differences could be observed between various 

assembly sequences (Table 12). This result proved that with less time activity of human inside 

workstation, the fatigue of worker could be decreased significantly. Also it could be mentioned 

that with lower amount of workload, there would be less chance for injuries inside workstation. In 

addition, by assigning high payload task to the robots, the ergonomic of operator was improved. 

Table 12. Total Amount of Human Working Time in Different Assembly Sequence 

Human Assem-

bly Process 

Manual Assem-

bly 

First Interaction 

Level 

Second Interac-

tion Level 

Third Interaction 

Level 

Total Time (s) 418.00 286.88 288.79 275.19 
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As it was noticed in the time study, for robot assembly task, the assembly of pushrods took the 

biggest time in the whole assembly. Reason for this, was that the grippers just only capable of 

picking two pushrods at the same time. Also, the traveling time between pick and place point was 

repeated four times which at final made the whole process four times longer. Therefore, if the 

design of the gripper changed in a manner that the griper capable of pick all the eight pushrods at 

the same time, then by calculations in simulation with Visual Components the time of assembly 

could be reduced from 133 seconds to 38 seconds. This might be reduced the whole assembly 

process by 95 seconds, as a result with just some modification in the design we might approach 

nearly to the same time of manual assembly. 

 

4.1.2 Task Allocation Results 

Through the implementation of this project, the classification in section 3.3 was used for task 

allocation between robot and human tasks. From time work study in previous section, some results 

were noticed that it would be described as following. The first noticeable impact was from assem-

bly of pushrods. In the task allocation table, it had been analyzed that this task could be done either 

by robot or by human. In this thesis, I decided to allocate this task to the robot, but the problem 

was about time of the assembly which was related to the design of gripper. The pushrods did not 

have complex geometry which was one of the factors in the task allocation, but complexity of the 

design of gripper could effect on other the factors in task allocation. With the better design solu-

tion, more improvement might be achieved in timing of robot tasks. 

Second result from robot task was related to the payload factor. With repeating the assembly se-

quences, an operator found out that he became less tired during HRC assembly sequences. Maybe 

the time of assembly process between manual and HRC did not have so much difference but still 

it improved the ergonomic of the operator. This could bring up the fact that ergonomic and payload 

were two linked factors that impact on each other. 

Regarding the design issues, it was better to test and analyze the task allocation before completing 

the design of workstation. Simulation softwares such as Siemens Technomatix could be utilized 

because it had capabilities to analyze human factors such as fatigue and ergonomics based on 

possible risk of injuries. 

4.1.3 Safety Function Analysis 

In this section, there were multiple factors proposed that what kind of safety function required for 

each interaction levels. Therefore, it worth to review the interaction levels again. 
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- Interaction level one: in this interaction level both robot and human operate in shared work-

space (without physical barriers), but human is not allowed to enter the robot workspace and 

has not any physical interaction with robot. 

- Interaction level two: in this interaction level both robot and human operate in shared work-

space, robot will provide component in intermediate storage for the assembly by human. Note-

worthy, human has not any physical interaction with robot and there is no need for human to 

enter the robot workspace. 

- Interaction level three: in this level, human is allowed to enter to the cooperative workspace 

while robot provides components and hands it over to the human. In this interaction, partial 

physical interaction exists between robot and human. 

- Interaction level four: in this level, both robot and human operate in shared workspace. The 

human uses hand guiding device to control the robot movements and assemble component in 

precise position. Moreover, this interaction level is not included in this experiment. 

In addition, the safety function could be mentioned as follows: 

- Safety-rated monitored stop: in this method when human enters the collaborative workspace 

the robot shall stop its motion. 

- Speed and separation monitoring: in this method, if human enters the collaborative work-

space, the robot can continue its movement while the human does not violate the safety dis-

tance between robot and human. If human enters the warning field, the robot starts to decrease 

the speed of movement. If human enters the protective field, the robot will stop completely. 

- Hand guiding: in this method, the human use a hand guiding device to move robot system to 

the required position. However, beforehand the human enters to the collaborative workspace 

and using enabling device for controlling the robot movements, the robot shall achieve safety-

rated monitored stop. 

- Power and force limiting: this safety function is considered when contacts between robot and 

human are allowed. Based on quasi-static contact or transient contact, the amount of force on 

human body parts can differ and it shall calculated in specific cases. 

For implementation of this thesis, the hand guiding device was not implemented and for the first 

three interaction levels, this safety function was not required as well. Also, the contact between 

robot and human was not allowed because the large industrial robot was not equipped with sensors 

such as capacitive skin sensors, and any contacts could cause injuries to the operator. Therefore, 

the analysis of two safety functions was assessed in Table 13 by following factors: 

- Mitigation of operator error: this criteria addresses the error value of the operator in the 

assembly sequence, or violation of the process.  

- Reachability of operator:  it considers the ability level of the operator to grasp the compo-

nents. When the low reachability occurs, there will be a possibility for the operator to change 

the working position. 



69 

 

 

- Distance between human and robot: this criteria defines the distance between human and 

robot. According to the proper assembly sequence for each interaction level, it may require the 

operator to enter the robot workspace. 

- Complexity of assembly task: this factor considers the complexity of assembly process, the 

complexity can mean the number of components, direction of assembly, and etc. For instance, 

when the complexity is increasing, how much it can affect the safety of operator. 

- Weight of components: based on existing components in the assembly of product, when the 

components get heavier it may affect the operator’s ergonomic.  

There were two levels for evaluation of  the impact of each criteria on injuries severity [84]: 

- Low impact: This level states the scale of injuries for the operator. On this master thesis, low 

impact represents the minor or moderate injury severity scale. 

- High impact: This level represents serious and severe injuries that may happen to the operator. 

By considering these factors and evaluating the importance of safety functions, the results could 

be concluded as follows: 

- Interaction level one: for this level of interaction it had evaluated that implementation of 

safety-rated monitored stop was necessary. 

- Interaction level two: in this level, safety-rated monitored stop was necessary but if the 

operator error could be increased it could affect on other factors which led to consideration 

of speed and separation monitoring function as optional case. 

- Interaction level three: while human entered to the collaboration workspace it could af-

fect on all of the factors. The operator could move between the robot workspace and human 

workplaces, these movements would be harmful if the operator was near the robot. Colli-

sion of robot with human with high speed could cause serious damages. Therefore, imple-

mentation of speed and separation monitoring beside safety-rated monitored stop was nec-

essary.
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Table 13. Interaction Level Safety Function Analysis 

 Interaction Level 1 Interaction Level 2 Interaction Level 3 

 

              Safety 

Function 

Safety-rated monitored 

stop 

Speed and distance  

limiting 

Safety-rated monitored 

stop 

Speed and distance  

limiting 

Safety-rated monitored 

stop 

Speed and distance 

 limiting 

Evaluation  

criterion 

                 

 Impact 

Low  

Impact 

High  

Impact 

Low  

Impact 

High  

Impact 

Low 

 Impact 

High  

Impact 

Low  

Impact 

High  

Impact 

Low  

Impact 

High  

Impact 

Low  

Impact 

High  

Impact 

Mitigation op-

erator  

Error 
 

 √  √   √  √  √ 

Reachability 

of  

operator 

 √ √   √ √   √  √ 

Distance be-

tween human 

and robot 

workspace 

√  √   √ √   √  √ 

Complexity of 

assembly task 
 √  √  √ √   √ √  

Weight of 

component 
 √ √   √  √  √  √ 

Result High Impact Low Impact High Impact Low Impact High Impact High Impact 

√ 
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5. CONCLUSION 

For achieving the goals of this project, the interaction levels of HRC was studied. The 

shared workspace for HRC environment was designed and proper tools such as multi-

function grippers were built for different assembly sequences. Each interaction levels de-

fined the different physical interactions between human and robot. This led to consider 

different assembly sequences for each interaction level. Based on the task allocation be-

tween human and robot, assembly tasks were justified by factors such as complexity of 

assembly tasks, ergonomics, repeatability and payload.  

The assembly scenarios were investigated by simulations with Visual Components soft-

ware. Afterwards, for each HRI levels, the ABB IRB4600 was programmed to follow 

main goals of each interaction level. The environment of shared workspace was deter-

mined by different zones and the possibility of hazard risks were assessed in different 

zones. Therefore, with guidance of technical specification ISO/TS 15066, two safety 

functions were determined for this project respect to HRI levels requirements. The two 

safety functions were called “safety-rated monitored stop” and “speed and separation 

monitoring”. 

Firstly, the ABB SafeMove add-on in RobotStudio was utilized for definition of safety 

zones. These safety zones provided primary tools as a safety stop function inside hazard-

ous area. Secondly, the SICK laser scanner was installed to scan the presence of human 

or object inside protective and warning fields. The signals of detection transferred from 

laser scanner to ABB IRC5 controller. In the case of violation of warning fields, the ro-

bot’s speed was decreased. Thus, if human or object violated the protective field, it led to 

stop the robot movements. 

Time work study was used to analyze assembly sequences in different interaction levels, 

which shown that the cell design and gripper design could affect on the total time of 

assembly and robot movements. In addition, task allocation had been shown that payload 

and task complexity could be determined as important factors for allocating the tasks 

between the human and the robot. With comparison of time work study and task alloca-

tion, it was considered that the complex geometry of components and design of grippers 

had impacts on productivity of shared workspace. 

In the scope of this project, the gripper fingers could be machined with rigid material to 

provide more grasp force for the gripper. Therefore, multiple picking of components 
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could be achieved while operator performs the responsible tasks. This might reduce the 

delay time for the robot to pick components and increase overlapping which finally im-

prove the productivity. 

Implementation of Sim-4-Safety of laser scanner to define multiple fields could be an-

other solution that could affect the safety implementation. Up to four protective fields 

could be defined to smooth the workflow of tasks between operator and robot and increase 

the efficiency. Since the designed protective field in this experiment was one field and 

shaped like polygon, when the operator entered the area which was not in the range of 

robot movement, led the robot to stop. By defining multiple fields, the freedom of opera-

tor movements outside the hazardous area would increase and decrease the delay of the 

robot’s working time. In addition, with better feeding strategy for the system, the delaying 

time for feeding robot would be decreased. This could led to enhance robot tasks timing.  

For further studies, there are solutions that can be considered. Firstly, the design of grip-

pers can be changed to provide faster movements inside workstation and reduce assembly 

time. As time work study showed, the assembly of pushrods have massive time consump-

tion compared to manual assembly. As a solution, the gripper can be designed to pick 

eight pushrods at same time and reduce the time of assembly. 

Secondly, the 4th interaction level could be investigated. This interaction level requires 

design of the hand guiding device for ABB IRB4600 and utilizing the robot grippers with 

force sensors. Hence, the impact of more physical interaction between robot and human 

can be studied and compared to the manual assembly. The hand guiding device can in-

crease the flexibility and precision of assembly sequence. As safety aspect, the power and 

force limiting can be investigated in this specific case and results can be compared to the 

less physical interaction. 
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