1,680 research outputs found

    Decentralized Detection of Topological Events in Evolving Spatial Regions

    Get PDF
    Qualitative information about topological events, like the merging or splitting of spatial regions, has many important applications in environmental monitoring. Examples of such applications include detecting the emergence of "hot spots" in sea temperature around a coral reef; or the break up and dispersion of an environmental pollution spill. This paper develops and tests an efficient, decentralized spatial algorithm capable of detecting high-level topological events occurring to spatial regions monitored by a wireless sensor network. The algorithm, called INQUIRE, is decentralized because at no point does any single system element possess global knowledge of the entire system state. Instead, INQUIRE relies purely on a sensor node's local knowledge of its own state and the state of its immediate network neighbors. Experimental evaluation of the INQUIRE algorithm demonstrates that our decentralized approach can substantially improve scalability of communication when compared with efficient centralized alternatives

    Efficient, decentralized detection of qualitative spatial events in a dynamic scalar field

    Get PDF
    This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes' coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks

    Specifying and Detecting Topological Changes to an Areal Object

    Get PDF

    Monitoring Dynamic Spatial Fields Using Responsive Geosensor Networks

    Get PDF
    Many environmental phenomena (e.g., changes in global levels of atmospheric carbon dioxide) can be modeled as variations of attributes over regions of space and time, called dynamic spatial fields. The goal of this project is to provide efficient ways for sensor networks to monitor such fields, and to report significant changes in them. The focus is on qualitative changes, such as splitting of areas or emergence of holes in a region of study. The approach is to develop qualitative and topological methods to deal with changes. Qualitative properties form a small, discrete space, whereas quantitative values form a large, continuous space, and this enables efficiencies to be gained over traditional quantitative methods. The combinatorial map model of the spatial embedding of the sensor network is rich enough so that for each sensor, its position, and the distances and bearings of neighboring sensors, are easily computed. The sensors are responsive to changes to the spatial field, so that sensors are activated in the vicinity of interesting developments in the field, while sensors are deactivated in quiescent locations. All computation and message passing is local , with no centralized control. Optimization is addressed through use of techniques in qualitative representation and reasoning, and efficient update through a dynamic and responsive underlying spatial framework. Effective deployment of very large arrays of sensors for environmental monitoring has important scientific and societal benefits. The project is integrated with the NSF IGERT program on Sensor Science, Engineering, and Informatics at the University of Maine, which will enhance educational and outreach opportunities. The project Web site (http://www.spatial.maine.edu/~worboys/sensors.html) will be used for broad results dissemination

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    2022 SDSU Data Science Symposium Presentation Abstracts

    Get PDF
    This document contains abstracts for presentations and posters 2022 SDSU Data Science Symposium
    corecore