Decentralized Detection of
Topological Events in Evolving
Spatial Regions

MUHAMMAD JAFAR SADEQ', MATT DUCKHAM! AND
MIKE WORBOYS?

I Department of Infrastructure Engineering, University of Melbourne, VIC 8010, Australia
2School of Computing and Information Science, University of Maine, ME
Email: mduckham@unimelb.edu.au

Qualitative information about topological events, like the merging or splitting of
spatial regions, has many important applications in environmental monitoring.
Examples of such applications include detecting the emergence of “hot spots”
in sea temperature around a coral reef; or the break up and dispersion of
an environmental pollution spill. This paper develops and tests an efficient,
decentralized spatial algorithm capable of detecting high-level topological events
occurring to spatial regions monitored by a wireless sensor network. The
algorithm, called INQUIRE, is decentralized because at no point does any single
system element possess global knowledge of the entire system state. Instead,
INQUIRE relies purely on a sensor node’s local knowledge of its own state
and the state of its immediate network neighbors. Experimental evaluation
of the INQUIRE algorithm demonstrates that our decentralized approach can
substantially improve scalability of communication when compared with efficient
centralized alternatives.

Keywords: environmental monitoring, areal object, decentralized spatial computing, wireless
sensor network, topological change

Received 15 December 2011; revised 3 March 2012

INTRODUCTION

This paper presents a new decentralized algorithm

Wireless sensor networks (WSNs) are increasingly im-
portant for geospatial applications like environmen-
tal monitoring. Early applications of WSNs to en-
vironmental monitoring generally adopted a “sense-
and-transmit” approach, forwarding each node’s sensor
readings to a centralized computing system for subse-
quent event detection [1-3]. By contrast, recent re-
search is increasingly focusing on decentralized algo-
rithms for event detection.

In a decentralized system, no single system com-
ponent possesses global knowledge of the entire sys-
tem state [4]. As a consequence, decentralized algo-
rithms can help to reduce the need for communication,
making more scalable use of limited energy reserves in
resource-constrained WSNs [5]. Decentralization effec-
tively reflects spatial constraints to the movement of
information in a WSN [6]: the greater the distance over
which information is communicated, the more system
resources are consumed. By defining scalable decen-
tralized algorithms, nearby sensor nodes can efficiently
collaborate in the network to perform partial or com-
plete processing of sensor data (e.g., [7,8]).

for in-network detection of the topological events that
occur during the evolution of dynamic geographic
regions. These events include (dis)appearance,
merging, and splitting of regions, as well as other
events discussed in Section 3.1. The algorithm—In-
Network Qualitative Identification of Region Evolution
(INQUIRE)—can identify these fundamental topological
events using only local (short-range) communication
between neighboring nodes and with no centralized
control. The evaluation shows how, and under
what conditions INQUIRE can out-perform conventional
“sense-and-transmit” distributed strategies, especially
with respect to network energy resources.

Potentially, INQUIRE has applications to any WSN
tasked with monitoring the evolution of environmental
regions, including monitoring contours in dynamic
spatial fields. For example, when monitoring an
environmental pollutant spill, like an oil slick, it
may be important to know if and when the oil
slick breaks up (i.e., splits); tracking the appearance
and evolution of “hot spots” in sea temperature
can assist with managing the impacts to coral reef

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

2 M.J. SADEQ, M. DUCKHAM, M. WORBOYS

health; and detecting topological changes in wildlife
habitat connectivity may help in protecting sensitive
conservation areas.

2. BACKGROUND

The INQUIRE algorithm detects ongoing qualitative
topological changes to a monitored region, as they
occur. INQUIRE is decentralized. As already noted, a
decentralized system is a special case of a distributed
system where no single system component possesses
knowledge of the global system state [4]. In spatial
computing, the need for decentralization arises from
the spatial constraints to the movement of information
[6]. Consequently, decentralized spatial algorithms
are structurally distinct from many other established
distributed systems, like neural networks (e.g., [9-11]),
where constraints to the movement of information (if
any) are not spatial.

Acknowledging these spatial constraints, INQUIRE
restricts communication to region boundaries, which
in turn promises greater scalability than involving the
entire region (as in, for example, [12-14]). The efficiency
improvements are expected because a relatively small
proportion of nodes in the region are expected to be
located at the boundary, and because boundary nodes
are expected to be located close to other boundary
nodes.

In addition to centralized algorithms for identifying
nodes at region boundaries (e.g., active contours in
image processing [15]), decentralized algorithms have
been proposed in the literature. In NED [16], a
node compares the average of the readings of its
neighborhood to a threshold in order to determine
whether it is on the boundary. A classifier approach
is adopted in [17], where nodes estimate the location
of a best-fit line to separate nodes into two sides of a
boundary. A node’s distance from that line is used to
determine whether it is a boundary node.

By contrast, INQUIRE does not attempt to interpolate
the location of the boundary. Neither do we aim
to estimate or predict future states, in contrast to
approaches like Markov random fields [18]; nor to
optimize over a range of competing alternatives, such
as by using particle filters [19]. Instead, INQUIRE
adapts to the available level of detail, recruiting into
the computation only those nodes in the neighborhood
of the actual region boundary.

This approach is also used in the contour mapping al-
gorithm, GBD (gradient boundary detection). In GBD,
to approximate the contours, an ordered list of nodes
outside a region’s boundary are collected before be-
ing relayed to the sink [20]. By contrast, INQUIRE
is instead concerned with in-network tracking of re-
gion/contour evolution. It therefore involves detection
of a region’s boundary and maintaining information
along that boundary, and reports topological events in-
stead of reporting snapshots of boundaries.

The contributions of this paper fill an important gap
in our previous work. The INQUIRE algorithm efficiently
monitors the spatial events that occur to evolving
spatial regions. Previous work has described formally
the evolution of spatial regions [21], leading to the
definition and testing of an algorithm for an exhaustive
set of topological events (merge, split, self-merge, self-
split, appearance, and disappearance) in a monitored
region in [22]. However, both these approaches
require the communication network be structured as a
triangulation (and in the case of [22] as the Delaunay
triangulation). Another approach to monitoring region
evolution that does not require a maximal planar
communication network is presented in [23]; however,
this work does not restrict communication to the
boundary, and instead requires coordination between
all nodes inside the monitored region. By contrast, the
INQUIRE algorithm is assumes only minimal geometric
information, in the form of the cyclic ordering of
neighbor nodes; and operates purely at the boundary
of the monitored region. An existing static algorithm
for querying a snapshot of a region’s topological
structure [24] can be used for one-off initialization or
periodic error-checking for INQUIRE, discussed further
in Section 7.3. In cases where coordinate information
is available to nodes, an existing decentralized area
computation algorithm described in [25] is one efficient
option for distinguishing two possibilities during a
region self-merge, discussed in Section 5.4. Finally,
although our algorithm does not require any particular
network structure, the communication neighborhood
does structure the decentralized computation, and so
different neighborhood structures (e.g., UDG versus
planar graph) can impact the topological events that
can be detected, explored in [26].

3. FORMAL FOUNDATIONS

This section synthesizes a number of existing formal
models, providing precise definitions of sensor networks,
the dynamic spatial regions of interest, and their
interrelationships.

3.1. Areal object model

In this paper, we are concerned specifically with
tracking the evolution of geographic areal objects.
Although we have used the term “(spatial) region”
loosely up to this point, a region is conventionally taken
to refer to a connected area within the plane (more
strictly: a connected, bounded, regular closed subset
of the plane). Regions may or may not have holes.
An areal object is the finite union of a collection of
disconnected regions. In general, an areal object may
have holes in which there are islands, holes within
islands, and so forth. (Also note a duality here, in
that the holes may be thought of as regions containing
elements not in the areal object.)

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

DECENTRALIZED DETECTION OF TOPOLOGICAL EVENTS IN EVOLVING SPATIAL REGIONS 3

These areal objects may be truly binary (for
example, an oil-slick defined using the boundary
between locations that contain oil-covered and oil-
free water) or may be derived from thresholding of
continuous fields (for example, a temperature “hot-
spot” defined using the boundary between locations
that exhibit temperatures above or below, say, 24°C).
The areal objects in this work are assumed to have crisp
boundaries.

To represent dynamic areal objects we begin by
adopting a standard generic model from [27,28]. We
can define an inside relation on the collection of regions
and holes, in a topologically intuitive way. Thus, in
the example shown in Figure 1, region 3 is inside hole
2, which is inside region 1, itself inside the exterior 0.
After [27,28], a tree can be used to model the inside
relation between regions and holes. FEach vertex in the
tree represents a region or a hole, and a vertex’s direct
descendants in the tree are the holes or regions directly
inside it. Figure 1 illustrates this representation.

o

Ca N A

FIGURE 1. Tree representation of an areal object (after
27,28

It should be noted that alternative topological models
of areal objects do exist, such as [29,30]. These
models have the advantage of being able to describe
a wider range of topological relations (in particular,
cases where region components have disjoint interiors
but overlapping boundaries, excluded from our model).
However, these more expressive models come at the
cost of increased complexity, and so we leave the
investigation of these alternatives as a topic for future
work.

Building on the model of areal objects presented in
[28], [31] have shown, using tree morphisms, that there
are just six fundamental topological events (shown in
Figure 2):

e the appearance or disappearance of a hole or region
component, requiring the insertion of a new leaf
node into the tree or deletion of an existing leaf
node from the tree, respectively;

e a merge of disconnected holes or region compo-
nents, requiring the merging of two existing nodes
at the same level of the tree

e a split into disconnected holes or region compo-
nents, requiring the splitting of an existing node
into two at the same tree level,;

e a self-merge of a hole or region component,
requiring the merging of two nodes at different
levels in the tree (destroying an intermediate
contained hole or region component); and

e a partial-split of a hole or region component,
splitting a node into two at different levels
(engulfing part of the containing hole or region

component).
0 0 0
0 Appearance
4> 1
-
1 Disappearance ‘
2
0 0
0
AO Merge ‘
—
-
12 Split 3
0 0 0
0 Self-Merge ‘
—
1
-
1 Partial-Split |
2
FIGURE 2. Six fundamental topological events for a

dynamic areal object, after [31]

In [31], these six changes are proven ezhaustive,
and so constitute the complete set of topological
changes. Building on their model, the INQUIRE
algorithm performs in-network identification of these
events occurring to a monitored areal object.

3.2. Sensor network model

This paper adopts a conventional model of sensor
networks as a communication graph G, where vertices
in the graph represent sensor nodes, and edges in
the graph represent direct radio communication links
between neighboring nodes.

DEFINITION 3.1. The communication graph is an
undirected, unweighted graph G = (V,E), where
V' represents the set of all sensor nodes, and each
edge {s,s'} € E represents a direct (one-hop)
communication link between nodes s,s’ € V. For a
node s, the collection of its immediate neighbors in the
communication graph {s'" € V|{s,s'} € E} is denoted
nbr(s).

In the most basic case, the communication graph
G may represent the physical wireless network

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

4 M.J. SADEQ, M. DUCKHAM, M. WORBOYS

connections. These physical connections are often
modeled using the unit disk graph (UDG), where there
exists a link between any two nodes closer than some
maximum communication range ¢ (i.e., {s,s'} € E if
|ss’| < ¢) [32]. However, G can also be generated
by more sophisticated overlay network structures, such
as a triangulation, the relative neighborhood graph
(RNG), or the Gabriel graph (GG) [33].

In addition to the purely topological information con-
tained within the communication graph G, distinguish-
ing certain types of events additionally requires geomet-
ric information about the cyclic ordering of neighbors
around a node. The cyclic ordering is be represented
formally as the function d:

DEFINITION 3.2. The cyclic ordering of neighbors
around a node is modeled as a functiond : V xV — V|
such that d(vy,ve) = vs where va, v3 € nbr(vy), and vs is
the next node in the neighborhood of v1 counterclockwise
after vy.

Figure 3 illustrates the cyclic ordering of neighbors
around a node, where d(vy,ve) = vs, d(vy,v3) = vy,
and so on until d(vy, v7) = vs.

FIGURE 3.
around a node

Example of cyclic ordering of neighbors

The question remains: how should the WSN generate
this cyclic ordering information? Many different
techniques for node localization in WSN have been
proposed and used. Nodes equipped with (virtual or
geodetic) coordinate positioning capabilities can derive
the cyclic ordering in a straightforward way using the
geometry of neighbor positions. However, even in cases
where coordinate position is unavailable, the cyclic
ordering might also be generated from other sources,
such as direction-finding techniques. Irrespective of the
specific localization system used, INQUIRE is expected to
be relatively robust to errors in quantitative coordinates
or directions, because it relies only on imprecise,
qualitative spatial information about the relative cyclic
ordering.

3.3. Relationship between areal object and
sensor network models

In linking together the models of the areal object and
the sensor network, we require three structures:

1. a function n representing the information each
node can locally sense about the areal object;

2. a partition of the communication graph into
connected subgraphs, each of which contains nodes
that sense part of the same hole or region; and

3. a relation over the partition of connected sub-
graphs, which reflects the containment between
holes and region components.

All these structures are time-varying over some
totally ordered set of discrete times 7. First, to
represent the information a node can locally sense about
the areal object:

DEFINITION 3.3. The function n : V. x T — {0,1}
represents whether a sensor node s senses it is in,
n(s,t) = 1, or out, n(s,t) = 0 of the areal object at
timeteT.

Next, the values sensed by nodes can induce a
partition the communication graph of the network into
(hole and region) components. Formally:

DEFINITION 3.4. A piece of the communication graph
G = (V,E) at time t is a set of nodes V! CV such that
for any s € V' and s € nbr(s") then n(s',t) = n(s,t) if
and only if s € V'. The subgraph G' C G induced by a
piece V' is called a component if G’ is connected.

At any time ¢, the set of all components G(t)
by definition forms a partition of G. We designate
one particular component X € G(t) as the exterior
component. This exterior component will form the root
of the containment tree for the areal object, and reflects
our assumption that the sensor network extents are
large enough to cover the areal object being monitored.
A containment tree is then formed by using the set of
all components as nodes of the tree, and an irreflexive
relation to indicate immediate containment between
components, in the following way:

DEFINITION 3.5. Two distinct components C,C’" €
G(t) are said to be c-adjacent at time t, C <z C', if and
only if: a) the subgraph of G induced by the vertices of
C and C' is connected (i.e., C and C' are adjacent in
G); and b) there exists no path in G from any node of C
to the exterior component X € G(t) that does not pass
through C'.

We make the further constraints that 1. G is
connected; 2. the components form a tree with root
X under c-adjacency (i.e., for any component C € G(¢)
where C' # X, there exists a unique C' € G(t) such that
C < C"); and 3. that all non-leaf components contain
more than one node from the communication graph G
(i-e., there exist no C,C’ € G(t) such that C' <, C and

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

DECENTRALIZED DETECTION OF TOPOLOGICAL EVENTS IN EVOLVING SPATIAL REGIONS 5

Inner node to region
and outer node to hole

Inner node to hole

FIGURE 4. Boundary node classification for an areal
object with one hole

C' contains only one vertex).

Finally, we can now define the sets of nodes at the
inner and/or outer boundaries of some hole or region
component.

DEFINITION 3.6. A node s is considered an inner
boundary node at time t if there exists s' € nbr(s) such
that s € C and s’ € C', where C<;C’. Correspondingly,
an outer boundary node s € C' at time t has s' € nbr(s)
such that s' € C', where C' <x C. The set of all
inner boundary nodes at any time t is denoted In(t),
while the set of outer boundary nodes is denoted Out(t).
Bdy(t) = In(t) U Out(t) is the set of all boundary nodes
in the WSN.

Note that a node may be an inner boundary, outer
boundary, both, or neither, as illustrated in Figure 4. In
Figure 4 the black dots represent sensor nodes and edges
represent communication links between nodes, together
representing the communication graph G.

3.4. Auxiliary structures

It is convenient to define two further structures to
assist with concise discussions of the node states and
transitions in later sections.

First, from the perspective of each individual node
s € V., looking around the cyclic ordering of
the neighbors of s at a particular time t € T,
enables the neighbors to be partitioned into contiguous
“blocks” that sense region components or holes. More
specifically:

DEFINITION 3.7. The relation R,; is defined on
nbr(s) such that s1Rs 52 if and only if d(s,s1) = a2,
and n(s1,t) = n(se,t). The reflexive, symmetric,
transitive closure of R is written ~g ;. Note that ~ 4
is by definition an equivalence relation.

Intuitively, neighbors of s are related by ~; if they
are all in or out of the areal objects at time ¢ and
together form a continuous block in the cyclic ordering
around s. For example, with reference to Figure 3 and
the region 7, the neighborhood of v; can be partitioned

into nbr(v1)/ ~y, 1= {{va}, {vs}, {va, vs,v6}, {v7}}.

Second, in any given time step, those sensor nodes
that have detected a change in the environment are
termed “activating,” while those that have not are
termed “passive.” Activating nodes fulfill an important
role in the INQUIRE algorithm, formally defined as
follows:

DEFINITION 3.8. For a time interval [t,¢'], nodes that
have detected a change in sensor reading are said to
be activating. Those nodes that have not detected a
change we term passive. The set Activate(t,t’) C V
is defined as the set {s € Vin(s,t) # n(s,t')}. The
set Passiwe(t,t') C V is defined as the set {s € Vs ¢
Activate(t,t')}.

In this paper we are primarily interested in nodes that
activate over consecutive time steps (i.e., Activate(t,t’)
where ¢ is the immediate predecessor of ' in T', ¢t < t').

4. SENSOR NODE AUTOMATON

Building on the formal model set out in the previous
section, this section constructs a computational model
of decentralized, in-network detection of topological
change. Sensor nodes are modeled as automata
using their different boundary states (in Definition
3.6) and the possible transitions between boundary
states. By using information about the local boundary
state, we can determine whether some larger-scale
topological change is occurring without requiring global
communication between nodes (i.e., using only local,
p2p communication).

At this point, however, a key simplifying assumption
is that the sensor network’s sensing rate is high
enough to detect incremental changes in the underlying
dynamic field (as in [21,22]). In other words, for any
two consecutive time steps, t,t’ € T where t < t,
there is only ever one activating node (i.e., t < ¢
implies | Activate(t,t')| < 1). While this is conceptually
straightforward, in practice this assumption is limiting.
A key focus for ongoing research is relaxing this
simplifying assumption (see Section 7.1).

4.1. Node states and transitions

Each sensor node s has four states depending on
whether s € In(t) and s € Out(t), shown in Table 1.

Given the restriction of incremental change, intro-
duced above, not all state transitions are possible for a
node that is activating. Table 2 enumerates the 16 dif-
ferent state transitions, highlighting with a tick those
transitions that are possible for an activating node given
incremental change. The row headings give the initial
state of the node before it activates; the column head-
ings list the state of the node after it is activated (al-
though since the table is symmetrical the converse in-
terpretation is also valid).

The following subsections provide examples of all
the possible transitions. Intuitively, some transitions

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

6 M.J. SADEQ, M. DUCKHAM, M. WORBOYS

TABLE 1. Four node boundary states

State | Formal description
NB | s ¢ In(t) and s ¢ Oui(t)

Informal description
s is not a boundary
node

s is an inner bound-
ary node only

s is an outer bound-

1B s € In(t) and s ¢ Oul(t)

OB | s ¢ In(t) and s € Out(t)
ary node only

s is both an inner and
outer boundary node

IOB | s € In(t) and s € Oui(t)

TABLE 2. Possible state transitions for activating node
assuming incremental change

| NB IB OB IOB

NB | X v oX X
IB |V X v X
OB | X v X 4
IOB | X X v X

are impossible because an activating node must
“cross” a boundary (transition from sensing a region
component/hole to sensing a hole/region component).
Given incremental change, only certain transitions can
be achieved in one step for such a node crossing
the boundary. A proof of the non-existence of those
transitions marked with a cross in Table 2 can be
constructed as follows.

Proof. We take each case in turn for a unique activating
node a € G at consecutive timesteps t, t'.

NB—NB: For an activating node a in state NB, an
arbitrary neighbor a’ € nbr(a) must sense the same
value at time t, n(a,t) = n(a’,t). At time ¢', a’s sensed
value must have changed, n(a,t) # n(a,t’), but due to
incremental change a’ must continue to sense the same
value, n(a’,t) = n(a’,t"). Therefore, n(a,t’) # n(a’,t'),
and so a cannot be in state NB at time t'.

IB—IB: An activating IB node @ in component C € G(¥)
must have neighbors in the containing region C’ € G(¥)
and possibly also in C| i.e., nbr(a) € C U C’ where
C < C'. Further, a path from any ¢ € C — {a} to
the exterior X must still pass through C’ U {a} at time
t’. Consequently, C <; C” implies it is not possible that
(C"U{a}) <y (C —{a}). Because node a must still have
only neighbors in C U C’ at time ¢/, it follows that a
must not have transitioned to state IB.

NB—OB: As for NB—NB, at time ¢, node a must sense
the same value—and so be in the same component—as
all its neighbors. A constraint to Definition 3.5 above
was that containing components may not be singleton
nodes. Thus, at time ¢, a cannot be in state OB.
OB—O0B, IOB—I0B, IB—IOB: These proofs follow the
same structure as case IB—IB.

NB—IOB: This proof is as for NB—OB.

OB—NB, IOB—NB, IOB—IB: The transitions are

symmetrical, so these proofs are as for their converses,
NB—OB, NB—IOB, and IB—IOB respectively. O

A similar table analysis is not provided for passive
nodes. This is because activating nodes are the
ones that detect changes, and are the best suited to
determine what event has occurred based on the change
in their boundary state. Passive nodes only receive
information from activating nodes and update their own
states if necessary in order to maintain a correct state
(for example, if a region expands, a passive node that
was not adjacent to the region can become outer to the
region).

The following three subsections describe the three
pairs of transitions that were presented in Section 3.1.

4.2. Appearance/disappearance

For an activating non-boundary (NB) node, only one
transition, to a inner boundary state, is possible. Figure
5 illustrates the situation for activating node A (square)
initially in a NB state. Given that only A is permitted
to become active in this time step (incremental change)
and that all neighbors of A must initially sense the same
region component/hole as A, no other transitions are
possible. In fact, this transition corresponds to one of
the six fundamental topological events of dynamic areal
objects set out in Section 3.1: the appearance of a region
component /hole. The reverse transition, from IB to NB
is also possible and corresponds to the disappearance
of a region component/hole. Note that the passive
nodes (those in the neighborhood of the active node)
also have a (different) state transition associated with
appearance/disappearance (to/from an OB state).

Appearing region
component/hole

B Appear B

Disappear

State change for Appear Key
activating node A «— o
Disappear Activating node: O]
State change for Appear Passive node: O
passive node B @ «— @)
Disappear Region boundary: -

FIGURE 5. Transition #1: appearance/disappearance

4.3. Split/merge and expand/contract

For an activating inner boundary (IB) node, we have
already seen one possible transition to a non-boundary
(NB) state (Section 4.2). A second transition to an
outer boundary (OB) state is also possible. Figure
6 gives an example of such a transition from IB
to OB. The transition in Figure 6 corresponds to
the topological split described in Section 3.4. The

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

DECENTRALIZED DETECTION OF TOPOLOGICAL EVENTS IN EVOLVING SPATIAL REGIONS 7

corresponding reverse transition from OB to IB is also
possible, and can correspond to a topological merge.
Note also that the passive nodes can experience (two)
different transitions associated with this change.

Split

Merge

State change for Split

Key
activating node A

Merge
Split
Merge
State change for . Selit
passive node D —
Merge

FIGURE 6. Transition #2a: merge/split

Activating node: OJ

State change for
passive node C

Passive node: O

)

97“

Region boundary: -+

It is also possible for the same transitions between
IB and OB to occur when no topological change has
occurred. For example, Figure 7 shows the same
state transitions for a non-topological change where
the region component/hole simply expands or contracts
(i.e., a new node is added to or removed from a region
component/hole without any topological change to the
underlying areal object graph). Thus, unlike transition
#1 in Section 4.2, the state changes alone do not enable
us to distinguish between topological merge/split and
non-topological expansion/contraction. Instead, some
additional processing will be necessary to identify the
event that is occurring. This is discussed in Sections
5.3 and 5.4.

DA B Contract D 4 B

|

Expand

State change for Contract

activating node A

|

Expand Key

Activating node: O
State change for Contract

passive node C Passive node: O

Expand

Region boundary: -

State change for Contract

passive node D

i

Expand

FIGURE 7. Transition #2b: expansion/contraction

4.4. Self-merge/partial split

For an activating outer boundary (OB) node, we
have already seen one possible transition to an inner
boundary (IB) state (Section 4.3). A second transition
to an inner/outer boundary (IOB) state is also possible.
For example, Figure 8 gives an example where the

activating node transitions from OB to IOB. This
transition corresponds to the topological self-merge
described in Section 3.4. The reverse transition from
IOB to OB corresponds to a topological partial-split.

Again, passive nodes may experience different state
changes. Nodes B to H in Figure 8 are chosen to exhibit
all the possible changes that may occur in passive nodes
during a self-merge/partial split.

Self-merge

Partial split

Self-merge
—p

Partial split

State change for
activating node A
Self-merge
——p

State change for .
assive node B @
passiv Partial split
State change for Mb
assive node C -~
P Partial split
State change for Self-merge
passive node D
State change for
passive node F
State change for
passive node G
State change for
passive node H

FIGURE 8. Transition #3: self-merge/partial-split

Key
Activating node: [
Passive node: O

Region boundary: -

«—
Partial split
Self-merge

o
Partial split
Self-merge

«—
Partial split
Self-merge

o
Partial split

4.5. Summary

In summary, while there are many possible state
transitions for passive nodes, there are only six
possible transitions for activating nodes in our model.
Four of these six state transitions correspond directly
to the fundamental topological changes appearance,
disappearance, partial split, and self merge. The two
further state transitions correspond to both the two
remaining fundamental topological changes, split and
merge, but may also correspond to non-topological
expansion or contraction of an areal object. Figure 9
summarizes these possible state changes for an active
node.

Algorithm 1 Algorithm 2 Algorithm 3
Appear Contract or Split Self-Merge
Disappear Expand or Merge Partial Split

Algorithm 2 Algorithm 3 Algorithm 4

FIGURE 9. Possible state changes for an active node

The algorithm in the following section describes how
each change in Figure 9 can be identified. Since this is a
complete list of changes [31], the algorithm presented is

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

8 M.J. SADEQ, M. DUCKHAM, M. WORBOYS

also complete (at least for incremental changes). Figure
9 also points to the part of the algorithm that handles
each particular change.

5. INQUIRE DESCRIPTION

Up to this point this paper has presented a formal
model of dynamic areal objects and a sensor network
monitoring those areal objects (Section 3). Building
on this formal model, the previous section (Section 4)
indicated how a computational model of sensor nodes
as automata can be used to locally detect topological
changes using boundary state transitions. Building on
both these models, this section presents INQUIRE, a
decentralized algorithm for locally detecting large-scale
topological changes by maintaining boundary state
information for each sensor node. By performing a
little extra communication in advance for boundary
state maintenance, INQUIRE aims to reduce the overall
communication required to detect topological events
(addressed further in Section 6).

5.1. Algorithm preliminaries

When a node detects it has been activated (i.e., its
sensor reading has changed), it must update its own
boundary state information, as well as ensure the
boundary states for passive nodes are updated. The
specific action taken by an activating node depends on
its initial state. In some cases, the topological event
will be obvious from the initial state (i.e., changes from
NB or IOB states, where only one state transition is
possible). In other cases, the activating node needs
to perform some processing to distinguish between
different kinds of change. The activating and passive
nodes need to analyze their neighborhood (perhaps by
simply checking tables that they maintain) to determine
their new states. INQUIRE in this section has two
objectives: 1) to determine what topological event has
occurred, if any, and 2) to determine the new state.

Without loss of generality, we assume each compo-
nent in the containment tree can be associated with a
unique identifier. The practical issue of ensuring all re-
gions are assigned unique identifiers in the distributed
sensor network is returned to in Section 7.4. Each
sensor node s then maintains two local state variables
that can change over time, OutN(s,t) and InN(s,t).
OutN(s,t) denotes the set of identifiers of components
in the containment tree for which s is an outer bound-
ary node at time ¢; similarly, InN(s,t) denotes the set
of identifiers of components in the containment tree for
which s is an inner boundary node at time t. Because
a node can be at the inner boundary of at most one
region, |InN(s,t)| € {0,1}.

The combination of these two variables maps directly
to the four boundary states given in Table 1 (i.e., s €
In(t) <> [InN(s,t)| = 1, s € Out(t) <> |OutN(s,t)| > 1).
A node s can also compare its readings to its neighbors’

to determine locally whether it is a boundary node
at time ¢ (s € Bdy(t)). As long as there is one
neighbor with a different reading (3s’ € nbr(s) such
that n(s,t) # n(s’,t)) then s is a boundary node.

Finally, we further assume that the sensors are
initialized with their correct state. There are a variety
of ways that this initialization might be achieved,
but we return to this question later (Section 7.3).
The following algorithm describes the actions that are
necessary to maintain each node’s state as the dynamic
areal object changes. For space concerns, the algorithm
presented leaves out how passive nodes update their
state. For ease of discussion, the algorithm is divided
into four parts based on the activating node’s current
state.

5.2. Current state NB

From Figure 9, an activating node in the NB state
knows that a region component/hole has appeared
(since no other changes may occur from the NB state).
In Algorithm 1 the activating node s selects an unused
region identifier, r (line 2), updates its own state by
storing this region identifier (line 3), and informs all of
its neighbors that they are outer boundaries to the new
region (line 4). We return to the practical issue of how
a node selects an unused region identifier later (Section
7.4).

Algorithm 1: Current state NB

1 Local variables: activating node s; current time
step t;; previous time step t;_1, where t;_1 < t;

2 Select a previously unused unique component
identifier r;

3 Set InN(s,t) < {r};

4 Broadcast r to nbr(s);

5.3. Current state IB

From Figure 9, an activating node that transitions
from state IB indicates that any one of three possible
changes are occurring: disappearance, contraction, or
split. Algorithm 2 details the processing necessary to
distinguish these cases.

If the activating node s was the only node in the
region, a change implies that the region no longer exists
(since the last node in the region has left the region,
Algorithm 2, line 3).

If there is at least ome neighbor s that is not
an outer boundary to the component with identifier
r, then s’ is in component r. Therefore r has not
disappeared. FEither r is contracting or it has split.
To distinguish these two possibilities, s sorts nbr(s)
according to direction, using the equivalence relation
~s.¢ (Definition 3.7). The quotient set nbr(s)/ ~s ¢ will
contain subsets of nodes in nbr(s) that are in the same

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

DECENTRALIZED DETECTION OF TOPOLOGICAL EVENTS IN EVOLVING SPATIAL REGIONS 9

“block” of the cyclic ordering. These “blocks” represent
the alternating sections of region component and hole
around s.

If there are fewer than four equivalence classes
(blocks) in nbr(s)/ ~s4,, then r has contracted (see
Figure 7). In this case, s becomes outer to component
r (Algorithm 2, line 6).

If there are four or more equivalence classes in
nbr(s)/ ~s4,, then r has split (Figure 6). In this
case, v must be replaced by distinct labels for each
new region component/hole formed (Algorithm 2, line
7). From each split region of r, a node is elected to
select a new label and propagate it to all nodes in
that region’s boundary. The need to update the region
label means that split (and its reverse, merge) can be
detected locally, but the maintenance of the state is not
local.

A combination of split and partial-split can occur
(Figure 10). In this case, the split event is resolved
before the partial-split event (Section 5.5).

Algorithm 2: Current state IB

1 Local variables: activating node s; current time

step t;; previous time step t;_1, where t;_1 < t;;

r < InN(s,t;—1);

InN(s,t;) <+ 0;

if s € Bdy(t) then

OutN(s, t;) < OutN(s,t;—1)U{r};

if |nbr(s)/ ~s, | > 4 then

foreach new region/hole do

Generate a new label 7’ and distribute it
around the boundarys;

9 end

® N O oA W N

10 end

11 end

We do not specify here a procedure for routing around
the boundary. In cases where the communication graph
is planar, a procedure akin to face-routing [34, 35]
can be used for routing around the boundary (cf.
[24]). However, recent theoretical advances, like the
coordinate-free approach of [36], are yielding a variety
of techniques that might be easily adapted to generate
a cycle around the boundary of a region even where the
network is not planar, and nodes have no information
about their coordinate position (e.g., [37-39]).

5.4. Current state OB

From Figure 9, an activating node that transitions
from state OB indicates that any one of three possible
changes are occurring: expansion, merge, or self-merge.
Algorithm 3 details the processing necessary for these
cases.

If the activating node s is outer to more than one
region, a merge has occurred (Figure 6). In this case, s
selects at random a label r from OutN(s,t;_1) to be the

label of the new merged region and updates the entire
boundary with this new identifier r (using one of the
procedures outlined above).

If the activating node s is outer to only one region
r then the change may be either a self-merge or
expansion. In either case, s changes from being outer
to r to become inner to r and informs its neighbors of
the change.

If |nbr(s)/ ~su | > 4, a self-merge has occurred
(Figure 8). A hole that is formed from this self-merge
needs to be assigned a new region label. The activating
node s selects a node in that hole to generate the label
and distribute it around the hole boundary.

Note that it is possible for a combined merge and
self-merge, and the reverse, to occur (see Figure 10b).
To determine when such an event occurs, observe from
Figure 10a that when 3 regions merge, there are 6
adjacent sections around the active node A. In general,
for a pure merge at activating node s, the number
of adjacent equivalence classes is twice the number
of regions that s is outer to (|nbr(s)/ ~si | =
2 % |OutN(s,t;)|). If there is a combination of merge
and self-merge, as in Figure 10b, there are 6 adjacent
sections but |OutN(s,t;)] = 2. Therefore, as long as
OutN(s,t;) > 2 and |nbr(s)/ ~st, | > 3 % Out(s,t;)
there is a simultaneous merge and self-merge. The
procedure in this case is to first treat the event as a
merge, then assign labels to the holes. In practice, with
thousands of randomized simulations, this event never
occurred. Therefore, although the implementation of
INQUIRE includes this possibility, it is left out of the
presented algorithm for simplicity.

Algorithm 3: Current state OB

1 Local variables: activating node s; current time
step t;; previous time step t;_1, where t;_1 < t;;

2 if |OutN(s,t;—1)| > 1 then

3 Select random r € OutN(s,t;—1);
4 OutN(s,t;—1) + 0

5 if s € Bdy(t;) then

6 | InN(s,t;i—1) < {r};

7 end

8 else

9 OutN(s,t;) < OutN(s,t;—1) — {r};
10 InN(s,t;) < {r};
11 if |nbr(s)/ ~s, | > 4 then
12 A node in each hole generates new region

label and distributes it;

13 end
14 end

An important problem facing INQUIRE is in determin-
ing on which side of a self-merge the hole lies. Figure 11
illustrates that deciding on which side of a self-merge
the hole lies may require information about the region
shape that extends beyond the immediate neighborhood

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

10 M.J. SADEQ, M. DUCKHAM, M. WORBOYS

Merge

Split

Merge
and
self-merge
b ’

. 47
Split
and

partial-split

FIGURE 10. Simultaneous merge and self-merge

of the activating node A (assumed to have just detected
a self-merge).

FIGURE 11. Where is the hole?

In cases where nodes possess information about
their coordinate position (for example, via GPS),
a decentralized algorithm for determining the area
enclosed by each region/hole boundary can be used
(such as provided in [12,25]). In the case where one
boundary contains another, like that in Figure 11, the
boundary that encloses the larger area must contain the
smaller boundary.

In cases where there is no coordinate information,
the self-merge can be detected but the hole may be
left unidentified. Consequently, changes at the hole’s
boundary may be misinterpreted as changes to the
region’s outer boundary. These misinterpretations
are localized, only occurring at the boundary of
this particular unidentified hole. Therefore, the
misinterpretations are also temporary, lasting only as
long as the hole remains in the areal object. Further
heuristics might also reasonably be applied, such as
estimating the relative size (and so containment) of the
two boundaries by comparing their length in terms of
the number of nodes in each boundary cycle.

5.5. Current state IOB

From Figure 9, an activating node initially in state IOB
indicates that a partial-split has occurred. In Algorithm

4, the activating node s records the fact that it is no
longer inner to region r, and has instead become outer
to region r (lines 2—4). It then informs its neighbors of
the change.

Algorithm 4: Current state IOB

1 Local variables: activating node s; current time
step t;; previous time step t;_1, where t;_1 < t;;

2 7 InN(s,t;_1);

3 InN(s,t;) < 0

4 OutN(s,t;) < {r};

5 Inform nbr(s) of partial-split in 7;

6. EVALUATION

A sensor network simulation was built using Repast
(http://repast.sourceforge.net/), and INQUIRE
was implemented on the simulated nodes. Repast
allows the number and location of nodes, the network
dimensions, and the dynamic environmental field to
be varied in different simulation runs without the
need to deal with low-level networking issues. In the
following experiments, nodes are located at random in
the network.

For our evaluation, the Delaunay triangulation [40]
was used to create the links between nodes. In practice,
it is unlikely that the communication network of a WSN
will form a Delaunay triangulation. Despite this, the
Delaunay triangulation was chosen for the evaluation
because it more faithfully preserves spatial proximity
than other network structures, shown to help in reliably
detecting qualitative spatial events [26]. However, a
range of other planar and non-planar network structures
have also been tested.

An example of a network, with 500 nodes, a field size
of 500x 500 square units, and communication range 50
units, is shown in Figure 12. The black area in the
figure represents the state (location) of the areal object
that the WSN is tracking at that particular point in
time.

Each node was equipped with INQUIRE. Thus
INQUIRE runs in parallel on all nodes at the same time
with no centralized control. A series of experiments was
conducted on arbitrary sequences of topological changes
to the underlying field to investigate the relationship
between the level of communication and number and
types of topological events.

In the simulations, all eight (six topological and two
metric) spatial changes were correctly identified by the
WSN, as long as network density was comparable to
or finer than the level of granularity of the underlying
region.

As discussed in the introduction, WSNs are highly
resource-constrained computing environments, with
energy being the overriding resource constraint, and
wireless communication being the most energy intensive

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

DECENTRALIZED DETECTION OF TOPOLOGICAL EVENTS IN EVOLVING SPATIAL REGIONS 11

FIGURE 12. A sample simulated WSN

operation for a sensor node. Consequently, a
key indicator of WSN performance is the level of
communication overhead of an algorithm. Thus,
in addition to verifying INQUIRE’s correctness, the
algorithm’s efficiency was investigated in terms of
the number of messages transmitted by WSN nodes.
INQUIRE was compared to a centralized strategy in
which a node that detects a change in sensor reading
sends a message to a “sink” node. This sink node is
located at the center of the network and is responsible
for all processing. This strategy was chosen as the most
efficient possible centralized strategy for comparison
with INQUIRE, since 1) only updates are transmitted to
the central node (no redundant or repeated information
is ever communicated); and 2) the central node is ideally
positioned to have on average the minimum possible
distance to other nodes.

The results for a specific sequence of topological
events are summarized in Figure 13, averaged over
410 simulation runs. The graph plots the rate of
message transmission in the network against simulation
time. As time passes, regions/holes appear, expand and
contract, resulting in various topological changes. The
curves in Figure 13 exhibit some fine-grained stochastic
variability as a consequence of random differences in
performance caused by different (randomized) node
locations.

The specific sequence of events used to generate
the example results in Figure 13 is illustrated in
Figure 14. Note that while Figure 14 shows the
key topological changes, the regions actually undergo
continuous change, moving incrementally between
the different topological states. The curve for the
centralized algorithm exhibits some features as a direct
consequence of the distance of activating nodes away
from the central sink node. Increasing distance of
the activating node from the central sink leads to an

Merge
and
1.2 4 self-merge

L Split
0.8 D Self-merge and
Do partial-split

0.6 1

0.4 4

Rate of Message Transmission

0.2 4 Appear

*.. Disappear

0 100 200 300 400 500 600 700 800

Simulation Time Step

Centralized ------- INQUIRE

FIGURE 13. Comparison of messages transmitted for
centralized and decentralized approaches

increased number of hops to transmit the message
back to the sink node, thus increasing the number of
messages transmitted. In the final stages of the region
evolution, the number of messages for the centralized
algorithm drops quite dramatically because all the
activating nodes associated with the hole appearance
and growth are located very close to the sink in the
center of the region.

FIGURE 14. Simulation scenario

Table 3 shows the average communication costs of
INQUIRE for detecting the different events, maintaining
state and reporting the topological events to the sink
(at an average of 5.45 messages per report). Figure
15 represents the costs graphically, showing how the
rate of message transmission increases as the ratio of
occurrence of a topological event to non-topological
event increases.

6.1. Discussion

INQUIRE has access to the same information as a
centralized solution, and so is equally accurate as
a centralized solution. The results demonstrate
that INQUIRE is more efficient than a centralized
alternative in terms of communication scalability. The
communication corresponding to merge, self-merge,
split, and partial-split events is comparatively costly,
leading to the spikes in Figure 13; this finding is
confirmed in Figure 15. The self-merge event is the

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

12 M.J. SADEQ, M. DUCKHAM, M. WORBOYS

TABLE 3. Communication costs of detecting spatial
events, including reporting. In contrast, it takes 5.45
messages to report to a base station.

Event Average number of messages
Expansion 1
Contraction 1
Appearance 5.45
Disappearance 5.45
Merge 22.1
Split 24.8
Self-merge 31.2
Partial-split 11.3

35 7

30 4

Average number of messages per event

Rate of event occurrence

= Centralized/(dis)appear = = 'Expand/contract —-—--Merge

-—---Split e Self-merge

Partial-split

FIGURE 15. Limit of efficiency of INQUIRE. The horizon-
tal axis shows, given 100 changes, how many of them are
the named event rather than being expansion/contraction.

least efficient to manage because the procedure requires
a test for containment between the two boundaries,
in our implementation by computation of the area of
regions enclosed by the two boundaries (see Section
5.4). INQUIRE is more efficient than a centralized
approach as long as at most 14.8% of the changes are
self-merge events. At the other end of the spectrum,
partial-split events are the most efficient to manage
(as long as at most 43.2% of the changes are partial-
split events) because the updates only involve the hole
that is merging with the outside. Overall, a high
frequency of expansions/contractions compared to the
topological events will make INQUIRE more efficient than
the centralized approach.

Our experiments also provide evidence that as the
density of nodes is increased, INQUIRE’s performance
improves compared to the centralized approach. Figure
16 shows an apparent increase in scalability, indicated
by a decrease in messages sent by INQUIRE as
the network size increases, when compared with a
centralized approach. Although the determination
coefficient of the regression is low, R? = 0.29,
further investigation found this could be attributed
to high wvariability in the number of messages
generated following a split event when updating around

boundaries of different sizes. In cases where regions
split into two components of comparable size, the fit
improved to R? = 0.88.

©
o
,

. 801 y = -0.0331x + 79.877
e x R® = 0.2097
(]
S £ 601
0 £
=S
< 50 q
°
840
]
= € 301
o
20
10 4
0 T T T T T T T l
400 450 500 550 600 650 700 750 800
No. of Nodes
FIGURE 16. Ratio of total message transmission by

INQUIRE compared to centralized approach

In summary, the results provide strong evidence that
INQUIRE is indeed more scalable than a centralized
solution.

6.2. Varying the order of events

In the experiment above, there is a fixed pattern of
events: merge — self-merge — split — disappear —
appear — partial-split. To demonstrate that the order
of events does not influence the results, many other
experiments with different orderings of events were
performed. One example of such an experiment is in
Figure 17, where the order of events is appear — merge
— self-merge — partial-split — split — disappear. The
results for this experiment are presented in Table 4.

FIGURE 17. Experiment with changed order of events.

In this second experiment the region sizes and
location of the events are different to that in the first
experiment. These give rise to the difference in values
between Tables 3 and 4 are due to these variations.
However, the experiments show that the relative costs
of monitoring the events are unchanged. Also, INQUIRE
was again more efficient than the centralized approach,
requiring on average 35% of the messages that the
centralized approach needed.

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

DECENTRALIZED DETECTION OF TOPOLOGICAL EVENTS IN EVOLVING SPATIAL REGIONS 13

TABLE 4. Communication costs of detecting spatial
events, including reporting. In contrast, it takes 7.62
messages to report to a base station.

Event Average number of messages
Expansion 1
Contraction 1
Appearance 7.62
Disappearance 7.62
Merge 15.2
Split 18.3
Self-merge 32.5
Partial-split 12.4
7. ISSUES

To simplify the presentation of the algorithm, the
preceding section did not directly address four
important issues: non-incremental changes; network
granularity; initialization of network state; and
generating unique region labels. This section provides
a more detailed discussion of these issues.

7.1. Non-incremental changes

One of the major issues concerning the research in this
paper is that it only deals with incremental changes. In
environments that change slowly, or with high sensing
rates, incremental change may be realistic. However,
a deployable algorithm will need to cater for non-
incremental change.

One way that INQUIRE can be applied to large-scale
changes is by treating the area of change as a single
automaton. This can be done by electing a leader in the
change region that collects information from boundary
nodes in the region. An example is presented in Figure
18, where Nodes B and C' are adjacent to Regions
1 and 2 respectively. When a non-incremental merge
occurs, the nodes in the merge region select A to be the
leader and inform it of their status. In this manner, A
learns that the change region is adjacent to two different
regions, so, according to the algorithm in Section 5.4,
it determines that a merge has occurred.

7.2. Network granularity

Most simple sensors take point readings of their
environment. In such cases, it is not possible to
make readings of the environment between sensor nodes.
In order to construct a picture of the continuous
areal objects they are monitoring, it is necessary to
make some assumptions about these unknown readings.
In INQUIRE, this is achieved qualitatively using the
neighborhood structure. Where two neighboring nodes
sense different readings, they infer that there must exist
a boundary between them (even though they need make
no attempt to interpolate where that boundary might
lie). Conversely, where two neighboring nodes have the

Region 1

Region 2

Large-scale
merge

Change region

FIGURE 18. For a non-incremental change, a leader is
elected and information is passed to it so that it can make
a decision.

same reading, they may reasonably assume that there
exists no boundary in between.

In any WSN deployment, there may be finer-grained
detail that the nodes cannot detect. However, it is
important to note that this is not a limitation of the
WSN; any measurement equipment will exhibit limited
granularity and so miss finer-grained change (in the
same way, for example, that remote sensing cannot
detect sub-pixel variation).

Similarly, in addition to spatial granularity, this work
assumes relatively fine temporal granularity, such that
sensor readings are sufficiently close in time to detect all
salient changes. It may be possible that finer-grained
changes are occurring in between coarser-grained sensor
observations, but again such limitations exist for any
measurement, equipment, and are not unique to WSN
(cf. fine-grained changes that occur between successive
remotely sensed images).

7.3. Initialization of state

The algorithm presented relies on maintaining the
boundary state of all nodes. In the experiments (Section
6), all nodes are initialized with non-boundary states,
and an areal object is grown incrementally from a blank
field.

In practice, however, it is likely that sensors will be
deployed in environments with already existing areal
objects. In such cases, the nodes will have to initialize
their states by determining which regions/holes are
containing which. Similarly, it may be desirable to
periodically perform error checking during run time to
validate and stabilize the algorithm.

Mechanisms for determining initial state and error-
checking are not addressed in this paper, but a solution
to this problem has already been devised, presented
in [24]. In short, the INQUIRE algorithm defines

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

14 M.J. SADEQ, M. DUCKHAM, M. WORBOYS

a long-running query, resident in the network; by
contrast [24] defines a snapshot query, which generates
a one-off result. The intuition behind the procedure
used in [24] is to combine and adapt four existing
techniques. First, a variation of face-routing [34, 35]
is used to route information around region and hole
components; second, leader election in a ring [41] is used
to identify a leader for the ring; third, decentralized area
computation [25] is used by each leader to determine
a consistent orientation for regions; finally, georouting
[42] is used to determine containment between region
and hole components. Taken together, the approach
is akin to a decentralized version of the -classic
semi-line point-in-polygon algorithm in computational
geometry [40]. The algorithm is shown to be O(|V])
communication complexity, but does require that nodes
are aware of their coordinate positions (although
the approach is highly robust to inaccuracy in node
coordinates [24]).

7.4. Unique region labels

Region labels are required for a variety of reasons,
including for locally determining whether a merge has
occurred. As long as the activating node s is outer to
more than one region label (]OutN(s,t)| > 1), it knows
that region components/holes have merged. For this
method to be effective, the region labels must be unique.
To achieve unique region labels, the simulations adopt
a simple heuristic that labels are a combination of the
time stamp and the identifier of the node where the
region component /hole appeared (or the elected node
during split and self-merge). In practice, there may be
many other ways to ensure unique labels, for example
using some other combination of information available
to a node, including its location, its neighbors, and so
on.

8. CONCLUSION

This paper takes a conceptual model of areal objects
and presents a method for distributing and using it
in a sensor network. FEach node in the network
knows only information it has sensed, or that has
been explicitly communicated to it. No single node is
aware of the global image of the areal object or the
global state of the network. Using this distribution
of information, INQUIRE has been developed for the
decentralized monitoring of region evolution by a WSN.

The simulation results show that this decentralized
approach allows nodes to locally detect spatiotemporal
changes of areal objects. INQUIRE uses only the
information from direct neighbors of the activating
node to identify the type of change occurring. For
the events of merge, split, self-merge, and partial-split,
after the local detection of the event, there is a state
maintenance phase that involves nodes at the region’s
boundary. However, when the majority of events

are expansions/contractions, which are unreported
by INQUIRE, it is more efficient than a centralized
approach, since the latter must communicate all
changes. If a field involves frequent topological events,
a centralized approach would be more suitable in terms
of communication. However, in most applications
it is to be expected that topological events will be
greatly outnumbered by non-topological expansion and
contraction events.

There are multiple avenues for further research into
this area, such as addressing non-incremental change
(see Section 7.1). Additionally, other issues that need
to be addressed include node failures (which can be
robustly handed by regarding them as changes in
boundary conditions), message loss, and fluctuations of
topology (such as one region splitting and merging again
frequently).

One avenue for further investigation is the perfor-
mance of INQUIRE in the face of inaccurate (location
or environmental) sensors. As already mentioned, to a
degree it is expected that INQUIRE is robust to such
inaccuracies because it uses qualitative location and
location-based descriptors (such as adjacency and rel-
ative area). Indeed, any of the algorithms that exist
for identifying topological change, centralized and de-
centralized, will degrade in performance with increasing
sensor or localization. Initial work has already begun
using a three-valued representation of boundary (inside,
outside, and indeterminate) in an attempt to increase
further robustness to sensor errors [43].

ACKNOWLEDGMENTS

Dr Duckham is the recipient of an Australian
Research Council Future Fellowship (project number
FT0990531). This material is partly based upon work
supported by the US National Science Foundation
under Grant number IIS-0916219. We are grateful to
the editor and three anonymous reviewers who provided
the detailed, challenging, and constructive comments
that formed the basis of our revisions.

REFERENCES

[1] Szewczyk, R., Osterweil, E., Polastre, J., Hamilton,
M., Mainwaring, A., and Estrin, D. (2004) Habitat
monitoring with sensor networks. Communications of
the ACM, 47, 34-40.

[2] Hamilton, M. P.; Graham, E. A., Rundel, P. W., Allen,
M. F., Kaiser, W. J., Hansen, M. H., and Estrin, D. L.
(2007) New approaches in embedded networked sensing
for terrestrial ecological observatories. FEnvironmental
Engineering Science, 24, 192-204.

[3] Hart, J. K. and Martinez, K. (2006) Environmental
sensor networks: A revolution in the earth system
science? Earth-Science Reviews, 78, 177-191.

[4] Lynch, N. A. (1996) Distributed Algorithms. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[5] Arms, S., Townsend, C., Churchill, D., Galbreath,
J., and Mundell, S. (2005) Power management for

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

DECENTRALIZED DETECTION OF TOPOLOGICAL EVENTS IN EVOLVING SPATIAL REGIONS 15

(10]

(11]

(12]

(13]

(15]

(16]

(17]

(18]

(19]

(20]

energy harvesting wireless sensors. SPIE International
Symposium on Smart Structures & Smart Materials.
Beal, J. and Schantz, R. (2010) A spatial computing
approach to distributed algorithms. 45th Asilomar
Conference on Signals, Systems, and Computers.
Kulik, J., Rabiner, W., and Balakrishnan, H. (1999)
Adaptive protocols for information dissemination in
wireless sensor networks. Proc. 5th Annual ACM/IEEE
International Conference on Mobile Computing and
Networking, Seattle, WA, pp. 174-185. ACM.

Datta, S., Bhaduri, K., Giannella, C., Wolff, R., and
Kargupta, H. (2006) Distributed data mining in peer-
to-peer networks. IEFEE Internet Computing, 10, 18—
26.

Aguilar, J. and Gelenbe, E. (1997) Task assignment
and transaction clustering heuristics for distributed
systems. Information Sciences, 97, 199-219.

Gelenbe, E. and Timotheou, S. (2008) Random neural
networks with synchronized interactions. Neural
Computation, 20, 2308-2324.

Georgiopoulos, M., Li, C., and Kocak, T. (2011)
Learning in the feed-forward random neural network:
A critical review. Performance Fvaluation, 68, 361—
384.

Greenstein, B., Kohler, E., Culler, D., and Estrin, D.
(2004) Distributed techniques for area computation in
sensor networks. LCN ’04: Proc. 29th Annual IEEE
International Conference on Local Computer Networks
(LCN’04), Washington, DC, USA, pp. 533-541. IEEE
Computer Society.

Nowak, R. and Mitra, U. (2003) Boundary estimation
in sensor networks: Theory and methods. Proc. 2nd
International Workshop on Information Processing in
Sensor Networks (IPSN’03), pp. 80-95.

Hellerstein, J. M., Hong, W., Madden, S., and Stanek,
K. (2003) Beyond average: Towards sophisticated sens-
ing with queries. Proc. 2nd International Workshop on
Information Processing in Sensor Networks (IPSN’03),
pp. 63-79. Springer.

Williams, D. and Shah, M. (1992) A fast algorithm
for active contours and curvature estimation. CVGIP:
Image Understanding, 55, 14—26.

Jin, G. and Nittel, S. (2006) NED: An efficient noise-
tolerant event and event boundary detection algorithm
in wireless sensor networks. Proc. 7th International
Conference on Mobile Data Management (MDM’06),
Washington, DC, USA 153. IEEE Computer Society.
Chintalapudi, K. and Govindan, R. (2003) Localized
edge detection in sensor fields. Ad Hoc Networks, 1,
273-291.

Zhao, W. and Liang, Y. (2011) Kernel-based Markov
random fields learning for wireless sensor networks.
Proc. Conference on Local Computer Networks (LCN),
pp. 155-158.

Smyrnakis, M. and Leslie, D. (2010) Dynamic opponent
modeling in fictitious play. Computer Journal, 53,
1344-1359.

Lian, J., Chen, L., Naik, K., Liu, Y., and Agnew,
G. B. (2007) Gradient boundary detection for time
series snapshot construction in sensor networks. IFEE
Transactions on Parallel and Distributed Systems, 18,
1462-1475.

21]

(22]

(23]

(24]

(25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

Worboys, M. F. and Duckham, M. (2006) Monitoring
Qualitative Spatiotemporal Change for Geosensor
Networks. International Journal of Geographical
Information Science, 20, 1087-1108.

Jiang, J., Nittel, S., and Worboys, M. (2011)
Qualitative change detection using sensor networks
based on connectivity information. Geolnformatica,
15, 305-328.

Farah, C., Schwaner, F., Abedi, A., and Worboys,
M. (2011) A distributed homology algorithm to detect
topological events via wireless sensor networks. IET
Journal of Wireless Sensor Systems, 1, 123—-178.
Duckham, M., Nussbaum, D., Sack, J.-R., and Santoro,
N. (2011) Efficient, decentralized computation of the
topology of spatial regions. IEEE Transactions on
Computers, 60, 1100-1113.

Sadeq, M. and Duckham, M. (2009) Decentralized area
computation for spatial regions. Proc. SIGSPATIAL
ACMGIS, New York, pp. 432-435. ACM.

Sadeq, M. J. and Duckham, M. (2008) Effect of
neighborhood on in-network processing in sensor
networks. In Cova, T., Beard, K., Goodchild, M., and
Frank, A. U. (eds.), Geographic Information Science,
Lecture Notes in Computer Science, 5266, pp. 133—
150. Springer, Berlin. (Conference accepted 31% of
submitted papers).

Buneman, O. (1970) A grammar for the topological
analysis of plane figures. In Meltzer, B. and Michie,
D. (eds.), Machine Intelligence, pp. 383—393. Elsevier.
Worboys, M. and Bofakos, P. (1993) A canonical
model for a class of areal spatial objects. Proc.
Third International Symposium on Advances in Spatial
Databases (SSD’93), Berlin, pp. 36-52. Springer.
Clementini, E., Felice, P., and Califano, G. (1995)
Composite regions in topological queries. Information
Systems, 20, 579-594.

Li, S. (2006) A complete classification of topological re-
lations using the 9-intersection method. International
Journal of Geographical Information Science, 20, 589—
610.

Jiang, J. and Worboys, M. F. (2009) Event-based
topology for dynamic planar areal object. International
Journal of Geographical Information Science, 23, 33—
60.

Kuhn, F., Wattenhofer, R., Zhang, Y., and Zollinger,
A. (2003) Geometric ad-hoc routing: Of theory and
practice. Proc. 22nd ACM International Symposium
on the Principles of Distributed Computing (PODC),
pp. 63-72.

Zhao, F. and Guibas, L. (2004) Wireless Sensor
Networks: — An Information Processing Approach.
Elsevier/Morgan-Kaufmann, Amsterdam.

Karp, B. and Kung, H. (2000) GPSR: Greedy perimeter
stateless routing for wireless networks. Proc. 6th
annual international conference on Mobile computing
and networking (ACM/IEEE MobiCom), Boston, MA.
ACM.

Bose, P., Morin, P., Stojmenovic, 1., and Urrutia,
J. (1999) Routing with guaranteed delivery in ad
hoc wireless networks. Proc. 3rd International
Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, pp. 48-55.

THE COMPUTER JOURNAL,

Vol. 72,

No. 7?7, 7777

16

M.J. SADEQ, M. DUCKHAM, M. WORBOYS

(36]

37]

(38]

De Silva, V. and Ghrist, R. (2006) Coordinate-free
coverage in sensor networks with controlled boundaries
via homology. International Journal of Robotics
Research, 25, 1205-1222.

Kroller, A., Fekete, S., Pfisterer, D., and Fischer, S.
(2006) Deterministic boundary recognition and topol-
ogy extraction for large sensor networks. Proc. An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pp- 1000-1009.

Funke, S. (2005) Topological hole detection in
wireless sensor networks and its applications. Proc.
3rd ACM/SIGMOBILE International Workshop on
Foundations of Mobile Computing (DIAL-M-POMC),
New York, NY, pp. 44-53. ACM.

Tahbaz-Salehi, A. and Jadbabaie, A. (2010) Distributed
coverage verification in sensor networks without
location information. IEEFE Transactions on Automatic
Control, 55, 1837-1849.

Preparata, F. P. and Shamos, M. I. (1985) Compu-
tational Geometry: An Introduction. Springer-Verlag
New York, Inc., New York, NY, USA.

Santoro, N. (2007) Design and Analysis of Distributed
Algorithms. Wiley, New Jersey.

Stojmenovic, I. (2002) Position based routing in ad hoc
networks. IEEE Communications Magazine, 40, 128—
134.

Duckham, M., Stell, J., Vasardani, M., and Worboys,
M. (2010) Qualitative change to three-valued regions.
In Fabrikant, S., Reichenbacher, T., van Kreveld, M.,
and Schlieder, C. (eds.), GIScience, Berlin, Lecture
Notes in Computer Science, 6296, pp. 249-263.
Springer.

THE COMPUTER JOURNAL,

Vol. 72,

No. 77,

7777

