23,576 research outputs found

    Advancement, Spring 2005

    Full text link
    Advancement, a supplement to Bostonia magazine, provided updates on BU development activities, including major gifts and projects

    Interacting Attention-gated Recurrent Networks for Recommendation

    Full text link
    Capturing the temporal dynamics of user preferences over items is important for recommendation. Existing methods mainly assume that all time steps in user-item interaction history are equally relevant to recommendation, which however does not apply in real-world scenarios where user-item interactions can often happen accidentally. More importantly, they learn user and item dynamics separately, thus failing to capture their joint effects on user-item interactions. To better model user and item dynamics, we present the Interacting Attention-gated Recurrent Network (IARN) which adopts the attention model to measure the relevance of each time step. In particular, we propose a novel attention scheme to learn the attention scores of user and item history in an interacting way, thus to account for the dependencies between user and item dynamics in shaping user-item interactions. By doing so, IARN can selectively memorize different time steps of a user's history when predicting her preferences over different items. Our model can therefore provide meaningful interpretations for recommendation results, which could be further enhanced by auxiliary features. Extensive validation on real-world datasets shows that IARN consistently outperforms state-of-the-art methods.Comment: Accepted by ACM International Conference on Information and Knowledge Management (CIKM), 201

    Recommendation, collaboration and social search

    Get PDF
    This chapter considers the social component of interactive information retrieval: what is the role of other people in searching and browsing? For simplicity we begin by considering situations without computers. After all, you can interactively retrieve information without a computer; you just have to interact with someone or something else. Such an analysis can then help us think about the new forms of collaborative interactions that extend our conceptions of information search, made possible by the growth of networked ubiquitous computing technology. Information searching and browsing have often been conceptualized as a solitary activity, however they always have a social component. We may talk about 'the' searcher or 'the' user of a database or information resource. Our focus may be on individual uses and our research may look at individual users. Our experiments may be designed to observe the behaviors of individual subjects. Our models and theories derived from our empirical analyses may focus substantially or exclusively on an individual's evolving goals, thoughts, beliefs, emotions and actions. Nevertheless there are always social aspects of information seeking and use present, both implicitly and explicitly. We start by summarizing some of the history of information access with an emphasis on social and collaborative interactions. Then we look at the nature of recommendations, social search and interfaces to support collaboration between information seekers. Following this we consider how the design of interactive information systems is influenced by their social elements

    Enriching ontological user profiles with tagging history for multi-domain recommendations

    Get PDF
    Many advanced recommendation frameworks employ ontologies of various complexities to model individuals and items, providing a mechanism for the expression of user interests and the representation of item attributes. As a result, complex matching techniques can be applied to support individuals in the discovery of items according to explicit and implicit user preferences. Recently, the rapid adoption of Web2.0, and the proliferation of social networking sites, has resulted in more and more users providing an increasing amount of information about themselves that could be exploited for recommendation purposes. However, the unification of personal information with ontologies using the contemporary knowledge representation methods often associated with Web2.0 applications, such as community tagging, is a non-trivial task. In this paper, we propose a method for the unification of tags with ontologies by grounding tags to a shared representation in the form of Wordnet and Wikipedia. We incorporate individuals' tagging history into their ontological profiles by matching tags with ontology concepts. This approach is preliminary evaluated by extending an existing news recommendation system with user tagging histories harvested from popular social networking sites

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports
    corecore