13 research outputs found

    Defensive Resource Allocation in Social Networks

    Get PDF
    In this work, we are interested on the analysis of competing marketing campaigns between an incumbent who dominates the market and a challenger who wants to enter the market. We are interested in (a) the simultaneous decision of how many resources to allocate to their potential customers to advertise their products for both marketing campaigns, and (b) the optimal allocation on the situation in which the incumbent knows the entrance of the challenger and thus can predict its response. Applying results from game theory, we characterize these optimal strategic resource allocations for the voter model of social networks.Comment: arXiv admin note: text overlap with arXiv:1402.538

    Optimal Budget Allocation in Social Networks: Quality or Seeding

    Full text link
    In this paper, we study a strategic model of marketing and product consumption in social networks. We consider two competing firms in a market providing two substitutable products with preset qualities. Agents choose their consumptions following a myopic best response dynamics which results in a local, linear update for the consumptions. At some point in time, firms receive a limited budget which they can use to trigger a larger consumption of their products in the network. Firms have to decide between marginally improving the quality of their products and giving free offers to a chosen set of agents in the network in order to better facilitate spreading their products. We derive a simple threshold rule for the optimal allocation of the budget and describe the resulting Nash equilibrium. It is shown that the optimal allocation of the budget depends on the entire distribution of centralities in the network, quality of products and the model parameters. In particular, we show that in a graph with a higher number of agents with centralities above a certain threshold, firms spend more budget on seeding in the optimal allocation. Furthermore, if seeding budget is nonzero for a balanced graph, it will also be nonzero for any other graph, and if seeding budget is zero for a star graph, it will be zero for any other graph too. We also show that firms allocate more budget to quality improvement when their qualities are close, in order to distance themselves from the rival firm. However, as the gap between qualities widens, competition in qualities becomes less effective and firms spend more budget on seeding.Comment: 7 page

    Competitive Contagion in Networks

    Get PDF
    We develop a game-theoretic framework for the study of competition between firms who have budgets to "seed" the initial adoption of their products by consumers located in a social network. The payoffs to the firms are the eventual number of adoptions of their product through a competitive stochastic diffusion process in the network. This framework yields a rich class of competitive strategies, which depend in subtle ways on the stochastic dynamics of adoption, the relative budgets of the players, and the underlying structure of the social network. We identify a general property of the adoption dynamics --- namely, decreasing returns to local adoption --- for which the inefficiency of resource use at equilibrium (the Price of Anarchy) is uniformly bounded above, across all networks. We also show that if this property is violated the Price of Anarchy can be unbounded, thus yielding sharp threshold behavior for a broad class of dynamics. We also introduce a new notion, the Budget Multiplier, that measures the extent that imbalances in player budgets can be amplified at equilibrium. We again identify a general property of the adoption dynamics --- namely, proportional local adoption between competitors --- for which the (pure strategy) Budget Multiplier is uniformly bounded above, across all networks. We show that a violation of this property can lead to unbounded Budget Multiplier, again yielding sharp threshold behavior for a broad class of dynamics

    Advertising Competitions in Social Networks

    Get PDF
    In the present work, we study the advertising competition of several marketing campaigns who need to determine how many resources to allocate to potential customers to advertise their products through direct marketing while taking into account that competing marketing campaigns are trying to do the same. Potential customers rank marketing campaigns according to the offers, promotions or discounts made to them. Taking into account the intrinsic value of potential customers as well as the peer influence that they exert over other potential customers we consider the network value as a measure of their importance in the market and we find an analytical expression for it.We analyze the marketing campaigns competition from a game theory point of view, finding a closed form expression of the symmetric equilibrium offer strategy for the marketing campaigns from which no campaign has any incentive to deviate. We also present several scenarios, such as Winner-takes-all and Borda, but not the only possible ones for which our results allow us to retrieve in a simple way the corresponding equilibrium strategy

    Dynamics of Information Diffusion and Social Sensing

    Full text link
    Statistical inference using social sensors is an area that has witnessed remarkable progress and is relevant in applications including localizing events for targeted advertising, marketing, localization of natural disasters and predicting sentiment of investors in financial markets. This chapter presents a tutorial description of four important aspects of sensing-based information diffusion in social networks from a communications/signal processing perspective. First, diffusion models for information exchange in large scale social networks together with social sensing via social media networks such as Twitter is considered. Second, Bayesian social learning models and risk averse social learning is considered with applications in finance and online reputation systems. Third, the principle of revealed preferences arising in micro-economics theory is used to parse datasets to determine if social sensors are utility maximizers and then determine their utility functions. Finally, the interaction of social sensors with YouTube channel owners is studied using time series analysis methods. All four topics are explained in the context of actual experimental datasets from health networks, social media and psychological experiments. Also, algorithms are given that exploit the above models to infer underlying events based on social sensing. The overview, insights, models and algorithms presented in this chapter stem from recent developments in network science, economics and signal processing. At a deeper level, this chapter considers mean field dynamics of networks, risk averse Bayesian social learning filtering and quickest change detection, data incest in decision making over a directed acyclic graph of social sensors, inverse optimization problems for utility function estimation (revealed preferences) and statistical modeling of interacting social sensors in YouTube social networks.Comment: arXiv admin note: text overlap with arXiv:1405.112

    Activity Report: Automatic Control 2012

    Get PDF
    corecore