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Competitive Contagion in Networks

Abstract
We develop a game-theoretic framework for the study of competition between firms who have budgets to
"seed" the initial adoption of their products by consumers located in a social network. The payoffs to the firms
are the eventual number of adoptions of their product through a competitive stochastic diffusion process in
the network. This framework yields a rich class of competitive strategies, which depend in subtle ways on the
stochastic dynamics of adoption, the relative budgets of the players, and the underlying structure of the social
network. We identify a general property of the adoption dynamics—namely, decreasing returns to local
adoption—for which the inefficiency of resource use at equilibrium (the Price of Anarchy) is uniformly
bounded above, across all networks. We also show that if this property is violated the Price of Anarchy can be
unbounded, thus yielding sharp threshold behavior for a broad class of dynamics. We also introduce a new
notion, the Budget Multiplier, that measures the extent that imbalances in player budgets can be amplified at
equilibrium. We again identify a general property of the adoption dynamics—namely, proportional local
adoption between competitors—for which the (pure strategy) Budget Multiplier is uniformly bounded
above, across all networks. We show that a violation of this property can lead to unbounded Budget Multiplier,
again yielding sharp threshold behavior for a broad class of dynamics.
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ABSTRACT
We develop a game-theoretic framework for the study of
competition between firms who have budgets to “seed” the
initial adoption of their products by consumers located in
a social network. The payoffs to the firms are the eventual
number of adoptions of their product through a competitive
stochastic diffusion process in the network. This framework
yields a rich class of competitive strategies, which depend
in subtle ways on the stochastic dynamics of adoption, the
relative budgets of the players, and the underlying structure
of the social network.

We identify a general property of the adoption dynamics
— namely, decreasing returns to local adoption — for which
the inefficiency of resource use at equilibrium (the Price of
Anarchy) is uniformly bounded above, across all networks.
We also show that if this property is violated the Price of
Anarchy can be unbounded, thus yielding sharp threshold
behavior for a broad class of dynamics.

We also introduce a new notion, the Budget Multiplier ,
that measures the extent that imbalances in player bud-
gets can be amplified at equilibrium. We again identify a
general property of the adoption dynamics — namely, pro-
portional local adoption between competitors — for which
the (pure strategy) Budget Multiplier is uniformly bounded
above, across all networks. We show that a violation of this
property can lead to unbounded Budget Multiplier, again
yielding sharp threshold behavior for a broad class of dy-
namics.
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1. INTRODUCTION
The role of social networks in shaping individual choices has
been brought out in a number of studies over the years.1

In the past, the deliberate use of such social influences by
external agents was hampered by the lack of good data on
social networks. In recent years, data from on-line social
networking sites along with other advances in information
technology have created interest in ways that firms and gov-
ernments can use social networks to further their goals.2

In this work, we study competition between firms who use
their resources to maximize product adoption by consumers
located in a social network. 3 The social network may trans-
mit information about products, and adoption of products
by neighbors may have direct consumption benefits. The
firms, denoted Red and Blue, know the graph which de-
fines the social network and offer similar or interchangeable
products or services. The two firms simultaneously choose
to allocate their resources on subsets of consumers, i.e., to
seed the network with initial adoptions. The stochastic dy-
namics of local adoption determine how the influence of each
player’s seeds spreads throughout the graph to create new
adoptions. Our work thus builds upon recent interest in
models of competitive contagion [2, 3, 5].

A distinctive feature of our framework is that we allow
for a broad class of local influence processes. We decom-
pose the dynamics into two parts: a switching function f ,
which specifies the probability of a consumer switching from
non-adoption to adoption as a function of the fraction of
his neighbors who have adopted either of the two products
Red and Blue; and a selection function g, which specifies,
conditional on switching, the probability that the consumer
adopts (say) Red as function of the fraction of adopting
neighbors who have adopted Red. Each firm seeks to maxi-
mize the total number of consumers who adopt its product.
Broadly speaking, the switching function captures “sticki-
ness” of the (interchangeable) products based on their local
prevalence, and the selection function captures preference
for firms based on local market share.

This framework yields a rich class of competitive strate-

1See e.g., Coleman [6] on doctors’ prescription of new drugs,
Conley and Udry [7] and Foster and Rosenzweig [12] on
farmers’ decisions on crop and input choice, and Feick and
Price [11], Reingen et al. [22], and Godes and Mayzlin [14]
on brand choice by consumers.
2The popularity of terms such as word of mouth marketing,
viral marketing, seeding the network and peer-leading inter-
vention is an indicator of this interest.
3Our model may apply to other settings of competitive con-
tagion, such as between two fatal viruses in a population.



gies, which depend in subtle ways on the dynamics, the rel-
ative budgets of the players, and the structure of the social
network (Section 4 gives some warm-up examples illustrat-
ing this point). Here we focus on understanding two general
features of equilibrium: first, the efficiency of resource use
by the players (Price of Anarchy) and second, the role of
the network and dynamics in amplifying ex-ante resource
differences between the players (Budget Multiplier).

Our first set of results concern efficiency of resource use
by the players. For a fixed graph and fixed local dynam-
ics (given by f and g), and budgets of KR and KB seed
infections for the players, let (SR, SB) be the sets of seed
infections that maximize the joint expected infections (pay-
offs) ΠR(SR, SB) + ΠB(SR, SB) subject to |SR| = KR and
|SB | = KB , and let σR and σB be Nash equilibrium strate-
gies obeying the budget constraints that minimize the joint
payoff ΠR(σR, σB) + ΠB(σR, σB) across all Nash equilibria.
The Price of Anarchy (or PoA)4 is then defined as:

ΠR(SR, SB) + ΠB(SR, SB)

ΠR(σR, σB) + ΠB(σR, σB)
.

Our first main result, Theorem 1, shows that if the switching
function f is concave and the selection function g is linear,
then the PoA is uniformly bounded above by 4, across all
networks. The main proof technique we employ is the con-
struction of certain coupled stochastic dynamical processes
that allow us to demonstrate that, under the assumptions
on f and g, the departure of one player can only benefit
the other player, even though the total number of joint in-
fections can only decrease. This in turn lets us argue that
players can successfully defect to the maximum social wel-
fare solution and realize a significant fraction of its payoff,
thus implying they must also do so at equilibrium.

Our next main result, Theorem 2, shows that even a small
amount of convexity in the switching function f can lead to
arbitrarily high PoA. This result is obtained by construct-
ing a family of layered networks whose dynamics effectively
compose f many times, thus amplifying its convexity. Equi-
librium and large PoA are enforced by the fact that despite
this amplification, the players are better off playing near
each other: this means that if one player locates in one part
of the network, the other player has an incentive to locate
close by, even if they would jointly be better off locating in
a different part of the network. Taken together, our PoA
upper and lower bounds yield sharp threshold behavior in a
parametric classes of dynamics. For example, if the switch-
ing function is f(x) = xr for r > 0 and the selection function
g is linear, then for all r ≤ 1 the PoA is at most 4, while for
any r > 1 it can be unbounded.5

Our second set of results are about the effects of networks
and dynamics on budget differences across the players. We

4The PoA is a measure of the maximum potential ineffi-
ciency created by non-cooperative/decentralized activity. In
our context, if we suppose that consumers get positive util-
ity from consumption of firms’ products then the PoA also
reflects losses in consumer welfare.
5 The Price of Stability (PoS) compares outcomes in the
‘best’ equilibrium with socially optimal outcomes; one may
interpret the PoS as a measure of the minimum inefficiency
created by non-cooperative, as opposed to merely decentral-
ized, activity. Heidari [17], adapting the proofs presented
here, has recently shown that as with PoA, even slight con-
vexity of the switching function is sufficient to generate ar-
bitrarily large PoS.

introduce and study a new quantity called the Budget Mul-
tiplier . For any fixed graph, local dynamics, and initial bud-
gets, with KR ≥ KB , let (σR, σB) be the Nash equilibrium
that maximizes the quantity

ΠR(σR, σB)

ΠB(σR, σB)
× KB

KR

among all Nash equilibria (σR, σB); this quantity is just the
ratio of the final payoffs divided by the ratio of the initial
budgets. The resulting maximized quantity is the Budget
Multiplier, and it measures the extent to which the larger
budget player can obtain a final market share that exceeds
their share of the initial budgets.

Theorem 4 shows that if the switching function is concave
and the selection function is linear, then the (pure strategy)
Budget Multiplier is bounded above by 2, uniformly across
all networks. The proof imports elements of the proof for the
PoA upper bound, and additionally employs a method for
attributing adoptions back to the initial seeds that generated
them.

Our next result, Theorem 5, shows that even a slight de-
parture from linearity in the selection function can yield
unbounded Budget Multiplier. The proof again appeals to
network structures that amplify the nonlinearity of g by
self-composition, which has the effect of “squeezing out” the
player with smaller budget. Combining the Budget Mul-
tiplier upper and lower bounds again allows us to exhibit
simple parametric forms yielding threshold behavior: for
instance, if f is linear and g is from the well-studied Tul-
lock contest function family (discussed shortly), which in-
cludes linear g and therefore bounded Budget Multiplier,
even an infinitesimal departure from linearity can result in
unbounded Budget Multiplier.
Related Literature. Our paper contributes to the study
of competitive strategy in network environments. We build
a framework which combines ideas from economics (con-
tests, competitive seeding and advertising) and computer
science – uniform bounds on properties of equilibria, as in
the Price of Anarchy – to address a topical and natural ques-
tion. The Tullock contest function was introduced in Tul-
lock [26]; for an axiomatic development see Skaperdas [24].
For early and influential studies of competitive advertising,
see Butters [4] and Grossman and Shapiro [16] . The Price
of Anarchy (PoA) was introduced by Koutsoupias and Pa-
padimitriou [18], and important early results bounding the
PoA in networked settings regardless of network structure
were given by Roughgarden and Tardos [23]. The tension
between equilibrium and Nash efficiency is a recurring theme
in economics; for a general result on the inefficiency of Nash
equilibria, see Dubey [10].

More specifically, we contribute to the study of influence
in networks. This has been an active field of study in the last
decade, see e.g., Ballester, Calvo-Armengol and Zenou [1];
Bharathi, Kempe and Salek [2]; Galeotti and Goyal [13];
Kempe, Kleinberg, and Tardos [19, 20]; Mossel and Roch [21];
Borodin, Filmus, and Oren [3]; Chasparis and Shamma [5];
Carnes et al [8]; Dubey, Garg and De Meyer [9]; Vetta [27].
There are three elements in our framework which appear to
be novel: one, we consider a fairly general class of adoption
rules at the individual consumer level which correspond to
different roles which social interaction can potentially play
(existing work often considers specific local dynamics); two,
we study competition for influence in a network (existing



work has often focused on the case of a single player seeking
to maximize influence), and three, we introduce and study
the notion of Budget Multiplier as a measure of how net-
works amplify budget differences. To the best of our knowl-
edge, our results on the relationship between the dynam-
ics and qualitative features of the strategic equilibrium are
novel. Nevertheless, there are definite points of contact be-
tween our results and proof techniques and earlier research in
(single-player and competitive) contagion in networks that
we shall elaborate on where appropriate.

2. MODEL

2.1 Graph, Allocations, and Seeds
We consider a 2-player game of competitive adoption on

a (possibly directed) graph G over n vertices. G is known
to the two players, whom we shall refer to as R(ed) and
B(lue).6 We shall also use R,B and U(ninfected) to denote
the state of a vertex in G, according to whether it is cur-
rently infected by one of the two players or uninfected. The
two players simultaneously choose some number of vertices
to initially seed; after this seeding, the stochastic dynam-
ics of local adoption (discussed below) determine how each
player’s seeds spread throughout G to create adoptions by
new nodes. Each player seeks to maximize their (expected)
total number of eventual adoptions. 7

More precisely, suppose that player p = R,B has budget
Kp ∈ N+; Each player p chooses an allocation of budget
across the n vertices, ap = (ap1, ap2, ..., apn), where apj ∈
N+ and

∑n
j=1 apj = Kp. Let Ap be the set of allocations

for player p, which is their pure strategy space. A mixed
strategy for player p is a probability distribution σp on Ap.
Let Ap denote the set of probability distributions for player
p. The two players simultaneously choose their strategies
(σR, σB). Consider any realized initial allocation (aR, aB)
for the two players. Let V (aR) = {v|avR > 0}, V (aB) =
{v|avB > 0} and let V (aR, aB) = V (aR) ∪ V (aB). A vertex
v becomes initially infected if one or more players assigns
a seed to infect v. If both players assign seeds to the same
vertex, then the probability of initial infection by a player is
proportional to the seeds allocated by the player (relative to
the other player). More precisely, fix any allocation (aR, aB).
For any vertex v, the initial state sv of v is in {R,B} if and
only if v ∈ V (aR, aB). Moreover, sv = R with probability
avR/(avR + avB), and sv = B with probability avB/(avR +
avB).

Following the allocation of seeds, the stochastic contagion
process on G determines how these R and B infections gen-
erate new adoptions in the network. We consider a discrete
time model for this process. The state of a vertex v at time
t is denoted svt ∈ {U,R,B}, where U stands for Uninfected,
R stands for infection by R, and B stands for infection by
B.

2.2 The Switching-Selection Model
We assume there is an update schedule which determines

the order in which vertices are considered for state updates.

6The restriction to 2 players is primarily for simplicity; our
main result on PoA can be generalized to a game with 2 or
more players, see statement in Section 5.1 below.
7Throughout the paper, we shall use the terms infection and
adoption interchangeably.

The primary simplifying assumption we shall make about
this schedule is that once a vertex is infected, it is never a
candidate for updating again.

Within this constraint, we allow for a variety of behaviors,
such as randomly choosing an uninfected vertex to update at
each time step (a form of sequential updating), or updating
all uninfected vertices simultaneously at each time step (a
form of parallel updating). We can also allow for an immu-
nity property — if a vertex is exposed once to infection and
remains uninfected after updating, it is never updated again.
Update schedules may also have finite termination times or
conditions — for instance, if the firms primarily care about
the number of adoptions in the coming fiscal year. We can
also allow schedules that update each uninfected vertex only
a fixed number of times. Note that a schedule which per-
petually updates uninfected vertices will eventually cause
any connected G to become entirely infected, thus trivializ-
ing the PoA (though not necessarily the Budget Multiplier),
but we allow for considerably more general schedules. 8

For the stochastic update of an uninfected vertex v, we will
consider what we shall call the switching-selection model.
In this model, updating is determined by the application of
two functions to v’s local neighborhood: f(x) (the switching
function), and g(y) (the selection function). More precisely,
let αR and αB be the fraction of v’s neighbors infected by
R and B, respectively, at the time of the update, and let
α = αR + αB be the total fraction of infected neighbors.
The function f maps α to the interval [0, 1] and g maps
αR/(αR + αB) (the relative fraction of infections that are
R) to [0, 1]. These two functions determine the stochastic
update in the following fashion:

1. With probability f(α), v becomes infected by either
R or B; with probability 1 − f(α), v remains in state
U(ninfected), and the update ends.

2. If it is determined that v becomes infected, it becomes
infected by R with probability

g(αR/(αR + αB)),

and infected by B with probability

g(αB/(αR + αB)).

We assume f(0) = 0 (infection requires exposure), f(1) = 1
(full neighborhood infection forces infection), and f is in-
creasing (more exposure yields more infection); and g(0) = 0
(players need some local market share to win an infection),
g(1) = 1. Note that since the selection step above requires
that an infection take place, we also have g(y)+g(1−y) = 1,
which implies g(1/2) = 1/2. We assume that the switching
and selection functions are the same across vertices. 9

We think of the switching function as specifying how rapidly
adoption increases with the fraction of neighbors who have
adopted (i.e. the stickiness of the interchangeable products
or services), regardless of their R or B value; while the se-
lection function specifies the probability of infection by each

8The proof of Lemma 1 specifies the technical property we
need of the update schedule, which is consistent with the
examples mentioned here and many others.
9This is for expositional simplicity only; our main results on
PoA and Budget Multiplier carry over to a setting with het-
erogeneity across vertices (so long as the selection function
remains symmetric across the two players).



firm in terms of the local relative market share split.10 In
addition to being a natural decomposition of the dynamics,
our results will show that we can articulate properties of f
and g which sharply characterize the PoA and Budget Multi-
plier. In Section 4, we shall provide economic motivation for
this formulation and also illustrate with specific parametric
families of functions f and g. We also discuss more general
models for the local dynamics at a number of places in the
paper. The Appendix also illustrates how these switching
and selection functions f -g may arise out of optimal deci-
sions made by consumers located in social networks.
Relationship to Other Models. It is natural to consider
both general and specific relationships between our models
and others in the literature, especially the widely studied
general threshold model [19, 21, 2]. One primary difference
is our allowance of rather general choices for the switching
and selection functions f and g, and our study of how these
choices influence equilibrium properties. When considering
concave f — which is a special case of sub-modularity — the
relationship becomes closer, and our proof techniques bear
similarity to those in the general threshold model (particu-
larly the extensive use of coupling arguments). Nevertheless
there seem to be elements of our model not easily captured
in the general threshold model, including our allowance of
rather general update schedules that may depend on the
state of a vertex; the general threshold model asks that all
randomization (in the form of the selection of a random
threshold for each vertex) occur prior to the updating pro-
cess, whereas our model permits repeated randomization in
subsequent updates, in a possibly state-dependent fashion.
We shall make related technical comments where appropri-
ate.

2.3 Payoffs and Equilibrium
Given a graphG and an initial allocation of seeds (aR, aB),

the dynamics described above — determined by f , g, and
the update schedule — yield a stochastic number of eventual
infections for the two players. For p = R,B, let χp denote
this random variable for R and B, respectively, at the termi-
nation of the dynamics. Given strategy profile (σR, σB), the
payoff to player p = R,B is Πp(σR, σB) = E[χp|(σR, σB)].
Here the expectation is over any randomization in the player
strategies in the choice of initial allocations, and the ran-
domization in the stochastic updating dynamics. A Nash
equilibrium is a profile of strategies (σR, σB) such that σp

maximizes player p’s payoff given the strategy σ−p of the
other player.

2.4 Price of Anarchy and Budget Multiplier
For a fixed graphG, stochastic update dynamics, and bud-

gets KR,KB , the maximum payoff allocation is the (deter-
ministic) allocation (a∗R, a

∗
B) obeying the budget constraints

that maximizes E[χR + χB |(aR, aB)]. For the same fixed
graph, update dynamics and budgets, let (σR, σB) be the
Nash equilibrium strategies that minimize E[χR+χB |(σR, σB)]
among all Nash equilibria — that is, the Nash equilibrium
with the smallest joint payoff. Then the Price of Anarchy

10In the threshold model a consumer switches to an action
once a certain fraction of society/neighborhood adopts that
action (Granovetter, 1978). In our model, heterogeneous
thresholds can be captured in terms of different switching
function f .

(or PoA) is defined to be

E[χR + χB |(a∗R, a∗B)]

E[χR + χB |(σR, σB)]

The Price of Anarchy is a measure of the inefficiency in
resource use created due to decentralized/ non-cooperative
behavior by the two players. In the context of competition
between firms, one interpretation of the PoA is as a mea-
sure of the relative improvement in efficiency effected by a
hypothetical merger of the firms.

We also introduce and study a new quantity called the
Budget Multiplier . The Budget Multiplier measures the ex-
tent to which network structure and dynamics can amplify
initial resource inequality across the players. Thus for any
fixed graph G and stochastic update dynamics, and initial
budgets KR,KB , with KR ≥ KB , let (σR, σB) be the Nash
equilibrium that maximizes the ratio

ΠR(σR, σB)

ΠB(σR, σB)
× KB

KR

among all Nash equilibria. The resulting maximized ratio is
the Budget Multiplier, and it measures the extent to which
the larger budget player can obtain a final market share that
exceeds their share of the initial budgets.

3. LOCAL DYNAMICS: MOTIVATION
In this section, we provide some examples of the decompo-

sition of the local update dynamics into a switching function
f and a selection function g. As discussed above, we view the
switching function as representing how contagious a product
or service is, regardless of which competing party provides
it; and we view the selection function as representing the
extent to which a firm having majority local market share
favors its selection in the case of adoption. We illustrate the
richness of this model by examining a variety of different
mathematical choices for the functions f and g, and dis-
cuss examples from the domain of technology adoption that
might (qualitatively) match these forms. Finally, to illus-
trate the scope of this formulation, we also discuss examples
of natural update dynamics that cannot be decomposed in
this way.

A fairly broad class of dynamics is captured by the follow-
ing parametric family of functions. The switching function

f(x) = xr r ≥ 0

and the selection function

g(y) = ys/(ys + ((1− y)s) s ≥ 0.

Regarding this form for f , for r = 1 we have linear adop-
tion. For r < 1 we have f concave, corresponding to cases
in which the probability of adoption rises quickly with only
a small fraction of adopting neighbors, but then saturates
or levels off with larger fractions of adopting neighbors. In
contrast, for r > 1 we have f convex, which at very large
values of r can begin to approximate threshold adoption be-
havior — the probability of adoption remains small until
some fraction of neighbors has adopted, then rises rapidly.
See Figure 1.

Regarding this form for g, which is known as the Tul-
lock contest function (Tullock (1980)), for s = 1 we have a
(linear) voter model in which the probability of selection is
proportional to local market share. For s < 1 we have what



Figure 1: Left: Plots of f(x) = xr for varying choices of r, including r = 1 (linear, red line), r < 1 (concave),
and r > 1 (convex). Right: Plots of g(y) = ys/(ys + (1− y)s) for varying choices of s, including s = 1 (linear, red
line), s < 1 (equalizing), and s > 1 (polarizing).

we shall call an equalizing g, by which we mean that selec-
tion of the minority party in the neighborhood is favored
relative to the linear voter model g(y) = y; and for s > 1 we
have a polarizing g, meaning that the minority party is dis-
favored relative to the linear model. As s approaches 0, we
approach the completely equalizing choice g ≡ 1/2, and as s
approaches infinity, we approach the completely polarizing
winner-take-all g; see Figure 1.

These parametric families of switching and selection func-
tions will play an important role in illustrating our general
results. We now discuss a few technology adoption exam-
ples which are (qualitatively) covered by these families of
functions.

• Social Network Services (Facebook, Google+, etc.): Here
adoption probabilities might grow slowly with a small
fraction of adopting neighbors, since there is little value
in using (any) social networking services if none of your
friends are using them; thus a convex switching func-
tion f (r > 1) might be a reasonable model. How-
ever, given that it is currently difficult or impossible
to export friends and other settings from one service
to another, there are strong platform effects in service
selection, so a polarizing or even winner-take-all selec-
tion function g (s > 1) might be most appropriate.

• Televisions (Sharp, Sony, etc.): Televisions were im-
mediately useful upon their introduction, without the
need for adoption by neighbors, since they allowed im-
mediate access to broadcast programming; the adop-
tion by neighbors serves mainly as a route for infor-
mation sharing about value of the product. The in-
formation value of more neighbors adopting a product
is falling with adoption and so a concave f might be
appropriate. Compared to social networking services,
the platform effects are lower here, and so a linear or
equalizing g is appropriate.

• Mobile Phone Service (Verizon, T-Mobile, etc.): Mo-
bile phone service was immediately useful upon its in-
troduction without adoption by neighbors, since one
could always call land lines, thus arguing for a concave

f . Since telephony systems need to be interoperable,
platform effects derive mainly from marketing efforts
such as “Friends and Family” programs, and thus are
extant but perhaps weak, suggesting an equalizing g.

In the proofs of some of our results, it will sometimes be
convenient to use a more general adoption function formula-
tion with some additional technical conditions that are met
by our switching-selection formulation. We will refer to this
general, single-step model as the generalized adoption func-
tion model. In this model, if the local fractions of Red and
Blue neighbors are αR and αB , the probability that we up-
date the vertex with an R infection is h(αR, αB) for some
adoption function h with range [0, 1], and symmetrically the
probability of B infection is thus h(αB , αR). Let us use
H(αR, αB) = h(αR, αB) +h(αB , αR) to denote the total in-
fection probability under h. Note that we can still always
decompose h into a two-step process by defining the switch-
ing function to be f(αR, αB) = H(αR, αB) and defining the
selection function to be

g(αR, αB) = h(αR, αB)/(h(αR, αB) + h(αB , αR))

which is the infection-conditional probability that R wins
the infection. The switching-selection model is thus the spe-
cial case of the generalized adoption function model in which
H(αR, αB) = f(αR +αB) is a function of only αR +αB , and
g(αR, αB) is a function of only αR/(αR + αB).11

11While the decomposition in terms of a switching function
and a selection function accommodates a fairly wide range
of adoption dynamics there are some cases which are ruled
out. Consider the choice h(x, y) = x(1 − y2); it is easily
verified that the total probability of adoption H(x, y) is in-
creasing in x and y. But H(x, y) clearly cannot be expressed
as a function of the form f(x + y). Similarly, it is easy to
construct an adoption function that is not only not decom-
posable, but violates monotonicity. Imagine consumers that
prefer to adopt the majority choice in their neighborhood,
but will only adopt once their local neighborhood market
is sufficiently settled in favor of one or the other product.
The probability of total adoption may then be higher with
x = 0.2, y = 0 as compared to x = y = 0.4.



4. EQUILIBRIUM EXAMPLES
The examples here illustrate that our framework yields

a rich class of competitive strategies, which can depend in
subtle ways on the dynamics, the relative budgets of the
players and the structure of the social network.

Price of Anarchy: Suppose that budgets of the firms are
KR = KB = 1, and the update rule is such that all vertices
are updated only once. The network contains two connected
components with 10 vertices and 100 vertices, respectively.
In each component there are 2 influential vertices, each of
which is connected to the other 8 and 98 vertices, respec-
tively. So in component 1, there are 16 directed links while
in component 2 there are 196 directed links in all.

• Suppose that the switching function and the selection
function are both linear, f(x) = x and g(y) = y. Then
there is a unique equilibrium in which players place
their seeds on distinct influential vertices of compo-
nent 2. The total infection is then 100 and this is the
maximum number of infections possible with 2 seeds.
So here the PoA is 1.

• Let us now alter the switching function such that f(1/2) =
ε for some ε < 1/2 (keeping f(1) = 1, as always), but
retain the selection function to be g(y) = y. Now there
also exists an equilibrium in which the firms locate on
the influential vertices of component 1. In this equi-
librium payoffs to each player are equal to 5. Observe
that for ε < 1/25, a deviation to the other component
is not profitable: it yields an expected payoff equal to
ε× 100, and this is strictly smaller than 5. Since it is
still possible to infect component 2 with 2 seeds, the
PoA is 10. Here inefficiency is created by a coordina-
tion failure of the players.

• Finally, suppose there is only one component with 110
vertices, with 2 influential vertices and 108 vertices
receiving directed links. Then equilibrium under both
switching functions considered above will involve firms
locating at the 2 influential vertices and this will lead
to infection of all vertices. So the PoA is 1, irrespective
of whether the switching function is linear f(x) = x or
whether f(1/2) < 1/25.

Thus for a fixed network, updating rule and selection func-
tion, variations in the switching function can generate large
variations in the PoA. Similarly, for fixed update rule and
switching and selection functions, a change in the network
structure yields very different PoA.

Theorem 1 provides a set of sufficient conditions on switch-
ing and selection function, under which the PoA is uniformly
bounded from above. Theorem 3 shows how even small vio-
lations of these conditions can lead to arbitrarily high PoA.

Budget Multiplier: Suppose that budgets of the firms
are KR = 1, KB = 2 and the update rule is such that
all vertices are updated only once. The network contains 3
influential vertices, each of which has a directed link to all
the other n− 3 vertices, respectively. So there are 3(n− 3)
links in all. Let n� 3.

• Suppose the switching function and selection function
are both linear, i.e., f(x) = x and g(y) = y. There is

a unique equilibrium and in this equilibrium, players
will place their resources on distinct influential ver-
tices. The (expected) payoffs to player R are n/3,
while the payoffs to player B are 2n/3. So the Budget
Multiplier is equal to 1.

• Next, suppose the switching function is convex with
f(2/3) = 1/25, and the selection function g(y) is as
in Tullock (1980). Suppose the two players place their
resources on the three influential vertices. The payoffs
to R are g(1/3)n, while firm B earns g(2/3)n. Clearly
this is optimal for firm B as any deviation can only
lower payoffs. And, it can be checked that a deviation
by firm R to one of the influential vertices occupied by
player B will yield a payoff of n/100 (approximately).
So the configuration specified is an equilibrium so long
as g(1/3) ≥ 1/100. The Budget Multiplier is now (ap-
proximately) 50.

• Finally, suppose the network consists of ` equally-sized
connected components. In each component, there is 1
influential vertex which has a directed link to each of
the (n/`)−1 other vertices. In equilibrium each player
locates on a distinct influential vertex, irrespective of
whether the switching function is convex or concave
and whether the Tullock selection function is linear
(s = 1) or whether it is polarizing (s > 1). The Budget
Multiplier is now equal to 1.

These examples show that for fixed network and updating
rule, variations in the switching and selection functions gen-
erate large variations in Budget Multiplier. Moreover, for
fixed switching and selection functions the payoffs depend
crucially on the network.

Theorem 4 provides a set of sufficient conditions on the
switching and selection function, under which the Budget
Multiplier is uniformly bounded. Theorem 5 shows how even
small violations of these conditions can lead to arbitrarily
high Budget Multiplier. Theorem 6 illustrates the role of
concavity of the switching function in shaping the Budget
Multiplier.

5. RESULTS: PRICE OF ANARCHY
We first state and prove a theorem providing general con-

ditions in the switching-selection model under which the
Price of Anarchy is bounded by a constant that is indepen-
dent of the size and structure of the graph G. The simplest
characterization is that f being any concave function (sat-
isfying f(0) = 0, f(1) = 1 and f increasing), and g being
the linear voter function g(y) = y leads to bounded PoA;
but we shall see the conditions allow for certain combina-
tions of concave f and nonlinear g as well. We then prove a
lower bound showing that the concavity of f is required for
bounded PoA in a very strong sense — a small amount of
convexity can lead to unbounded PoA.

5.1 PoA: Upper Bound
We find it useful to state and prove our theorems using the

generalized adoption model formulation described in section
3, but with some additional conditions on h that we now dis-
cuss. If h(αR, αB) (respectively, h(αB , αR)) is the probabil-
ity that a vertex with fractions αR and αB of R and B neigh-
bors is infected by R (respectively, B), we say that the total
infection probability H(αR, αB) = h(αR, αB) + h(αB , αR)



is additive in its arguments (or simply additive) if H can
be written H(αR, αB) = f(αR + αB) for some increasing
function f — in other words, h permits interpretation as
a switching function. We shall say that h is competitive if
h(αR, αB) ≤ h(αR, 0) for all αR, αB ∈ [0, 1]. In other words,
a player always has equal or higher infection probability in
the absence of the other player.
Concave f and linear g. Observe that the switching-
selection formulation always satisfies the additivity property
by definition. Moreover, in the switching-selection formula-
tion, if g is linear, the competitiveness condition becomes

h(x, y) = f(x+ y)(x/(x+ y)) ≤ f(x) = h(x, 0)

or

f(x+ y)/(x+ y) ≤ f(x)/x.

This condition is satisfied by the concavity of f . We will
later see that the following theorem also applies to certain
combinations of concave f and nonlinear g. The first theo-
rem can now be stated.

Theorem 1. If the adoption function h(αR, αB) is com-
petitive and H is additive in its arguments, then Price of
Anarchy is at most 4 for any graph G. 12

Proof. We establish the theorem via a series of lem-
mas and inequalities that can be summarized as follows.
Let (S∗

R, S
∗
B) be an initial allocation of infections that gives

the maximum joint payoff, and let (SR, SB) be a pure13

Nash equilibrium with SR being the larger set of seeds, so
KR = |S∗

R| = |SR| ≥ KB = |S∗
B | = |SB |. We first establish

a general lemma (Lemma 1) that implies that the set S∗
R

alone (without S∗
B present) must yield payoffs close to the

maximum joint payoff (Corollary 1). The proof involves the
construction of a coupled stochastic process technique we
employ repeatedly in the paper. 14 We then contemplate
a deviation by the Red player to (S∗

R, SB). Another cou-
pling argument (Lemma 2) establishes that the total payoffs
for both players under (S∗

R, SB) must be at least those for
the Red player alone under (S∗

R, ∅). This means that un-
der (S∗

R, SB), one of the two players must be approaching
the maximum joint infections. If it is Red, we are done,
since Red’s equilibrium payoff must also be this large. If
it is Blue, Lemma 1 implies that Blue could still get this

12This result can be generalized to p ≥ 2 players: In the
p ≥ 2 player game, if f is concave and g is linear then the
PoA is bounded above by 2p [17].

13The extension to mixed strategies is straightforward and
omitted.

14The theorem includes concave (and therefore sub-modular)
f and makes extensive use of coupling arguments to prove
local-to-global effects (of which Lemmas 1 and 2 are ex-
amples); this bears a similarity to the work of Mossel and
Roch [21], and it has been suggested that our proofs might
be simplified by appeal to their results. However, we have
not been able to apply their results in our context. Two fea-
tures of our framework seem to make direct application dif-
ficult: first, the important role of competitive effects, which
is explicit in Lemma 1; and second, the variety of updating
schedules we consider appear not be covered by the general
threshold model which underlies the Mossel and Roch anal-
ysis. While we suspect more direct relationships might be
possible in special cases, here we provide proofs specific to
our model.

large payoff even after the departure of Red. Next we in-
voke Lemma 2 to show that total eventual payoff to both
players under (SR, SB) must exceed this large payoff accru-
ing to Blue, proving the theorem.

Lemma 1. Let AR and AB be any sets of seed vertices for
the two players. Then if h is competitive and H is additive,

E[χR|(AR, ∅)] ≥ E[χR|(AR, AB)]

and

E[χB |(∅, AB)] ≥ E[χB |(AR, AB)].

Proof. We provide the proof for the first statement in-
volving χR; the proof for χB is identical. We introduce a
simple coupled simulation technique that we shall appeal to
several times throughout the paper. Consider the stochastic
dynamical process on G under two different initial condi-
tions: both AR and AB are present (the joint process, de-
noted (AR, AB) in the conditioning in the statement of the
lemma); and only the set AR is present (the solo Red pro-
cess, denoted (AR, ∅)). Our goal is to define a new stochastic
process on G, called the coupled process, in which the state
of each vertex v will be a pair < Xv, Yv >. We shall arrange
that Xv faithfully represents the state of a vertex in the joint
process, and Yv the state in the solo Red process. However,
these state components will be correlated or a coupled in a
deliberate manner. More precisely, we wish to arrange the
coupled process to have the following properties:

1. At each step, and for any vertex state < Xv, Yv >,
Xv ∈ {U,R,B} and Yv ∈ {U,R}.

2. Projecting the states of the coupled process onto ei-
ther component faithfully yields the respective process.
Thus, if < Xv, Yv > represents the state of vertex v in
the coupled process, then the {Xv} are stochastically
identical to the joint process, and the {Yv} are stochas-
tically identical to the solo Red process.

3. At each step, and for any vertex state < Xv, Yv >,
Xv = R implies Yv = R.

Note that the first two properties are easily achieved by sim-
ply running independent joint and solo Red processes. But
this will violate the third property, which yields the lemma,
and thus we introduce the coupling.

For any vertex v, we define its initial coupled process state
< Xv, Yv > as follows: Xv = R if v ∈ AR, Xv = B if v ∈ AB ,
and Xv = U otherwise; and Yv = R if v ∈ AR, and Yv = U
otherwise. It is easily verified that these initial states satisfy
Properties 1 and 3 above, thus encoding the initial states of
the two separate processes.

Assume for now that the first vertex or vertices v to be
updated in the X and Y processes are the same — i.e. the
same vertices are updated in both the joint and solo update
schedules, which may in general depend on the state of the
network in each. We now describe the coupled updates of
v. Let αR

v denote the fraction of v’s neighbors w such that
Xw = R, and αB

v the fraction such that Xw = B. Note that
by the initialization of the coupled process, αR

v is also equal
to the fraction of Yw = R (which we denote α̃R

v ).
In the joint process, the probability that v is updated to R

is h(αR
v , α

B
v ), and to B is h(αB

v , α
R
v ). In the solo Red process,



Figure 2: Illustration of the coupled dynamics de-
fined in the proof of Lemma 1. In the update dy-
namic for Xv (top line), the probabilities of Red and
Blue updates are represented by disjoint line seg-
ments of length h(αR

v , α
B
v ) and h(αB

v , α
R
v ) respectively.

By competitiveness, the Red segment has length less
than h(αR

v , 0), which is the probability of Red update
of Yv (bottom line). The dashed red lines indicate
this inequality. Thus by the arrangement of the line
segments we enforce the invariant that Xv = R im-
plies Yv = R.

the probability that v is updated to R is h(αR
v , 0), which by

competitiveness is greater than or equal to h(αR
v , α

B
v ).

We can thus define the update dynamics of the coupled
process as follows: pick a real value z uniformly at random
from [0, 1]. Update the state < Xv, Yv > of v as follows:

• Xv update: If z ∈ [0, h(αR
v , α

B
v )), update Xv to R; if

z ∈ [h(αR
v , α

B
v ), h(αR

v , α
B
v ) +h(αB

v , α
R
v )], update Xv to

B; otherwise, update Xv to U . Note that the probabil-
ities Xv are updated to R and B exactly match those
of the joint process, as required by Property 2 above.
See Figure 2.

• Yv update: If z ∈ [0, h(αR
v , 0)], update Yv to R; other-

wise, update Yv to U . The probability Yv is updated
to R is thus exactly h(αR

v , 0), matching that in a solo
Red process. See Figure 2.

Since by competitiveness, z ∈ [0, h(αR
v , α

B
v )) implies z ∈

[0, hR(αR
v , 0)], we ensure Property 3. Thus in subsequent up-

dates we shall have αR ≤ α̃R. Thus as long as h(αR, αB) ≤
h(α̃R, 0) we can continue to maintain the invariant. These
inequalities follow from competitiveness and the additivity
of H.

So far we have assumed the same vertices were candidates
for updating in both the joint and solo processes; while this
may be true for some update schedules, in general it will
not be (such as in parallel updates of all uninfected vertices,
where vertices with only blue neighbors in the joint process
will not be candidates for updating in the red solo process).
However, this is easily handled by considering three cases.
Case 1: Assuming Property 3 holds, if a vertex is a candidate
for updating in both processes, we can maintain this prop-
erty by performing the coupled updates described above.
Case 2: If a vertex v is a candidate for updating only in
the solo red process, then by Property 3 Xv cannot be R,
so Property 3 will still hold after the update of Yv. Case
3: Finally, if v is a candidate for updating only in the joint

process, then if Yv = R, Property 3 will still hold after the
update of Xv, and if Yv = U and all neighbors of v in the
joint process are B, Property 3 will remain true after the
update. The only case remaining is that Yv = U and v has
R neighbors in the joint process. This is impossible for the
update schedules mentioned in Section 2.2: v should have
also been a candidate for updating in the solo red process,
since by Property 3 v has weakly more R neighbors in the
solo process.

Since Properties 2 and 3 hold on an update-by-update ba-
sis in any run or sample path of the coupled dynamics, they
also hold in expectation over runs, yielding the statement of
the lemma. (Lemma 1)

Corollary 1. Let AR and AB be any sets of seeded nodes
for the two players. Then if the adoption function h(αR, αB)
is competitive and H is additive,

E[χR + χB |(AR, AB)] ≤ E[χR|(AR, ∅)] + E[χB |(∅, AB)].

Proof. Follows from linearity of expectation applied to
the left hand side of the inequality, and two applications of
Lemma 1. (Corollary 1)

Let (S∗
R, S

∗
B) be the maximum joint payoff seed sets. Let

(SR, SB) be any (pure) Nash equilibrium, with SR having
the larger budget. Corollary 1 implies either E[χR|(S∗

R, ∅)]
or E[χB |(∅, S∗

B)] is at least as great as E[χR+χB |(S∗
R, S

∗
B)]/2;

so assume without loss of generality that E[χR|(S∗
R, ∅)] ≥

E[χR + χB |(S∗
R, S

∗
B)]/2. Let us now contemplate a unilat-

eral deviation of the Red player from SR to S∗
R, in which

case the strategies are (S∗
R, SB). In the following lemma we

show that total number of eventual adoptions for the two
players is larger than adoptions accruing to a single player
under solo seeding.

Lemma 2. Let AR and AB be any sets of seeded nodes
for the two players. If H is additive,

E[χR + χB |(AR, AB)] ≥ E[χR|(AR, ∅)].

Proof. We employ a coupling argument similar to that
in the proof of Lemma 1. We define a stochastic process in
which the state of a vertex v is a pair < Xv, Yv > in which
the following properties are obeyed:

1. At each step, and for any vertex state < Xv, Yv >,
Xv ∈ {R,B,U} and Yv ∈ {R,U}.

2. Projecting the state of the coupled process onto ei-
ther component faithfully yields the respective process.
Thus, if < Xv, Yv > represents the state of vertex v
in the coupled process, then the {Xv} are stochasti-
cally identical to the joint process (AR, AB), and the
{Yv} are stochastically identical to the solo Red pro-
cess (AR, ∅).

3. At each step, and for any vertex state < Xv, Yv >,
Yv = R implies Xv = R or Xv = B.



We initialize the coupled process in the obvious way: if
v ∈ AR then Xv = R, if v ∈ AB then Xv = B, and Xv =
U otherwise; and if v ∈ AR then Yv = R, and Yv = U
otherwise. Let us fix a vertex v to update, and let αR

v , α
B
v

denote the fraction of neighbors w of v with Xw = R and
Xw = B respectively, and let α̃R

v denote the fraction with
Yw = R. Initially we have αR

v = α̃R
v .

Figure 3: Illustration of the coupled dynamics de-
fined in the proof of Lemma 2. In the update dy-
namic for Xv (top line), the probabilities of Red and
Blue updates are represented by line segments of
length h(αR

v , α
B
v ) and h(αB

v , α
R
v ) respectively. By addi-

tivity of H, together these two segments are greater
than h(αR

v , 0) which is the probability of Red update
of Yv (bottom line). This inequality is represented
by the dashed black lines.

We assume the vertex or vertices v to be updated in the
X and Y processes are the same; the fact that the update
schedules may cause these sets to differ is handled in the
same way as in the proof of Lemma 1. On the first up-
date of v in the joint process (AR, AB), the total probability
infection by either R or B is

H(αR
v , α

B
v ) = h(αR

v , α
B
v ) + h(αB

v , α
R
v ).

In the solo process (AR, ∅), the probability of infection by R
is h(αR

v , 0) ≤ h(αR
v , 0) + h(0, αR

v ) = H(αR
v , 0) ≤ H(αR

v , α
B
v )

where the last inequality follows by the additivity of H.
We thus define the update dynamics in the coupled pro-

cess as follows: pick a real value z uniformly at random from
[0, 1]. Update < Xv, Yv > as follows:

• Xv update:
If z ∈ [0, h(αR

v , α
B
v )), update Xv to R;

if z ∈ [h(αR
v , α

B
v ), h(αR

v , α
B
v ) + h(αB

v , α
R
v )]

≡ [h(αR
v , α

B
v ), H(αR

v , α
B
v )], update Xv to B;

otherwise update Xv to U . See Figure 3.

• Yv update: If r ∈ [0, h(αR
v , 0)), update Yv to R;

otherwise update Yv to U . See Figure 3.

It is easily verified that at each such update, the probabil-
ities of R and B updates of Xv are exactly as in the joint
(AR, AB) process, and the probability of an R update of Yv

is exactly as in the solo (AR, ∅) process, thus maintaining
Property 2 above. Property 3 follows from the previously
established fact that h(αR

v , 0) ≤ H(αR
v , α

B
v ), so whenever Yv

is updated to R, Xv is updated to either R or B.
Notice that since h(αR

v , 0) ≥ h(αR
v , α

B
v ) by competitive-

ness, for the overall theorem (which requires competitiveness

of h) we cannot ensure that Yv = R is always accompanied
by Xv = R. Thus the Red infections in the solo process
may exceed those in the joint process, yielding α̃R

v > αR
v

for subsequent updates. To maintain Property 3 in subse-
quent updates we thus require that α̃R

v ≤ αR
v + αB

v implies
h(α̃R

v , 0) ≤ H(α̃R
v , 0) ≤ H(αR

v , α
B
v ) which follows from the

additivity of H. Also, notice that since the lemma holds
for every fixed AR and AB , it also holds in expectation for
mixed strategies. (Lemma 2)

Continuing the analysis of a unilateral deviation by the
Red player from SR to S∗

R, we have thus established

E[χR + χB |(S∗
R, SB)]

= E[χR|(S∗
R, SB)] + E[χB |(S∗

R, SB)]

≥ E[χR|(S∗
R, ∅)]

≥ E[χR + χB |(S∗
R, S

∗
B)]/2

where the equality is by linearity of expectation, the first
inequality follows from Lemma 2, and the second inequality
from Corollary 1. Thus at least one of E[χR|(S∗

R, SB)] and
E[χB |(S∗

R, SB)] must be at least E[χR + χB |(S∗
R, S

∗
B)]/4.

If E[χR|(S∗
R, SB)] ≥ E[χR + χB |(R∗, B∗)]/4, then since

(SR, SB) is Nash, E[χR|(SR, SB)] ≥ E[χR +χB |(S∗
R, S

∗
B)]/4,

and the theorem is proved. The only remaining case is where
E[χB |(S∗

R, SB)] ≥ E[χR+χB |(S∗
R, S

∗
B)]/4. But Lemma 1 has

already established that E[χB |(∅, SB)] ≥ E[χB |(S∗
R, SB)],

and we have E[χR + χB |(SR, SB)] ≥ E[χB |(∅, SB)] from
Lemma 2. Combining, we have the following chain of in-
equalities:

E[χR + χB |(SR, SB)] ≥ E[χB |(∅, SB)]

≥ E[χB |(S∗
R, SB)]

≥ E[χR + χB |(S∗
R, S

∗
B)]/4

thus establishing the theorem. (Theorem 1)

Concave f , non-linear g. Recall that the switching-
selection formulation in which f is concave and g is linear
satisfies the hypothesis of the Theorem above. But The-
orem 1 also provides more general conditions for bounded
PoA in the switching-selection model. For example, sup-
pose we consider switching functions of the form f(x) = xr

for r ≤ 1 (thus yielding concavity) and selection functions
of the Tullock contest form g(y) = ys/(ys + (1 − y)s), as
discussed in Section 2.2. Letting a and b denote the lo-
cal fraction of Red and Blue neighbors for notational con-
venience, this leads to an adoption function of the form
h(a, b) = (a + b)r/(1 + (b/a)s). The condition for competi-
tiveness is

h(a, 0)− h(a, b) = ar − (a+ b)r/(1 + (b/a)s) ≥ 0.

Dividing through by (a+ b)r yields

(a/(a+ b))r − 1/(1 + (b/a)s)

= 1/(1 + (b/a))r − 1/(1 + (b/a)s) ≥ 0.

Making the substitution z = b/a and moving the second
term to the right-hand side gives

1/(1 + z)r ≥ 1/(1 + zs).

Thus competitiveness is equivalent to the condition 1+zs ≥
(1 + z)r for all z ≥ 0. It is not difficult to show that any
s ∈ [r, 1] will satisfy this condition. In other words, the



more concave f is (i.e. the smaller r is), the more equaliz-
ing g can be (i.e. the smaller s can be) while maintaining
competitiveness. By Theorem 1 we have thus shown:

Corollary 2. Let the switching function be f(x) = xr

for r ≤ 1 and let g(y) = ys/(ys + (1 − y)s) be the selection
function. Then as long as s ∈ [r, 1], the Price of Anarchy is
at most 4 for any graph.

5.2 PoA: Lower Bound
We now show that concavity of the switching function is

required in a very strong sense — essentially, even a slight
convexity leads to unbounded PoA. As a first step in this
demonstration, it is useful to begin with a simpler result
showing that the PoA is unbounded if the switching function
is permitted to violate concavity to an arbitrary extent.

Theorem 2. Fix α∗ ∈ (0, 1), and let the switching func-
tion f be the threshold function f(x) = 0 for x < α∗, and
f(x) = 1 for x ≥ α∗. Let the selection function be linear
g(y) = y. Then for any value V > 0, there exists G such
that the Price of Anarchy in G is greater than V .

Proof. Let m be a large integer, and set the initial bud-
gets of both players to be α∗m/2. The graph G will con-
sist of two components. The first component C1 consists
of two layers; the first layer has m vertices and the second
n1 vertices, and there is a directed edge from every vertex
in the first layer to every vertex in the second layer. The
second component C2 has the same structure, but with m
vertices in the first layer and n2 in the second layer. We
let n2 � n1 � m. For concreteness, let us choose an up-
date schedule that updates each vertex in the second layers
of the two components exactly once in some fixed ordering
(the same result holds for many other updating schedules).

It is easy to see that the maximum joint profit solution is
to place the combined α∗m of seeds of the two players in the
first layer C2, in which case the number of second-layer in-
fections will be n2 since f(α∗) = 1. Any configuration which
places at least one infection in each of the two components
will not cause any second-layer infections, since then the
threshold of f will not be exceeding in either component.

It is also easy to see that both players placing all their
infections in the first layer of C1, which will result in n1 in-
fections in the second layer since the threshold is exceeded,
is a Nash equilibrium. Any deviation of a player to C2, or to
layer 2 of C1, causes the threshold to no longer be exceeded
in either component. Thus the PoA here is n2/n1, which
can be made arbitrarily large. Note that the maximum joint
infections solution is also a Nash equilibrium — we are ex-
ploiting the worst-case (over Nash) nature of the PoA here
(as will all our lower bounds, though see Footnote 5).
(Theorem 2)

Thus, a switching function strongly violating concavity
can lead to unbounded PoA even with a linear selection
function. But it turns out that functions even slightly vi-
olating concavity also cause unbounded PoA — as we shall
see, network structure can amplify small amounts of convex-
ity.15

15The theorem which follows considers the family f(α) = αr,
but can be generalized to other choices of convex f as well.

Theorem 3. Let the switching function be f(x) = xr for
any r > 1, and let the selection function be linear g(y) = y.
Then for any V > 0, there exists a graph G for which the
Price of Anarchy is greater than V . More precisely, there
is a family of graphs for which the Price of Anarchy grows
linearly with the population size (number of vertices).

Proof. The idea is to create a layered, directed graph
whose dynamics rapidly amplify the convexity of f . Taking
two such amplification components of differing sizes yields an
equilibrium in which the players coordinate on the smaller
component, while the maximum joint payoffs solution lies
in the larger component. The construction of the proof is
illustrated in Figure 4.

The amplification gadget will be a layered, directed graph
with `i vertices in the ith layer and N layers total. There are
directed edges from every vertex in layer i to every vertex
in layer i+ 1, and no other edges. Let the two players have
equal budgets of k, and define α = 2k/`1 — thus, α is the
fraction of layer 1 the two players could jointly infect.

Let us consider what happens if indeed the two play-
ers jointly infect 2k vertices in the first layer, and the up-
date schedule proceeds by updating each successive layer
2, . . . , N . Since every vertex in layer 2 has every vertex in
layer 1 as a directed neighbor, and no others, the expected
fraction of layer 2 that is infected is f(α) = αr. Induc-
tively, the expected fraction of layer 3 that is infected is

thus f(f(α)) = αr2 . In general, the expected fraction of

layer i that is infected is αri−1

, and by the linearity of g the
two players will split these infections. Here, we note that the
actual path of infections will be stochastic; this stochastic
path is well approximated by the expected infections, if lay-
ers are sufficiently large. Throughout this proof we will use
this approximation (which relies on an appeal to the strong
law of large numbers).

Now let α = β1 + β2, and let us instead place β1`1 seeds
at layer 1 and β2`1 at layer i. The total number of infections

expected at layer i now becomes βri−1

1 `i +β2`1. By the con-

vexity of the function f (i−1)(x) = xr
i−1

, this will be smaller

than αri−1

`i = (β1 + β2)r
i−1

`i as long as β2`1 < βri−1

2 `i,

or `i > `1/β
ri−2

2 . Also, notice that the smallest nonzero
deviation requires β2`1 ≥ 1, or β2 ≥ 1/`1. Thus as long as

`i ≥ `r
i−1

1 , the total fraction of infections generated by plac-
ing β1`1 seeds at layer 1 and β2`1 at layer i will be less than
by placing all in layer 1. Furthermore, by the linearity of g,
any individual player who effects such a unilateral deviation
will suffer.

Note that we can make the final, Nth, layer arbitrar-

ily large. In particular, if we choose `i = `r
i−1

1 as speci-

fied above for all 2 ≤ i ≤ N − 1, and choose αrN−1

`N �∑N−1
i=1 αri−1

`i, the total expected number of infections con-
ditioned on both players playing in the first layer will be

dominated by the αrN−1

`N expected infections in the final
layer.

Now consider a graph consisting of two disjoint ampli-
fication gadgets G1 and G2 that are exactly as described
above, but differ only in the sizes of their final Nth lay-
ers — `N (1) for G1 and `N (2) for G2, where we will choose
`N (2)� `N (1). Consider a configuration where all seeds are
in the first layer of G1. We have already argued above that



Figure 4: Illustration of convexity amplification in the Price of Anarchy lower bound of Theorem 3, under
convex switching function f(x) = x3 and linear selection function g. Top: Two-component, directed, layered
“flower” graph, with the right flower having many more petals than the left. In the configuration shown,
both players play in the first layer of the stem of the smaller flower. The convexity of f does not enter the
dynamics, since at each update an entire successive layer is infected, quickly reaching the petals. Bottom:
However, if the two players locate in different components, layers are not fully infected and the convexity of
f is amplified via composition in successive layers, damping out the infection rate quickly.

no deviation to later layers of G1 can be profitable. Now let
us consider a unilateral deviation of the Red player from G1

to the first layer of G2. Since Red alone infects now only in-
fects a fraction α/2 of the `1 vertices in the first layer of G2,
the expected final number of Red infections will be approx-

imately (α/2)r
N−1

`N (2), compared with αrN−1

`N (1)/2 for

not deviating from G1. Thus as long as (α/2)r
N−1

`N (2) ≤
αrN−1

`N (1)/2, or `N (2)/`N (1) ≤ 2rN−1−1, this deviation
is unprofitable for Red. More generally, if Red divides its
(α/2)`1 resources by placing a fraction β1 of them in the
first layer of G1 and a fraction β2 = 1 − β of them in the
first layer of G2, its expected payoff is

[(1 + β1)(α/2)]r
N−1

`N (1)
β1

1 + β1
+ [β2(α/2)]r

N−1

`N (2).

The first term of this sum represents the share of the final
layer of G1 that Red obtains given that Blue is playing en-
tirely in this component, while the second term represents
the uncontested infections Red wins in G2. This expression
can be written as

αrN−1

[(
1 + β1

2

)rN−1

`N (1)
β1

1 + β1
+

(
1− β1

2

)rN−1

`N (2)

]

which for the choice `N (2) = 2rN−1

`N (1)/2 becomes

αrN−1

[(
1 + β1

2

)rN−1

`N (1)
β1

1 + β1
+ (1− β1)r

N−1

`N (1)/2

]
.

For any 0 < β1 < 1, both terms inside the brackets above
are exponentially damped and result in suboptimal payoff
for Red. Thus the best response choices are given by the
extremes β1 = 1 and β1 = 0, which both yield expected pay-
off `N (1)/2 for Red. (Note that by choosing `N (2) slightly
smaller above, we can force β1 = 1 to be a strict best re-
sponse.)

However, the maximum joint payoffs solution (as well as
the best, as opposed to worst Nash equilibrium) is for both
players to initially infect in the first layer of G2, in which

case the total payoff will be approximately αrN−1

`N (2). The
Price of Anarchy is thus

αrN−1

`N (2)

αrN−1`N (1)
=
`N (2)

`N (1)
≥ 2rN−1−1

by the choice of `N (2) above. Thus by choosing the number
of layers N as large as needed, the Price of Anarchy exceeds
any finite bound V . (Theorem 3)



Combining Theorem 1 and Theorem 3, we note that for
f(x) = xr and linear g we obtain the following sharp thresh-
old result:

Corollary 3. Let the switching function be f(x) = xr,
and let the selection function be linear, g(y) = y. Then:

• For any r ≤ 1, the Price of Anarchy is at most 4 for
any graph G;

• For any r > 1 and any V , there exists a graph G for
which the Price of Anarchy is greater than V .

6. RESULTS: BUDGET MULTIPLIER
We derive sufficient conditions for bounded Budget Mul-

tiplier, and show that violations of these conditions can lead
to unbounded Budget Multiplier.

6.1 Budget Multiplier: Upper Bound
As in the PoA analysis, it will be technically convenient

to return to the generalized adoption function model. Recall
that for PoA, competitiveness of h and additivity of H were
needed to prove upper bounds, but we didn’t require that the
implied selection function be linear. Here we introduce that
additional requirement, and prove that the (pure strategy)
Budget Multiplier is bounded.

Theorem 4. Suppose the adoption functions h(αR, αB)
is competitive, that H is additive in its arguments, and that
the implied selection function is linear:

g(αR, αB) =
h(αR, αB)

h(αR, αB) + h(αB , αB)
= αR/(αR + αB)

Then the pure strategy Budget Multiplier is at most 2 for
any graph G.16

Proof. The proof borrows elements from the proof of
Theorem 1, and introduces the additional notion of tracking
or attributing indirect infections generated by the dynamics
to specific seeds.

Consider any pure Nash equilibrium given by seed sets SR

and SB in which |SR| = K > |SB | = L. For our purposes
the interesting case is one in which

E[χR|(SR, SB)] ≥ E[χB |(SR, SB))]

and so

E[χR|(SR, SB)] ≥ E[χR + χB |(SR, SB)]/2.

Since the adoption function is competitive and additive,
Lemma 1 implies that E[χR|(SR, ∅)] ≥ E[χR|(SR, SB)] —
that is, the Red player only benefits from the departure of
the Blue player.

Let us consider the dynamics of the solo Red process
given by (SR, ∅). We first introduce a faithful simulation

16The theorem actually holds for any equilibrium in which
the player with the larger budget plays a pure strategy; the
player with smaller budget may always play mixed. It is
easy to find cases with such equilibria. The theorem also
holds for general mixed strategies under certain conditions
— for instance, when both f and g are linear and the larger
budget is an integer multiple of the smaller.

of these dynamics that also allows us to attribute subse-
quent infections to exactly one of the seeds in SR; we shall
call this process the attribution simulation of (SR, ∅). Thus,
let SR = {v1, . . . , vK} be the initial Red infections, and let
us label vi by Ri, and label all other vertices U . All in-
fections in the process will also be assigned one of the K
labels Ri in the following manner: when updating a ver-
tex v, we first compute the fraction αR

v of neighbors whose
current label is one of R1, . . . , RK , and with probability
H(αR

v , 0) = h(αR
v , 0) + h(0, αR

v ) we decide that an infec-
tion will occur (otherwise the label of v is updated to U).
If an infection occurs, we simply choose an infected neigh-
bor of v uniformly at random, and update v to have the
same label (which will be one of the Ri). It is easily seen
that at every step, the dynamics of the (SR, ∅) process are
faithfully implemented if we drop label subscripts and sim-
ply view any label Ri as a generic Red infection R. Fur-
thermore, at all times every infected vertex has only one
of the labels Ri. Thus if we denote the expected num-
ber of vertices with label Ri by E[χRi |(SR, ∅)], we have

E[χR|(SR, ∅)] =
∑K

i=1 E[χRi |(SR, ∅)]. Let us assume with-
out loss of generality that the labels Ri are sorted in order
of decreasing E[χRi |(SR, ∅)].

We now consider the payoff to Blue under a deviation from
SB to the set ŜB = {v1, . . . , vL} ⊂ SR — that is, the L“most
profitable” initial infections in SR. Our goal is to show that
the Blue player must enjoy roughly the same payoff from
these L seeds as the Red player did in the solo attribution
simulation.

Lemma 3.

E[χB |(SR, ŜB)] ≥ 1

2

L∑
i=1

E[χRi |(SR, ∅)]

≥ L

2K
E[χR|(SR, ∅)]

Proof. The second inequality follows from

E[χR|(SR, ∅)] =

K∑
i=1

E[χRi |(SR, ∅)],

established above, and fact that the vertices in SR are or-
dered in decreasing profitability. For the first inequality, we
introduce coupled attribution simulations for the two pro-
cesses (SR, ∅) (the solo Red process) and (SR, ŜB). For sim-

plicity, let us actually examine (SR, ∅) and (SR − ŜB , ŜB);

the latter joint process is simply the process (SR, ŜB), but

in which the contested seeded nodes in ŜB are all won by
the Blue player. (The proof for the general (SR, ŜB) case is
the same but causes the factor of 1/2 in the lemma.)

The coupled attribution dynamics are as follows: as above,
in the solo Red process, for 1 ≤ i ≤ L, the vertex vi in SR

is initially labeled Ri, and all other vertices are labeled U .
In the joint process, the vertex vi is labeled Bi for i ≤ L
(corresponding to the Blue invasions of SR), while for L <
i ≤ K the vertex vi is labeled Ri as before. Now at the first
update vertex v, let αR

v be the fraction of Red neighbors in
the solo process, and let α̃R

v and α̃B
v be the fraction of Red

and Blue neighbors, respectively, in the joint process.
Note that initially we have αR

v = α̃R
v + α̃B

v . Thus by ad-
ditivity H, the total probabilities of infection H(αR

v , 0) and



H(α̃R
v , α̃

B
v ) in the two processes must be identical. We thus

flip a common coin with this shared infection probability to
determine whether infections occur in the coupled process.
If not, v is updated to U in both processes. If so, we now
use a coupled attribution step in which we pick an infected
neighbor of v at random and copy its label to v in both pro-
cesses. Thus if a label with index i ≤ L is chosen, v will
be updated to Ri in the solo process, and to Bi in the joint
process; whereas if L < i ≤ K is chosen, the update will be
to Ri in both processes. It is easily verified that each of the
two processes faithfully implement the dynamics of the solo
and joint attribution processes, respectively.

This coupled update dynamic maintains two invariants:
infections are always matched in the two processes, thus
maintaining αR

v = α̃R
v + α̃B

v for all v and every step; and
for all i ≤ L, every Ri attribution in the solo Red process
is matched by a Bi attribution in the joint process, thus
establishing the lemma. (Lemma 3)

Thus, by simply imitating the strategy of the Red player
in the L most profitable resources, the Blue player can ex-
pect to infect (1/2)(L/K) proportion of infections accruing
to Red in isolation. Since (SR, SB) is an equilibrium, the
payoffs of Blue in equilibrium must also respect this inequal-
ity. (Theorem 4)

6.2 Budget Multiplier: Lower Bound
We have already seen that concavity of f and linearity

of g lead to bounded PoA and Budget Multiplier, and that
even slight deviations from concavity can lead to unbounded
PoA. We now show that fixing f to be linear (which is con-
cave), slight deviations from linearity of g towards polariz-
ing g can lead to unbounded Budget Multiplier, for similar
reasons as in the PoA case: graph structure can amplify a
slightly polarizing g towards arbitrarily high punishment of
the minority player.

Theorem 5. Let the switching function be f(x) = x, and
let the selection function be of Tullock contest form, g(y) =
ys/(ys + ((1− y)s), where s > 1. Then for any V > 0, there
exists a graph G for which the Budget Multiplier is greater
than V . More precisely, there is a family of graphs for which
the Budget Multiplier grows linearly with the population size
(number of vertices).

Proof. As in the PoA lower bound, the proof relies on
a layered amplification graph, this time amplifying punish-
ment in the selection function rather than convexity in the
switching function. The graph will consist of two compo-
nents, C1 and C2.

Let us fix the budget of the Red player to be 3, and that
of the Blue player to be 1 (the proof generalizes to other
unequal values). C1 is a directed, layered graph with k + 1
layers. The first layer has 4 vertices, and layers 2 through
k have n � 4 vertices, while layer k + 1 has n1 vertices,
where we shall choose n1 � n, meaning that payoffs in C1

are dominated by infections in the final layer.
The second component C2 is a 2-layer directed graph, with

1 vertex in the first layer and n2 in the final layer, and all
directed edges from layer 1 to 2. We will eventually choose
n2 � n1, so that C1 is the much bigger component. We

choose an update rule in which each layer is updated in
succession and only once.

Consider the configuration in which Red places its 3 infec-
tions in the first layer of C1, and Blue places its 1 infection
in the first layer of C2. We shall later show that this config-
uration is a Nash equilibrium. In this configuration, the ex-
pected payoff to Red is approximately

∑k
i=2(3/4)n+(3/4)n1

by linearity of f ; notice that the selection function does not
enter since the players are in disjoint components. Similarly,
the expected payoff to Blue is n2. In this configuration,
the ratio of Red and Blue expected payoffs is thus at least
(3/4)n1/n2, whereas the initial budget ratio is 1/3. So the
Budget Multiplier for this configuration is at least n1/(4n2).

We now develop conditions under which this configuration
is an equilibrium. It is easy to verify that red is playing a
best response. Moving vertices to later layers of C1 lowers
Red’s payoff, since n � 4 and f is linear. Finally, moving
infections to invade the first layer of C2 will lower Red’s pay-
off as long as, say, (1/4)n1 (Red’s current payoff per initial
infection in the final layer of C1) exceeds n2 (the maximum
amount Red could get in C2 by full deviation), or n1 � 4n2.

We now turn to deviations by Blue. Moving the solo Blue
initial infection to the second layer of C2 is clearly a losing
proposition. So consider deviations in which Blue moves to
vertices in component 1. If he moves to the lone unoccupied
vertex in layer 1 of C1, his payoff is approximately:

k∑
i=2

g(i)(1/4)n+ g(k+1)(1/4)n1

=

k∑
i=2

(1/4)s
i

(1/4)si + (3/4)si
n

+
(1/4)s

k+1

(1/4)sk+1 + (3/4)sk+1
n1

Similarly, if Blue directly invades a Red vertex, Blue’s payoff
is approximately

χ =

k∑
i=2

(1/3)s
i

(1/3)si + (2/3)si
n+

(1/3)s
k+1

(1/3)sk+1 + (2/3)sk+1
n1

Since in both cases Blue’s payoff is being exponentially damp-
ened at each successive layer, it is easy to see that the sec-
ond deviation is more profitable. Finally, Blue may choose
a vertex in a later layer of C1, but again by n � 4 and the
linearity of f , this will be suboptimal.

Thus as long as we arrange that n2 — Blue’s payoff with-
out deviation — exceeds χ above, we will have ensured that
no player has an incentive to deviate from the specified strat-
egy configuration. Let us scale n1 up as large as necessary
to have χ dominated by the term involving n1, and now set
n2 to equal that term:

n2 =
(1/3)s

k+1

(1/3)sk+1 + (2/3)sk+1
n1

in order to satisfy the equilibrium condition. The ratio
n1/n2, which we have already shown above lower bounds
the Budget Multiplier, is thus a function that is increasing
exponentially in k for any fixed s > 1. Thus by choosing k
sufficiently large, we can force the Budget Multiplier larger
than any chosen value. (Theorem 5)

Combining Theorem 4 and Theorem 5, we note that for
linear f and Tullock g, we obtain the following sharp thresh-



old result, which is analogous to the PoA result in Corol-
lary 3.

Corollary 4. Let the switching function f be linear, and
let the selection function g be Tullock, g(y) = ys/(ys + (1−
y)s). Then:

• For s = 1, the Budget Multiplier is at most 2 for any
graph G;

• For any s > 1 and any V , there exists a graph G for
which the Budget Multiplier is greater than V .

In fact, if we permit a slight generalization of our model, in
which certain vertices in the graph are“hard-wired”to adopt
only one or the other color (so there is no use for the oppos-
ing player to seed them), unbounded Budget Multiplier also
holds in the Tullock case for s < 1 (equalizing). So in this
generalization, linearity of g is required for bounded Budget
Multiplier.

We have thus shown that even when the switching func-
tion is“nice”(linear), even slight punishment in the selection
function can lead to unbounded Budget Multiplier. Recall
that we require switching and selection functions to be 0 (1,
respectively) on input 0 (respectively) and increasing, and
additionally that g(1/2) = 1. The following theorem shows
that if f is allowed to be a sufficiently convex function, then
the Budget Multiplier is again unbounded for any selection
function. This establishes the importance of concavity of f
for both the PoA and Budget Multiplier.

Theorem 6. Let the switching f satisfy f(1/2) = 0 and
f(1) = 1. Then for any value V > 0, there exists G such
that the Budget Multiplier is greater than V .

Proof. Let the Blue player have 1 initial infection and
the Red player have K ≥ 2 (the proof can be generalized
to any unequal initial budgets, which we comment on be-
low). Consider the directed graph shown in the left panel
of Figure 5, where we have arranged the 1 Blue and K Red
seeded nodes in a particular configuration. Aside from the
initially infected vertices, this graph consists of a directed
chain of K vertices, whose final vertex then connects to a
large number N � K of terminal vertices. Let us update
each vertex in the chain from left to right, followed by the
terminal vertices.

Let us first compute the expected payoffs for the two play-
ers in this configuration. First, note that since f(1) = 1, it
is certain that every vertex in the chain will be infected in
sequence, followed by all of the terminal vertices; the only
question is which player will win the most. By choosing
N � K we can ignore the infections in the chain and just fo-
cus on the terminal vertices, which will be won by whichever
player infects the final chain vertex. It is easy to see that the
probability this vertex is won by Blue is 1/2K , since Blue
must“beat”a competing Red infection at every vertex in the
chain. Thus the expected payoffs are approximately N/2K

for Blue and N(1−1/2K) for Red. If this configuration were
an equilibrium, the Budget Multiplier would thus be 2K/K,
which can be made as large as desired by choosing K large
enough.

However, this configuration is not an equilibrium — clearly,
either player would be better off by simplifying initially in-
fecting the final vertex of the chain, thus winning all the

terminal vertices. This is fixed by the construction shown
in the right panel of Figure 5, where we have replicated the
chain and terminal vertices M times, but have only the orig-
inal K + 1 seeded nodes as common “inputs” to all of these
replications. Notice that now if either player defects to an
uninfected vertex, neither player will receive any infections
in any of the other replications, since now there is a missing
“input infection” and reaching the terminal vertices requires
all K + 1 input infections since f(1/2) = 0 (each chain ver-
tex has two inputs, and if either is uninfected, the chain of
infections halts). Similarly, if either player attempts to de-
fect by invading the seeded nodes of the other player, there
will be no payoff for either player in any of the replications.
Thus the most Blue can obtain by deviation is N (moving
its one infection to the final chain vertex of a single replica-
tion), while the most Red can obtain is KN (moving all of
their infections to the final chain vertices of K replications.
The equilibrium requirements are thus M(N/2K) > N for
Blue, and MN(1− 1/2k) > KN for Red. The Blue require-
ment is the stronger one, and yields M > 2K . The Budget
Multiplier for this configuration is the same as for the single
replication case, and thus if we let K be as large as desired
and choose M > 2K , we can make the Budget Multiplier
exceed any value. (Theorem 6)

It is worth noting that even if the Blue player has L > 1
seeded nodes, and we repeat the construction above with
chain length K +L− 1, but with Blue forced to play at the
beginning of the chain, followed by all the Red infections, the
argument and calculations above are unchanged: effectively,
Blues L seeded nodes are no better than 1 infection, because
they are simply causing a chain of L−1 Blue infections before
then facing the chain of K Red inputs. In fact, even if we let
L � K, Blue’s payoff will still be a factor of 1/2K smaller
than Red’s. Thus in some sense the theorem shows that if
f is sufficiently convex, not only is the Budget Multiplier
unbounded, but the much smaller initial budget may yield
arbitrarily higher payoffs!

7. CONCLUDING REMARKS
We have developed a general framework for the study of

competition between firms who use their resources to max-
imize adoption of their product by consumers located in
a social network. This framework yields a very rich class
of competitive strategies, which depend in subtle ways on
the dynamics, the relative budgets of the players and the
structure of the social network. We identified properties of
the dynamics of local adoption under which resource use by
players is efficient or unboundedly inefficient. Similarly, we
identified adoption dynamics for which networks neutralize
or dramatically accentuate ex-ante resource difference across
players.

There are a number of other questions which can be fruit-
fully investigated within our framework. One obvious direc-
tion is to understand the structure of equilibria in greater
detail, and in particular how it is related to network struc-
ture. While our results on the PoA and Budget Multiplier
demonstrate that network structure can interact in dramatic
ways with the switching and selection functions at equilib-
rium, a more general and detailed understanding would be
of interest.

Our model assumed that players’ budgets are exogenously
given. In many contexts, the budget may itself be a decision



Figure 5: Illustration of the construction in the proof of Theorem 6. Left: Basic gadget. Right: Equilibrium
construction.

variable. It is important to understand if endogenous bud-
gets would aggravate or mitigate the problem of high PoA.
Large network advantages from resources (reflected in high
Budget Multiplier) create an incentive to increase budgets,
and may be self-neutralizing.

Other interesting directions include algorithmic issues such
as computing equilibria and best responses in our frame-
work, and how their difficulty depends on the switching and
selection functions; and the multi-stage version of our game,
in which the two firms may gradually spend their seed bud-
gets in a way that depends on the evolving state of the net-
work.
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APPENDIX
One criticism of the model presented here is that while we
assume rationality on the part of the competing firms, con-
sumers (represented by the vertices in the social network)
behave in a purely stochastic, non-rational fashion. In this
appendix, we sketch natural cases in which these stochastic
decisions can actually be provided with rational microeco-
nomic models. We illustrate how the switching and selec-
tion functions f -g may be founded upon optimal decisions
made by consumers located in social networks. Information
sharing about products and direct advantages accruing from
adopting compatible products are two important ingredients
of local social influence.

Example 1: Information Sharing: Consumers are
looking for a good whose utility depends on its quality;
the quality is known or easily verified upon inspection (such
products are referred to as ‘search’ goods), but its availabil-
ity may not be known. Examples of such products might
be televisions and desktop computers. Consumers search on
their own and they also get information from their friends
and neighbors. Suppose for simplicity that the consumer
talks to one friend before making his decision. As he runs
into friends at random, other things being equal, the prob-
ability of adopting a product is equal to the probability of
meeting someone who has adopted it. This probability is in
turn given by the fraction of neighbors who have adopted
the product. This corresponds to the case where f and g
are both linear.

Example 2: Information Sharing and Payoff Ex-
ternalities. Consumers are choosing between goods whose
utility depends on how many other consumers have adopted
the same product. Prominent examples include social net-
working sites. Suppose products offer stand alone advantage
v, and a adoption related reward which is equal to the num-
ber of Reds or the number of Blues. Consumer picks neigh-
bors at random. If neighbor is Red or Blue, then consumer
becomes aware of product market. There is a small cost
(relative to v) at which he can ask all his neighbors about
their status. He then compares the adoption rates of the
two products and given the benefits to being in a larger (lo-
cal) network, the consumer selects the more popular prod-
uct. This situation gives rise to an f which is increasing
and concave in the fraction of adopters, while g is polarizing
(close to a winner-take-it all).

We leave to future work the formulation of further and
richer microeconomic consumer models, including a fully
game-theoretic formulation over both firms and consumers.
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