41 research outputs found

    A novel microscopic assay of transient platelet - von Willebrand Factor adhesion, kinetics, margination, and blood rheology

    Get PDF
    Platelets play a central role in hemostasis and arterial thrombosis. At high shear rates, von Willebrand factor (vWF) may recruit passive platelets to a growing thrombus via transient glycoprotein (GP) Ib binding, increasing platelet residence time to allow activation by stress or chemical agonists. Platelet accumulation also depends on dispersive transport driven by shear flow of red blood cells (RBC’s), platelet margination (a near-wall enrichment of platelet concentration due to persistent lateral drift), and flowinduced stresses.A new assay was developed that enables simultaneous measurement of platelet adhesion, platelet margination, wall shear stress, and non-Newtonian flow velocity profile, in blood flow through protein-coated capillaries. Transient platelet adhesion, translation, and embolization are measured by video microscopy. Translating-stage image sequences measure platelet concentration at 3 +/- 1 micron from the capillary surface and centerline flow velocity. The blood velocity profiles are fit to a Casson model based on flow rate, centerline velocity, and pressure gradient.In capillaries coated with plasma vWF, platelet adhesion was an increasing function of wall shear rate between 126 and 840 /s. Margination increased with shear rate, and decreased on vWF-coated capillaries compared to albumin controls. The characteristic time constant for transient binding on plasma vWF was 1.0 to 1.4 sec. A platelet flux balance was performed on a control volume within 2 μm of the vessel wall using near-wall concentration data, estimated convective flux, and surface net accumulation rate. Dispersive flux was an order of magnitude faster than the convective flux, meaning stronger contribution of shear-induced dispersion to the contact of platelet with thrombogenic surface, tethering or adhesion, accumulation, and aggregation of platelets than the convective motion. The new assay provides a wealth of data for celllevel computational modeling of platelet adhesion mechanics and kinetics under controlled flow.Ph.D., Mechanical Engineering -- Drexel University, 200

    Atherosclerosis: Methods and Protocols

    Get PDF
    This volume provides detailed, up-to-date methods used in research on Atherosclerosis. Chapters guide readers through an overview of the pathogenesis of atherosclerosis and model systems together with in vitro, ex vivo, in vivo and emerging methods in atherosclerosis research. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Atherosclerosis: Methods and Protocols serves as an invaluable resource for those engaging in research on atherosclerosis and cardiovascular disease, as well as for researchers who are new to t

    Brain Injury

    Get PDF
    The present two volume book "Brain Injury" is distinctive in its presentation and includes a wealth of updated information on many aspects in the field of brain injury. The Book is devoted to the pathogenesis of brain injury, concepts in cerebral blood flow and metabolism, investigative approaches and monitoring of brain injured, different protective mechanisms and recovery and management approach to these individuals, functional and endocrine aspects of brain injuries, approaches to rehabilitation of brain injured and preventive aspects of traumatic brain injuries. The collective contribution from experts in brain injury research area would be successfully conveyed to the readers and readers will find this book to be a valuable guide to further develop their understanding about brain injury

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)

    Get PDF
    These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion
    corecore