9,460 research outputs found

    Hybrid Collaborative Filtering with Autoencoders

    Get PDF
    Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework

    A framework for personalized dynamic cross-selling in e-commerce retailing

    Get PDF
    Cross-selling and product bundling are prevalent strategies in the retail sector. Instead of static bundling offers, i.e. giving the same offer to everyone, personalized dynamic cross-selling generates targeted bundle offers and can help maximize revenues and profits. In resolving the two basic problems of dynamic cross-selling, which involves selecting the right complementary products and optimizing the discount, the issue of computational complexity becomes central as the customer base and length of the product list grows. Traditional recommender systems are built upon simple collaborative filtering techniques, which exploit the informational cues gained from users in the form of product ratings and rating differences across users. The retail setting differs in that there are only records of transactions (in period X, customer Y purchased product Z). Instead of a range of explicit rating scores, transactions form binary datasets; 1-purchased and 0-not-purchased. This makes it a one-class collaborative filtering (OCCF) problem. Notwithstanding the existence of wider application domains of such an OCCF problem, very little work has been done in the retail setting. This research addresses this gap by developing an effective framework for dynamic cross-selling for online retailing. In the first part of the research, we propose an effective yet intuitive approach to integrate temporal information regarding a product\u27s lifecycle (i.e., the non-stationary nature of the sales history) in the form of a weight component into latent-factor-based OCCF models, improving the quality of personalized product recommendations. To improve the scalability of large product catalogs with transaction sparsity typical in online retailing, the approach relies on product catalog hierarchy and segments (rather than individual SKUs) for collaborative filtering. In the second part of the work, we propose effective bundle discount policies, which estimate a specific customer\u27s interest in potential cross-selling products (identified using the proposed OCCF methods) and calibrate the discount to strike an effective balance between the probability of the offer acceptance and the size of the discount. We also developed a highly effective simulation platform for generation of e-retailer transactions under various settings and test and validate the proposed methods. To the best of our knowledge, this is the first study to address the topic of real-time personalized dynamic cross-selling with discounting. The proposed techniques are applicable to cross-selling, up-selling, and personalized and targeted selling within the e-retail business domain. Through extensive analysis of various market scenario setups, we also provide a number of managerial insights on the performance of cross-selling strategies

    Exploration vs. Exploitation in the Information Filtering Problem

    Full text link
    We consider information filtering, in which we face a stream of items too voluminous to process by hand (e.g., scientific articles, blog posts, emails), and must rely on a computer system to automatically filter out irrelevant items. Such systems face the exploration vs. exploitation tradeoff, in which it may be beneficial to present an item despite a low probability of relevance, just to learn about future items with similar content. We present a Bayesian sequential decision-making model of this problem, show how it may be solved to optimality using a decomposition to a collection of two-armed bandit problems, and show structural results for the optimal policy. We show that the resulting method is especially useful when facing the cold start problem, i.e., when filtering items for new users without a long history of past interactions. We then present an application of this information filtering method to a historical dataset from the arXiv.org repository of scientific articles.Comment: 36 pages, 5 figure

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Trust beyond reputation: A computational trust model based on stereotypes

    Full text link
    Models of computational trust support users in taking decisions. They are commonly used to guide users' judgements in online auction sites; or to determine quality of contributions in Web 2.0 sites. However, most existing systems require historical information about the past behavior of the specific agent being judged. In contrast, in real life, to anticipate and to predict a stranger's actions in absence of the knowledge of such behavioral history, we often use our "instinct"- essentially stereotypes developed from our past interactions with other "similar" persons. In this paper, we propose StereoTrust, a computational trust model inspired by stereotypes as used in real-life. A stereotype contains certain features of agents and an expected outcome of the transaction. When facing a stranger, an agent derives its trust by aggregating stereotypes matching the stranger's profile. Since stereotypes are formed locally, recommendations stem from the trustor's own personal experiences and perspective. Historical behavioral information, when available, can be used to refine the analysis. According to our experiments using Epinions.com dataset, StereoTrust compares favorably with existing trust models that use different kinds of information and more complete historical information

    Mobile app recommendations using deep learning and big data

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRMRecommender systems were first introduced to solve information overload problems in enterprises. Over the last decades, recommender systems have found applications in several major websites related to e-commerce, music and video streaming, travel and movie sites, social media and mobile app stores. Several methods have been proposed over the years to build recommender systems. The most popular approaches are based on collaborative filtering techniques, which leverage the similarities between consumer tastes. But the current state of the art in recommender systems is deep-learning methods, which can leverage not only item consumption data but also content, context, and user attributes. Mobile app stores generate data with Big Data properties from app consumption data, behavioral, geographic, demographic, social network and user-generated content data, which includes reviews, comments and search queries. In this dissertation, we propose a deep-learning architecture for recommender systems in mobile app stores that leverage most of these data sources. We analyze three issues related to the impact of the data sources, the impact of embedding layer pretraining and the efficiency of using Kernel methods to improve app scoring at a Big Data scale. An experiment is conducted on a Portuguese Android app store. Results suggest that models can be improved by combining structured and unstructured data. The results also suggest that embedding layer pretraining is essential to obtain good results. Some evidence is provided showing that Kernel-based methods might not be efficient when deployed in Big Data contexts
    • …
    corecore