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ABSTRACT 

Recommender systems were first introduced to solve information overload problems in enterprises. 

Over the last decades, recommender systems have found applications in several major websites 

related to e-commerce, music and video streaming, travel and movie sites, social media and mobile 

app stores. Several methods have been proposed over the years to build recommender systems. The 

most popular approaches are based on collaborative filtering techniques, which leverage the 

similarities between consumer tastes. But the current state of the art in recommender systems is deep-

learning methods, which can leverage not only item consumption data but also content, context, and 

user attributes. Mobile app stores generate data with Big Data properties from app consumption data, 

behavioral, geographic, demographic, social network and user-generated content data, which includes 

reviews, comments and search queries. In this dissertation, we propose a deep-learning architecture 

for recommender systems in mobile app stores that leverage most of these data sources. We analyze 

three issues related to the impact of the data sources, the impact of embedding layer pretraining and 

the efficiency of using Kernel methods to improve app scoring at a Big Data scale. An experiment is 

conducted on a Portuguese Android app store. Results suggest that models can be improved by 

combining structured and unstructured data. The results also suggest that embedding layer pretraining 

is essential to obtain good results. Some evidence is provided showing that Kernel-based methods 

might not be efficient when deployed in Big Data contexts. 
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1. INTRODUCTION 

It is often claimed that the internet changed the retail businesses. For the first-time retailers were not 

limited to an assortment of popular items and were able to profit from having an endless product 

variety (Brynjolfsson, Hu, & Smith, 2006). This implies that the aggregated demand for niche products 

is comparable to the top most popular products – a phenomenon known as the “long tail” effect 

(Anderson, 2008). Two main factors are usually suggested as the cause of this effect (Goel, Broder, 

Gabrilovich, & Pang, 2010): one related with the supply side (retailers/producers) and another related 

with the demand side (consumers).  

 

On the supply side, online retailers can include an incredibly large number of items on their assortment 

when compared to traditional brick and mortar retailers (Brynjolfsson et al., 2006). This would 

theoretically be an advantage since demand is heterogeneous, and therefore a larger number of items 

would allow the retailer to provide more utility to a larger number of customers (Quan & Williams, 

2017). Some empirical evidence of this has been found (Goel et al., 2010), suggesting that all 

consumers have a small portion of niche products in their choices. Also, in the context of digital goods 

distribution (which can include products such as apps, music, video and written content), advances in 

Cloud Computing also allowed for an almost linear scaling of data storage infrastructure, which is 

necessary to attain extremely large assortments with “long-tail” properties (Weinhardt et al., 2009). 

 

On the consumer side, information search costs are hypothesized to be lower for consumers in the 

online context. By providing search engine and recommender system capabilities, users can more 

easily access the relevant content from the assortment (Schnabel, Bennett, & Joachims, 2018). In the 

particular case of mobile app stores, search engines have an increasingly key importance, as evidenced 

by the rising importance of App Store Optimization (ASO) for publishers in mobile app stores (Wilson, 

2018). ASO refers to the tactics employed to improve visibility in app stores similarly to Search Engine 

Optimization (SEO) (Bilgihan, Kandampully, & Zhang, 2016). This appears to confirm that these systems 

do play a role in lowering information search costs for consumers. Several studies have provided 

evidence that recommender systems have a positive impact in content discovery in online 

environments (Brynjolfsson, Hu, & Simester, 2011; D. M. Fleder & Hosanagar, 2007; Pathak, Garfinkel, 

Gopal, Venkatesan, & Yin, 2010), which should reinforce the “long tail”. 

 

While the impact of the “long tail” effect is usually considered very important for businesses, empirical 

evidence suggests that this effect doesn’t occur in every digital market. In markets such as the online 

music industry, demand tends to follow a “Superstar” effect (Rosen, 1981), also referred to as the 

“Winner-takes-all” (Frank Robert & Cook Philip, 1995) or “Blockbuster” (D. Fleder & Hosanagar, 2009) 

effect. In these markets, the demand for the most popular products largely exceeds the aggregated 

demand for the least popular ones. The mobile app economy has been found to behave in a similar 

manner (Zhong & Michahelles, 2013). This “Superstar” effect is consistent with marketing science 

theory, since it can be explained by two other empirical generalizations that tend to occur across 

markets (Zhong & Michahelles, 2012, 2013): the natural monopoly effect and the double jeopardy law 

(A. Ehrenberg & Goodhardt, 2002; A. S. C. Ehrenberg, Goodhardt, & Barwise, 1990; A. S. C. Ehrenberg, 

Uncles, & Goodhardt, 2004). It has been argued that search engines and recommender systems are 

especially relevant for these markets (Yin, Cui, Li, Yao, & Chen, 2012; Zhong & Michahelles, 2013), as 

long as they are able to increase sales diversity. 
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Some authors argue that different methods of recommendation yield different levels of impact in 

search cost reduction and thus on sales diversity (D. Fleder & Hosanagar, 2009; D. M. Fleder & 

Hosanagar, 2007; Zhong & Michahelles, 2013). This suggests that “long tail” effects might be achieved 

in “superstar” markets by having smarter recommender systems, or by avoiding the usual methods 

based on collaborative filtering, which tend to reinforce the most popular items (Peltier & Moreau, 

2012; Zhong & Michahelles, 2013). 

 

While collaborative filtering was for a long time the main method of building recommender systems, 

several novel approaches have been proposed in recent years (Bobadilla, Ortega, Hernando, & 

Gutiérrez, 2013; Koutrika, 2018). Amongst these, deep-learning methods for recommendation systems 

have seen an exponential rise in published research and results suggest that they are capable of 

outperforming the traditional approaches (S. Zhang, Yao, & Sun, 2017). In particular, these methods 

have already been successfully employed in mobile app stores (Cheng et al., 2016). The traditional 

approaches based on collaborative filtering leverage memorization, but deep-learning has been shown 

to have a higher generalization capacity (Arpit et al., 2017), especially when regularization is applied, 

which results in more diverse recommendations (Cheng et al., 2016). 

 

Additionally, we must consider the data sources used to train a recommendation model. The 

traditional approaches rely solely on either item-item or user-item similarities inferred through matrix 

factorization methods (Koutrika, 2018). Modern Deep Learning approaches can take advantage of all 

these features simultaneously. Deep Neural Networks (DNN) can detect non-linear relationships 

between all these signals (Goodfellow, Bengio, & Courville, 2016, p. 169), which is expected to further 

contribute to recommendation diversity. 

 

Some early recommender engines relied on user ratings, which have been found not to be the best 

data source for effective recommender systems (Amatriain, 2013). In contrast, many online retailers, 

such as mobile app stores, have access to a wide variety of data, which includes user features 

(demographic, geographic, technographic and behavioral), user-generated content (comments, 

reviews and search queries), as well as content-based features (app descriptions, app usage and app 

download co-occurrence which can be used to infer implicit ratings and similarity). Additionally, some 

mobile app stores such as Google Play - in the past through its Google Plus integrations (Amadeo, 

2016), currently through Google Play Games (Google, 2018a) and Google Play Family Library (Google, 

2018b), and Aptoide - branded as the social app store, are augmented with online social network 

features (boyd & Ellison, 2007; Pallis, Zeinalipour-yazti, & Dikaiakos, 2011), which include 

microblogging, social networking, reviewing, commenting and messaging. Add to this the fact that 

these app stores run in mobile devices with constant connectivity, which adds real-time streaming 

characteristics to the data. 

 

Given this context, we can argue that mobile app stores are dealing with data that possesses the 3V 

properties of Big Data (Sivarajah, Kamal, Irani, & Weerakkody, 2017): Volume, Velocity, and Variety. 

This suggests that app stores will require Big Data management technologies (which rely on distributed 

processing) to train, validate, test and deploy recommendation models. Traditional memory-based and 

matrix factorization approaches are hard to scale in the Big Data context, and we can only obtain 

approximate numerical solutions – see for instance these Apache Spark implementations of K-Nearest 
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Neighbors (Maillo, Ramírez, Triguero, & Herrera, 2017) and matrix factorization methods (Bosagh 

Zadeh et al., 2016). In contrast, DNN models are widely used in data-rich environments to process large 

amounts of unstructured data (Wedel & Kannan, 2016), and thus are a good fit for mobile app store 

recommender systems, since they are easier to train and deploy in a distributed manner (Alsheikh, 

Niyato, Lin, Tan, & Han, 2016). 

 

A limitation of DNN is the fact that, since these do not rely on memorization, their response times are 

higher than the traditional approaches, which presents a problem in online production environments 

(Cheng et al., 2016). More complex models are costlier to train and deploy, thus a tradeoff must be 

made between precision and performance. Few studies have analyzed the cost-benefit of different 

DNN models, along with the impact of the data sources or the different scoring methods in the context 

of recommender systems.  

 

A study by Cheng (2016) approached some of these questions while introducing Wide and Deep 

Learning architectures in mobile app store recommendations. However, the study didn’t evaluate the 

economic impact of such a model. Also, while it did analyze the impact of using rich cross-product 

features, it didn’t analyze the impact of different feature augmentation methods (such as using only 

structured versus unstructured data) or the impact of not using embedding layer pretraining. Finally, 

it didn’t compare different scoring methods in the final layer (a softmax node was always employed). 

In this thesis, we intend to explore some of these open questions.  

 

Our main objective is to determine the most efficient deep-learning based recommender system 

architecture for mobile app stores. To achieve this, we need to satisfy three specific objectives: 

1. Assess the impact of using unstructured data versus only using structured data. 

2. Assess the impact of embedding layer pre-training in the model performance. 

3. Determine the efficiency of using Kernel-based methods in the scoring layer. 

 

The efficiency should be measured using an economic profit metric. This metric should incorporate the 

estimated financial impact of improvements in customer experience. The improvement should be 

measured against a baseline, which can be estimated from natural monopoly and double jeopardy 

effects. Double jeopardy effects are regularly observed in online retail and e-commerce (Huang, 2011) 

and these appear to extend to m-commerce settings, in particular, the mobile app market, as we’ve 

already seen (Zhong & Michahelles, 2013). Since these effects explain mobile app choice behavior and 

e-commerce in general, we can assume it explains mobile app store choice (at least in the Android 

platform), with public data confirming that a significant portion of Android users use third-party app 

stores other than Google Play (App Annie, 2017). Finally, the metric should also incorporate a holistic 

cost accounting of the model training, validation, testing and deployment at Big Data scale, including 

cloud computing costs. 

 

In the following sections we will present a literature review covering Recommender Systems, Deep 

Learning and Big Data. Then we will describe the methodology employed to answer our research 

questions. Next, we will present the main results, followed by the conclusions, which include a 

discussion of the results and its implications, the limitations of the study and possible directions for 

future research. 
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2. LITERATURE REVIEW 

2.1. RECOMMENDER SYSTEMS 

Recommender systems attempt to solve the problem of information overload (Aljukhadar, Senecal, & 

Daoust, 2010). Humans have a limited cognitive ability, and thus, our brains evolved to have selective 

attention (Sayago, Guijarro, & Blat, 2012). It allows us to select the most relevant events or objects to 

focus our attention by taking clues from the environment. However, while the sapiens brain was well 

adapted to our ancestral environment, it is less adapted to modern digital environments (Huggett, 

Hoos, & Rensink, 2007), many times resulting in confusion (Sayago et al., 2012).  

With the adoption of information systems (IS) in enterprises, information overload problems became 

increasingly common, triggering the need for recommender systems. As such, the first recommender 

system was Tapestry (Goldberg, Nichols, Oki, & Terry, 1992), an email filtering system developed at 

Xerox to deal with a large number of irrelevant emails received by employees. It was also the first time 

that the term Collaborative Filtering (CF) was employed, which to this day is still one of the most 

effective and widely used approaches to recommender system design (Su & Khoshgoftaar, 2009). 

Since then many well-known successful applications of recommender systems have appeared in major 

websites such as Amazon.com,  YouTube,  Netflix,  Spotify,  LinkedIn,  Facebook,  Tripadvisor, Last.fm, 

and IMDb (Ricci, Rokach, & Shapira, 2015). 

Research in this field had its biggest boost due to the Netflix prize which had the first edition at the 

end of 2006 (Bennett & Lanning, 2007), and again in 2008 and 2009 (Grand Prize). The first and last 

events appear to have had the biggest impact on scientific production in the field, as evidenced from 

a bibliographic analysis of recommender system research on a 20-year period1 (Chart 1). 

 

Chart 1 – Number of research papers (with more than 10 citations)  
mentioning recommender systems between 1997 and 2017.  

(Source: Google Scholar) 

2.1.1. Modeling Approaches 

Recommender systems can leverage three types of similarities (Katsov, 2018, p. 275): User, Product, 

and Context. User similarities refer to using the attributes of each customer to infer their intent and 

                                                           
1 The sample was collected from Google Scholar using Harzin’s PoP tool by searching for articles containing 

the phrase “recommender systems”. The analysis only includes papers with more than 10 citations. 
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preferences. Product similarities refer to using the relationships between users and merchandise 

which can be expressed in different manners. Many early systems had a focus on explicit ratings, but 

these relationships can also be inferred through usage data for instance (as a binary variable indicating 

item consumption, or through counts) (Katsov, 2018, p. 276). CF traditionally leverages either user-

based or product-based filtering, or both (hybrid filtering). Finally, context refers to additional signals 

related to the moment of purchase or the expressed intent (for instance by considering the season of 

the year). Usually, contextual data is used as a complement to more traditional CF tasks, either by pre-

filtering or post-filtering (Katsov, 2018, p. 289). 

Another lesser-known type of recommender system includes Knowledge-based filtering (Burke, 2000), 

which takes advantage of Case-Based Reasoning (CBR) (González-Briones, Rivas, Chamoso, Casado-

Vara, & Corchado, 2018). CBR works by asking the user a set of questions that allow the system to 

produce a recommendation based on previously defined rules. Like contextual recommender systems, 

CBR features are commonly integrated into recommender systems built with CF methods. 

CF methods can further be divided into two types: memory based and model-based (Bobadilla et al., 

2013).  

Memory-based refers to using instance-based learning, such as K-nearest neighbors (KNN). KNN works 

by storing a matrix in memory (an instance) that relates users or users and items. For each new user, 

we take the 𝐾 nearest objects from the memory instance, using a previously chosen distance or 

similarity function 𝑓(𝑋𝑎 , 𝑋𝑏) that takes the attributes 𝑋𝑎 and 𝑋𝑏 of each object 𝑎 and 𝑏 as input (Aha, 

Kibler, & Albert, 1991). This distance measure might be Euclidean if the user/item features have metric 

properties. In that case 𝑓(𝑋𝑎 , 𝑋𝑏) can be defined as: 

𝑓(𝑋𝑎 , 𝑋𝑏) =  √∑(𝑋𝑎 − 𝑋𝑏)2 

Jaccard Distance is a common approach if the variables are binary. Under this distance metric we have 

(Torres, Skaf-Molli, Molli, & Díaz, 2013): 

𝑓(𝑋𝑎 , 𝑋𝑏) =  
|𝑋𝑎 ∪ 𝑋𝑏| − |𝑋𝑎 ∩ 𝑋𝑏|

|𝑋𝑎 ∪ 𝑋𝑏|
 

In KNN, the value for 𝐾 is a hyper parameter. A common rule of thumb is to use the square root of the 

number of samples (Vrooman et al., 2007). The final recommendations can be based on the top most 

common items amongst the K-nearest neighbors, or by averaging (if we are working with explicit 

ratings). 

Within model-based approaches, some authors identify two sub-categories (Katsov, 2018, p. 289): 

regression and latent factor methods.  

Within latent factor methods, the most common method is Singular Value Decomposition (SVD). SVD 

is a matrix factorization technique that essentially performs dimensionality reduction on a user-user 

or user-item matrix. Mathematically, SVD is nothing more than a generalization of Gaussian 

elimination, which predated widespread usage of matrices (but is nevertheless consistent with what 

nowadays is referred to as generalized eigenvalue problem) to non-square and non-real matrixes 
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(Stewart, 1993). Suppose we have a real matrix 𝐴 with 𝑖 rows and 𝑗 columns, that represent the 

relationship between users and items, users and users, or users and their attributes.  

Our goal is to obtain a decomposition of 𝐴, such that: 

𝐴 = 𝑈Σ𝑉𝑇 

𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑖) 

𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑗) 

Where Σ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … 𝜎𝑛) has nonnegative diagonal elements arranged in descending order of 

magnitude (the eigenvalues) and 𝑈 and 𝑉 are two matrices. The matrix 𝑈 contains the left 

eigenvectors, while 𝑉 contains the right eigenvectors (Gass & Rapcsák, 2004). If 𝐴 is a user by user 

matrix, 𝑈 = 𝑉. In cases where we have a user by attribute or user by item matrix, 𝑈 can be interpreted 

as the eigenvectors of the rows, while 𝑉 are the eigenvectors of the columns (which can be either 

items or user attributes). For the final analysis, we should select the relevant matrix of eigenvectors to 

use as the extracted eigenvectors (which can be either the left or the right depending on the definition 

of 𝐴 and the specific problem).  

The extracted eigenvectors can be interpreted as latent factors that explain the variance or inertia 

(Greenacre, 1988) of either the rows or columns of 𝐴 . The variance or inertia of each factor is nothing 

more than the eigenvalue (an element of Σ) associated with that eigenvector. These extracted 

dimensions have metric properties and can then be used to estimate an Euclidean distance between 

objects before applying KNN. The alternative is to use these as input to another model to score items 

for a specific user. Several applications of SVD to recommender systems are known (Barragáns-

Martínez et al., 2010; Brand, 2003; Paterek, 2007; Sarwar, Karypis, Konstan, & Riedl, 2000). 

Other similar approaches based on latent factors include Matrix Factorization using Alternating Least 

Squares (ALS) and Stochastic Gradient Descent (SGD) learning algorithms (Koren, Bell, & Volinsky, 

2009). These approaches are like SVD but tend to generalize better to new cases. This is so because 

the learning is done using a numerical optimization algorithm which is not only able to better deal with 

missing values but can also include a regularization term. In these approaches we may have a model 

as such:  

�̂�𝑖𝑗 = 𝑣𝑗
𝑇𝑢𝑖 + 𝜇𝑖 + 𝑏𝑖 + 𝑏𝑗 

Where �̂�𝑖𝑗 is the predicted rating of item 𝑖 for user 𝑗, 𝑇 denotes the matrix transpose, 𝜇𝑖  is the average 

rating of item 𝑖, 𝑏𝑖 and 𝑏𝑗 are bias terms for the item and user respectively. To perform the 

optimization, we need to minimize a loss function such as the regularized squared error: 

𝑅 = [

𝑟11 ⋯ 𝑟1𝑗

⋮ ⋱ ⋮
𝑟𝑖1 ⋯ 𝑟𝑖𝑗

] 

min
𝑣∗,𝑢∗

∑(𝑟𝑖𝑗 − 𝜇 − 𝑏𝑖 − 𝑏𝑗 − 𝑣𝑗
𝑇𝑢𝑖)2 + 𝜆(∥ 𝑣𝑗 ∥2+∥ 𝑢𝑖 ∥2) 

𝑅 is a matrix where each element 𝑟𝑖𝑗 indicates the rating of item 𝑖 for user 𝑗 and 𝜆(∥ 𝑣𝑗 ∥2+∥ 𝑢𝑖 ∥2) is 

a regularization term based on the L2 norm (other types of regularization can be employed such as L1).  
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Within regression methods, Linear Regression (LinReg) is commonly employed as a baseline model 

when rating data is available (Mild & Natter, 2002). In the case of recommender systems we need to 

fit a LinReg model for each item 𝑗 as such: 

�̂�𝑖𝑗 = 𝑣𝑗
𝑇𝑢𝑖 + 𝑏𝑖 

The standard method is based on ordinary least squares optimization. As such we can obtain estimates 

for the �̂� parameters using the OLS estimator: 

�̂� = (𝑈𝑇𝑈)−1𝑈𝑇𝑅 

A key limitation of such methods is the fact that we can only work with rating data (either implicit or 

explicit). In cases where we only have binary data (for instance, about if a user either downloaded or 

not a certain app) we require a different modeling approach. The standard method for binary target 

variables is Logistic Regression (LR), but in this case, since we’re in a multilabel problem, we require 

Multinomial Logistic Regression (MLR), which can have two forms  (Dow & Endersby, 2004): Logit (or 

Softmax) and Probit. Since logit models are more commonly employed in recommender systems our 

analysis will focus on these. 

Let’s suppose we have a set of items 𝒮, a set of users ℛ and a choice matrix 𝐿 such that: 

𝐿 = [
𝑙11 ⋯ 𝑙1𝑏

⋮ ⋱ ⋮
𝑙𝑎1 ⋯ 𝑙𝑎𝑏

] 

Where each value of 𝐿 is 1 if a certain user 𝑎 ∈ ℛ chose item 𝑏 ∈ 𝒮 and 0 otherwise. Consider now the 

problem of estimating the probability 𝑃(𝐶𝑟,ℎ) of a new user 𝑟 ∈ ℛ choosing each item ℎ ∈ 𝒮, and that 

this probability can be estimated from the vector of user attributes 𝑋𝑟 = [

𝑥𝑟1

⋮
𝑥𝑟𝑘

]. The multinomial logit 

model then has the following specification (Aurier & Mejía, 2014): 

Θ = [
𝜃11 ⋯ 𝜃1𝑘

⋮ ⋱ ⋮
𝜃ℎ1 ⋯ 𝜃ℎ𝑘

] 

𝑌𝑟,ℎ = 𝑋𝑟 [
𝜃1

⋮
𝜃ℎ

]

𝑇

+ 𝛼ℎ  

𝑃(𝐶𝑟,ℎ) =
𝑒𝑌𝑟,ℎ

∑ 𝑒𝑌𝑟,𝑠
𝑠∈𝒮

 

Where 𝑌𝑟,ℎ is a measure of the utility of item ℎ for user 𝑟, θ is a matrix of parameters (weights) of each 

user attribute for each item, and 𝛼ℎ is the constant utility for each item ℎ. We then apply the maximum 

likelihood estimation method, which is based on cross-entropy loss minimization. The cross-entropy 

loss function has the following form (Christopher, 2006, p. 209): 

𝐸(Θ) = − ∑ ∑ 𝑙𝑞,𝑤  ln 𝑃(𝐶𝑞,𝑤)

𝑤∈𝒮𝑞∈ℛ
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A parameter estimate Θ̂ can be obtained in an iterative manner using the Newton-Raphson Method. 

At each iteration, we take the gradient of the error function in respect to one of the parameters 𝜃𝑝 to 

update its value (Christopher, 2006, p. 210): 

∇𝜃𝑝
𝐸(Θ) = ∑[𝑃(𝐶𝑞,𝑤) −

𝑞∈ℛ

𝑙𝑞,𝑤]𝑋𝑞 

The final recommendations can be found by simply applying the following recommendation function 

𝑔 to each value 𝑃(𝐶𝑞,𝑤): 

𝑔(𝑥) = {
1 𝑖𝑓 𝑥 > 0.5
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If 𝑔(𝑃(𝐶𝑞,𝑤)) = 1 we will recommend item 𝑤 for user 𝑞.  

Several empirical applications of MLR to recommender systems are known (D. M. Fleder & Hosanagar, 

2007; S.-H. Yang, Long, Smola, Zha, & Zheng, 2011; Zhao, Zhang, Zhang, & Friedman, 2016). 

Many other modeling approaches exist for recommender systems. Fischer’s Linear Discriminant 

Analysis (LDA), also known as Multivariate Discriminant Analysis has been employed for recommender 

systems (K. Kim, 2011). Tree-based machine learning methods such as Decision Trees (Cho, Kim, & Kim, 

2002; Gershman & Meisels, 2010), Random Forests (O’Mahony, Cunningham, & Smyth, 2010; H. R. 

Zhang & Min, 2016) and Gradient Boosted Regression Trees (Ostuni, Di Noia, Mirizzi, & Di Sciascio, 

2014) have also been employed.  

Bayesian methods were common approaches in the early 2000s (Condli, Madigan, Lewis, & Posse, 

1999; Jin & Si, 2004; Miyahara & Pazzani, 2000). Towards the end of the decade some applications of 

ensemble methods emerged (Jahrer, Töscher, & Legenstein, 2010; Schclar, Tsikinovsky, Rokach, 

Meisels, & Antwarg, 2009) along with econophysics inspired approaches based on heat and mass 

diffusion techniques, which have reemerged recently (C. Liu & Zhou, 2010; Lü et al., 2012; Ren, Zhou, 

& Zhang, 2008; Vidmer, Zeng, Medo, & Zhang, 2015; Y. C. Zhang, Blattner, & Yu, 2007). 

Kernel methods have also found applications in recommender systems (Abernethy, Bach, Evgeniou, & 

Vert, 2008; X. Liu et al., 2016) including the use of Support Vector Machines (SVM) (Fortuna, Fortuna, 

& Mladenić, 2010; Oku, Nakajima, Miyazaki, & Uemura, 2006; Xia, Dong, & Xing, 2006). 

Kernel methods are based on the kernel trick also known as kernel substitution (Christopher, 2006, p. 

292). In these methods we do a mapping of the feature space of new unlabeled inputs 𝑥′ to the training 

examples 𝑥, using a kernel function 𝑘 that relies on a basis function 𝜑𝑞 such that: 

𝑘(𝑥, 𝑥′) =  𝜑(𝑥)𝑇𝜑(𝑥′) = ∑ 𝜑𝑞(𝑥)𝜑𝑞(𝑥′)

𝑞∈ℛ

 

The basis function can assume several forms. The most commonly employed form is the Radial Basis 

Function (RBF) (Christopher, 2006, p. 299). Recently scalable approximation methods based on 

stochastic methods have emerged, such as Random Fourier Features (RFF) (Rahimi & Recht, 2007). 

Kernel methods can be seen as a form of instance-based methods, where the kernel function acts as a 

similarity measure between the training set and the new cases (Christopher, 2006, p. 292). These 

techniques allow us to linearize the feature space so that simpler decision algorithms can be employed.  
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The application of SVMs to recommender systems involves training an SVM classifier for either each 

user or each item (Xia et al., 2006). In either case, we are seeking to find a set of items to recommend 

to each user, by either classifying users for an item or vice-versa. We will assume that a model will be 

fit for each item, but the inverse specification works in a similar manner. 

SVMs rely on the kernel mapping to obtain a transformed feature space where a linear decision 

boundary can be found based on the support vectors, which are sample cases that lie on the maximum 

margin hyperplanes in the feature space (Christopher, 2006, p. 330). This maximum margin hyperplane 

for an item 𝑤 ∈ 𝒮 can be found by solving (Christopher, 2006, pp. 327–330): 

arg min
Θ,𝑏

{∑ 𝐸∞([𝜃𝑞𝑘(𝑥, 𝑥𝑞) + 𝑏]𝑙𝑞,𝑤 − 1) + 𝜆||Θ||2

𝑞∈ℛ

} 

Where 𝐸∞(𝑧) is a function that returns 0 if 𝑧 ≥ 0 (which happens when the vector corresponding to 𝑞 

is not a support vector), and ∞ otherwise. Alternative multiclass formulations of SVM have been 

proposed (Hsu & Lin, 2002), which could be used to jointly train a classifier across all items, but no 

recommender system applications are yet known. Similar methods exist with could potentially be 

employed to build recommender systems, such as Kernel Logistic Regression (KLR). KLR differs from LR 

in the definition of 𝑌𝑟,ℎ: 

𝑌𝑟,ℎ = 𝑘(𝑋, 𝑋𝑟) [
𝜃1

⋮
𝜃ℎ

]

𝑇

+ 𝛼ℎ 

A multilabel version of KLR can be achieved by performing the same substitution with softmax instead 

of LR as in Karsmakers, Pelckmans, & Suykens (2007). KLR has been empirically and analytically 

demonstrated as having the similar performance and behavior of an SVM (Karsmakers et al., 2007), 

the main difference being the fact that it requires the entire dataset as opposed to only using the 

support vectors to build a decision margin (Zhu & Hastie, 2005). As such, it is expected that multiclass 

KLR should behave similarly to multiclass SVM approaches (Karsmakers et al., 2007). Currently, no 

applications of KLR (or its multiclass version) are known in recommender systems, but it can potentially 

improve existing LR/Softmax based methods. 

Other recommender systems techniques include Artificial Neural Networks (ANN), such as Multilayer 

Perceptrons (MLP), also known as shallow networks (Goga, Kuyoro, & Goga, 2015). The current state 

of the art in recommender system design is deep learning methods, which are deep versions of ANN 

(Cheng et al., 2016; Covington, Adams, & Sargin, 2016; Koutrika, 2018; H. Wang, Wang, & Yeung, 2015; 

S. Zhang et al., 2017). Both deep and shallow networks can have multiple output nodes that function 

like either multinomial linear regression or multinomial logistic regression. 

2.1.2. Model Evaluation 

Model evaluation in the context of recommender systems includes several different metrics which 

range from multiclass/multilabel versions of traditional machine learning and data mining ones to 

specific profit-centric indicators (Gilotte, Calauzènes, Nedelec, Abraham, & Dollé, 2018; Ju, Choi, Kim, 

& Moon, 2017).  



10 
 

We can divide the evaluation metrics into three main groups: Offline, Online and User Studies (Beel & 

Langer, 2013).  

Offline evaluation metrics are the most commonly employed. It assumes that models can be evaluated 

in terms of prediction/classification accuracy of past item consumption data or ratings. In this context, 

if an item is recommended to a user who hasn’t previously consumed it, we count it as a model failure. 

It’s easy to see that offline metrics are not guaranteed to be realistic, since the fact that an item wasn’t 

previously consumed or rated, doesn’t mean it’s not relevant to that user. 

Online metrics can overcome these issues by testing the recommender system in a production 

environment. In this context we can apply several specific recommender system metrics, usually 

derived from marketing evaluation metrics applied in online advertising and e-commerce (Beel & 

Langer, 2013). The most common metric is the Click-Through Rate (CTR) (Beel & Langer, 2013): 

𝐶𝑇𝑅 =
𝐶𝑙𝑖𝑐𝑘𝑠

𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠
 

Where impressions are the number of impressions of all recommended items, and clicks are the 

number of items that were clicked after being recommended. The assumption of this metric is that a 

clicked item is relevant to the user. While this assumption is not completely realistic, we can argue that 

its closer to reality than most offline evaluation metrics.  

User studies come from the usability and user experience research tradition, which employ survey-

based methods. Several standardized psychometric constructs exist to evaluate recommender 

systems. The ResQues framework proposed by Pu and Chen (2010) includes several constructs that 

can be measured individually using Factor Analysis or jointly using Structural Equation Modeling (SEM) 

with either Partial Least Squares (PLS) or Covariance-based estimation (Ayeh, Au, & Law, 2013). These 

constructs are related to user-perceived qualities, user beliefs, user attitudes and behavioral intentions 

(Pu & Chen, 2010). Other similar frameworks based on SEM have been proposed such as the 

Knijnenburg, Willemsen, Gantner, Soncu, & Newell (2012) model which can be used to measure the 

subjective user experience of a recommender system. These latent psychometric constructs can be 

used to compare different recommendation models from the point of view of the end-user experience. 

We will focus on Offline evaluation since that’s the most common approach. Offline evaluation can be 

thought of as either a classification or a regression (prediction) problem, depending on the type of 

target variable we have (Herlocker, Konstan, Terveen, & Riedl, 2004). In the former, we are usually 

working with binary item consumption, while on the latter, we are usually working with explicit or 

implicit ratings. 

Regression-type metrics for recommender system evaluation include the Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE) and Normalized Root Mean Squared Error (NRMSE) (Katsov, 2018, 

p. 282). In these metrics, we are assuming that the model outputs a prediction �̂�𝑟,ℎ for actual rating 

𝑦𝑟,ℎ by user 𝑟 for item ℎ, resulting in an error term 𝑒𝑟,ℎ such that: 

𝑒𝑟,ℎ = �̂�𝑟,ℎ − 𝑦𝑟,ℎ 

MSE has the following definition: 
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𝑀𝑆𝐸 =
1

|𝑇|
∑ 𝑒2

𝑟,ℎ

(𝑟,ℎ)∈𝑇

 

Where 𝑇 is a matrix of unseen user ratings for items used for model testing. MSE is not always 

convenient because its value cannot be easily compared with the original ratings, since it’s a squared 

value (Katsov, 2018, p. 282). RMSE allows us to overcome this issue: 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 

RMSE was the target metric for the Netflix prize (Bennett & Lanning, 2007), and is currently the most 

popular choice for regression type model evaluation (Szabó, Póczos, & Lőrincz, 2012). NRMSE can now 

be defined as: 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

The advantage of NRMSE is that its value is defined in the range (0,1), which allows us to compare 

models applied to ratings with different scales. 

For classification type models we can employ multiclass/multilabel versions of traditional classification 

metrics, which can usually be done by macro (across classes) or micro (across cases) averaging  

(Tsoumakas & Vlahavas, 2007). Consider a binary evaluation measure 𝑀(𝑡𝑝, 𝑡𝑛, 𝑓𝑝, 𝑓𝑛) that is 

calculated based on the number of true positives (𝑡𝑝), true negatives (𝑡𝑛), false positives (𝑓𝑝) and false 

negatives (𝑓𝑛). Let 𝑡𝑝𝜌, 𝑓𝑝𝜌, 𝑡𝑛𝜌 and 𝑓𝑛𝜌 be the number of true positives, false positives, true 

negatives and false negatives after binary evaluation for a label 𝜌. The macro-averaged and micro-

averaged versions of 𝑀, are calculated as follows, where 𝐿 is the set of labels (items) (Tsoumakas & 

Vlahavas, 2007): 

𝑀𝑚𝑎𝑐𝑟𝑜 =
1

|𝐿|
∑ 𝑀(𝑡𝑝𝜌 , 𝑓𝑝𝜌, 𝑡𝑛𝜌, 𝑓𝑛𝜌)

|𝐿|

𝜌=1

 

𝑀𝑚𝑖𝑐𝑟𝑜 = 𝑀(∑ 𝑡𝑝𝜌

|𝐿|

𝜌=1

, ∑ 𝑓𝑝𝜌

|𝐿|

𝜌=1

, ∑ 𝑡𝑛𝜌

|𝐿|

𝜌=1

, ∑ 𝑓𝑛𝜌

|𝐿|

𝜌=1

) 

A popular metric for recommender system evaluation is the F1-Score (Herlocker et al., 2004) which 

can be defined based on the values of precision and recall: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Where 𝑡𝑝 is the number of true positives (number of relevant recommendations), 𝑓𝑝 is the number of 

false positives (number of irrelevant recommendations) and 𝑓𝑛 is the number of false negatives 

(number of would be relevant items that were not recommended). Logically, and for the sake of 

completeness, we can further define an additional measure 𝑡𝑛 as the number of true negatives 
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(number of would be irrelevant items that were not recommended). These evaluation metrics usually 

assume an offline evaluation setting. 

The most common metric for classification type models is the AUC (Verbeke, Dejaeger, Martens, Hur, 

& Baesens, 2012): 

𝐴𝑈𝐶 = ∫ 𝐹0(𝑠)𝑓1(𝑠)𝑑𝑠
+∞

−∞

 

AUC assumes that a classifier produces a score 𝑠 = 𝑠(𝑥) from the features 𝑥 with a corresponding 

probability density function of these scores for class 𝑘 instances 𝑓𝑘(𝑠) and cumulative distribution 

function 𝐹𝑘(𝑠) with two classes 𝑘 = 0,1. This metric can only be employed to evaluate models that 

produce probability scores such as softmax regression. 

Other related metrics are also used including the Gini coefficient (𝐺𝑖𝑛𝑖 = 2 × 𝐴𝑈𝐶 − 1) and the 

Kolmogorov-Smirnov (KS) statistic which is the maximum distance between a receiver operating curve 

(ROC) and the diagonal at a specific cut-off value (usually 0.5) (Verbeke et al., 2012). 

An empirical study by Forman and Scholz (2009) advises the use of “average AUC” (consistent with the 

previous definition of a Macro measure) and the “F1-Score computed from false and true positives” 

(consistent with the previous definition of a Micro measure) to compute multilabel versions of AUC 

and F1-Score respectively. 

Other popular multiclass classification metrics commonly employed to evaluate recommender systems 

include the Hamming loss and the Jaccard Index. Hamming loss can be defined as the proportion of 

misses (Luaces, Díez, Barranquero, del Coz, & Bahamonde, 2012): 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 =
𝐹𝑃 + 𝐹𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
 

Jaccard Index can be interpreted as a multilabel measure of accuracy based on the already defined 

Jaccard Distance (Luaces et al., 2012): 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
 

Additional evaluation metrics include Diversity, Coverage, Serendipity and Novelty (Katsov, 2018, pp. 

285–288), which originate from desirable recommender system properties (Ge, Delgado-Battenfeld, & 

Jannach, 2010; Vargas & Castells, 2011). Most of these might be applied in both offline and online 

settings. We will review some of the most common measurement approaches. 

Diversity is the ability of the recommender system to produce recommendations that are dissimilar 

(Katsov, 2018, p. 286). To measure diversity, we need to leverage a content-based similarity metric. 

One approach is to extract features from the item’s description/title (using text mining and natural 

language processing techniques), contents (requiring some form of feature extraction from 

multimedia/hypermedia content), or some other properties.  

In alternative, we can also obtain a similarity metric between items by factorizing a user by items matrix 

with the methods we’ve already seen (such as memory-based methods, SVD or even knowledge-based 

rules). Based on this metric we can define a distance function 𝑑𝑖𝑠𝑡 between items: 
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𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) ∈ [0,1] 

𝑑𝑖𝑠𝑡(𝑎, 𝑏) = 𝑑𝑖𝑠𝑡(𝑏, 𝑎) = 1 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) 

The diversity of the set of recommendations for each user can then be defined as the average distance 

between all pairs of recommendations. 

Coverage refers to the percentage of users that the recommender system can give recommendations 

to (Katsov, 2018, p. 289). This is important because of the sparse nature of the data for recommender 

systems, which is also the source of the cold start problem (Schein, Popescul, Ungar, & Pennock, 2002). 

Another view on coverage is related to catalog coverage which is the percentage of the catalog 

merchandise that is being recommended (Katsov, 2018, p. 289): 

𝐶𝑎𝑡𝑎𝑙𝑜𝑔 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
1

|𝒮|
|⋃ 𝑌𝑢

𝑢∈ℛ

| 

Where 𝑌𝑢 is a recommendation list for user 𝑢, |𝒮| is the cardinality of the set of items 𝒮 and ℛ is the 

set of all users. 

Serendipity is a measure of the extent to which recommendations are attractive and surprising (Katsov, 

2018, p. 286). Despite being subjective, heuristic approaches have been suggested based on baseline 

models that produce trivial recommendations (Ge et al., 2010), which are usually simple 

recommendation system approaches. From that baseline, we will create a set of expected items. Any 

item that doesn’t belong to this set will be considered unexpected. We can define a usefulness function 

that returns 1 when a given recommendation is both relevant and unexpected. Serendipity is therefore 

defined as: 

𝑆𝑒𝑟𝑒𝑛𝑑𝑖𝑝𝑖𝑡𝑦 =
∑ 𝑈𝑠𝑒𝑓𝑢𝑙𝑛𝑒𝑠𝑠(𝑖𝑡𝑒𝑚)𝑖𝑡𝑒𝑚 ∈ 𝒮

|𝒮|
 

Recommendations are considered novel if the user is not aware of the recommended items at the 

moment the recommendation is provided (Katsov, 2018, p. 285). Many approaches exist to measure 

novelty: Popularity-based, Distance-based (Vargas & Castells, 2011) and Time-based (Katsov, 2018, p. 

285). Popularity-based novelty measurement takes advantage of the long-tail concept. If a relevant 

recommended item is less popular, we can assume that it might be more novel. Therefore (Vargas & 

Castells, 2011): 

𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦−𝑏𝑎𝑠𝑒𝑑(𝑖𝑡𝑒𝑚, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) = 1 − 𝑝(𝑠𝑒𝑒𝑛|𝑖𝑡𝑒𝑚, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 

Distance-based novelty measurement takes advantage of the item features to define a distance 

measure between items. Then we can leverage the user’s past behavior to measure how novel that 

item might be for a specific user, by considering its past consumption context. Therefore (Vargas & 

Castells, 2011): 

𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑏𝑎𝑠𝑒𝑑(𝑖𝑡𝑒𝑚, 𝑢𝑠𝑒𝑟) = min
𝑝𝑎𝑠𝑡 𝑖𝑡𝑒𝑚 ∈ 𝑢𝑠𝑒𝑟

[1 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑖𝑡𝑒𝑚, 𝑝𝑎𝑠𝑡 𝑖𝑡𝑒𝑚)]   

Time-based novelty measurement assumes that the elapsed time between recommendation and 

action taken on that item by a user indicates its novelty level (Katsov, 2018, p. 285). A larger elapsed 

time means a higher novelty. Therefore: 
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𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝑇𝑖𝑚𝑒−𝑏𝑎𝑠𝑒𝑑(𝑡𝑖𝑡𝑒𝑚) = 𝛾𝑡𝑖𝑡𝑒𝑚 

Where 𝑡𝑖𝑡𝑒𝑚 is the elapsed time between the recommendation of the item and the action, and 𝛾 is a 

time weight parameter. The weight parameter can either be set manually based on the retailer’s 

experience, or empirically by combining past behavioral data with a user-based novelty psychometric 

construct (Pu, Chen, & Hu, 2012). We can therefore use a regression model to estimate the parameter, 

by assuming that the following relationship is true: 

𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝑈𝑠𝑒𝑟−𝑏𝑎𝑠𝑒𝑑(𝑖𝑡𝑒𝑚) = 𝛾𝑡𝑖𝑡𝑒𝑚 

This novelty measurement approach overlaps with the user studies evaluation approach. In e-

commerce settings we can also evaluate the recommender system using profit metrics derived from 

sales: 

𝑃𝑟𝑜𝑓𝑖𝑡 =  ∑ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑆𝑜𝑙𝑑𝑖𝑡𝑒𝑚 × 𝑀𝑎𝑟𝑔𝑖𝑛𝑖𝑡𝑒𝑚

𝑖𝑡𝑒𝑚𝑠

 

In environments where we are not selling items (including email, news, multimedia content 

recommendations, amongst others) this metric cannot be used. In the case of mobile app 

recommendations, most apps are free to download (94.24% in the Android platform, 88.18% in iOS) 

(Statista, 2018), which means that this metric can only be used for the small proportion of paid apps. 

For non-paid items, we need to consider a different approach to profit measurement based on the 

impact of the recommender system on the Customer Lifetime Value (𝐶𝐿𝑉) (Iwata, Saito, & Yamada, 

2008). CLV is commonly used to guide Customer Relationship Management (CRM) processes 

(Blattberg, Kim, & Neslin, 2008, p. 163). 

The revenue associated with each successfully recommended item is the portion of the 𝐶𝐿𝑉 that can 

be attributed to that item. Assuming that the revenue associated with each item is constant for all 

items, then the portion of the 𝐶𝐿𝑉 attributed to each item can be derived from the item consumption 

probability (Iwata et al., 2008). In environments such as mobile app stores, users can perform several 

different actions, but all of these are ultimately related with app consumptions, therefore its plausible 

to assume that app acquisitions are the major component of the 𝐶𝐿𝑉, and that these are heavily 

influenced by recommender systems. 

𝐶𝐿𝑉 can be calculated using several methods. Traditionally 𝐶𝐿𝑉 would be estimated using a Recency, 

Frequency and Monetary (RFM) model to rank users (Gupta et al., 2006). Modern approaches extend 

the concept of RFM to obtain a financial estimation of the 𝐶𝐿𝑉 for each customer.  

One approach to obtaining a global average of 𝐶𝐿𝑉 is to calculate the average of all individual-level 

𝐶𝐿𝑉 values across a database, where the 𝐶𝐿𝑉 for each customer is given by (Blattberg et al., 2008, p. 

108): 

𝐶𝐿𝑉 = ∑
(�̃�𝑡 − 𝐶𝑡)𝑆𝑡

(1 + 𝛿)𝑡−1

∞

𝑡=1

 

Where 𝛿 is the discount rate per time unit 𝑡, �̃�𝑡  is the revenue generated by the user on moment 𝑡, 

𝐶𝑡 is the cost of serving user on moment 𝑡, 𝑆𝑡 is the probability of the customer not churning before 
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moment 𝑡. The RFM model is incorporated into 𝐶𝐿𝑉 through the 𝑆𝑡 (“recency” and “frequency”) and 

�̃�𝑡 (“monetary”).  

Several methods to obtain �̃�𝑡 have been proposed (Blattberg et al., 2008, pp. 130–131): The simplest 

approach is to assume that �̃�𝑡 is constant in all periods based on the individual average or the global 

Average Revenue Per User (ARPU). Trend, causal (based on the user features) and stochastic models 

are also commonly employed. 

To model 𝑆𝑡 = 𝑝(𝑎𝑙𝑖𝑣𝑒) we need a consumer behavior model. Several have been proposed: Beta 

Binomial/NBD (BB-NBD) (Jeuland, Bass, & Wright, 1980), NBD-Dirichlet (Goodhardt, Ehrenberg, & 

Chatfield, 1984), Pareto/NBD (P-NBD) (Schmittlein, Morrison, & Colombo, 1987), Beta-

Geometric/Beta-Binomial (BG-BB) (Fader, Hardie, & Berger, 2004), and Beta-Geometric/NBD (BG-NDB) 

(Fader, Hardie, & Lee, 2005). We will focus our attention on the most recent model by Fader et al. 

(2005), according to which 𝑝(𝑎𝑙𝑖𝑣𝑒) is given by (Fader & Hardie, 2008): 

𝑝(𝑎𝑙𝑖𝑣𝑒|𝑥, 𝑡𝑥, 𝑇, 𝑟, 𝛼, 𝑎, 𝑏) =
1

1 +
𝑎

𝑏 + 𝑥
(

𝛼 + 𝑇
𝛼 + 𝑡𝑥

)
𝑟+𝑥 

Where 𝑥 is the number of transactions observed in the time-period (0, 𝑇] (“frequency”) and 𝑡𝑥(0 <

𝑡𝑥 ≤  𝑇) is the time of the last transaction (“recency”). The model’s four parameters 𝑟, 𝛼, 𝑎, 𝑏 can be 

estimated using maximum likelihood estimation from the likelihood function: 

𝐿(𝑟, 𝛼, 𝑎, 𝑏 |𝑋 =  𝑥, 𝑡𝑥 , 𝑇)

=
𝐵(𝑎, 𝑏 +  𝑥)

𝐵(𝑎, 𝑏)

𝛤(𝑟 +  𝑥)𝛼𝑟

𝛤(𝑟)(𝛼 + 𝑇)𝑟+𝑥
 +  𝛿𝑥>0

𝐵(𝑎 + 1, 𝑏 +  𝑥 −  1)

𝐵(𝑎, 𝑏)

𝛤(𝑟 +  𝑥)𝛼𝑟

𝛤(𝑟)(𝛼 + 𝑡𝑥)𝑟+𝑥
 

Suppose we have a sample of 𝑁 customers, where customer 𝑖 had 𝑋𝑖  =  𝑥𝑖  transactions in the period 

(0, 𝑇𝑖], with the last transaction occurring at 𝑡𝑥𝑖
. The sample log-likelihood function is: 

𝐿𝐿(𝑟, 𝛼, 𝑎, 𝑏) = ∑ 𝑙𝑛 𝐿(𝑟, 𝛼, 𝑎, 𝑏 |𝑋𝑖  =  𝑥𝑖, 𝑡𝑥𝑖
 , 𝑇𝑖)

𝑁

𝑖=1

 

By maximizing this function using standard optimization methods, we can obtain the parameter 

estimates. While BG/NBD model and its extensions are the current state of the art, it requires 

individual-level data to estimate the parameters. The already mentioned NBD-Dirichlet model 

(Goodhardt et al., 1984) can be an alternative to this model with simpler data requirements. 

NBD-Dirichlet results from the combination of two distributions: the Negative Binomial Distribution 

(NBD) and the Dirichlet Multinomial Distribution (DMD) (Dawes, Meyer-Waarden, & Driesener, 2015). 

The NBD part describes the category buying behavior of individuals in a market, while the DMD part 

models the probability of each individual in the market purchasing a specific brand (Goodhardt et al., 

1984). The resulting model is therefore given by (Goodhardt et al., 1984): 

𝑝(𝑟𝑗|𝑛) =
( 𝑛

𝑟𝑗
) Β(𝛼𝑗 + 𝑟𝑗, 𝑆 − 𝛼𝑗 + 𝑛 − 𝑟𝑗)

Β(α𝑗, 𝑆 − α𝑗)
 



16 
 

Where 𝑝(𝑟𝑗|𝑛) can be interpreted in the context of online retail as the probability of using 𝑟𝑗 times the 

retailer 𝑗 amongst 𝑛 usages of the retailer category, 𝛼𝑗 is the usage propensity for retailer 𝑗, 𝑆 is the 

diversity of usage behavior in the category (𝑆 = ∑ α𝑗𝑗 ) (Bound, 2009). We can assume that 𝑀𝑆𝑗 = 𝛼𝑗/𝑆 

where 𝑀𝑆𝑗 is the market share of the retailer 𝑗 (Wright, Sharp, & Sharp, 2002).  

Β is the Beta function such that: 

Β(𝑝, 𝑞) =
Γ(𝑝)Γ(𝑞)

Γ(𝑝 + 𝑞)
 

Γ is the Gamma function such that:  

Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡, 𝑥 > 0
∞

0

 

Accurate estimates for all 𝛼𝑗 can be obtained by fitting the DMD for all retailers 𝐽 in the market using 

panel data such that (Wrigley & Dunn, 1985): 

𝑝(𝑟1, 𝑟2, … , 𝑟𝑗|𝑛) = (
𝑛

𝑟1, 𝑟2, … , 𝑟𝑗
)

Γ(𝑆)

Γ(𝑆 + 𝑛)
∏ [

Γ(𝛼𝑗 + 𝑟𝑗)

Γ(𝛼𝑗)
]

𝐽

𝑗=1
 

Model estimation can be done using the original “mean and zero” method proposed by Goodhardt 

(1984) or maximum likelihood (Wrigley & Dunn, 1985). Intelligence providers such as App Annie and 

42Matters provide app usage intelligence data for the mobile industry, which can be used to estimate 

these parameters for all platforms. An Excel workbook is available to facilitate the model estimation 

using maximum likelihood (Rungie, 2003).  

An R package is also available (F. Chen, 2016) which can be used to obtain estimates of 𝑆 by having as 

input the platform category penetration (category users in the population), platform penetration 

(users of the specific platform in the population), category usage frequency and the market shares of 

the different platforms. We can then obtain the platform usage propensity through its market share 

(𝑀𝑆𝑗 = 𝛼𝑗/𝑆). The required input information can be found though several industry publications and 

market intelligence providers such as Statista and GSMA Mobile Economy. 

Under this set of assumptions 𝑝(𝑎𝑙𝑖𝑣𝑒) is 𝑝(𝑟𝑗 > 0|𝑛), where 𝑛 is the average usage frequency of the 

retailer category. NBD-Dirichlet is a realistic assumption, since online consumer behavior in the context 

of mobile app stores has been shown to follow the Double Jeopardy Law  and Natural Monopoly effects 

described by the NBD-Dirichlet model (Zhong & Michahelles, 2013). 

2.1.3. Feature Extraction 

As we’ve seen, model-based approaches to recommender system design can leverage several types of 

user and context features. We will review some of the most common feature extraction techniques 

that are relevant for recommender system design in the context of online retailing. Given its social 

nature, many online retailers generate large amounts of user-generated content (such as comments, 

reviews, ratings, and likes), keyword search data, social network data. Its interactive and mobile 

features also generate behavioral data (such as touchstream/clickstream data), geographic coordinate 

data and technographic (device-related) data.  
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Behavioral data (touchstream/clickstream) along with technographic data, is usually more structured 

and easier to quantify. However, in Big Data context also becomes difficult to manage, and may require 

feature extraction techniques to reduce its dimensionality. Classic autoencoders are widely used for 

this purpose (Hinton & Salakhutdinov, 2006). Autoencoders are based on the Restricted Boltzmann 

Machine algorithm, which can be interpreted as a two-layer neural network (a visible and a hidden 

layer) where each unit takes a binary value ∈ [0,1].  The nodes from the visible layer serve as input to 

the hidden layer. The energy of a Boltzmann machine with 𝑁 nodes is defined by (Osogami, 2017): 

𝐸𝜃(𝑥) = − ∑ 𝑏𝑖𝑥𝑖

𝑁

𝑖=1

− ∑ ∑ 𝑤𝑖,𝑗𝑥𝑖𝑥𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

Where 𝑥 is a random configuration of binary states for the nodes, 𝑏𝑖 is its bias, 𝑤𝑖,𝑗 is the weight 

between a pair of nodes 𝑖 and 𝑗. The parameters are collectively denoted by 

𝜃 = (b1, . . . , b𝑁 , w1,2, . . . , w𝑁−1,𝑁) 

From the energy we can obtain a probability distribution over binary patterns (Osogami, 2017): 

𝑃𝜃(𝑥)  =  
𝑒𝑥𝑝 (−𝐸𝜃(𝑥))

∑ 𝑒𝑥𝑝 (−𝐸𝜃(�̃�))�̃�
 

Where the summation with respect to �̃� is over all possible 𝑁 bit binary values. By optimally setting 

the values of 𝜃, we can approximate 𝑃𝑡𝑎𝑟𝑔𝑒𝑡(. ) with 𝑃𝜃(. ), meaning that we can reconstruct an input 

from a compressed representation. Hinton (2006) demonstrated that Autoencoders have superior 

reconstruction power when compared to Principal Components Analysis (PCA), the most commonly 

used dimensionality reduction method. Thus, numerical data inputs can effectively be reduced to a 

smaller number of orthogonal features. 

From the types of data previously described, user-generated content and keyword search data are 

unstructured. Before this data can be operationalized, we need to somehow quantify this data. 

Autoencoder inspired feature extraction methods have been proposed for this, such as Doc2Vec (Le & 

Mikolov, 2014). This method, in turn, is based on a previous word embedding method called Word2Vec 

(Mikolov, Chen, Corrado, & Dean, 2013). Word2Vec consists of a softmax regression model that 

predicts wi given the word wj using a softmax regression model trained on 𝑛-grams of a vocabulary 𝑉 

such that (Apache, 2017): 

𝑝(𝑤𝑖|𝑤𝑗) =
𝑒𝑥𝑝(𝑢𝑤

𝑖

⊤ 𝑣𝑤
𝑗

)

∑ 𝑒𝑥𝑝(𝑢𝑙
⊤𝑣𝑤

𝑗

)𝑉
𝑙=1

 

𝑢𝑤
𝑖

− vector representation of the word 𝑊𝑖 

𝑣𝑤
𝑗

− vector representation of the word 𝑊𝑗 

The resulting model allows us to assess which of the V are closest in the semantic space using this 

cosine distance (the probability of co-occurrence given by the model). If two words are close they can 

be considered to have identical meanings, which in linguistic terms equals being synonyms. Doc2Vec 

extends this very same methodology to documents. 
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Some mobile app stores possess social follower features, resulting in social network data. Social 

network data is also not structured in the traditional relational database sense, which makes it difficult 

to represent in SQL tables. Therefore, we can assume that social network data is semi-structured. Its 

quantification traditionally requires social network analysis techniques, that are usually performed on 

the entire graph. Popular hand-crafted node-level features include centrality measures (Bloch, 

Jackson, & Tebaldi, 2016) such as degree (indegree and outdegree), closeness, betweenness, 

eigenvector, Katz, PageRank, diffusion, and percolation (Piraveenan, Prokopenko, & Hossain, 2013). 

These social network features have had some applications in recommender systems (Li, Wu, & Lai, 

2013). Other more general methods of feature extraction, based on Word2Vec and Random Walk 

sampling have been proposed such as DeepWalk (Perozzi, Al-Rfou, & Skiena, 2014). DeepWalk, like 

PageRank, is a very efficient technique for social network feature extraction at Big Data scale, while 

also having the advantage of providing general features which can be potentially more useful for 

recommender systems. Random walks are generated for each starting node, resulting in text 

sentences, whose features can be extracted using Word2Vec. Recently, a more general framework has 

emerged from DeepWalk, called Content-enhanced Network Representation Learning, or CENE (Sun, 

Guo, Ding, & Liu, 2016). This new method allows us to extract features from social graphs where each 

node is associated with textual content (with the possibility of also being extended to other types of 

multimedia content). 

The feature extraction techniques previously mentioned are useful in extracting orthogonal features 

in the online retail context. Deep learning methods are currently the state of the art in recommender 

system design, that can leverage all these features to produce recommendations. 

2.2. DEEP LEARNING 

Deep Learning refers to a specific type of artificial neural network models, capable of performing 

feature extraction as well as feature processing (LeCun, Bengio, & Hinton, 2015). Thus, deep learning 

can be defined in opposition to shallow learning, which refers to single data processing layer, a 

category that includes most traditional machine-learning methods (LeCun et al., 2015), but it’s usually 

employed to refer to traditional ANNs. While shallow models have been theoretically demonstrated 

as being capable of performing the same tasks as deep models (Cybenko, 1989; Leshno, Lin, Pinkus, & 

Schocken, 1993), recent research has revealed that to approximate the same functions a very wide 

shallow network with an exponentially larger number of nodes may be required (Montúfar, Pascanu, 

Cho, & Bengio, 2014). These results suggest that deep learning networks may be the only feasible 

option for efficient approximation with finite datasets in complex nonlinear systems (Goodfellow et 

al., 2016, p. 198). 

As we’ve seen, deep learning originated from shallow learning, which usually means ANNs. These 

models originated from computational neuroscience, as a method of modeling the behavior of 

neurons. The first model of its type was the perceptron (Rosenblatt, 1958). This type of model 

simulates the behavior of the dendrites (neuron inputs), each with different weights, meant to model 

the effects of long-term potentiation and depression needed for plasticity and learning in the brain 

(Michmizos, Koutsouraki, Asprodini, & Baloyannis, 2011). The perceptron algorithm then simulates the 

neuronal response by either outputting -1 or 1 (meant to model neuronal spikes) if a given threshold 

is reached.  
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Figure 1 – Perceptron 

Later versions of the model were created with more than one layer, called multilayer perceptrons 

(Hornik, 1991). These networks had an input layer, and output layer and one hidden layer. Each 

perceptron in the input and hidden layers need to have a continuous output, usually modeled through 

sigmoid functions. 

 

 

 

 

 

 

Models with a single layer are referred to as shallow networks. Models with multiple hidden layers are 

deep networks. As we’ve seen these have different properties, such as being able to more effectively 

learn more complex relationships with fewer computational resources and data. A seminal work in this 

field was the application of a deep network to image classification (Krizhevsky, Sutskever, & Hinton, 

2012). 

 

Figure 3 – Deep Network 

The quintessential deep learning model is the feed-forward network (FFN). These are capable of 

learning complex nonlinear relationships from latitudinal raw features using backpropagation and 

gradient descent and its variants. Extensions have been proposed for autocorrelated data such as 

convolutional neural networks (CNN) (Rowley, Baluja, & Kanade, 1995). 

Deep-learning models have also been combined with other types of machine learning models, 

including ensemble methods, resulting in models such as the Deep Neural Decision Forests 

∑ Output 
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∑ 

∑ 
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Figure 2 – Shallow Network (Multilayer Perceptron) 
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(Kontschieder, Fiterau, Criminisi, & Bulo, 2015) and Deep SVM (Abdullah, Veltkamp, & Wiering, 2009; 

Tang, 2013). 

More recently, deep learning models have also found use in temporal-sequence modeling. The 

superiority of deep networks in sequence feature extraction has been demonstrated using methods 

such as recurrent neural networks (RNN) (Elman, 1990), long short-memory (LSTM) (Hochreiter & 

Urgen Schmidhuber, 1997) and more recently attention and memory augmented networks (Olah & 

Carter, 2016). 

Memory networks were introduced by Weston, Chopra, & Bordes (2014) as a type of neural network 

with reading and writing capabilities from a long-term memory cell (Goodfellow et al., 2016). These 

networks are part of a larger group of attention-based networks (Chorowski, Bahdanau, Serdyuk, Cho, 

& Bengio, 2015). Following the introduction of memory networks, Graves (2014) introduced the Neural 

Turing Machine (NTM), inspired by the Turing Machine (Turing, 1937) and von Neumann Architecture 

(Neumann, 1945). NTM combines a neural network controller (analogous to a CPU) and an addressing 

scheme for an external memory. The controller may be an RNN or LSTM. In this latter case, we can 

consider that its longer short-term memory is analogous to classical processor registers (Graves et al., 

2014).  The current state of the art in memory networks is the Differentiable Neural Computer, or DNC 

(Graves et al., 2016), which results in a hybrid model that combines neural and computational 

processing capabilities. Other types of memory networks have also been proposed. A continuous 

version of the NTM has been proposed based on the algebraic Lie-group theory, which is the Lie-Access 

Neural Turing Machine, or LANTM (G. Yang, 2016). This architecture introduces a continuous 

addressing scheme which allows these types of networks to become differentiable end-to-end.  

These deep-learning models have been demonstrated as being more efficient than traditional 

sequence feature extraction techniques such as fast-Fourier transform (Polat & Güneş, 2007) and 

principal components analysis (PCA) (Gavrilov, Anguelov, Indyk, & Motwani, 2000). Deep learning 

networks also have limitations. One of the main limitations is the amount of computational power 

required to train them. Therefore, most deep learning networks are trained in parallel or distributed 

environments.  

Parallel training of deep networks is usually done through General-Purpose Graphics Processing Units 

(GP-GPUs), given that it significantly reduces training time, making it practical (Campos et al., 2017). 

Amongst these are CUDA GPUs developed by NVIDIA. CUDA was the first framework for general 

purpose computing applications of GPUs (Nickolls & Dally, 2010). GPUs are like CPUs in the sense that 

both are examples of von Neumann Architectures, where there is a separate controller and memory 

unit. Von Neumann Architectures have long been demonstrated as physical examples of Turing 

Machines, capable of running any algorithm. The main difference between CPUs and GPUs is that GPUs 

possess multiple parallel controllers with a shared memory unit. While each core is much simpler than 

current CPU cores, these are optimized for numerical computations, resulting in increased 

performance that involves large vector operations (such as deep network training that requires vector 

convolution). Several software packages and libraries have been developed for deep learning based 

on these such as Tensorflow (Abadi et al., 2016) and Caffe (Jia et al., 2014).  

In the distributed side, Apache Hadoop and Apache Spark are the most widely used ecosystems for 

distributed computation in clusters, and were originally developed as distributed Big Data platforms. 

Distributed GPUs are also increasingly being used in the industry to train deep networks (Hazelwood 
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et al., 2018). These are usually made possible through Hadoop or Spark clusters where each node has 

both CPU and GPU cores. Two levels of parallelization are made possible through this cluster 

architecture. This is an example of a distributed parallelization paradigm which can potentially help 

solve many performance issues in the future. These are however notoriously difficult to program and 

don’t currently have widespread adoption. 

2.3.  BIG DATA 

The term Big Data, as we’ve seen, usually refers to data that conforms to the 3V’s: Volume, Velocity, 

Variety (Sivarajah et al., 2017). During the last few decades, the amount of data generated by 

businesses has increased significantly, resulting in the need for specific technology to store and process 

this data (Oussous, Benjelloun, Ait Lahcen, & Belfkih, 2017). In the context of online platforms, mainly 

due to its network effects and many-to-many relationships, Big Data becomes the norm, which 

explains why platforms such as Facebook are storing 600 TB per day (Vagata & Wilfong, 2014). Hadoop 

is widely used to develop Big Data applications in the industry (M. Chen, Mao, & Liu, 2014). This system 

has two main components built in Java (Landset, Khoshgoftaar, Richter, & Hasanin, 2015):  

1. Hadoop Distributed File System (HDFS) – a file system created to store large amounts of data. 

2. MapReduce - distributed data processing engine, based on a programming model with only 

two functions (Map and Reduce) (M. Chen et al., 2014). 

Several other complementary technologies were developed around this, resulting in what is today 

referred to as the Hadoop Ecosystem. These technologies have extended Hadoop to include SQL-like 

data querying and data flow tools (Hive and Pig) (Oussous et al., 2017), NoSQL database systems (such 

as HBase and MongoDB) and a variety of other tools for stream processing (Storm), machine learning 

(MLib), graph analytics (GraphX), data integration (Sqoop), workflow (Oozie), coordination 

(Zookeeper) and web interface (Hue) (Landset et al., 2015). 

Spark is an alternative to the original MapReduce data processing engine which has been gaining 

popularity (Twentyman, 2016), which may be explained by its increased ease of use (it currently 

provides several APIs for Java, Python, and R) and performance, made possible by its in-memory 

processing features (Shi et al., 2015). Spark can be used to deploy pre-trained machine learning models 

on Big Data. Spark jobs follow the same basic programming model as MapReduce and are made up of 

different stages related to the distinct operations that an application executes sequentially (K. Wang 

& Khan, 2015). Each stage is made up of several tasks that can be executed in parallel across the nodes 

of the cluster (K. Wang & Khan, 2015). 

The Hadoop ecosystem with its filesystem-based data storage also provides a solution to large-scale 

analysis of unstructured data, which was difficult in SQL environments. These new types of data 

architectures are centered on the data lake, as opposed to the traditional data warehouse, which was 

made for structured data environments. Data lakes use different Hadoop ecosystem tools to manage 

different levels of data structure: from raw files to SQL-like tables (O’Leary, 2014). 
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3. METHODOLOGY 

To answer the research questions of this study, an empirical study was conducted on a Portuguese 

Android app store, Aptoide. This platform is presented as a “social app store” where some common 

online social network features exist. Users can create their profiles and follow each other, they have 

access to a microblogging feature (through the “apps timeline” feature which was still active at the 

time of the dataset extraction), user-generated comments and app reviews. Additionally, users can 

download and share apps with their followers. It also has a search engine to find Android apps.  

 

Several different models will be compared using a novel profit-centric metric. The different deep 

learning models compared were defined to answer the three specific research questions. This means 

that we will do model comparisons across three levels: 1. Feature Embedding, 2. Data Sources and 3. 

Scoring. 

Figure 4 – Recommendations displayed in 
the Aptoide mobile app home. 
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3.1. PROPOSED MODEL 

We propose a generic architecture for mobile app recommendations. The basic architecture of our 

model has three basic layers: feature embedding, feature extraction, and scoring. The proposed model 

is a fully connected deep network designed to score mobile apps for users using aggregated features 

at the user level. The raw data can include behavioral, social-network and user-generated content 

data.  

 

Figure 5 – Deep-Learning Architecture Overview 

The three first layers are fully connected components with Relu activation functions. The embedding 

layer is pre-trained using a combined Word2Vec and Autoencoder procedure from both numerical raw 

features and one-hot encoded categorical variables. The resulting embeddings are fed into the 

following layer. 

The feature extraction layers take the embedded features for each user in each moment and performs 

a dimensionality reduction.  

These features will be used as input to the final scoring layer. Two variants of the architecture can be 

constructed using different scoring methods.  

The standard approach is to employ Softmax. As a novel approach to recommender system design, we 

propose an alternative multiclass classification method based on Kernel methods. For this purpose, we 

will use Tensorflow’s implementation of Kernel methods, which is based on Random Fourier Features 

(RFF) (Rahimi & Recht, 2007). By combining RFF with a softmax output node, we can implement 

Multiclass Kernel Logistic Regression (M-KLR) (Karsmakers et al., 2007). Tensorflow doesn’t currently 

offer a differentiable SVM or multiclass SVM implementation, but Kernel Logistic Regression (KLR) has 

been empirically and analytically demonstrated as having the similar performance and behavior as 

SVM (Karsmakers et al., 2007), the main difference being the fact that it requires the entire dataset as 

opposed to only using support vectors to build a decision margin (Zhu & Hastie, 2005). As such, it is 

expected that M-KLR should behave similarly to multiclass SVM approaches. 

 
 

Scoring Method 

Scores 

Scoring 
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This proposed architecture can serve as the foundation for the research design described below, where 

different variants of this architecture will be empirically tested. 

3.2. EXPERIMENTAL SETUP 

Three specific research questions can be formulated to satisfy the three specific research objectives 

previously presented: 

1. What is the impact of using unstructured data versus only using structured data in the model 

performance? 

2. What is the impact of embedding layer pre-training in the model performance? 

3. How efficient are Kernel-based methods in the scoring layer? 

The basic architecture to be tested is the recommender system architecture previously described. 

Different components will be omitted across models to answer each research question. The following 

table presents a description of the four models: 

 Model 1 
Three-layer network with fully connected (FC) feature embedding layer (numeric 

features), feature extraction layer, softmax output and no pretraining. 

 Model 2 
Four-layer network with one layer of FC feature embedding (numeric and categorical 

features) and two feature extraction layers, softmax output and no pretraining. 

 Model 3 
Four-layer network with one FC feature embedding (numeric and categorical features) 

and two feature extraction layers, softmax output and embedding pretraining. 

 Model 4 
Four-layer network with one FC feature embedding (numeric and categorical features) 

and two feature extraction layers, kernel softmax output and embedding pretraining. 

 

The task in our experiment consists of scoring a batch of 10 apps for each user as a multilabel 

classification problem. We recommend an app if the score is over a threshold (commonly 0.5). If the 

user has previously acquired that app we consider it a true positive. If not, we consider it a false 

positive. The same logic is applied to negatives. Our research questions will be answered by the results 

of each model on this task. 

To answer research question 1, we will compare the performance of models 1 and 2. To answer 

research question 2, we will compare the performance of models 2 and 3. To answer research question 

3 we will compare the performance of models 3 and 4. The Python source code for the experiment is 

available at https://github.com/lgpintomkt/MasterThesis. 

  

https://github.com/lgpintomkt/MasterThesis
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                     Figure 8 – Architecture of Model 4 

 

  

Scores Scores 

 S  

Scores 

 S 

K 

S 

 
S Softmax 

Kernel Mapping K 

Fully Connected 

Scoring Scoring 

Scoring 

20 units 

20 units 

659 features 

30 units 

20 units 

60 units 

Kernel Size = 3000 

10 units 10 units 

10 units 

172 features 

30 units 

659 features 

30 units 

60 units 

Figure 7 – Architecture of Model 1 Figure 6 – Architecture of Model 2 and 3 



26 
 

3.3. MODEL EVALUATION 

Our base model is a classification style model that provides probability scores for items. The different 

variations will be compared in an offline setting. Therefore, standard recommender system metrics 

such as Hamming Loss and Jaccard Index along with averaged versions of AUC, Precision, Recall and 

F1-Score can be employed to compare model performance. In the case of AUC, we will employ Macro 

averaging, while in the case of F1-Score, Precision and Recall we will use Micro-averaging consistent 

with the results of Forman and Scholz (2009). An additional Macro average F1-Score metric will also 

be included for comparison. 

We propose an additional novel offline profit-based metric based on the concept of the estimated 

Average App Download Value (�̂�𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑) which is derived from CLV metrics and the NBD-Dirichlet 

model (full mathematical derivation included in the Appendix A).  

We considered that any true positive results in an increment of +�̂�𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 (revenue) while any false 

positive is counted as decrement of −�̂�𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 (opportunity cost). Additional cost variables were 

added to compare the efficiency of each models considering the model training, validation, testing and 

deployment: 

�̂�𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 = ∑
𝑛𝐷(�̅�𝑡 − 𝐶�̅�)[Β(α𝑗, 𝑆 − α𝑗) − Β(𝛼𝑗, 𝑆 − 𝛼𝑗 + 𝑛)]Β(𝛼𝑗 + 1, 𝑆 − 𝛼𝑗 + 𝑛 − 1)

(1 + 𝛿)𝑡−1Β(α𝑗, 𝑆 − α𝑗)
2

ℎ

𝑡=1

 

𝑃𝑟𝑜𝑓𝑖𝑡𝑚𝑜𝑑𝑒𝑙 = (𝑈𝜏𝑚𝑜𝑑𝑒𝑙 − 𝑈𝜑𝑚𝑜𝑑𝑒𝑙)�̂�𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 − 𝑡𝑈𝐶𝑜𝑠𝑡𝑚𝑜𝑑𝑒𝑙 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 − 𝐶𝑜𝑠𝑡 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

𝑡𝑒𝑠𝑡𝑖𝑛𝑔

 

The value for 𝑈 corresponds to the size of the testing set. The parameters 𝛼,𝐷, �̅�𝑡 , 𝐶�̅�, 𝛿 and ℎ were 

obtained from internal Aptoide data. The values for 𝑛 = 13.52 and 𝑆 = 29.88 were estimated from 

recent public industry reports (App Annie, 2018). The values for 𝜏𝑚𝑜𝑑𝑒𝑙 (true positive rate) and  𝜑𝑚𝑜𝑑𝑒𝑙 

(false positive rate) come from the performance of each model during the testing stage.  

The values for 𝐶𝑜𝑠𝑡𝑚𝑜𝑑𝑒𝑙 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 and 𝐶𝑜𝑠𝑡 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

𝑡𝑒𝑠𝑡𝑖𝑛𝑔

come from the cloud platforms hourly costs 

that will be discussed in the following sections. 

The deployed model execution time (𝑡) will be estimated using a separate experiment conducted on a 

Spark environment. In this case, we are interested in the expected execution time for the entire Spark 

job associated with the model deployment. Remember that Spark jobs are made of multiple stages, 

and each stage contains several tasks running in parallel in a distributed manner (K. Wang & Khan, 

2015). The Tensorflow model to be deployed is encapsulated in an object that will require only a single 

stage, with several tasks. The total job execution time is therefore given by the following expressions 

(K. Wang & Khan, 2015): 

𝑃 = ∑ 𝐶𝑜𝑟𝑒𝑁𝑢𝑚𝑖

𝐻

𝑖=1

 

𝐽𝑜𝑏𝑇𝑖𝑚𝑒 =  𝐽𝑜𝑏𝑆𝑡𝑎𝑟𝑡𝑢𝑝 +  𝑆𝑡𝑎𝑔𝑒𝑇𝑖𝑚𝑒 +  𝐽𝑜𝑏𝐶𝑙𝑒𝑎𝑛𝑢𝑝 



27 
 

𝑆𝑡𝑎𝑔𝑒𝑇𝑖𝑚𝑒 = 𝑆𝑡𝑎𝑔𝑒𝑆𝑡𝑎𝑟𝑡𝑢𝑝 + 𝑚𝑎𝑥𝑣=1
𝑃 ∑ 𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒𝑣,𝑖

𝑅𝑣

𝑖=1

 + 𝑆𝑡𝑎𝑔𝑒𝐶𝑙𝑒𝑎𝑛𝑢𝑝 

Where 𝐶𝑜𝑟𝑒𝑁𝑢𝑚 is the number of CPU cores of working node 𝑖 and 𝐻 is the number of working nodes 

in the cluster, 𝑅𝑣 is the number of sequential tasks executed on CPU core 𝑣 and 𝑃 is the total number 

of CPU cores in the Spark cluster. The number of sequential tasks 𝑅𝑣 under these conditions will be 

the number of user batches (RDD partitions) included in the testing experiment divided by the number 

of CPU cores. We can separate the total job time in two components as such: 

𝑍 = 𝐽𝑜𝑏𝑆𝑡𝑎𝑟𝑡𝑢𝑝 + 𝑆𝑡𝑎𝑔𝑒𝑆𝑡𝑎𝑟𝑡𝑢𝑝 + 𝑆𝑡𝑎𝑔𝑒𝐶𝑙𝑒𝑎𝑛𝑢𝑝 + 𝐽𝑜𝑏𝐶𝑙𝑒𝑎𝑛𝑢𝑝 

𝑉 = 𝑚𝑎𝑥𝑣=1
𝑃 ∑ 𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒𝑣,𝑖

𝑅𝑣

𝑖=1

 

𝐽𝑜𝑏𝑇𝑖𝑚𝑒 = 𝑍 +  𝑉 

Since this experiment is to be executed in a single machine cluster we will simulate the typical industrial 

cluster configurations, by estimating the 𝑉 and 𝑍 components using Ψ sequential trials (the number 

of trials meant to simulate the number of nodes in the cluster). To simplify the calculations, we will 

employ a single processing CPU core. We can define two finite sets 𝒱 = {v1, … vΨ} and 𝒵 = {z1, … zΨ} 

which represent the Ψ observations of 𝑍 and 𝑉. Each element of 𝒱 represents the sum of all task 

durations in the trial. From these, we can define two estimators for the actual values. For 𝑍 we are 

looking for the expected value 𝜇(𝑍). For 𝑉 we are looking for the maximum expected value 𝜇∗(𝑉), 

which can be estimated using the maximum estimator (ME) (van Hasselt, 2013). Therefore, we have: 

𝑉 ≈  �̂� ≡ �̂�∗(𝑉)  ≡  max (𝒱) 

𝑍 ≈  �̂� ≡ �̂�(𝑍) ≡
∑ 𝒵

|𝒵|
 

The final �̂� will then be given by: 

�̂� = max (𝒱) +
∑ 𝒵

|𝒵|
 

To simulate the typical Big Data setups, we will assume Ψ = 12. This cluster size was the same used 

by K. Wang & Khan (2015) in their experiment, and consistent with the reported industry best practices 

(Fujitsu, 2017). Even though much larger cluster sizes may occur for specific tasks (Apache Foundation, 

2018a), these do not appear to be common. The runtimes were extracted from the Spark Web UI which 

displays runtimes for tasks, stages, and jobs. We will assume 𝜉 = 2.958 𝑈𝑆𝐷/ℎ𝑜𝑢𝑟 since it’s the 

current pricing of a general purpose m5 12 node cluster on the most popular infrastructure provider 

(AWS), which includes both the EC2 and EMR costs (Amazon Web Services, 2018). 
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3.4. DATASET DETAILS 

3.4.1. Raw Data 

The dataset employed to train and test the different models was extracted from the Aptoide’s Big Data 

lake running on Amazon Web Services (AWS). Table 1 below lists the features available on the dataset.  

Table 1 – Features 

Geographic2 Demographic Technographic Behavioral Social 

Latitude 
Longitude 

Language Android Version 
Device Model 

# Downloads 
# Searches 
# Clicks 
App Downloads 
Search Queries 
Clicked Items 

Social Network Topology 

 

3.4.2. Feature Engineering 

As previously stated, the raw features were subjected to a feature engineering process which will be 

described in the following section. 

The geographic features were stored as latitude/longitude coordinates (in degrees) for each user, 

however, these cannot be fed directly to a deep learning model. A method similar to Locally Linear 

Embedding with Geodesic Distance (Varini, Degenhard, & Nattkemper, 2005), based on classical 

Multidimensional Scaling (MDS) and KNN was employed to extract usable features. The first step was 

to convert the coordinates in degrees to radians. Once in radian format, a random subsample of 40.000 

users was taken from the original sample. From these, a validation and test subsample were also 

extracted, each being 15% of the overall subsample, with the remaining 70% were used for training. 

A distance matrix between all users on the subsample was computed. The employed distance metric 

was the implementation of the Karney geodesic distance (2013) available on the Python geocoding 

library GeoPy. Karney’s method is currently the state of the art in geodesy, and its widely used to 

estimate the distance between two latitude/longitude pairs, building upon earlier methods such as 

Vincenty’s formulae (1975). The next step was the application of Singular Value Decomposition (SVD) 

to the distance matrix, where two eigenvectors were retained. Finally, the embedding was extended 

to the entire dataset using KNN regression for each eigenvector, where the best K parameter was 

found to be 5. To assess goodness of fit, the average R2 of both dimensions was used to evaluate 

distance reconstruction quality on the test set. The final R2 value was 0.989, indicating a good feature 

embedding accuracy. This very high goodness of fit might be explained by having only city-level 

geographic coordinates, resulting in a perfect coordinate overlap between nearby users. 

For the demographic and technographic features, the top 99 most frequent occurrences for each 

variable were extracted. A 100th feature was included to represent the “other” hypothesis. A one-hot 

encoded vector was computed for each user.  

The behavioral features included clickstream/touchstream variables, search queries, and app 

download data. From these, app download data were categorical (the user either downloaded or not 

                                                           
2 The coordinates for each user are the coordinates of the centre of each user’s first login city. 



29 
 

a certain app), and the same procedure of the demographic/technographic features was applied. The 

clickstream data was encoded in a manner consistent with the tidy data approach (Wickham, 2014), 

where a column encoded the number of clicks/touches of each user, and other columns encoded the 

percentage of those clicks that were of a certain category/type.  

The search query data was subjected to a more complex procedure. The objective was to obtain a 

categorical one-hot encoding. However, such an encoding should reflect the similarity of mistyped 

terms or slightly different terms that may refer to the same intent. The approach we followed was 

derived from standard procedures applied in Natural Language Processing (NLP) based on spell-

checking dictionaries (Lehal, 2007). The approach here relied on building a dictionary that would be 

used to perform one-hot encoding of the search terms. To build this dictionary a sample of the most 

common 10.000 terms was extracted. A distance matrix was computed for all terms using Damerau-

Levenshtein distance. An MDS procedure was then applied to this matrix, where two dimensions were 

retained. Using these dimensions, a hierarchical clustering procedure was applied, using a height cutoff 

of 12, resulting in a total of 100 clusters. The final dictionary was built by extracting the most common 

term from each cluster. The spell-checking procedure was applied to the entire data set by replacing 

each term with the most similar term according to the Damerau-Levenshtein distance. The search 

terms employed by the users were then one-hot encoded using the dictionary entries. 

The feature extraction for the social network topology data was done using a procedure derived from 

the DeepWalk method already described. (Perozzi et al., 2014). A random walking was done on this 

network, with walk length 10, and 0% restarting probability. The resulting random walks allowed us to 

generate a one-hot encoded vector for each user based on the top 100 most popular profile IDs 

following a bag-of-words logic. Two centrality measures were also computed and added to the final 

features: indegree and outdegree. These two features correspond to the number of followers and 

followed respectively, and capture some additional global network properties that are not so well 

captured by the random walking procedure (Cui, Wang, Pei, & Zhu, 2017; Dalmia & Gupta, 2018). 

The pre-training procedure for the network was the naïve method described in the CENE experiments 

(Sun et al., 2016) since it was reported to give good results. The same logic of CENE was followed, 

where we assumed to be observing a directed network where each user is associated not only with 

other user profiles but also apps, search queries, device models, Android versions, and languages. N-

grams were generated for each user from the one-hot encoded variables. The embedding of this 

network is then achieved using Word2Vec for the categorical variables and an Autoencoder 

implemented in Tensorflow for the numerical variables.  

Finally, every feature was normalized using min-max normalization resulting in values between 0 and 

1. The total number of extracted features amounts to 659, of which 172 are numerical, the remaining 

ones being categorical (one-hot encoded). Users with less than 97% sparsity were kept. The final data 

is represented as a rank-3 tensor 𝑊 such that each element 𝑊𝑎,𝑏,𝑐 corresponds to the value of feature 

𝑎 for user 𝑏 on day 𝑐, over the first 30 days of using the platform. From this tensor, two different 

matrixes were then extracted (one with just the 172 numerical features and another one with the full 

659 feature-set), where the values over the 30 days are summarized for each user. These condensed 

datasets are going to be the inputs for our models. The pre-processing procedure was executed in a 

local AMD Quad-Core Processor A4-5000 (1.5 GHz) CPU machine, lasting approximately 8 days. 
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4.  RESULTS 

The processed dataset was divided into three parts making up the training, validation and test sets, 

roughly corresponding to 86%, 2% and 12% of the overall data (74.209 users). The model training, 

validation, and testing were done on a Nvidia Tesla K80 GPU instance executing a Tensorflow 

environment using the FloydHub service (https://www.floydhub.com/). 

4.1. MODEL TRAINING AND VALIDATION 

The training of models 3 and 4 involved a pretraining of the feature embedding architectural 

component using a Word2Vec (for the unstructured data) and Autoencoder implementation in 

Tensorflow. Both models were trained over 10 epochs with gradient descent. The resulting embedding 

parameters where concatenated (cross-loadings were randomly initialized with lower values close to 

zero) and used as the initialization tensor for the first layer of the final architecture. This pretraining 

was followed by a global training stage.  

The training set was divided into 32 batches of 2.000 users (64.000 overall). The training procedure 

was done under the classic early stopping method (Prechelt, 2012) dependent on the loss on the entire 

validation set computed at each epoch (if the validation loss increases on this epoch, the training stops, 

and the previous weights are retained). The Adam optimizer with the standard parameters (Kingma & 

Ba, 2014) was used to perform the network training backpropagation. 
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4.2. MODEL TESTING 

The model testing was done in two parts. The first part was meant to test the model accuracy using 

standard metrics on the testing set on the Nvidia Tesla K80 GPU instance where the training and 

validation were done. The average pricing per hour of the infrastructure provider (FloydHub) was used 

to compute the total costs of training, validation, and testing (1.22 USD/hour). 

Table 2 – Computational Statistics of Model Training, Validation and Testing. 

  
Model 1 

 
Model 2 

 
Model 3 

 
Model 4 

Max CPU Utilization 56% 72% 74% 55% 

Max GPU Utilization 5% 0% 6% 27% 

Execution Time  
(minutes:seconds) 

03:34 03:22 05:35 04:38 

Total Cost of Training, Validation 
and Testing (USD) 

$0.071 $0.067 $0.111 $0.093 

 

A portion of the testing set (2250 users) was then allocated to a secondary test to obtain the Spark 

execution time component. 

Table 3 – Computational Statistics of Model Deployment 

 
 Model 1  Model 2  Model 3  Model 4 

Estimated Serving Latency (ms) 7.56 8.45 15.11 15.34 

Cost per User $ 0.0003104 $0.0003470 $0.0006209 $0.0006304 

Total Cost of Deployment (USD) $ 0.70 $0.78 $1.40 $1.42 

 

The Spark estimated serving latency was measured separately on an AMD Quad-Core Processor A4-

5000 (1.5 GHz) CPU machine executing a Spark server on an Ubuntu VM through a Windows 10 host. 

A single CPU core of this machine was used to execute the experiment. The obtained execution time 

for each model was used to estimate the Information Technology (IT) infrastructure cost component. 

A Spark script was executed directly on the PySpark command line tool, which imports the Tensorflow 

graph from the local disk before applying it to each row of an RDD, according to the method proposed 

by Databricks (Hunter, 2016). 

 

The values from both tests were 

combined to compute the final Profit 

value for each model.  

 

Hamming Loss, Jaccard Index, AUC 

(Macro), F1 Score (Macro and Micro), 

along with Precision and Recall were also 

compared across models. 

 

  

Chart 6 – Experimental Results of Model Testing 
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In the table below, we present the results of the testing for each model (bold indicates top performer). 
 

Table 4 – Experimental Results of Model Testing (in detail) 

 
 Model 1  Model 2  Model 3  Model 4 

Hamming Loss 0.713 0.462 0.065 0.076 

Jaccard Index  0.031 0.033 0.314 0.284 

AUC (Macro) 0.523 0.540 0.973 0.964 

F1 Score (Macro) 0.050 0.123 0.585 0.626 

F1 Score (Micro) 0.061 0.065 0.478 0.442 

Precision 0.032 0.035 0.320 0.288 

Recall 0.731 0.507 0.944 0.951 

True Positive Rate 2.30% 1.60% 2.98% 3.00% 

True Negative Rate 26.36% 52.24% 90.54% 89.45% 

False Positive Rate 70.49% 44.61% 6.31% 7.40% 

False Negative Rate 0.85% 1.56% 0.18% 0.16% 

Profit (normalized) 0% 39% 100% 98% 

 

The results show that model 1 is the lowest performer in all metrics except Recall (where it significantly 

outperforms model 2). Except for Recall and Hamming Loss, model 1 and 2 behave similarly, but model 

2 beats model 1 overall. 

Models 3 and 4 outperform the other two models significantly across all metrics. The difference 

between the performance of models 3 and 4 is less clear. These two models seem to have a low 

difference magnitude overall. Still, model 3 outperforms 4 in most metrics except F1 Score (Macro), 

Recall, True Positive and False Negative Rate. Since Recall depends on the values of the True Positive 

and False Negative rates we can say that Recall is the main difference between models 3 and 4. 
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5. CONCLUSION 

Our study had the goal of testing a deep-learning architecture for app recommendations in the context 

of mobile app stores. We pre-processed several features related to user geography, demography, 

technograhy, past app acquisition, clickstream/touchstream, search queries and social graph. Some of 

this data were numeric and some were categorical. An unsupervised pretraining procedure was 

applied to some of the models to generate embeddings for both types of features. Finally, we designed 

and implemented an experiment that would help us understand our three research questions related 

with the impact of using unstructured data, the impact of the pretraining procedure, and the efficiency 

of employing Kernel methods. In the following sections, we will present an interpretation of the results, 

along with its discussion, implications, limitations of our study and directions for future research. 

5.1. DISCUSSION 

Our profit metric suggests that the most efficient deep-learning architecture for mobile app stores is 

model 3, which is a four-layer network with one FC feature embedding and two feature extraction 

layers, softmax output and embedding pretraining. We will now discuss our results in detail, 

considering our specific research questions and the previous empirical studies. 

1. What is the impact of using unstructured data versus only using structured data in model 

performance? 

Model 1 used 172 raw features, while model 2 used 659. By comparing the performance of model 1 

and 2 we conclude that using unstructured data improves the model performance slightly but given 

the large discrepancy in the number of features, we expected a larger difference magnitude. This 

improvement can be seen in the accuracy metrics (Hamming Loss and Jaccard Index). By looking at our 

economic efficiency indicator (Profit), we can see that model 2 is +39% more efficient than model 1.  

Additionally, the training for model 2 is significantly faster, taking only 3 epochs to reach convergence. 

The GPU consumption during the procedure is 0%, which means that this model’s fast convergence 

did not require a GPU instance, which would have resulted in lower costs (and a higher efficiency 

improvement over model 1).  

These results are partially consistent with previous studies. In an experiment by Tan, Xu and Liu (2016), 

the model exposed to privileged information saw only a modest improvement in performance which 

is consistent with our results. However, the training time and serving latency increased significantly, 

while in our case the training time was reduced drastically, and the serving time didn’t increase much. 

We argue that this difference is due to the nature of our unstructured data, which possibly contains 

information that is highly valuable for recommendations, such as the revealed intent from search 

queries. This would have made the model training faster, while also increasing accuracy. 

2. What is the impact of embedding layer pre-training in the model performance? 

Model 2 and model 3 shared the same architecture, but model 2 was not subjected to a layer-

pretraining. The results show that the embedding layer pre-training drastically improved performance 

across the board. These gains in performance are especially notable when it comes to the AUC (Macro) 
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metric, which went from 0.540 to 0.973. Additionally, our efficiency indicator (Profit) saw an increase 

of +60%. 

These results are partially consistent with the literature. A study by Glorot, Bordes, & Bengio (2011) 

tested the effect of embedding layer pretraining in Deep Rectifier Networks (networks with Relu 

activations like ours). While the pretrained models saw a slight improvement, previous results with 

tanh or softplus activations saw much deeper improvements (Glorot et al., 2011). A simulation study 

by Erhan, Manzagol, Bengio, Bengio, & Vincent (2009) suggests that when pretraining is not employed 

the probability of finding poor local minima increases. We believe this is the most probable cause to 

explain the difference in performance of models 2 and 3. 

The Cheng et al. (2016) study in the field of recommender systems for mobile app stores also employed 

feature embedding procedures for the categorical features, but no benchmark is provided for models 

without pretraining. The study proposes a novel Wide & Deep architecture that combines both 

embedded features fed through a deep part, and the raw features fed through the wide part. The best 

performance is achieved by combining both types of features. The model without the wide part still 

has a comparable performance, suggesting that most of the predictive accuracy is coming from the 

pretrained embedded features, which is consistent with our results. 

3. How efficient are Kernel-based methods in the scoring layer? 

Model 3 and 4 have a nearly identical architecture, with the difference that model 4 adds a kernel 

mapping layer before the final classifier based on RFF. We can measure the efficiency of the kernel 

mapping by comparing the Profit metric of the two models. We can see that model 3 has a +2% gain 

in efficiency when compared with model 4. This is surprising since we expected that the kernel 

mapping would be able to improve the results of the classifier sufficiently to make it more cost 

effective.  

One possible explanation for this surprising result would be that the task of our experiment was 

already performing very well, not leaving a lot of room for improvement. However, this doesn’t 

account for the fact that model 4 underperforms in most metrics (even if the difference is small). The 

only performance improvement appears to be on the Recall metric (and the associated true positive 

and false negative rates), which suggests that Kernel methods improve Recall, which is not consistent 

with prior studies with SVM (Maroco et al., 2011; Romero & Koochak, 2015). We could argue however 

that M-KLR may possess different properties that are not observed in SVM and multiclass SVM. 

Additionally, we must consider the fact that our implementation is being tested in a Deep Learning 

framework, as opposed to the Shallow contexts where those empirical studies were conducted. 

Another key difference is the fact that we used an RBF approximation based on stochastic methods 

(RFF).  

Another observation is that our Kernel model consumed more GPU resources (27%), and took less time 

to converge than model 3 while maintaining a comparable latency in the Spark environment. The 

reduced efficiency, when compared with model 3, is explained by the model performance in terms of 

true and false positive rates. Model 4 is the model that consumes most resources but still performs 

below the results of Cheng et al. (2016) in terms of serving latency. Keep in mind however that our 

models are scoring only a tiny batch of 10 apps at a time, while the Cheng model is scoring batches 

between 50 and 200 apps in parallel. 



35 
 

Given that the sole difference between models 3 and 4 is the existence of a Kernel mapping in the 

latter, we can conclude that Kernel-based methods might not be sufficiently efficient to build a mobile 

app recommendation engine at Big Data scale, but more research is necessary to understand why 

these methods are not effective. 

5.2. IMPLICATIONS 

Our results have implications for practitioners working in the implementation of recommender 

systems in mobile app stores. Our results are consistent with previous research (Cheng et al., 2016; 

Covington et al., 2016) in confirming the overall efficiency of deep learning methods for large-scale 

recommender systems, which require low serving latency. Additionally, it has been shown that deep 

learning methods allow us to combine different data sources and different data types (numeric and 

categorical) which other traditional CF methods are not able to. Our experiments confirm that by 

augmenting the dataset with categorical features we obtain better models.  

In our experiments the preprocessing time took the longest time (8 days), but practitioners should 

consider investing resources to perform the preprocessing stage in a distributed Big Data environment 

such as Spark. Currently several parallel implementations of unsupervised learning methods like 

Word2Vec (Apache Foundation, 2018c), SVD and PCA are already available (Apache Foundation, 

2018b). Also, current RDD and Spark Dataframe technology can be queried using SQL or SQL-like 

methods, meaning that all the necessary data wrangling can be done more efficiently in a distributed 

environment. This might facilitate the necessary procedures to produce features in the required 

format. The resulting preprocessed features can then be used to train the deep learning models in the 

same environment, as it appears to be the current trend in large mobile social platforms like Facebook 

(Hazelwood et al., 2018). 

A key factor for the successful ingestion of unstructured (categorical) data types is the usage of 

unsupervised pretraining on the embedding layer. In our experiments, the models without pretraining 

became stuck in poor local minima. The unsupervised pretraining procedure boosted the model 

efficiency by +60% (as measured by our profit metric), while also raising the AUC from 0.540 to 0.973. 

This suggests that pretraining is a critical success factor when augmenting the data with categorical 

features. By employing distributed GPU technology (Moritz, Nishihara, Stoica, & Jordan, 2015), it 

becomes easier and faster to perform the embedding layer pretraining using Big Data. In fact, this 

methodology might be easily extended to all layers, resulting in a global layer-wise pretraining 

procedure, that might be able to further boost these models. 

Another key implication is the fact that more sophisticated approaches, such as using app scoring 

procedures derived from Kernel methods, does not guarantee efficiency at Big Data scale. Our results 

show that the most sophisticated model not only underperformed in most accuracy metrics (except 

Recall) but also showed a lower economic efficiency, consuming more resources for deployment. 

Machine learning practitioners and data scientists seeking to introduce recommender systems in 

similar environments should consider using simpler methods based on softmax output nodes, which 

should allow them to fulfill the business requirements at a lower cost. 

Also, our experiments show that Tensorflow models can be easily distributed using Spark. While some 

prior work already exists (Hunter, 2016; H. Kim, Park, Jang, & Yoon, 2016; Moritz et al., 2015), this is 



36 
 

one of the few real life experiments conducted by combining both technologies to deploy deep 

learning models at Big Data scale. 

Finally, this work also has implications for IT/IS project managers tasked with implementing 

recommender systems in the context of mobile app stores. The concept of Average App Download 

Value might be helpful for the evaluation of the Earned Value of the modelling tasks within the project, 

according to a traditional Earned Value Management (EVM) framework (Batselier & Vanhoucke, 2017) 

widely used in project management (Project Management Institute, 2017, p. 126). From a larger 

information management perspective, this concept might also be useful to evaluate the impact of the 

recommender system across the IT, IS, Business Process, Business Benefit and Business Strategy 

domains (Bytheway, 2014, p. 26), since it incorporates high level marketing effects (consumer behavior 

and competitive environment) which can then be compared with the overall technological 

infrastructure costs, like in our profit measure. 

5.3. LIMITATIONS 

Our study has several limitations. The main limitation has to do with the fact that we’ve only employed 

offline evaluation of the models. This has to do with the costs associated with deploying a 

recommender system, which made the online testing not feasible. The only alternative would have 

been using a toy setting with a sample of users, but given the time constraints of this thesis, recruiting 

a large enough sample would have made it difficult. Such methods, however, would have allowed us 

to measure other properties of the recommender system other than its accuracy and economic 

efficiency, such as novelty and serendipity. 

The second limitation is the task that was used to test the models. We considered a batch of 10 apps 

that were being scored for all users. In other similar experiments conducted in online settings, much 

larger batches were employed, with numbers ranging from 50 to 200 per user at a time. In fact, some 

studies employ extreme multiclass experiments at a large scale (Cheng et al., 2016; Covington et al., 

2016), using industrial hardware and software. Three issues appeared when trying to extend the size 

of the set of classes. First, we didn’t have access to industrial grade systems to train, validate, test and 

deploy models at such an extreme scale. Second, during the pre-processing stage, we ran into memory 

issues when trying to perform feature engineering procedures. Initially, we had a set of close to 2000 

features for each user, with nearly half a million users. Manipulating such a large matrix became 

impossible given the computational constraints of our hardware. In that context, we could have used 

a larger set of apps to test the models since we had initially selected the top 500 most popular apps. 

In the end, we were limited to 100 app acquisition columns per user. Third, we still ran into issues 

when trying to score more than the 10 most popular apps, given the extreme high sparsity of the 

dataset we were working with. When we went beyond the top 10 apps we had mostly zeroes, which 

made it impossible to successfully train the models. In fact, when we attempted to train these models 

we noticed that they failed to converge over many epochs, and when they did, they return AUC values 

close to 0.5. 

Another limitation is the fact that our model deployment test conducted in Spark was done on a VM 

as opposed to an actual Spark cluster. While the software environment closely matches the real-world 

settings, we only employed a single CPU on a cluster with a single node. Therefore, we had to simulate 

distributed training by running several trials sequentially within the Spark environment. While we tried 

to replicate as much as possible the real world industrial grade settings, it’s possible that our 
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experiment failed to fully capture the dynamics of a Big Data processing cluster, and thus it might have 

negatively impacted the quality of our results. 

Also, we’ve tested the model execution time in a batch-processing oriented Spark environment. 

However, real-life model deployment at the Big Data scale usually implies creating an interface for 

other systems to use that information. Reference enterprise and software architectures have been 

proposed for Big Data which suggest the use of Data Loading functionalities to periodically update the 

serving stores from the data in the raw store (HDFS) (Pääkkönen & Pakkala, 2015). This serving store 

can be based on traditional SQL datastores, allowing for microservices or more traditional service-

oriented architecture (SOA) web services to be deployed to serve the model outputs (Xiao, 

Wijegunaratne, & Qiang, 2017). These solutions would increase response time, making our results valid 

only for relative model comparison, since actual serving times would be larger. 

A final limitation is the fact that we didn’t use any temporal sequence modeling techniques. Our initial 

plan was to also test three additional variants of our base model based on RNN (Elman, 1990), LSTM 

(Hochreiter & Urgen Schmidhuber, 1997) and DNC (Graves et al., 2016). These temporal sequence 

networks would be used to extract features either before the static feature extraction layer or after it. 

And in fact, our pre-processing procedure was designed to generate a rank-3 tensor 𝑊 such that each 

element 𝑊𝑎,𝑏,𝑐 corresponds to the value of feature 𝑎 for user 𝑏 on day 𝑐, over the first 30 days of using 

the platform. However, we once again ran into sparsity related issues, given that most entries of that 

tensor were zeroes, making it impossible to successfully train these models. What we noticed was that 

only by using aggregated user level features without the time component, and by using the top 10 

apps, we were able to obtain viable models. Current research trends are focused in using session level 

recommendations (Tan et al., 2016), which leverages temporal sequence networks, and therefore it 

would have been relevant to test if a general architecture could be efficient for these kind of problems. 

5.4. DIRECTIONS FOR FUTURE RESEARCH 

Given the research questions we set out to answer and the limitations of our study we will discuss 

some possible directions for future research.  

First, we can extend our study by testing the same models using different datasets. This will also us to 

confirm if our results generalize across contexts. For this purpose, we might look to secure additional 

data sets of other independent Android app stores. In alternative, we might also employ public 

datasets from other domains, which are widely available (Fortes, 2018). We should test the same 

models in an online and/or a user study setting, allowing us to gather more information on several 

other desirable properties of the recommender system such as novelty and serendipity using 

behavioral and attitudinal metrics. Also, our experiment didn’t include any temporal sequence 

network due to data set limitations, which are the state of the art in session-based recommendations 

(Tan et al., 2016). Future studies should extend our experiment to temporal sequence contexts using 

data with less sparsity. 

In this thesis, we only considered the effects of the model accuracy and efficiency, but it is known that 

the user interface plays a dominant role in the success of the recommendations (Zheng, Wang, Zhang, 

Li, & Yang, 2010). No study to date has addressed the impact of the mobile app store interface in the 

perceived quality of recommendations. Finally, the model deployment experiment should be extended 

to a real-world industrial cluster or at least a multi-node cluster in a laboratory setting. This will give 
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us greater confidence on the quality of the results we’ve obtained, while also contributing to the 

nascent academic research in the field of distributed GP-GPU and the efficient deployment of deep-

learning models at Big Data scale. 
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APPENDIX  

APPENDIX A – MATHEMATICAL DERIVATION OF APP DOWNLOAD VALUE 

Before we derive an estimator for the App Download Value, we need to establish the notation and the 

definition of the main mathematical objects. 

Definition 1. Category. 

Let 𝒢 denote the set with cardinality |𝒢| ∈ ℕ of all mobile app stores of the same category. 

 

Definition 2. Market. 

Let ℳ denote the set with cardinality |ℳ| ∈ ℕ of all users 𝑢 that have used any mobile app store 𝑗 ∈

𝒢 at least once. 

 

Definition 3. User Base. 

Let 𝒟𝑗 denote the set with cardinality 𝐷 ∈ ℕ of all users that have used the mobile app store 𝑗 ∈ ℳ at 

least once in the past, which we will refer to as the user base of that mobile app store. 

 

Definition 4. App Downloads. 

Let 𝑠𝑖𝑗 ∈ ℕ denote the number of app downloads of any user 𝑖 ∈ ℳ has done on period 𝑡 in mobile 

app store 𝑗 ∈ 𝒢. 

 

Definition 5. Mobile App Store Choice Probability. 

Let 𝑐𝑖𝑗  denote the probability of user 𝑖 downloading an app from mobile app store 𝑗 ∈ 𝒢. 

 

Definition 6. Mean User App Download Frequency. 

Let 𝜇𝑖  denote the mean app download frequency of user 𝑖 by period. 

 

Definition 7. Total App Downloads on Mobile App Store until 𝑇. 

Let 𝜏𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑗𝑇
 denote the total number of app downloads from mobile app store 𝑗 ∈ 𝒢 until period 

𝑇, 
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𝜏𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑗𝑇
= ∑ ∑ 𝑠𝑑𝑗𝑡

𝑇

𝑡=1𝑑∈𝒟𝑗

 

Definition 8. Market Share. 

Let 𝑀𝑆𝑘 denote the market share of the mobile app store 𝑘 ∈ 𝒢 such that, 

𝑀𝑆𝑘 =
∑ 𝑠𝑖𝑘𝑖∈ℳ

∑ ∑ 𝑠𝑖𝑗𝑖∈ℳ𝑗∈𝒢
 

 

Definition 9. User Churn. 

Let 𝑝𝑖𝑘   be the individual churn probability in mobile app store 𝑘 ∈ 𝒢 for user 𝑖 ∈ ℳ conditional on 

the number of app downloads in all mobile app store 𝑗 ∈ 𝒢 in the period such that, 

𝑝𝑖𝑘 = 𝑝(𝑠𝑖𝑘 > 0|𝜏𝑠𝑖𝑗
) 

 

Definition 10. Mobile App Store Churn. 

Let 𝑝𝑗  be the churn rate of mobile app store 𝑗 ∈ 𝒢 such that, 

𝑝𝑗 =
∑ 𝑝𝑖𝑗𝑖∈𝒟

𝐷
 

 

Definition 11. Category App Download Frequency. 

Let 𝑛 denote the app download frequency of mobile app store category 𝒢 such that, 

𝑛 =
∑ ∑ 𝑠𝑖𝑗𝑗∈𝒢𝑖∈ℳ

|ℳ|
=

∑ 𝜏𝑠𝑖𝑗𝑖∈ℳ

|ℳ|
 

 
Definition 12. Customer Lifetime Value (𝐶𝐿𝑉) until 𝑇. 
 
Let 𝐶𝐿𝑉𝑖𝑇

 denote the Customer Lifetime Value of user 𝑖 ∈ 𝒟𝑗  until period 𝑇 such that (Blattberg et 

al., 2008, pp. 108–109), 
 
 

𝐶𝐿𝑉𝑖𝑇
= ∑

(1 − 𝑝𝑗)(�̃�𝑖𝑗𝑡 − 𝐶𝑖𝑗𝑡)

(1 + 𝛿)𝑡−1

𝑇

𝑡=1

 

 

Where �̃�𝑖𝑗𝑡 is the revenue generated by user 𝑖 in period 𝑡, 𝐶𝑖𝑡 is the cost of serving the user 𝑖 on 

moment 𝑡 and 𝛿 is the discount rate. 
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Definition 13. Total Customer Lifetime Value until 𝑇. 
 
Let 𝜏𝐶𝐿𝑉𝑗𝑇

 denote the total Customer Lifetime Value of the mobile app store 𝑗 ∈ ℳ until period 𝑇. 

 

𝜏𝐶𝐿𝑉𝑗𝑇
 = ∑ 𝐶𝐿𝑉𝑑𝑇

𝑑∈𝒟𝑗

 

 
 
Definition 14. App Download Probability. 
 
Let 𝑙𝑗 denote the probability of a download occurring on mobile app store 𝑗 ∈ ℳ under a frequentist 

assumption such that, 
 

𝑙𝑗 = lim
𝑇→∞

1

𝜏𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑗𝑇

 

Definition 15. App Download Value. 
 
Let 𝑉𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 denote the value of an app download for mobile app store 𝑗 ∈ ℳ, such that, 

 

𝑉𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 = lim
𝑇→∞

𝜏𝐶𝐿𝑉𝑗𝑇
 

𝜏𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑗𝑇

= lim
𝑇→∞

(𝜏𝐶𝐿𝑉𝑗𝑇
) × 𝑙𝑗  

 
 
We will now present our main assumptions under the form of axioms that are required to define our 
statistical estimators. These assumptions are the basic assumptions behind the NBD-Dirichlet model 
(Goodhardt et al., 1984) and are grounded in the empirical generalizations that have been observed 
over several decades across markets and geographies (Graham, Bennett, Franke, Henfrey, & Nagy-
Hamada, 2017). In particular these patterns have also been observed in the mobile app economy 
(Zhong & Michahelles, 2013) and amongst online retailers (Huang, 2011). Therefore, we believe these 
to be a set of realistic assumptions. 
 
Axiom 1. The probability of a user doing 𝑛 downloads in a given period follows a Poisson Distribution. 
 

𝑝(𝑠𝑖𝑗𝑡 = 𝑘) ~ 𝑒−𝜇𝑖
𝑑𝑎𝑦𝑠 × 𝜇𝑖

𝑘

𝑘!
 

 
 
Axiom 2. Individual user app download frequencies vary according to a Gamma Distribution. 
 
 

�̃�𝑖 ~ 
e−𝜇𝑖

𝐾
𝑀𝜇𝑖

𝐾−1

Γ(𝐾) (
𝑀
𝐾)

𝐾  
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Axiom 3. User choice of mobile app store over 𝑘 successive choices follows a Multinomial Distribution. 
 

𝑐𝑖𝑗  ~ 
𝑘!

∏ 𝑠𝑖𝑗𝑡
𝑇
𝑡=1

∏ 𝛼𝑔
𝑔∈𝒢

 

 
Axiom 4. Individual user mobile app store choice frequencies vary according to a Dirichlet Distribution. 
 

𝜃𝑖𝑔 ~ 
∏ (∑ 𝑠𝑖𝑔𝑡

𝑇
𝑡=1 )𝛼𝑔−1Γ(∑ 𝛼𝑔𝑔∈𝒢 )𝑔∈𝒢

∏ Γ(𝛼𝑔)𝑔∈𝒢
 

 
Axiom 5. The mobile app store choice probabilities and the average app download frequencies of the 
different users 𝑚 ∈ ℳ are distributed independently. 
 
 
Definition 15. NBD-Dirichlet Model (Conditional App Downloads Estimator). 
 
The set of axioms imply that we can obtain the probability 𝑝(𝑟𝑗|𝑛) of a user 𝑖 ∈ ℳ  doing 𝑟𝑗 ∈ ℕ app 

downloads on period 𝑡 in mobile app store 𝑗 ∈ 𝒢 amongst 𝑛𝑖 app downloads by employing a compound 

distribution such that (Goodhardt et al., 1984), 

[
𝑘!

∏ 𝑠𝑖𝑗𝑡
𝑇
𝑡=1

∏ 𝛼𝑗
𝑗∈𝒢

 ∧
𝛼𝑗

 
∏ (∑ 𝑠𝑖𝑗𝑡

𝑇
𝑡=1 )𝛼𝑗−1Γ(∑ 𝛼𝑗𝑗∈𝒢 )𝑗∈𝒢

∏ Γ(𝛼𝑗)𝑗∈𝒢
 ]  ∧

𝑛
[𝑒−𝜇𝑖

𝑑𝑎𝑦𝑠 × 𝜇𝑖
𝑘

𝑘!
 ∧
𝜇𝑖

e−𝜇𝑖
𝐾
𝑀𝜇𝑖

𝐾−1

Γ(𝐾) (
𝑀
𝐾)

𝐾   ] 

Where 𝛼𝑗 is the app download propensity of mobile app store 𝑗, 𝑀 and 𝐾 are model parameters and 

𝑑𝑎𝑦𝑠 refers to the length (in days) of each time period 𝑡. 

Therefore, 

𝑝(𝑟𝑗|𝑘)~
( 𝑘

𝑟𝑗
) Β(𝛼𝑗 + 𝑟𝑗, 𝑆 − 𝛼𝑗 + 𝑘 − 𝑟𝑗)

Β(α𝑗, 𝑆 − α𝑗)
 

Where 𝑆 is the diversity of usage behavior in the category (𝑆 = ∑ α𝑗𝑗 ) (Bound, 2009). We can assume 

that 𝑀𝑆𝑗 = 𝛼𝑗/𝑆 (Wright et al., 2002).  

 

Remark 1. Mobile App Store Churn Rate Estimator. 

From Definition 15 and the set of axioms it follows that we can obtain an estimator �̂�𝑗  for 𝑝𝑗  such that, 

�̂�𝑗 = 𝑝(𝑟𝑗 = 0|𝐺) 

 

Remark 2. App Download Probability Estimator. 

From Definition 15 and the set of axioms it follows that we can obtain an estimator 𝑙𝑗 for 𝑙𝑗 such that, 

𝑙𝑗 = 𝑝(𝑟𝑗 = 1|𝐺) 
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Definition 16. Average Mobile App Store Customer Lifetime Value Estimator. 

Let 𝐶𝐿�̂�𝑗𝑇
be an estimator for 𝐶𝐿𝑉𝑗𝑇

 such that, 

𝐶𝐿�̂�𝑗𝑇
= ∑

(1 − �̂�𝑗)(�̅�𝑡 − 𝐶�̅�)

(1 + 𝛿)𝑡−1

𝑇

𝑡=1

 

 

Definition 17. Total Customer Lifetime Value Estimator over finite horizon ℎ. 

Let �̂�𝐶𝐿𝑉𝑗ℎ
 be an estimator for 𝜏𝐶𝐿𝑉𝑗ℎ

 such that, 

�̂�𝐶𝐿𝑉𝑗ℎ
 = lim

𝑇→ℎ
𝐷𝐶𝐿�̂�𝑗𝑇

 

 

 

Definition 17. App Download Value Estimator. 

Let �̂�𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 be an estimator for 𝑉𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 such that, 

�̂�𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 = �̂�𝐶𝐿𝑉𝑗ℎ
× 𝑙𝑗 = 

= 𝑝(𝑟𝑗 = 1|𝑛)𝐷lim
𝑇→ℎ

𝐶𝐿�̂�𝑗𝑇
= 

= 𝑝(𝑟𝑗 = 1|𝑛)𝐷lim
𝑇→ℎ

∑
(1 − �̂�𝑗)(�̅�𝑡 − 𝐶�̅�)

(1 + 𝛿)𝑡−1

𝑇

𝑡=1

= 

= ∑
𝐷(1 − �̂�𝑗)(�̅�𝑡 − 𝐶�̅�) 𝑝(𝑟𝑗 = 1|𝑛)

(1 + 𝛿)𝑡−1

ℎ

𝑡=1

 

Replacing �̂�𝑗 and 𝑝(𝑟𝑗 = 1|𝑛) with their respective expressions we get, 

�̂�𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 = ∑
𝑛𝐷(�̅�𝑡 − 𝐶�̅�)[Β(α𝑗, 𝑆 − α𝑗) − Β(𝛼𝑗, 𝑆 − 𝛼𝑗 + 𝑛)]Β(𝛼𝑗 + 1, 𝑆 − 𝛼𝑗 + 𝑛 − 1)

(1 + 𝛿)𝑡−1Β(α𝑗, 𝑆 − α𝑗)
2

ℎ

𝑡=1

 

 


