95,544 research outputs found

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Will machines ever think

    Get PDF
    Artificial Intelligence research has come under fire for failing to fulfill its promises. A growing number of AI researchers are reexamining the bases of AI research and are challenging the assumption that intelligent behavior can be fully explained as manipulation of symbols by algorithms. Three recent books -- Mind over Machine (H. Dreyfus and S. Dreyfus), Understanding Computers and Cognition (T. Winograd and F. Flores), and Brains, Behavior, and Robots (J. Albus) -- explore alternatives and open the door to new architectures that may be able to learn skills

    High-Performance Deep learning to Detection and Tracking Tomato Plant Leaf Predict Disease and Expert Systems

    Get PDF
    Nowadays, technology and computer science are rapidly developing many tools and algorithms, especially in the field of artificial intelligence. Machine learning is involved in the development of new methodologies and models that have become a novel machine learning area of applications for artificial intelligence. In addition to the architectures of conventional neural network methodologies, deep learning refers to the use of artificial neural network architectures which include multiple processing layers./nIn this paper, models of the Convolutional neural network were designed to detect (diagnose) plant disorders by applying samples of healthy and unhealthy plant images analyzed by means of methods of deep learning. The models were trained using an open data set containing (18,000) images of ten different plants, including healthy plants. Several model architectures have been trained to achieve the best performance of (97 percent) when the respectively [plant, disease] paired are detected. This is a very useful information or early warning technique and a method that can be further improved with the substantially high-performance rate to support an automated plant disease detection system to work in actual farm conditions

    Invisible Influence: Artificial Intelligence and the Ethics of Adaptive Choice Architectures

    Get PDF
    For several years, scholars have (for good reason) been largely preoccupied with worries about the use of artificial intelligence and machine learning (AI/ML) tools to make decisions about us. Only recently has significant attention turned to a potentially more alarming problem: the use of AI/ML to influence our decision-making. The contexts in which we make decisions—what behavioral economists call our choice architectures—are increasingly technologically-laden. Which is to say: algorithms increasingly determine, in a wide variety of contexts, both the sets of options we choose from and the way those options are framed. Moreover, artificial intelligence and machine learning (AI/ML) makes it possible for those options and their framings—the choice architectures—to be tailored to the individual chooser. They are constructed based on information collected about our individual preferences, interests, aspirations, and vulnerabilities, with the goal of influencing our decisions. At the same time, because we are habituated to these technologies we pay them little notice. They are, as philosophers of technology put it, transparent to us—effectively invisible. I argue that this invisible layer of technological mediation, which structures and influences our decision-making, renders us deeply susceptible to manipulation. Absent a guarantee that these technologies are not being used to manipulate and exploit, individuals will have little reason to trust them

    Genetic Algorithms: Usefulness and Effectiveness for Pattern Recognition

    Get PDF
    Genetic Algorithms have been gaining much interest since the early 1970\u27s and have intrigued people from the fields of machine learning, artificial intelligence, neural networks and operations research. This paper describes the approach of genetic algorithms applied to neural networks. The experiments were conducted using various functions such as XOR,AND,SINE and different network sizes. Based on the experimental data, we concluded that for small network architectures represented by the functions (SINE,ENCODE,etc), genetic algorithms were not effective and the desired results were not achieved within a reasonable period of time

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    A Hybrid Differential Evolution Approach to Designing Deep Convolutional Neural Networks for Image Classification

    Full text link
    Convolutional Neural Networks (CNNs) have demonstrated their superiority in image classification, and evolutionary computation (EC) methods have recently been surging to automatically design the architectures of CNNs to save the tedious work of manually designing CNNs. In this paper, a new hybrid differential evolution (DE) algorithm with a newly added crossover operator is proposed to evolve the architectures of CNNs of any lengths, which is named DECNN. There are three new ideas in the proposed DECNN method. Firstly, an existing effective encoding scheme is refined to cater for variable-length CNN architectures; Secondly, the new mutation and crossover operators are developed for variable-length DE to optimise the hyperparameters of CNNs; Finally, the new second crossover is introduced to evolve the depth of the CNN architectures. The proposed algorithm is tested on six widely-used benchmark datasets and the results are compared to 12 state-of-the-art methods, which shows the proposed method is vigorously competitive to the state-of-the-art algorithms. Furthermore, the proposed method is also compared with a method using particle swarm optimisation with a similar encoding strategy named IPPSO, and the proposed DECNN outperforms IPPSO in terms of the accuracy.Comment: Accepted by The Australasian Joint Conference on Artificial Intelligence 201
    • …
    corecore