1,376 research outputs found

    Texture Analysis and Machine Learning to Predict Pulmonary Ventilation from Thoracic Computed Tomography

    Get PDF
    Chronic obstructive pulmonary disease (COPD) leads to persistent airflow limitation, causing a large burden to patients and the health care system. Thoracic CT provides an opportunity to observe the structural pathophysiology of COPD, whereas hyperpolarized gas MRI provides images of the consequential ventilation heterogeneity. However, hyperpolarized gas MRI is currently limited to research centres, due to the high cost of gas and polarization equipment. Therefore, I developed a pipeline using texture analysis and machine learning methods to create predicted ventilation maps based on non-contrast enhanced, single-volume thoracic CT. In a COPD cohort, predicted ventilation maps were qualitatively and quantitatively related to ground-truth MRI ventilation, and both maps were related to important patient lung function and quality-of-life measures. This study is the first to demonstrate the feasibility of predicting hyperpolarized MRI-based ventilation from single-volume, breath-hold thoracic CT, which has potential to translate pulmonary ventilation information to widely available thoracic CT imaging

    MRI of the lung (3/3)-current applications and future perspectives

    Get PDF
    BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages ‱ MRI evolves as a third lung imaging modality, combining morphological and functional information. ‱ It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. ‱ In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. ‱ In interstitial lung disease, it serves for research, but the clinical value remains to be proven. ‱ New users are advised to make themselves familiar with the particular advantages and limitations

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI

    Robust, Standardized Quantification of Pulmonary Emphysema in Low Dose CT Exams

    Get PDF
    RATIONALE AND OBJECTIVES: The aim of this study was to present and evaluate a fully automated system for emphysema quantification on low-dose computed tomographic images. The platform standardizes emphysema measurements against changes in the reconstruction algorithm and slice thickness. MATERIALS AND METHODS: Emphysema was quantified in 149 patients using a fully automatic, in-house developed software (the Robust Automatic On-Line Pulmonary Helper). The accuracy of the system was evaluated against commercial software, and its reproducibility was assessed using pairs of volume-corrected images taken 1 year apart. Furthermore, to standardize quantifications, the effect of changing the reconstruction parameters was modeled using a nonlinear fit, and the inverse of the model function was then applied to the data. The association between quantifications and pulmonary function testing was also evaluated. The accuracy of the in-house software compared to that of commercial software was measured using Spearman's rank correlation coefficient, the mean difference, and the intrasubject variability. Agreement between the methods was studied using Bland-Altman plots. To assess the reproducibility of the method, intraclass correlation coefficients and Bland-Altman plots were used. The statistical significance of the differences between the standardized data and the reference data (soft-tissue reconstruction algorithm B40f; slice thickness, 1 mm) was assessed using a paired two-sample t test. RESULTS: The accuracy of the method, measured as intrasubject variability, was 3.86 mL for pulmonary volume, 0.01% for emphysema index, and 0.39 Hounsfield units for mean lung density. Reproducibility, assessed using the intraclass correlation coefficient, was >0.95 for all measurements. The standardization method applied to compensate for variations in the reconstruction algorithm and slice thickness increased the intraclass correlation coefficients from 0.87 to 0.97 and from 0.99 to 1.00, respectively. The correlation of the standardized measurements with pulmonary function testing parameters was similar to that of the reference (for the emphysema index and the obstructive subgroup: forced expiratory volume in 1 second, -0.647% vs -0.615%; forced expiratory volume in 1 second/forced vital capacity, -0.672% vs -0.654%; and diffusing capacity for carbon monoxide adjusted for hemoglobin concentration, -0.438% vs -0.523%). CONCLUSIONS: The new emphysema quantification method presented in this report is accurate and reproducible and, thanks to its standardization method, robust to changes in the reconstruction parameters

    Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study

    Full text link
    The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.Rudyanto, RD.; Kerkstra, S.; Van Rikxoort, EM.; Fetita, C.; Brillet, P.; Lefevre, C.; Xue, W.... (2014). Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Medical Image Analysis. 18(7):1217-1232. doi:10.1016/j.media.2014.07.003S1217123218

    A comparative analysis of chronic obstructive pulmonary disease using machine learning, and deep learning

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a general clinical issue in numerous countries considered the fifth reason for inability and the third reason for mortality on a global scale within 2021. From recent reviews, a deep convolutional neural network (CNN) is used in the primary analysis of the deadly COPD, which uses the computed tomography (CT) images procured from the deep learning tools. Detection and analysis of COPD using several image processing techniques, deep learning models, and machine learning models are notable contributions to this review. This research aims to cover the detailed findings on pulmonary diseases or lung diseases, their causes, and symptoms, which will help treat infections with high performance and a swift response. The articles selected have more than 80% accuracy and are tabulated and analyzed for sensitivity, specificity, and area under the curve (AUC) using different methodologies. This research focuses on the various tools and techniques used in COPD analysis and eventually provides an overview of COPD with coronavirus disease 2019 (COVID-19) symptoms.

    Segmentation of Lung Structures in CT

    Get PDF
    • 

    corecore