1,615 research outputs found

    Assistive robotics: research challenges and ethics education initiatives

    Get PDF
    Assistive robotics is a fast growing field aimed at helping healthcarers in hospitals, rehabilitation centers and nursery homes, as well as empowering people with reduced mobility at home, so that they can autonomously fulfill their daily living activities. The need to function in dynamic human-centered environments poses new research challenges: robotic assistants need to have friendly interfaces, be highly adaptable and customizable, very compliant and intrinsically safe to people, as well as able to handle deformable materials. Besides technical challenges, assistive robotics raises also ethical defies, which have led to the emergence of a new discipline: Roboethics. Several institutions are developing regulations and standards, and many ethics education initiatives include contents on human-robot interaction and human dignity in assistive situations. In this paper, the state of the art in assistive robotics is briefly reviewed, and educational materials from a university course on Ethics in Social Robotics and AI focusing on the assistive context are presented.Peer ReviewedPostprint (author's final draft

    Design Considerations for Multimodal "Sensitive Skins" for Robotic Companions

    Get PDF

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas

    How do you Play with a Robotic Toy Animal? A long-term study of Pleo

    Get PDF
    Pleo is one of the more advanced interactive toys currently available for the home market, taking the form of a robotic dinosaur. We present an exploratory study of how it was interacted with and reflected upon in the homes of six families during 2 to 10 months. Our analysis emphasizes a discrepancy between the participants’ initial desires to borrow a Pleo and what they reported later on about their actual experiences. Further, the data suggests an apparent tension between participants expecting the robot to work as a ‘toy’ while making consistent comparisons with real pet animals. We end by discussing a series of implications for design of this category of toys, in order to better maintain interest and engagement over time

    Developing Emotional Security Among Children Who Have Been Adopted

    Get PDF
    This study investigated the development of emotional security among 6-10 year old children who have been adopted by exposing them to an experimental condition during which they could engage with either a live dog or a robotic dog. The live dog was a certified therapy dog; the robotic dog was a FurRealÂź toy marketed by Hasbro as Biscuit. Utilizing a mixed-method embedded experimental design, the experimental condition was intentionally structured to promote engagement between the participant and the dog or robot. 43 children who had been adopted from the child welfare system were randomly assigned to one of two groups. One group was exposed to a therapy dog (n=22), while another was exposed to the social robotic dog (n=21). The development of emotional security was targeted for measurement in this study using the Reading the Mind in the Eyes Test, a test of social understanding that has been linked in the literature to oxytocin- a hormone premised to be a marker of the development of emotional security. Physiological anxiety was also measured as an indicator of emotional security using the Revised Child Manifest Anxiety Scale-2 (RCMAS-2). Both measures were administered before and after exposure to the experimental condition. A linear mixed-effect regression analysis showed that for boys only, there was a significant effect of engagement with either companion on social understanding (

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children

    Chapter 13 Haptic Creatures

    Get PDF
    Collaborations between entertainment industries and artificial intelligence researchers in Japan have since the mid-1990s produced a growing interest in modeling affect and emotion for use in mass-produced social robots. Robot producers and marketers reason that such robot companions can provide comfort, healing (iyashi), and intimacy in light of attenuating social bonds and increased socioeconomic stress characteristic of Japanese society since the collapse of the country’s bubble economy in the early 1990s. While many of these robots with so-called “artificial emotional intelligence” are equipped with rudimentary capacities to “read” predefined human emotion through such mechanisms as facial expression recognition, a new category of companion robots are more experimental. These robots do not interpret human emotion through affect-sensing software but rather invite human-robot interaction through affectively pleasing forms of haptic feedback. These new robots are called haptic creatures: robot companions designed to deliver a sense of comforting presence through a combination of animated movements and healing touch. Integrating historical analysis with ethnographic interviews with new users of these robots, and focusing in particular on the cat-like cushion robot Qoobo, this chapter argues that while companion robots are designed in part to understand specific human emotions, haptic creatures are created as experimental devices that can generate new and unexpected pleasures of affective care unique to human-robot relationships. It suggests that this distinction is critical for understanding and evaluating how corporations seek to use human-robot affect as a means to deliver care to consumers while also researching and building new markets for profit maximization

    The power of affective touch within social robotics

    Get PDF
    There have been many leaps and bounds within social robotics, especially within human-robot interaction and how to make it a more meaningful relationship. This is traditionally accomplished through communicating via vision and sound. It has been shown that humans naturally seek interaction through touch yet the implications on emotions is unknown both in human-human interaction and social human-robot interaction. This thesis unpacks the social robotics community and the research undertaken to show a significant gap in the use of touch as a form of communication. The meaning behind touch will be investigated and what implication it has on emotions. A simplistic prototype was developed focusing on texture and breathing. This was used to carry out experiments to find out which combination of texture and movement felt natural. This proved to be a combination of synthetic fur and 14 breaths per minute. For human’s touch is said to be the most natural way of communicating emotions, this is the first step in achieving successful human-robot interaction in a more natural human-like way

    Beyond Prosthetic Memory: Posthumanism, Embodiment, and Caregiving Robots

    Get PDF
    Literary and cinematic speculations about the future of care, read in tandem with the rising prominence of actual robotic caregivers, foretell a future in which human interaction is no longer an inevitable feature of care relations. This essay considers the social, cultural and ethical implications of robotic care alongside a particular speculative representation of posthuman care, the 2012 film Robot and Frank. The film demonstrates how the intimacy of human/machine care relationships can supply posthumanist insights into the illusion of human invulnerability and exceptionalism that obscure the heterogeneity of embedded and embodied subjects. Not only does the film dramatize the fundamental anxieties caregiving robots incite, it also offers provocative posthumanist critiques of human exceptionalism, conjuring haptic affects that trespass the boundaries between humans and machines
    • 

    corecore