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ABSTRACT 

There have been many leaps and bounds within social robotics, especially within human-robot 

interaction and how to make it a more meaningful relationship. This is traditionally 

accomplished through communicating via vision and sound. It has been shown that humans 

naturally seek interaction through touch yet the implications on emotions is unknown both in 

human-human interaction and social human-robot interaction. This thesis unpacks the social 

robotics community and the research undertaken to show a significant gap in the use of touch as 

a form of communication. The meaning behind touch will be investigated and what implication 

it has on emotions. A simplistic prototype was developed focusing on texture and breathing. 

This was used to carry out experiments to find out which combination of texture and movement 

felt natural. This proved to be a combination of synthetic fur and 14 breaths per minute. For 

human’s touch is said to be the most natural way of communicating emotions, this is the first 

step in achieving successful human-robot interaction in a more natural human-like way. 
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1. INTRODUCTION 

Traditionally, autonomous robots have been targeted for applications such as; inspecting oil 

wells, sweeping minefields or exploring other planets. Such robots require very little interaction 

with humans (Breazeal, 2001) but the growing market for personal service robots requires 

robots to play a beneficial role in the daily lives of people. Within the robotics community, there 

is a growing interest in building robots that share the same workspace as humans or a personal 

service robot (Breazeal, 2002). Some projects focus on autonomous robots others on tele-

operational. New questions arise from this domain, such as how to design for a successful 

relationship where a long-term appeal could be provided by the robot which can be a benefit to 

the human for a longer period of time (Breazeal, 2005). A lot of thought and time has gone into 

the functionality of the system and making it reliable. It is now moving towards making a 

sociable robot able to perceive and understand the complexity of natural human social 

behaviour and to interact with people in a human-like manner (Breazeal, 2002). There has been 

a rise in robots being used as a research platform to study human emotions and others to assist 

the elderly in the home. However, it must also be able to send signals to the human in order to 

provide feedback of its own internal state which would allow the human to interact in a 

simplistic and transparent manner (Fong et al, 2003). Whatever the application, it is known that 

a physical embodiment of a bodily presence plays an important role assisting a meaningful 

social interaction (Lee et al, 2006). 

In human social life touch plays an important role, it communicates positive or negative 

emotions (Simon, 2011). Although, within social human-robot interaction, research has focused 

almost exclusively on the modalities of vision and sound; touch has received disproportionate 

attention (Yohanan & MacLean, 2008). Touch is increasingly seen to play an important role in 

mental health (Field, 2003). Robots have been predicted to transform everyday life, including 

the way healthcare is delivered (Nestorov et al, 2014). Much research in robot therapy has 

shown the positive health benefits of animal therapy (Stiehl et al, 2005) observing that when 

patients engage physically with an animal type robot, it stimulates affection (Shibata et al, 

2001).  Research in socially assistive robotics demonstrated success in hands-on rehabilitation; 

this presents a new set of research challenges as roboticist try to understand how human-robot 

interaction can effectively and measurably assist in the process of recovery, rehabilitation, 

socialisation and companionship (Mataric & Tapus, 2006).  There are many theories and beliefs 

about the ‘power of touch’ being an affective input (McGlone et al, 2014). However, 

understanding the possibilities by which affective touch can operate has implications for the 

design of many social robots in applications ranging from companionship to therapeutic.  
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The motivation behind this thesis is to explore the meaning of touch within human-human 

social interaction and to see if it can be used in social robotics to enhance the human-robot 

interaction. It will investigate how different types of tactile information affects human 

perception of social interaction with robots. Investigating if a small change such as texture can 

affect how something feels to someone to the point it feels unnatural. Understanding the 

meaning of touch, researching the connection it may have with human emotions and how it can 

be used to create a device to interact with humans in a more human-like way.  

The thesis will begin by exploring different aspects of social robotics, summarising different 

types of robots and what the core research focus was. The thesis will also break down the 

different forms of communication social robotics have in various applications. Concluding with 

a comparative analysis where a lack of touch will be shown in both robot build, interaction and 

research. Touch as a form of human to human communication will be analysed showing a link 

between the touch and emotion felt. Affective touch within social robotics will then follow, 

analysing the Haptic Creature. The thesis will then introduce a prototype, an experiment will be 

carried out to find the most natural combination of external coverings and breathing movement. 

Data collected and results will be presented. This will be the first step in creating a device which 

utilises touch as a form of communication. It will follow with improvements and additional 

mechanisms for the prototype to continue enhancing the human-robot interaction.  
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2. SOCIAL ROBOTICS 

Traditional robots required very little, if any, interaction with humans (Breazeal, 2001) but the 

growing market for personal service robots requires them to play a beneficial role in the daily 

lives of people. Human-robot interaction is an area of research where the impact of design is yet 

to be understood (DiSalvo et al, 2002).  However, it is a key function which can increase the use 

of social robots in daily human life (Salichs et al, 2006) and it can be defined as the study of 

humans, robot and the ways they influence each other (Fong et al, 2003).  

A social robot is a socially intelligent autonomous or semi-autonomous robot which interacts 

with humans or other robots in a human-like way (Breazeal, 2002). Autonomous robots are 

intelligent machines and are capable of performing tasks in an unstructured environment 

without explicit human control (Bekey, 2005). There are a number of robots that have been 

created by several roboticists for many different applications ranging from a research platform 

to study human emotions, to assisting the elderly in the home. Others focus on displaying a 

range of facial expressions as a form of communication to evoke emotional responses. Whatever 

the application, it is known that a physical embodiment of a bodily presence plays an important 

role in assisting a meaningful social interaction (Lee et al, 2006).  

Numerous projects focus on the development of the robot face; many have developed human-

like robotic faces which incorporate hair, teeth, silicone skin and a large number of control 

points (Hara, 1998). Using a camera, normally mounted in the left eyeball, the robot recognises 

facial expressions and can produce a predefined set of emotions, corresponding to anger, fear, 

disgust, sorrow, happiness and surprise (Breazeal, 2002).  

With gremlin-like features, the disembodied head robot 

named Kismet (Figure 2.1) learns about its environment 

like a baby (Rowe, 1998). Developed in the artificial 

intelligence department of the Massachusetts Institute of 

Technology by Cynthia Breazeal, Kismet is capable of 

engaging humans in social exchanges that adhere to the 

infant-caregiver role. It was designed to recognise several 

natural social cues and deliver a number of social signals 

through gaze direction, facial expression, vocalisation and 

body posture. Kismet is being used as a research platform 

to understand social behaviours. 

 

 

Figure 2.1: Kismet 

http://www.robotliving.com/rob

ot-news/mit-150-exhibit-vote-

for-the-robots/ 

 

 

http://www.robotliving.com/robot-news/mit-150-exhibit-vote-for-the-robots/
http://www.robotliving.com/robot-news/mit-150-exhibit-vote-for-the-robots/
http://www.robotliving.com/robot-news/mit-150-exhibit-vote-for-the-robots/
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Geminoid robots (Figure 2.2) were introduced by Professor Hiroshi Ishiguro in 2005 when he 

created a replica of himself, Geminoid HI. It is said to be a hybrid system in which android and 

human are integrated. Geminoid appears and behaves like its source person (Nishio et al, 2007), 

movement is restricted to the head and the upper torso and speech is controlled by the operator. 

In 2010 Professor Hiroshi Ishiguro created a new simpler version of the original HI robot, 

Geminoid F. Geminoid F was modelled on a young female, she was the first android to become 

an actress in a play in Tokyo (Toto, 2010). She was the most realistic robot until the launch of 

Geminoid DK in early 2011. Geminoid DK is the first non-Japanese geminoid and the most 

realistic one yet, constructed to look like Professor Henrik Scharfe from Denmark. Both 

professors are using their geminoids to study human-robot interaction with a particular interest 

in people’s emotional response when they are first introduced to the android. They also want to 

find out if the robot can transmit the presence of a person to a remote location (Ackerman, 

2011). 

A growing number of humanoid robotic projects also exist where development is focused on 

creating bipedal robots, that walk in a human-like manner. Full-bodied humanoid projects focus 

on arm control, especially integrated with vision to mirror human gestures and demonstrated 

tasks (Schaal, 1999).  

Developed by Honda, ASIMO is the most advanced bipedal humanoid robot and can 

successfully function in indoor environments (Figure 2.3). He can walk, run on uneven slopes 

and surfaces, turn, climb stairs, reach and grasp objects. He can also understand and respond to 

simple voice commands, has the ability to recognise the face of an individual from a select 

group, as well as being able to map the environment and register fixed objects by using the 

camera in his eye (Sakagami, 2002). As he moves around in an environment he is able to 

Figure 2.2: Geminoid F, Geminoid HI and Geminoid DK 

http://www.geminoid.jp/en/robots.html 

 

http://www.geminoid.jp/en/robots.html
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recognise and avoid moving obstacles. ASIMO is used to encourage and inspire young minds to 

study the sciences that may someday be used to assist the elderly and handicapped. He could 

also be used for tasks that are harmful and dangerous to a human. 

 

 

 

 

 

 

 

 

The more human-like the robots become in appearance and motion, the more positive the 

human emotion becomes. This continues until the similarity becomes almost perfect but not 

quite and at this point, the subtle imperfections change the human emotional response which can 

quickly become negative (Fong et al, 2003). This unease and discomfort when people look at 

realistic virtual humans is often referred as the uncanny valley (Mori, 1970). If the robot has the 

ability to move, the emotional response increases compared to if the robot is static (Bartneck et 

al, 2007) (Figure 2.4).  

Ever since the uncanny valley was first noted, it has been a popular subject in human-robot 

interaction research (Bartneck et al, 2007). Some researchers believe the uncanny valley is a 

myth, while some question the translation, others believe the meaning needs to be updated and a 

few think it can be avoided through careful design. The uncanny valley often appears as a 

design consideration or is used as a reason for the potential failure or success of a robot (Gee et 

al, 2005). If the robot looks too human-like in appearance it can make it unfriendly, using a 

nonhuman face to develop facial expressions avoids the dip in to the uncanny valley. Deforming 

the expressions by giving them a simple design makes it easier to recognise and give them a 

friendlier look (Fukuda et al, 2004). Gemenoids fall into the uncanny valley for their realistic 

design and evokes a negative response when static, one that increases when they are in motion. 

Zoomorphic design is an easier way of avoiding the valley as human-creature relationships are 

simpler than human-human relationships (Fong et al, 2003).  

Figure 2.4: Mori’s Uncanny Valley 

https://spectrum.ieee.org/automaton/robotics/human

oids/040210-who-is-afraid-of-the-uncanny-valley  

 

Figure 2.3: ASIMO 

http://asimo.honda.com/gal

lery.aspx 

  

https://spectrum.ieee.org/automaton/robotics/humanoids/040210-who-is-afraid-of-the-uncanny-valley
https://spectrum.ieee.org/automaton/robotics/humanoids/040210-who-is-afraid-of-the-uncanny-valley
http://asimo.honda.com/gallery.aspx
http://asimo.honda.com/gallery.aspx


MSc Research  Puja Varsani 

  9 

Dr. David Hanson, the founder of Hanson Robotics, 

created the company’s latest and most advanced 

robot Sophia (Figure 2.5). Designed to look like 

Audrey Hepburn, Sophia is said to be classically 

beautiful with porcelain skin, high cheekbones, a 

slender nose and expressive eyes. Her main function 

is to talk to people, engaging them in conversation. 

With cameras in her eyes, Sophia can track faces and 

make eye contact, this is a key element in successful 

human-robot interaction. Sophia’s intelligence 

grows through interaction as she can remember 

faces while also processing conversational and 

emotional data to help form relationships with humans. She has the ability to animate different 

human expressions but has yet to learn the meaning of the emotions behind them.  

Every human interaction impacts Sophia’s development and shapes who she will become 

eventually. She has proved her intelligence in face-to-face meetings with key decision makers in 

industries, including but not limited to banking, entertainment and auto manufacturing. She has 

also appeared in a conference as a panel member discussing the implications of robotics and 

artificial intelligence and how it will integrate into human life. Her interviews in global media 

outlets have received positive responses from the public, carrying conversations and engaging 

them with jokes. However, her almost perfect human likeness and expressive face does dip the 

robot into the uncanny valley with some people describing her as creepy. Hanson (et al, 2005) 

has always believed the uncanny valley is a myth and uses this sensitivity humans have to 

realistic human-like robots, versus cartoon-like robot, as a refined metric. Using this metric to 

assist in exploring human social cognition in the pursuit of better cognitive science. Hanson 

aims to keep developing his technology to make Sophia as human-like as possible.  

DiSalvo et al (2002) made design suggestions for a humanoid robotic head to prevent it from 

dropping into the valley. To retain a certain amount of robot-ness a design with a wide head and 

eyes makes it look less human-like. Features that dominate the robot’s face should be from the 

mouth to the brow line; this distribution contrasts a human’s and will clearly state the head as 

being robot-like. Human features such as nose, mouth and eyelids should be added and detailed 

eyes give the perception of humanness. A casing of some sort must cover the mechanics of the 

inside to give a finished appearance (DiSalvo et al, 2002). 

http://www.hansonrobotics.com/ Accessed October 2017 

http://sophiabot.com/ Accessed October 2017 

 

Figure 2.5: Sophia 

http://www.hansonrobotics.com/robot/

sophia/ 

 

 

http://www.hansonrobotics.com/
http://sophiabot.com/
http://www.hansonrobotics.com/robot/sophia/
http://www.hansonrobotics.com/robot/sophia/


MSc Research  Puja Varsani 

 10 

 

 

 

 

 

 

 

Designed by Alexander Reben, a researcher from MIT Media Lab, Boxie (Figure 2.6) was 

designed based on its level of endearment to gather stories from people. With a shaky head and 

childlike voice, Boxie was able to encourage humans to interact and answer questions (Landry, 

2012) varying from "I'm really short. Can you put me on a table or hold me, so I can see you?" 

to a more personal "Can you tell me what you do here?" (Cha, 2012). Originally Boxie was to 

be made out of white plastic (see figure 2.7), however people’s opinion was that the model 

looked frightening and that the cardboard model was more organic, friendlier and approachable 

(Reben, 2011). The design can best be described as a cardboard version of Pixar’s Wall-E (see 

figure 2.8) (Landry, 2012), by having a resemblance to a character from a movie it avoids the 

dip into the uncanny valley. 

 

 

 

 

 

Not all social robots are autonomous; some are semi-autonomous or remotely controlled. 

Telepresence robots are used to be a physical representation of someone, operated by remote 

control and can communicate with others over great distances. The operator usually uses a 

webcam which captures the voice and tracks the operator’s face and head movements, 

transmitting them to the robot (Guizzo, 2010). Many projects focus on the functionality within 

the human environment; these are not usually humanoid robots but are designed to support 

natural communication channels such as speech or gestures (Breazeal, 2002). 

 

Figure 2.8: Pixar movie Wall-E  

http://disney.wikia.com/wiki/Cate

gory:WALL-E_characters 

Figure 2.6: Boxie  

http://bostinno.com/2012/01

/03/introducing-the-worlds-

newest-filmmaker-boxie-

mits-undeniably-cute-

cardboard-robot-

video/boxie/ 

 

Figure 2.7: Plastic model  

http://labcast.media.mit.e

du/?p=206 

 

 

 

http://disney.wikia.com/wiki/Category:WALL-E_characters
http://disney.wikia.com/wiki/Category:WALL-E_characters
http://bostinno.com/2012/01/03/introducing-the-worlds-newest-filmmaker-boxie-mits-undeniably-cute-cardboard-robot-video/boxie/
http://bostinno.com/2012/01/03/introducing-the-worlds-newest-filmmaker-boxie-mits-undeniably-cute-cardboard-robot-video/boxie/
http://bostinno.com/2012/01/03/introducing-the-worlds-newest-filmmaker-boxie-mits-undeniably-cute-cardboard-robot-video/boxie/
http://bostinno.com/2012/01/03/introducing-the-worlds-newest-filmmaker-boxie-mits-undeniably-cute-cardboard-robot-video/boxie/
http://bostinno.com/2012/01/03/introducing-the-worlds-newest-filmmaker-boxie-mits-undeniably-cute-cardboard-robot-video/boxie/
http://bostinno.com/2012/01/03/introducing-the-worlds-newest-filmmaker-boxie-mits-undeniably-cute-cardboard-robot-video/boxie/
http://labcast.media.mit.edu/?p=206
http://labcast.media.mit.edu/?p=206
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Telenoid R1 (Figure 2.9) is a teleoperated android designed by 

Hiroshi Ishiguro. His previous androids had realistic appearances 

with a great deal of detail to imitate the features of a human. The 

Telenoid R1 is quite different with a minimalistic design and the 

same size of a small child. A soft torso with a doll-like face and a 

bald head but no legs and stumps instead of arms is unique 

(Guizzo, 2010). This design was chosen so that the Telenoid R1 

can appear young or old, male or female and is easy to transport 

(Ogawa et al, 2011). With its jerky movements, obvious absence 

of limbs and lack of familiarity when first seen the Telenoid R1 

falls into the uncanny valley. Even the creators admit that the 

unique appearance of Telenoid R1 may be creepy when first met but the initial response may 

change once used to communicate. When Telenoid R1 emits the voice of a friend, people can 

possibly imagine their friend is with them (Guizzo, 2011).  

Animal-assisted therapy is defined as a form of therapy that involves using animals as part of a 

person’s treatment (Fine, 2010). This treatment is mostly used in hospitals and nursing homes 

and for a first-time patient, this could be a very stressful environment (Stiehl et al, 2006). 

Nursing homes are becoming larger and overcrowded is leading to residents being over 

medicated and often suffering from loneliness and a lack of care (Thomas, 1996). Research has 

shown positive benefits of companion animals (Stiehl et al, 2005) that lower stress (Allen et al, 

1991) and reduce heart and respiratory rates (Ballarini, 2003). Unfortunately, the use of animal-

assisted therapy is limited by hygiene, allergens, the high cost of training animals. There is also 

the common impracticalities of caring for an animal given the patients physical, social, mental, 

and economic situation (Sefidgar et al, 2016). These restrictions led to a new form of therapy to 

be created where robotic companions are used. There are various robots being developed for 

domestic situations where ease of use is an important issue as well as safety and minimising 

impact on human living spaces. Applications for these domestic robots focus on providing 

assistance to the elderly or to the disabled (Breazeal, 2002), while others are being developed as 

therapeutic robots for use in care homes or hospitals. Within the entertainment market, a 

growing number of synthetic pets are being developed. Most are able to locomote and some are 

being developed to entertain as well as educate. An increasing number of personal and 

entertaining toy robots are being designed to mimic living creatures. This is a zoomorphic 

design which is important to establish a human-creature relationship (Fong et al, 2003).  

 

 

Figure 2.9: Telenoid R1  

http://spectrum.ieee.org/

automaton/robotics/hum

anoids/telenoid-r1-

hiroshi-ishiguro-newest-

and-strangest-android 

http://spectrum.ieee.org/automaton/robotics/humanoids/telenoid-r1-hiroshi-ishiguro-newest-and-strangest-android
http://spectrum.ieee.org/automaton/robotics/humanoids/telenoid-r1-hiroshi-ishiguro-newest-and-strangest-android
http://spectrum.ieee.org/automaton/robotics/humanoids/telenoid-r1-hiroshi-ishiguro-newest-and-strangest-android
http://spectrum.ieee.org/automaton/robotics/humanoids/telenoid-r1-hiroshi-ishiguro-newest-and-strangest-android
http://spectrum.ieee.org/automaton/robotics/humanoids/telenoid-r1-hiroshi-ishiguro-newest-and-strangest-android
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Starting in 1998 the Aurora project investigates how autonomous robots can become toys that 

could serve in an educational or therapeutic role for children with autism. The project aims to 

use robots as remedial tools to encourage autistic children to become engaged in coordinated 

and synchronised interactions. The basic belief is this will help them develop and improve their 

communication and social interaction skills (Dautenhahn, 1999).  

 

 

 

 

 

 

 

CHARLY is an interactive robot that was built at The University of Hertfordshire as an 

experiment in human attitudes towards robots (Figure 2.10). It can play interactive games with 

users, however, its most interesting aspect is that CHARLY’s face changes to appear like the 

ones who surround it (Herrmann et al, 2012). CHARLY never fully appears like the user it 

interacts with, just resembling them enough for the face to look familiar and making the user 

feel more comfortable. It is capable of facial expressions but cannot express emotions until the 

morphing face is complete. CHARLY’s face does not mimic those around him but resembles 

them, preventing the fall into the uncanny valley. CHARLY is part of the LIREC project set up 

to understand how people react to a robot in their home, hence the mimicking face to make it 

appear part of the family. Started in 2008 the LIREC project explores how people live with 

digital and interactive companions by examining social environments and assisting in the 

creation of artificial companions that are suitable for long-term interaction (Syrdal et al, 2009). 

The goal is not to replace human contact but to provide companions that can fulfil tasks and 

interact with people in a manner that is socially and emotionally acceptable (Castellano et al, 

2008).  

 

 

Figure 2.10: CHARLY 

http://edition.cnn.com/20

11/12/02/tech/innovation

/humanoid-

robots/index.html 

  

http://edition.cnn.com/2011/12/02/tech/innovation/humanoid-robots/index.html
http://edition.cnn.com/2011/12/02/tech/innovation/humanoid-robots/index.html
http://edition.cnn.com/2011/12/02/tech/innovation/humanoid-robots/index.html
http://edition.cnn.com/2011/12/02/tech/innovation/humanoid-robots/index.html
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In 2008 the ALIZ-E project started to develop and test interactive mobile robots which can 

interact with human users over an extended period of time (Ros, 2016). They explore this by 

using social robots as assistants in the care of children with metabolic disorders. By focusing on 

four research threads; adaptive user and task modelling, adaptive memory for long-term 

interaction, adaptive linguistic interaction and adaptive non-linguistic behaviour, the 9 research 

teams believe long-term human-robot interaction may be achieved (Wilson, 2011).  

NAO (Figure 2.11) is a smaller version of ASIMO used for different applications. The initial 

application was to participate in the international RoboCup competition and is now used in the 

ALIZ-E project. NAO is also being used as a research platform in over 350 universities and labs 

to explore a wide range of research topics. With many actuators and sensors and a sophisticated 

embedded software, NAO is capable of face and object recognition; whole body movement, 

speech recognition and text-to-speech in seven languages (Pierris & Lagoudakis, 2009).  

 

  

 

 

 

 

2.1. Assistive Robotics 

Assistive Robotics (AR), essentially refers to robots that assist people with physical disabilities 

through physical interaction (Feil-Seifer & Mataric, 2005). This includes manipulator arms for 

the physically disabled (Graf et al, 2002), companion robots (Wada et al, 2002), wheelchair 

robots, rehabilitation robots (Burgar et al, 2002) and educational robots. Most of this physical 

interaction is to help reduce stress, fatigue and to increase human capabilities in regards to 

force, speed and precision. In general, to improve the quality of life. The crucial capability is the 

generation of supplementary forces to aid in overcoming the physical limits of a human (De 

Santis et al, 2008). The physical interaction in assistive robotics is not used to lower anxiety or 

reduce loneliness; the human-robot interaction is not social.  

 

Figure 2.11:  NAO 

http://asimo.honda.

com/gallery.aspx 

 

http://asimo.honda.com/gallery.aspx
http://asimo.honda.com/gallery.aspx
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Robovie R3 (Figure 2.12) is a half-sized humanoid robot 

developed by Vstone and ATR (Advanced Telecommunications 

Research Institute International), designed to assist the 

handicapped and elderly in everyday tasks. The robot can move 

around omnidirectionally, enabling it in assisting people to walk 

naturally. It can also hold a person’s hand while moving up and 

down wheelchair ramps (Hornyak, 2010). 

 

 

 

2.2. Socially Interactive Robotics 

Socially interactive robotics (SIR) describes robots whose main task is some form of interaction 

(Feil-Seifer & Mataric, 2005). They can operate as assistants, peers or partners with the sole 

purpose and task of engaging people in social interaction. The term was first used by Fong (et 

al, 2003) to distinguish social interaction from teleoperation in human-robot interaction. 

Research in this area concentrates on “human social” characteristics such as expressing 

emotions, developing social competencies, using natural cues, etc. (Fong et al, 2003), focusing 

on vision and sound. 

The Roboceptionist (Figure 2.13) is based near the main 

entrance of a building at Carnegie Mellon University. A 

moving flat-screened monitor, displaying a graphical human 

face is mounted on a mobile base. It is an interactive robot 

capable of engaging with visitors and handling basic 

receptionist tasks such as locating telephone numbers and 

providing directions. Mechanical faces have numerous 

moving parts so designers chose a flat-screen face which is 

more reliable and easier to change. However, the greatest 

disadvantage of a graphical face is the lack of a physical 

embodiment a mechanical face has. The Roboceptionist is 

being used to study long-term relationships with users 

(Gockley et al, 2005). 

 

Figure 2.12 Robovie R3 

http://www.roboticstoday.

com/robots/robovie-r-

ver3 

Figure 2.13: Roboceptionist 

https://sbs.arizona.edu/news/

university-arizona-partners-

carnegie-mellon-university-

create-bilingual-bicultural 

 

http://www.roboticstoday.com/robots/robovie-r-ver3
http://www.roboticstoday.com/robots/robovie-r-ver3
http://www.roboticstoday.com/robots/robovie-r-ver3
https://sbs.arizona.edu/news/university-arizona-partners-carnegie-mellon-university-create-bilingual-bicultural
https://sbs.arizona.edu/news/university-arizona-partners-carnegie-mellon-university-create-bilingual-bicultural
https://sbs.arizona.edu/news/university-arizona-partners-carnegie-mellon-university-create-bilingual-bicultural
https://sbs.arizona.edu/news/university-arizona-partners-carnegie-mellon-university-create-bilingual-bicultural
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KASPAR is a child-sized robot developed at University of Hertfordshire (Blow et al, 2006). 

Using minimally expressive face and gestures to communicate and interact with people it is 

used as a research platform to study human-robot interaction (Dautenhahn et al, 2009). 

KASPAR is working to help autistic children improve their social skills and with simple facial 

expressions, they can better understand him. Due to his size, they can relate to him as they 

would their peers. KASPAR was never designed to look cute (Dautenhahn et al, 2009) but he 

has an uncanny resemblance to Chucky from well-known horror movie Child’s Play (see 

Figures 2.14 and 2.15), yet this does not frighten autistic children (Liu, 2011) nor does the 

disproportion of his head to his body. 

 

 

 

 

 

 

 

2.3. Socially Assistive Robotics 

Socially assistive robotics (SAR) is said to be the bridge between assistive robotics and socially 

interactive robotics (Cavallaro et al, 2014).  The goal is to provide assistance to humans and to 

develop close and effective interactions with humans. It is used in hospitals and care facilities 

working alongside healthcare teams as a caregiver, promising to provide personalised day to day 

physical and cognitive support (Nestorov et al, 2014). They have also been used as a social 

mediator in autism and a therapeutic aid for children suffering from loss or grief. This is 

achieved specifically through social interaction without physical contact (Feil-Seifer & Mataric, 

2005). 

Pearl is the second generation of nursebots developed by Carnegie 

Mellon (Figure 2.16). With two main goals of reminding elderly people 

about their daily activities (eating, drinking, taking medicine) and 

helping them navigate their environment (Montemerlo et al, 2002). 

Pearls overall facial design is cartoon-like, expressing emotion through 

moving eyes and eyebrows and communicating via a touchscreen 

monitor (Nejat et al, 2009).  

Figure 2.15: Chucky from movie 

Child’s Play 

http://captstar1.deviantart.com/art/ch

ucky-photograph-68348959 

Figure 2.14: KASPAR  

http://www.herts.ac.uk/news-and-

events/latest-news/Research-

selected-for-leading-report.cfm 

Figure 2.16: Pearl 

http://cmtoday.cmu.e

du/issues/dec-2004-

issue/feature-

http://captstar1.deviantart.com/art/chucky-photograph-68348959
http://captstar1.deviantart.com/art/chucky-photograph-68348959
http://www.herts.ac.uk/news-and-events/latest-news/Research-selected-for-leading-report.cfm
http://www.herts.ac.uk/news-and-events/latest-news/Research-selected-for-leading-report.cfm
http://www.herts.ac.uk/news-and-events/latest-news/Research-selected-for-leading-report.cfm
http://cmtoday.cmu.edu/issues/dec-2004-issue/feature-stories/human-health/
http://cmtoday.cmu.edu/issues/dec-2004-issue/feature-stories/human-health/
http://cmtoday.cmu.edu/issues/dec-2004-issue/feature-stories/human-health/
http://cmtoday.cmu.edu/issues/dec-2004-issue/feature-stories/human-health/


MSc Research  Puja Varsani 

 16 

2.4. Zoomorphic Robots 

An increasing number of personal and entertaining toy robots are being designed to mimic 

living creatures. Robots are designed with a zoomorphic embodiment which is important in 

establishing a human-creature relationship (Fong et al, 2003). Human-creature relationships are 

simpler than human-human relationships and humans have lower expectations of realistic 

animal morphology, this makes avoiding the uncanny valley easier with zoomorphic designs.  

 

 

 

 

 

 

On the surface, Paro (Figure 2.17) is covered with white fur to create a soft natural feel (Wada 

& Shibata, 2007). Its appearance was designed using a baby harp seal as a model and was 

developed especially for therapeutic applications (Wada et al, 2004). Initially introduced in 

Japanese care homes as animal-assisted therapy. Studies have shown interacting with Paro, 

especially stroking it, results in a reduction in stress, anxiety and loneliness (Sharkey & Wood, 

2014).  

Probo (Figure 2.18) is an intelligent robot that was developed at Vrije 

University in Brussels. Its design represents an imaginary animal 

based on four extinct species of elephants from the last ice age 

(Saldien et al, 2008). Probo is said to have a huggable appearance, 

due to the mechanics being surrounded by foam which gives it the 

feeling of a stuffed animal. It was developed as a research platform to 

study cognitive human-robot interaction with a specific focus on 

children. The head is fully actuated with 20 degrees of freedom with 

the capability of showing 7 facial expressions, has an interactive belly 

screen and an impressive moving trunk. 

 

 

 

Figure 2.17: Paro 

http://www.paro.jp/english/ 

 

 

Figure 2.18: Probo 

http://probo.vub.ac.be

/Pics_Video/ 

 

http://www.paro.jp/english/
http://probo.vub.ac.be/Pics_Video/
http://probo.vub.ac.be/Pics_Video/
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The Huggable (Figure 2.19) was designed to resemble an anthropomorphized fantasy animal, 

the teddy bear. It allows more freedom with the design of the behaviour as it is not limited to 

being based on a real animal. It features a full-body sensitive skin and mechanics allowing it to 

emulate touch behaviours such as nuzzling or hugging (Stiehl et al, 2006). Developed at the 

MIT Media Lab for healthcare, education, and social communication applications. 

 

 

 

 

 

  

AIBO was developed and produced by Sony as an entertainment robot (Figure 2.20). It was 

designed to resemble a dog and many of its movements during social interaction are dog-like. It 

has a hard plastic exterior and a wide set of sensors which include touch sensors. Studies 

showed the relaxation effects that are obtained from petting a real dog were never felt with 

AIBO (Wada & Shibata, 2007). 

2.5. Conclusion 

Social robots are being used in a wide variety of ways and as a result, the interactions between 

humans and robots become more complex. From the projects above, the research surrounds 

human-robot interaction and how it can help build a relationship with the human and how the 

robots react in certain environments. Within human-robot interaction, one main goal is the 

investigation of natural ways humans can interact with robots (Duatenhahn & Saunders, 2011).  

Humanoid robots need to interact in a human-like way to gain a meaningful relationship, but 

achieving this while staying out of the uncanny valley has proven to be difficult. Even a robot 

with a high level of intelligence like Sophia still evoke those feelings of unease. With humans 

noticing subtle imperfections, a slight delay or a change in speed while gesturing alters the 

perceived intelligence, dropping Sophia into the uncanny valley.  

The uncanny valley is avoided within human-creature relationships as they are less complex and 

have lower expectations than human-human relationships. This type of relationship also 

encourages non-verbal communication. Paro has demonstrated a reduction in stress, loneliness 

and anxiety in nursing homes from patients stroking him. He is covered in soft fur and has 7 

Figure 2.19: The Huggable 

(Stiehl et al, 2006). 

 

 

Figure 2.20: AIBO 

http://www.sony-

aibo.com/aibo-models/sony-

aibo-ers-7/ 

 

 

http://www.sony-aibo.com/aibo-models/sony-aibo-ers-7/
http://www.sony-aibo.com/aibo-models/sony-aibo-ers-7/
http://www.sony-aibo.com/aibo-models/sony-aibo-ers-7/
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actuators allowing movement in a number of axes. Also covered in fur The Huggable emulates 

nuzzles but the emotional implications of this touch are unknown.  

KASPAR and Paro have both demonstrated that humans naturally seek interaction through 

touch (Silvera-Tawila et al, 2015), yet very little is known about how touch impacts emotion. 

The huggable appearance of Probo is not used as a tool in human-robot interaction. AIBO 

encourages humans to interact with it like a real dog, it visually looks like a dog but does it 

evoke the same emotions when stroked versus a real dog? The published descriptions of Sophia 

mentioned the skin is made from a material called Frubber which looks like real human skin by 

mimicking the arrangement of muscle to the skin but failed to mention how it feels. There have 

been great leaps forward with vision and sound but very little with touch, often no mention of 

touch at all. 

The next chapter investigates the importance of touch within human development and social 

life. Explains how it can impact emotions within human-human interaction and describes The 

Haptic Creature, a device that uses touch as the method of communication. 
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3. AFFECTIVE TOUCH 

Skin is the largest, oldest and most sensitive organ in the human body and is said to have been 

the first medium of communication (Juhani, 2014). Covered in 1000’s of nerve endings, the 

dermis is a layer of skin providing the sense of touch. The brain processes touch via two parallel 

pathways, one of which provides inputs such as vibration, pressure, texture and the second 

social and emotional information. A crucial element of early human development, emotional 

support and social bonding is affective touch.  

Touch is used to share feelings and enhancing the meaning of other forms of communication, 

visual or verbal. Different cues can evoke human emotions and the sense of touch is said to be 

one of the most emotionally charged channels (Smith and MacLean, 2007). It can feel different 

based on the social context of the encounter (Linden, 2015). Even if the skin is being stimulated 

in the exact same way humans experience that touch differently depending on who it is coming 

from. It continues into adulthood when soothing, expressing power, flirting and playing (Eibl-

Eibesfeldt, 1989).  

With affective touch being both technically and socially difficult to study, the role it plays in the 

communication of emotion has received little attention compared vocal and facial displays of 

emotion (Stack, 2001). Two claims have been made regarding the role touch plays in emotional 

communication. The first being that touch intensifies emotional displays from the face and 

voice. Second is that touch communicates either negatively valanced pain or discomfort and 

positively valanced warmth and intimacy, this is thought to communicate hedonic values of 

emotion (Knapp & Hall, 1997). 

Lederman (et al, 2007) carried out an experiment to test whether humans can recognise the six 

universal expressions of emotion (happiness, sadness, surprise, fear, anger and disgust) by 

touching a live face in both static and dynamic expressions. The results for the dynamic facial 

expressions of emotions showed a mean accuracy of 74% and 51% for static facial expressions 

of emotion. Results also proved that while anger, fear and disgust were less recognisable, 

happiness, surprise and sadness were highly recognisable.  

Hertenstein (et al, 2006) carried out a study exploring the communication of emotion through 

haptics and discovered that humans could identify anger, disgust, fear, gratitude, happiness, 

love, sadness and sympathy from the experience of being touched on either the arm or body by 

a stranger, without seeing the touch. In the study, two strangers (an encoder and a decoder) in a 

room separated by a barrier, one which would prevent them from seeing each other, but could 

still reach one another through a hole in the barrier. The encoder was instructed to convey 12 

different emotions by touching the decoder on the forearm, the decoder had to choose which 
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emotion they thought was being communicated after each touch. Results showed that the 

decoder could interpret anger, fear disgust, love, gratitude, and sympathy via touch with 

accuracy rates ranging from 48% to 83%. The study showed self-focused emotions 

embarrassment, pride and envy or the emotion of surprise were unable to be communicated to 

strangers. Further research by Hertenstein (et al, 2009) allowed the touch to be anywhere on the 

body that was appropriate, not restricted to the forearm. The study concluded by increasing the 

number of emotions being interpreted to eight, adding happiness and sadness. This research 

challenges Knapp and Hall’s (1997) claims that touch exclusively communicates hedonic values 

of emotion or intensifier of emotions displayed from the face and voice.   

An interesting pattern of gendered communication was found in a later study that re-examined 

the data collected by Hertenstein (et al, 2009) and Lederman (et al, 2007). Results showed that 

when both participants were male, anger was communicated above the expected rate. 

Happiness, on the other hand, was only communicated when both participants were female. The 

chances of sympathy being communicated relied on at least one of the participants being female 

(Eid & Osman, 2006). 

In 2006 Coan et al ran a study confirming the interpretation of emotions is influenced 

significantly by the person receiving and the person giving the touch. In 2011 Thompson and 

Hampton ran a study comparing the ability of strangers and romantic couples when 

communicating emotions through touch. From the results both the romantic couples and 

strangers successfully communicated the universal emotions, however, self-focused emotions 

envy and pride were only successfully communicated by the romantic couples.  

Studies found that haptic touch alone is not sufficient information to identify different emotions 

(Knapp & Hall, 2007), direct touch affect is one of many channels that helps decipher emotions. 

Within the same study carried out by Hertenstein (et al, 2009), 23 different types of tactile 

behaviour such as hugging, squeezing, shaking, etc. were identified. The results concluded that 

tactile behaviour alone was not enough in identifying distinct emotions. For example, stroking 

was used when communicating sympathy but also when communicating sadness or love. It 

found that duration and intensity of stimulus have to be controlled for improved judgment 

between emotions as well as the choice of tactile behaviour.  

In a study to measure the physical properties of affective touch (Huisman & Frederiks, 2013), a 

wearable sleeve with a pressure sensitive input layer is used for a number of expressions of 

emotions such as gratitude, anger, fear etc. Results showed a significantly larger surface area 

was touched by participants to express happiness, anger and fear compared to when expressing 

gratitude, sadness and sympathy. It also showed that intensity of most of the emotions expressed 

was relatively equal. For sympathy, however, participants were observed to use more force 
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when compared to anger, fear and gratitude. The duration between the touches when expressing 

happiness and love was longer than when expressing sadness. Disgust was also shown to have 

significantly shorter duration than happiness, love, fear and sadness.  

Although, for sympathy, participants used significantly more force when compared to fear, 

anger, and gratitude. As for the duration between touches, anger had a significantly shorter gap 

duration than happiness and love. Disgust had a significantly shorter duration than fear, 

happiness, sadness and love. 

Various confounding factors such as gender, relationship status, familiarity, social status, and 

culture have been shown in studies on social interaction through touch (Thompson & Hampton, 

2011) (Hertenstein & Keltner, 2011). The ability of a human to interpret a haptic stimulus and 

recognise its corresponding emotion depends on more than the physical properties of the haptic 

stimulus. A foundation needs to be built and attributes such as interpersonal gender, 

relationships, synchronised visual and audio cues, etc. need to be considered for a more reliable 

touch-based emotion recognition.  

3.1. The Haptic Creature 

The Haptic Creature (formerly known as Hapticat) is an expressive animatronic lap-pet 

designed to study affective touch in human-robot interaction (Yohanan & MacLean, 2011). The 

creature interacts with the world primarily through the modality of touch and is composed of 

five major components: a body, two ear-like appendages, a breathing mechanism, a purring 

mechanism, and a warming element. The form of the body is intentionally organic and 

relatively non-zoomorphic, resembling a rugby ball. The first prototype was covered in 

polyester fleece with the motivation it was easier to construct, had a comfortable feel and a 

lower cost (Yohanan et al, 2005). In 2009 (Yohanan & MacLean), this was changed to synthetic 

fur for its pleasing feel and rough approximation to animal fur and a layer of silicon rubber was 

added beneath the fur to mitigate the rigid feel of the body.  

The emotional model of the Haptic Creature is represented by an affect space adapted from 

Russel (1980 and et al, 1989). Figure 3.1 shows that the vertical dimensions represent the 

robot’s arousal, deactivated vs. activated, and the horizontal dimensions describe the robot’s 

valence, unpleasant vs. pleasant. The Haptic Creature has three levels of arousal; high, medium 

and low, each match with three levels of valence; negative, neutral and positive, creating nine 

key expressions (represented by diamonds in Figure 3.1). They drew from models of interaction 

between humans and animals as there is a wealth of non-verbal communication through touch.  
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The two ears can vary in firmness, which can be felt when they are squeezed, and is defined by 

volume ranging from 0% - limp to 100% - stiff. Using the stiffness proportional to arousal level 

(low represents limp ears and high represents fully stiffened ears) the ears are exclusively used 

to convey arousal. The user study confirmed that the intended affect state was achieved when 

paired with the breathing rate.   

Normalising the breathing rates to those of cats, dogs and rabbits the breathing mechanism 

conveys arousal with a breathing rate of 15 – 70 bpm. The breathing mechanism was also used 

to convey valance. The key to this was determined by the symmetry of breathing where equal 

durations for inhalation and exhalation signified positive valence and a quicker inhalation 

corresponded to negative valence. In domestic animals, the opposite is true, where the inhalation 

is notably slower when an animal is in a negative state. By moving away from the animal model 

Yohanan & MacLean (2011) chose to convey a quick outward motion from the ribcage striking 

the human’s hand as a negative feeling. In the user study faster breathing rates corresponded to 

high arousal of 15-70 bpm. Equal durations of inhalation and exhalation corresponded to 

positive valance and quicker shallow inhalation corresponded to negative valance.  Their results 

found 71% of participants rated breathing symmetry, 100% of participants rated breathing rate 

and 94% of participants rated depth as something they actively used to assess the emotional 

state of the Haptic Creature.  

Whenever purring was present, the results showed participants ranking the arousal dimension 

much higher and for this reason, purring was used to only convey positive valence. However, 

their next study contradicted this when participants considered the purr to mean shaking or 

shivering. Some participants noted the increase in the intensity of the purr not only showed an 

increase in excitement in the Haptic Creature but also noted the strong intensity to represent 

unhappy or fearful emotions.  

Figure 3.1: Yohanan & MacLean (20011). The 

Haptic Creature’s affect space. 
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The heating element began with four settings; off, low, medium and high, after which it was 

decided to only use off and low as the others felt too warm. However, as it took several minutes 

for the heat to dissipate, when going from low to off, it was not used in their user study 

(Yohanan et al, 2005). 

3.2. Conclusion 

The implications of touch are only just emerging in human-human interaction. Research has 

shown anger, disgust, fear, gratitude, happiness, love, sadness and sympathy can be recognised 

through touch. Self-focused emotions such as embarrassment, pride and envy or the emotion of 

surprise have been proven to be more difficult to emulate in certain context; strangers versus 

romantic couples. It has also shown confounding factors such as gender, relationship status, 

familiarity, social status, and culture. With touch being one of the most emotionally charged 

channels, there is the added complexity of touch feeling different based on the social context 

and environment of the encounter. The duration, force and surface area needs to be taken in to 

account alongside the choice of tactile behaviour.  

Human emotions are complex to emulate with only touch but there is a clear connection 

forming between touch and emotions. This is being slowly translated into human-robot 

interaction. Studies with AIBO showed that people petting it did not gain the same feelings as 

they gained from petting a real dog. Is this because it has a hard, cold plastic exterior? What you 

gain from the touch is not something that is soft and comforting, it is smooth and solid which 

compared to a real dog is a big difference. Probo is said to have a huggable appearance and 

when you touch it it is compliant, so when you hug it you sink as you would do when hugging a 

human or an animal. Does this make Probo feel more natural receiving positive emotions from 

humans? Stroking Paro can have a calming effect as it is covered in soft fur; it has 7 actuators 

which allow it to move in a number of axes. However, when Paro changes from static to 

moving, the initial movement can be startling.  

Humans are almost never completely still, when human’s sleep they make very little movement 

and when they awake their movements are slow and sluggish. Breathing is a small movement 

but it makes you aware that something is alive and moving. Perhaps by starting robots with a 

gentle breathing emulation may reduce the startling effect people can sometimes have. 

Breathing was one of the main features in which the Haptic Creature successfully conveyed 

emotions. When purring was introduced it usually enhanced the emotion (mostly positive 

valance) but on some occasions, participants noted it also felt negative, for this reason, purring 

will not be part this thesis. While Yohanan & MacLean gave no touch-based reasoning when 

changing the outer covering from polyester fleece to synthetic fur, they did mention a silicon 

layer being added to soften the feel of the hard body. It is unclear if this impacted the feel of the 
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breathing and purring as the materials varied in thickness. It is also unclear changes were made 

to the output of the respective mechanisms. This thesis will investigate if the outer covering is 

something that can affect the interaction.  

To fully understand the impact touch has on human-robot interaction small steps need to be 

taken. Research from the Haptic Creature has shown the movement of breathing is something 

humans link closely to emotional state. Purring mechanisms and heating elements have yet to be 

fully understood in the world of touch. Each new mechanism changes the way the device will 

feel, potentially changing the emotion. For this reason, a simplified device was developed to 

focus exclusively on breathing and the texture, investigating what combination of texture and 

movement feels most natural to humans when interacting with the robot. This thesis will explain 

the changes in state and how the experiments will be carried out and will then present the results 

and the conclusions which were formed.  
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4. DESIGN, IMPLEMENTATION AND 

EXPERIMENTS 

The main design factor during the design process was touch, investigating which combination 

of texture and movement felt the most natural. The form of the body is intended to be organic 

and minimalistic, keeping it non-zoomorphic and limiting the expectations of the participants 

but also focusing on the interaction rather than the form. The intention was to build a modular 

robot to accommodate the breathing mechanism and have the capability to add additional 

mechanisms such as temperature and purring for future research. Several shapes and sizes were 

produced to accommodate the additional mechanisms, however, this increased the notion of 

intelligence from the robot. For this reason, a smaller design was created to focus exclusively on 

breathing and external texture, the final form resembles an American football but in half 

(Figures 4.1 and 4.2). 

 

 

 

 

 

 

 

 

 

 

 

The internal structure needed to support the weight of two hands, yet still, allow some 

compliance while holding its shape. This was achieved by using a stainless-steel mesh (Figure 

4.3). The breathing mechanism is a rack and pinion driven by a 5V stepper motor (28BYJ-48) 

programmed and controlled via an Arduino uno board (Appendix 3). The program has three 

motions, 1 sets the rate to 14 breathes per minute, 2 sets the rate to 20 breathes per minute and 3 

stops the motor. 

Figure 4.1: Prototype 

polyester fleece 

Figure 4.2: Prototype with 

synthetic fur 

 

Figure 4.3: Prototype 

without cover  
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There are two types of breathing; metabolic breathing is vital breathing which keeps humans 

alive and behavioural breathing is carried out voluntarily i.e. holding a breath. In 2008 Homma 

and Masaoka introduced a third type called emotional breathing which is carried out involuntary 

i.e gasping. In their study on anxiety and respiration, they found a positive correlation between 

anxiety and an increase in respiration rate. Relationships between emotions and respiration have 

shown more rapid breathing during an arousal state (Boiten, 1998). The Haptic Creature’s user 

study showed participants rating breathing symmetry as something they actively used to assess 

an emotional state (Yohanan & MacLean, 2011). To eliminate any emotions elicited by a faster 

inhalation and slower exhalation, equal durations for both will be used. In the resting state, an 

average cat takes 15 – 25 breaths per minute, while an average dog takes 10 to 35 breaths per 

minute and an average human takes 14 – 20 breaths per minute. Using the above data, the 

device will emulate two breathing rates one to mimic human breathing at 14 breaths per minute 

and the other emulating a cat or a dog like breathing at 20 breaths per minute (Graph 1). 

Mammals depth of breathing and regularity continuously changes, and anything too regular 

could be unnatural. Keeping the breathing rates to a set number may result in participants 

feeling discomfort from the motion but it eliminates the implications surrounding breathing 

rates and emotions. The displacement created by the two breathing rates is 15 mm.  

 

There are two outer shells, one has the feel of a pet like a dog or a cat using synthetic fur 

(black). The other is polyester fleece (yellow) which may not have a direct link to a pet but it is 

soft to the touch (Figure 4.4). Both covers have been designed to be put on and taken off the 

prototype swiftly and with ease. Please see Appendix 1 for video. 

Graph 1: Left 20 breaths per minute, right 14 breaths per minute  

 

Figure 4.4: The two different 

covers. Left – synthetic fur. 

Right – Polyester Fleece 
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4.1. Experiments  

The focus of the experiment was to determine what combination of texture and movement felt 

the most natural. Table 1 shows the 4 states the prototype will be in.  

 

 

 

 

 

The main goal is to determine what is the most natural combination of texture and movement 

but also to find out if the difference in thickness between the two covers affects the interaction. 

My reasoning was that thicker fur cover would mute the feel of the movement more than the 

thinner fleece cover, thereby providing a more life-like experience for the user. Another interest 

is to investigate what external covering is preferred. The following was hypothesised;  

H1 - State 1 will feel more natural then State 2 

H2 - State 3 will feel more natural then State 4 

H3 - Overall State 3 will be chosen more than the other states  

H4 - Overall State 2 will be chosen less than the other states 

While this hypothesis may be obvious, it is the first step in creating a device which 

communicates exclusively through touch in a more natural and meaningful way. A slower even 

rate is common when in a resting state, hypothesis 1 and 2 will confirm that a rate of 14 

breathes per minute will feel the most natural. Hypothesis 3 will determine if synthetic fur is the 

preferred choice over polyester fleece. Hypothesis 4 will answer the question how much does 

the thickness of the covering affect the movement.  

 

 

State Texture Breathing rate 

1 Fleece 14 

2  Fleece 20 

3 Fur 14 

4  Fur 20 

Combination State 2 State 3 State 4 

State 1 1 2 3 

State 2   4 5 

State 3     6 

Table 2: Matrix table 

showing the 6 

different pairs 

 

Table 1: Showing the different States 
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4.2. Methodology 

There are four changes; two breathing changes and two external texture changes. To pair each 

state with one another a matrix table (Table 2) was used to identify six combinations. 

Participants will be asked to choose which of the two states feels the most natural. For example, 

combination 2 would be State 1 compared to State 3. To avoid any bias in the data collected, the 

order of the 6 combinations was randomised for each participant. 

 

 

 

 

 

 

There were 23 participants (8 females and 15 males), a mixture of staff and students from 

Middlesex University (age range 16 – 58 years old), were used in this experiment. Recruited via 

email, the participants had some knowledge of robotics but none had seen or interacted with the 

prototype before. The experiment was conducted in a laboratory (Figure 5.1). On the desk were 

the prototype and a laptop. Upon arrival, participants sat with the prototype in front of them and 

were asked to get into a comfortable position. A short explanation of the nature of the research 

was given. Participants were told to view the prototype as a living being with no specific ties to 

gender or species. They were then told the prototype has six different combinations and from 

each combination, they would have to choose which felt the most natural (Table 2). The 

participants were not given instructions on how to interact with the device they were free to 

choose their own exploration strategy. They were not limited by time to make a decision but 

after a minute, participants were prompted if they were ready for the next state in the 

combination or if they had made their decision. Once they were ready for the next state, the 

motor is set to position 3 (refer to the program in Appendix 3), and this is when the cover was 

changed if needed and the next motion was set.  

The change in states was manually changed via a program. All results were recorded on a 

spreadsheet. The timing of interaction was noted ± 2 seconds and whether participants used one 

or two hands to interact with the prototype.  

Figure 5.1: Experiment  
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4.3. Results 

The experiment was carried out to identify what combination of texture and movement feels the 

most natural. Data shows (Appendix 2) that out of the 6 combinations combination 4 (State 2 

and State 3) had the biggest difference with 82% of the participants choosing State 3 and only 

17% choosing State 2. Participants were divided with combination 3 with State 1 and State 4 

being chosen 43% and 57% respectively. Please refer to Graph 2. 

 

 

Hypothesis 1 is supported with State 1 feeling more natural to 74% of the participants over State 

2.  

Hypotheses 2 is supported with State 3 feeling more natural with only 26% of participants 

choosing State 4.  

Hypothesis 3 and 4 are fully supported as overall State 3 was chosen above all other states and 

State 2 was chosen the least out of the other states.  

The data from the experiment showed the combination of the covers and breaths per minute 

proved to make enough of a difference for the feeling to change when compared to another 

combination. The most natural breathing rate from the data recorded proved to be 14 breaths per 

minute, with States 1 and 3 feeling the most natural to participants. The synthetic fur texture felt 

the most natural with 2 out of 3 participants choosing State 3. When developing the hypothesis, 

the thickness of the covering was also taken into consideration. From the data, we can see it 

plays a much bigger role in what felt natural. As predicted, the faster breathing rate combined 

Graph 2: Results from experiments  
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with the thinner polyester cover felt more unnatural to participants over any other state. State 2 

was chosen the least by participants and had the lowest average time of interaction across all the 

participants. The thicker fur cover and slower breathing rate had a higher percentage and a 

higher average time of interaction during the experiments. Participants felt State 3 is the most 

natural combination of movement and texture with State 1 being a close second.  

What is unexpected, and maybe more interesting, is the high percentage of participants who 

unexpectedly chose States 2 and 4 as feeling more natural. It would seem obvious that 

participants would find State 3 more natural when compared to State 2 however 17% of the 

participants proved otherwise and 26% of the participants chose State 4 over State 3. The 

thought behind their choice is unclear and the order of the combinations may shed some light. In 

some cases, when the prototype was set to 14 breathes per minute for the previous two states 

participants chose State 2, 20 breathes per minute, as the most natural. The unfamiliarity of the 

movement might have felt more natural to them. As previously mentioned humans find regular 

motion unnatural as mammal’s depth and regularity is in continuous change. The change in 

motion may have affected that unnatural feeling to something more natural. In other cases, the 

covering on the prototype was synthetic fur for the previous two states participants chose State 

2, polyester fleece. This could mean the texture does change the feel of the motion and in some 

cases making it feel the most natural. 

4.4. Conclusion 

The main purpose was to focus on the combination of movement with texture and how this 

would impact the interaction. The experiment proved to be successful with the most natural 

combination being the synthetic fur with a respiration rate of 14 breaths per minute. The high 

percentage of participants choosing the unobvious states is still somewhat unexplained. 

Combination order and the regular breathing rate may have something to do with this. It could 

also have been the way in which the experiments were conducted as participants could see the 

cover change. Keeping the illusion of intelligence is also important even when the prototype is 

somewhat simplistic. The change in program was done in the view of the participants. They 

could all be reasons for the unusual choices, shedding light on the potential errors which need to 

be taken into consideration moving forward. 

Physical movements that mimic nature combined with different textures can change if 

something feels natural or not. This was a focused experiment not considering vision or sound 

as part of the interaction. The level of the prototypes intelligence perceived by the participants 

was low as expected due to the form of the prototype, so for it to not respond in any intelligent 

way was accepted. Participants made comments as to the emotional state of the prototype 

without being prompted and while this was not scientifically collected as data it was still noted. 
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Combination 6, where the cover is the same but the change is in the breathing rate, participants 

described the prototype to be sleeping when in state 3. Combination 2 where the texture changes 

and the breathing rate stays the same, participants described the prototype to be excited when in 

State 1.  

This opens the path to continue experimenting with different breathing rates to identify the 

perceived emotions and whether or not the texture enhances the interaction. This would then 

follow with more mechanisms being introduced like purring, as in Paro and the Haptic Creature. 

The lack of feedback from the prototype was accepted by participants as it showed very little 

intelligence during the interaction. The evolution of the prototype would need to include some 

sort of feedback from the prototype to respond appropriately to human touch and for the humans 

to interpret that touch to emotions.  

The next chapter presents a vision for the next stage in research. It will begin with explaining 

the changes to the current breathing mechanism based on the feedback received from the 

participants and a change in shape to accommodate additional mechanisms. This will follow 

with an explanation and reasoning for the additional mechanisms and intelligence to the 

prototype so it can respond to touch. 
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5. FURTHER WORK 

5.1. Design 

The design of the device worked well for the application it was being used for and has shown 

proof of concept for affective touch. One main issue that was brought up by more than one 

participant was the noise from the motor and gear mechanism. This needs to be upgraded to a 

closed-air system to inflate and deflate a balloon. Alternatively, as touch is the main form of 

communication, participants can wear ear muffs to avoid this distraction.  

Although, while the visual appearance was not being used as a form of communication, it still 

needs to link to the embodiment of the prototype and a neutral colour for the cover needs to be 

used. The intention was for participants to use both hands to get the full impact of the 

movement and texture, 26% of participants interacted with the prototype with only one hand. 

This may be due to the size of the prototype. The overall shape of the prototype will be 

elongated in the y-axis and the shape will resemble an egg (Figure 7.1), creating a larger surface 

area and increase internal space for the additional mechanisms and the battery.   

 

 

 

 

 

Currently, the prototype is tethered to a laptop via a USB, to supply power to the Arduino board 

and to control the change in states in the device. The next generation will have enough space to 

accommodate an external power supply in the form of a battery. An additional Arduino board 

will be added to allow wireless control of the prototype, allowing the facilitator of the 

experiments to be in a separate room from the participants.   

5.2. Mechanisms 

An additional movement will be added to enhance the communication, with ears. Though the 

first sense linked to ears is hearing, they can also be used as a means of expressing one’s 

emotions in some animals. The position of the ear can convey information, orientation, rigidity 

and angle. Ears can be stroked or grasped providing another form of physical interaction and 

haptic feedback. The compliance of the ear needs to be as close to the compliance of a dog’s 

ears. In dogs when the ears are completely flat it can be a sign of fear or sadness and when they 

Figure 7.1: Profile of the new 

shape, showing the range of the 

‘ears’ in varying gradients of 

grey 
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are up and slightly forward it is a sign of aggression. The control of the ears will be achieved via 

a servo motor but within the mechanism, there will be a spring to allow the ears to be compliant 

when pressure is applied.  

Purring can be heard within the prototype and can also be felt when in contact with the 

prototype. This provides haptic feedback to the human but also provides acoustic feedback. A 

10 mm diameter and 2.7 mm thick vibrating mini motor disc will be used emulating purring. 

Different housing mounts will be tested to see which amplifies the vibration the best and it will 

initially be enclosed in the centre of the prototype. This is to investigate how purring can be 

perceived. Cats purr when they are content and also as a sign that they are in pain.  

Pilot studies will need to be carried out to determine when the vibration feels too strong as the 

studies in the Haptic Creatures shows this can change the perceived emotion from positive to 

negative. This will also shed light on how other mechanisms affect the way purring is perceived. 

In the Haptic Creature study, participants felt purring represented unhappy or fearful emotions. 

The combination of the ears and purring may impact the desired reaction. Table 3 shows the 

various ranges used in the original Haptic Creature. Using the same terminology Table 4 shows 

the ranges of the developed mechanisms.  

 

 

Physical temperature plays an important role in human-human interactions by sending 

interpersonal warmth information such as trust (Nie et al, 2012). Research in the neurobiology 

of attachment (Insel & Young, 2001) has further supported the link between temperature 

sensation, feelings of psychological warmth and trust. In 2008, Williams and Bargh carried out 

a study where participants who briefly held a cup of hot coffee perceived the personality of the 

target person as significantly warmer than those who had briefly held an iced cup of coffee. 

Physical temperature, or warmth, translates into emotional warmth because of the human-

likeness (Nie et al, 2012). Without being aware of it, participants were affected by the physical 

Mechanisms Range 

Ears Flat Medium Erect   

Breathing None Slow Medium Fast 

Purring  None Slow  Medium Fast 

Temperature  None Cold Warm   

Table 3: Yohanan et al (2005) Ranges 

for Hapticat mechanisms  

Table 4: Range of mechanisms 
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temperature they experienced. This influenced impression of and prosocial behaviour toward the 

target person.  

In 2014, Cabibihan et al carried out an experiment to research the desired thermal and 

mechanical characteristics of an artificial hand. Participants were asked to select which samples, 

out of 16 artificial skin samples, they felt were similar to human skin. Ranging from 22 degrees 

Celsius to 37 degrees Celsius the samples had a surface temperature gradient of 5 degrees. The 

ambient room temperature was 21 degrees Celsius and the selected temperatures ranged from 27 

degrees Celsius to 32 degrees Celsius. For the artificial skin to be perceived as life-like the 

results showed a soft rubber material with a surface temperature of 28.4 degrees Celsius is 

critical.  

In 2012 Nie (et al) suggested that increased physical warmth would increase feelings of warmth 

during human-robot interaction. In the study, participants were randomly assigned one of three 

experimental conditions: warm ‘human touch’, cold ‘human touch’ and no ‘human touch.’ The 

results indicated warm ‘human touch’ participants had a higher degree of perceived friendship 

towards the robot then no ‘human touch’ participants. Warm ‘human touch’ also indicated 

higher levels in perceived trust levels than cold ‘human touch’ and no ‘human touch’. To 

achieve the warm ‘human touch’ the researcher used a thin hot pad which kept the robot’s hand 

at a temperature of around 40 degrees Celsius. In the cold ‘human touch’ no change was made 

to the original robot, participants held the original mechanical hand of the robot, the temperature 

was not noted. The researchers hypothesised that due to the psychological gap between an 

immersive human touch and the mechanical appearance and behaviour of the robot, the warm 

‘human touch’ may produce a negative reaction. This was evident in the results when the no 

‘human touch’ participants had lower levels of fright from the robot then the warm ‘human 

touch’ participants. 

 

 

 

 

 

Figure 7.2: Body maps reveal areas in the body where certain sensations may increase or 

decrease for a given emotion.  

http://www.npr.org/sections/health-shots/2013/12/30/258313116/mapping-emotions-on-the-

body-love-makes-us-warm-all-over 

 

http://www.npr.org/sections/health-shots/2013/12/30/258313116/mapping-emotions-on-the-body-love-makes-us-warm-all-over
http://www.npr.org/sections/health-shots/2013/12/30/258313116/mapping-emotions-on-the-body-love-makes-us-warm-all-over
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A heating element will be placed in between the metal mesh and the outer covering to emulate 

body heat. The average core body temperature is 37°C and there is a correlation between 

temperature and emotions (Figure 7.2). All six emotions will not be tested, but the theory 

behind a warm temperature and the correlation to the emotion of happiness will be compared to 

the correlation between colder temperatures and sadness. Initial pilot studies were carried out 

with a heating element to determine if a temperature change of 14°C to 20°C was detectable. 

This was to see if varying temperatures across a surface can be felt. However, the change in 

temperature was not impactful enough and in some cases, similarly to the Haptic Creature, it 

took a long time for the heat to dissipate from the heating element when dropping to a lower 

temperature.  

The circuit was changed for the next pilot study to include bi-directional control, allowing the 

heating element to be cooled down to lower temperatures by reversing the polarity. This change 

in temperature had a more successful result, the temperature difference was enough to be 

recognised. From this, the heating element will have three states; no temperature, warm and 

cold. Further testing needs to be carried out to determine the time it takes the heating element to 

change from pre-set temperature to the new desired temperature and to determine when it has 

reached no temperature. The heating element also needs to be tested with the external covering 

to understand how much heat the material will hold and at what point it will feel uncomfortably 

warm to humans. In initial testing, the heating element proved to be inconsistent and required a 

relatively long time to cool down after use. Further research and pilot studies are required before 

final parameters are set.  

5.3. Interaction  

The device needs to be able to respond. This can be done by adding a touch sensor on the 

surface of the device eliciting a response depending on the interaction with the robot. There are 

many types of touch interactions that convey affective or social content. For humans, 

handshakes are a form of greeting and poking is used to get someone’s attention but can also be 

perceived as aggression. Petting is a calming gesture for both participants, while anger can be 

displayed with a slap. Many more examples exist. In 2012 Yohanan and MacLean identified a 

30-item human-animal touch dictionary (Table 5). They began with literature sources form 

human-human touch, human-human affective touch and human-animal interaction, culminating 

in three gesture lists. They then removed gestures relying on hands/fingers and lips/mouth as 

they were deemed inappropriate and unsuitable. Using this as a reference 5 key emotional 

gestures were selected (Table 6). These gestures were selected as the hand movements required 

are very distinctive and the reactions allow the investigation of purring and how affective it can 

be in communicating emotions.  
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Current technologies within touch sensors rely heavily on force alone and cannot detect a light 

touch. This can cause problems detecting the different gestures with similar hand pressures. 

PARO and AIBO use FSRs alone to identify touch and the Huggable uses Force Resistive 

Sensors (FSR) in conjunction with temperature sensors and capacitive sensors. FSR’s are 

sensors that allow you to detect physical pressure, squeezing and weight. The sensor does not 

work well on curved surfaces, nor can they detect light touches. A combination of FSR’s and 

piezo resistive fabric pressure sensors will need to be piloted to see which combination gives the 

best results. One of the reasons for choosing the key emotional gestures was the difference in 

hand movements required for each gesture. The sensors would need to differentiate between a 

quick touch with a flat hand as against a prod with a single finger, which is a change in surface 

area. The next step for the sensors will be to differentiate between a stroke and a slap. Both 

require an open flat hand but the duration and pressure will be different. Table 7 shows the 

mechanisms settings for responses used in the original Haptic Creature. Using the same 

terminology Table 8 shows the mechanism settings for responses for the device. This opens the 

scope of the investigation to the impact of purring and ears from positive to negative valance. 

An experiment will be carried out to evaluate the effectiveness of the prototype in conveying 

emotion through touch. A ‘Wizard of Oz’ type response will be used, where the prototype 

Stroke Moving hand gently over the prototype body/ear 

Pat Gently and quickly touching the body with the flat of the hand 

Slap Quickly and sharply strike the prototype with open hand 

Poke Jab or prod the prototype with a finger 

No Touch  Prototype left untouched 

Table 5: Yohanan and MacLeans 

(2012) Touch dictionary. 

 

Table 6: 5 key emotional gestures 
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would have human controller observing the human-robot interaction and controlling the device 

to respond accordingly. It is important to ensure the controllers are hidden from the participants 

so it appears the prototype is responding autonomously. Answering the following questions: 

Can the prototype communicate the pre-set emotional responses to the participant? Do the pre-

set emotional responses match the expectation of the participant? Does communicating via 

touch elicit stronger emotional responses from the participant? 

 

 

 

 

 

 

 

 

 

 

 

  Breathing  Purring  Temperature Ears 

Stroke Slow Medium Warm Medium 

Pat Medium Slow Warm Medium 

Slap Fast None Cold Erect 

Poke Fast Slow Cold Flat 

No touch None None None Flat 

Table 8: Robot responses to tactile stimulation 

Table 7: Yohanan et al (2005) 

Hapticat mechanism settings 

for responses 
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6. CONCLUSION 

Touch plays a prominent role in communicating emotions and it is said to be the most natural 

way of communicating emotions for humans. There is a big gap in the social robotics 

community in using touch as a form of communication, this may be because we are yet to fully 

understand the implications touch has on emotions in both human-human interaction and social 

human-robot interaction. Human-human interaction studies are slowly emerging with a focus on 

the analysis, design, and evaluation of systems that can capture, process, or display emotions 

through the sense of touch. They have proved that humans can detect emotions through the 

sense of touch but have brought up confounding factors such as gender, relationship status, 

familiarity, social status, and culture. There is the added complexity of touch feeling different 

based on the social context and environment of the encounter.  

A human-human relationship within social robotics is a difficult thing to replicate. A human-

creature relationship allows us to bend the rules in interaction without dipping into the uncanny 

valley. Robots being designed with the aim of investigating affective touch, need to work in 

conjunction with other sensors to decipher emotions. Emotions are not singular, they are not 

evoked via one sense alone as they are created by different layers of senses working together. 

More than just haptic stimulus is required, a foundation of stimulus working in conjunction with 

different senses is necessary to create a more reliable touch-based emotional recognition.  

The main purpose of this thesis was to begin the process of designing a device to communicate 

with humans using touch by understanding how texture and combination can affect the way 

something feels. Physical movements that mimic nature, and combined with different textures, 

can change whether something feels natural or not. It was a simplified device focusing 

exclusively on breathing and the texture. The results showed the most natural combination 

being the synthetic fur with a respiration rate of 14 breaths per minute.  

There were some unexplainable results with participants choosing unobvious states. Although, 

the simplification of the experiment and the study may have caused the unusual results. This 

was a focused experiment without considering vision or sound as part of the interaction. The 

level of intelligence perceived by the participants was low as expected due to the form of the 

prototype, so for it to not respond in any intelligent way was accepted. Still, participants made 

comments as to the emotional state of the prototype without being prompted, describing State 3 

as sleeping and State 1 as excited.  

It is possible that the ongoing research into human-human interaction is helping scholars 

understand the complexities of human emotions and may provide valuable insights that can be 

harnessed for human-robot interaction. The development of the prototype will further the 
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investigation of breathing rates combined with the other mechanisms to identify if texture 

enhances the interaction. This may also shed some light on the unusual choices in the results 

from this experiment. To fully understand the impact touch has on human-robot interaction 

small steps need to be taken and fully explored. It is my hope this work will be the start of a 

new area of research that will change communication methodologies within social robotics and 

be the catalyst behind developing a more meaningful human-robot interaction. 
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8. APPENDIX 

1. https://youtu.be/wGOJgVRkm4o - the video shows the movement the breathing 

mechanism does and how the program controls the different settings.  

2. Images below show screenshots from the data collected from 23 participants. Column 1 

shows the order of the combinations. The next column shows order of states.  Third 

column shows the chosen state. Last column indicates the duration of time it took the 

participant to decide.  

 

https://youtu.be/wGOJgVRkm4o
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3. Components used; 28BYJ-48 stepper motor, ULN2003 driver and Arduino Uno. The 

programme below is specifically for the 28BYJ-48 stepper motor (see figure 8.1 for the 

circuit). A library (<AccelStepper.h>) needs to be downloaded and added to the 

Arduino library folder. The definition of the pins is shown in the beginning of the 

program. Void setup sets the position of the motor to 0. Void loop is the main program. 

This is where using the serial monitor you can send numbers to the program. Depending 

on which number is inputted (1, 2 or 3) the respective program is initiated. Number 1 

initiates void Breathing14(). Number 2 initiates void Breathing20(). Number 3 initiates 

void off (). Within each void the speed and acceleration is set for the desired state. void 

sendData(int val) prints the motor position every second. This was used to create Graph 

1. 

#include <AccelStepper.h> // include library  

#define FULLSTEP 4 

#define HALFSTEP 8 

// motor pins 

#define motorPin1  4     // Blue   - 28BYJ48 pin 1 //define pins 

#define motorPin2  5     // Pink   - 28BYJ48 pin 2 //define pins 

#define motorPin3  6     // Yellow - 28BYJ48 pin 3 //define pins 

#define motorPin4  7     // Orange - 28BYJ48 pin 4 //define pins 

// Red    - 28BYJ48 pin 5 (VCC) 
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#define motorPin5  8     // Blue   - 28BYJ48 pin 1 //define pins 

#define motorPin6  9     // Pink   - 28BYJ48 pin 2 //define pins 

#define motorPin7  10    // Yellow - 28BYJ48 pin 3 //define pins 

#define motorPin8  11    // Orange - 28BYJ48 pin 4 //define pins 

 

void setup() { //Move stepper to position 0 

  stepper1.setMaxSpeed(1000.0); 

  stepper1.setAcceleration(550.0); 

  stepper1.setSpeed(600); //motor speed 

  stepper1.moveTo(0);  // this is where you set the position of the motor  

 

  stepper2.setMaxSpeed(1000.0); 

  stepper2.setAcceleration(450.0); 

  stepper2.setSpeed(600); //motor speed 

  stepper2.moveTo(0);  // this is where you set the position of the motor 

  Serial.begin (9600); // initialise serial communications at 9600 bps: 

} 

 

void loop() { 

  char option; // Converts a value to the char data type 

  while (Serial.available() > 0) { // 3 options. 1, 2, and 3. When 1 is entered in the serial monitor 

Breathing14() will be initiated. When 2 is entered in the serial monitor Breathing 20() will be 

initiated. When 3 is entered in the serial monitor Void Off() will be initiated.  

    option = Serial.read(); 

    if (option == '1') { // 14 bpm will be set 

      Breathing14(); 

    } 

 

    if (option == '2') { // 20 bpm will be set 

      Breathing20(); 

    } 

 

    if (option == '3') { // stop moving will be set 

      off(); 

    } 

  }  

  if (stepper1.distanceToGo() == 0) 
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    stepper1.moveTo(-stepper1.currentPosition()); 

  if (stepper2.distanceToGo() == 0) 

    stepper2.moveTo(-stepper2.currentPosition()); 

 

  stepper1.run(); 

  stepper2.run(); 

   

 // int tracking = stepper2.currentPosition(); 

// tracking = map (tracking, 225, -225, 0, 450); 

//   sendData(tracking); 

} 

 

void Breathing14() { // set speed and accel to 14 bpm 

 

   

  stepper1.setMaxSpeed(1000.0); 

  stepper1.setAcceleration(800.0);  

  stepper1.setSpeed(800); // motor speed 

  stepper1.moveTo(225);  // this is where you set the position of the motor 

 

  stepper2.setMaxSpeed(1000.0); 

  stepper2.setAcceleration(400.0); 

  stepper2.setSpeed(400); // motor speed 

  stepper2.moveTo(-225);  // this is where you set the position of the motor 

 

} 

 

void Breathing20() { // set speed and accel to 20 bpm 

  stepper1.setMaxSpeed(1000); 

  stepper1.setAcceleration(800.0); //motor speed 

  stepper1.setSpeed(800); 

  stepper1.moveTo(225);  // this is where you set the position of the motor 

 

  stepper2.setMaxSpeed(1000); 

  stepper2.setAcceleration(800.0); //motor speed 

  stepper2.setSpeed(800); 

  stepper2.moveTo(-225);  // this is where you set the position of the motor 
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} 

 

void off () { // default position no movement.  

  stepper1.setMaxSpeed(1000.0); 

  stepper1.setAcceleration(700.0); 

  stepper1.setSpeed(600); //motor speed 

  stepper1.moveTo(0);  // this is where you set the position of the motor 

 

  stepper2.setMaxSpeed(1000.0); 

  stepper2.setAcceleration(700.0); 

  stepper2.setSpeed(600); //motor speed 

  stepper2.moveTo(0);  // this is where you set the position of the motor 

} 

 

void sendData(int val) // prints the motor position on the serial monitor every second. 

{ 

  unsigned long timeStamp = millis(); 

  Serial.print('H'); // unique header to identify start of message 

  Serial.print(","); 

  Serial.print(timeStamp); 

  Serial.print(","); 

  Serial.print(val); 

  Serial.print(","); 

  Serial.print('\n');  

 } 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Image of circuit. Stepper motor to the motor board to the Arduino uno. 


