315 research outputs found

    An estimation of distribution algorithm for lot-streaming flow shop problems with setup times

    Full text link
    Lot-streaming flow shops have important applications in different industries including textile, plastic, chemical, semiconductor and many others. This paper considers an n-job m-machine lot-streaming flow shop scheduling problem with sequence-dependent setup times under both the idling and noidling production cases. The objective is to minimize the maximum completion time or makespan. To solve this important practical problem, a novel estimation of distribution algorithm (EDA) is proposed with a job permutation based representation. In the proposed EDA, an efficient initialization scheme based on the NEH heuristic is presented to construct an initial population with a certain level of quality and diversity. An estimation of a probabilistic model is constructed to direct the algorithm search towards good solutions by taking into account both job permutation and similar blocks of jobs. A simple but effective local search is added to enhance the intensification capability. A diversity controlling mechanism is applied to maintain the diversity of the population. In addition, a speed-up method is presented to reduce the computational effort needed for the local search technique and the NEH-based heuristics. A comparative evaluation is carried out with the best performing algorithms from the literature. The results show that the proposed EDA is very effective in comparison after comprehensive computational and statistical analyses.This research is partially supported by the National Science Foundation of China (60874075, 70871065), and Science Foundation of Shandong Province in China under Grant BS2010DX005, and Postdoctoral Science Foundation of China under Grant 20100480897. Ruben Ruiz is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances" with reference DPI2008-03511/DPI and by the IMPIVA-Institute for the Small and Medium Valencian Enterprise, for the project OSC with references IMIDIC/2008/137, IMIDIC/2009/198 and IMIDIC/2010/175.Pan, Q.; Ruiz García, R. (2012). An estimation of distribution algorithm for lot-streaming flow shop problems with setup times. Omega. 40(2):166-180. https://doi.org/10.1016/j.omega.2011.05.002S16618040

    Sheduling approach for Microfactories with setup times.

    No full text
    International audienceIn this paper we consider microfactories for manipulation and assembly. These microfactories are composed of several cells containing microrobotic systems capable of a high level of repeatability. The assembly plan of the production is a pipeline of tasks that are performed by the cells. Our aim is to manage the production flow in the case where the cells can be reconfigured to perform different task types. Each cell is in charge of several consecutive tasks. A setup time is necessary to switch from the processing of one task type to another, and multiple intermediate results may be stored temporarily in storage areas to avoid switching the task type after the processing of each product. In this context we assess the optimized use of these storage areas, called buffers, and its impact on the production throughput

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Facility Layout Planning and Job Shop Scheduling – A survey

    Get PDF

    A DECOMPOSITION-BASED HEURISTIC ALGORITHM FOR PARALLEL BATCH PROCESSING PROBLEM WITH TIME WINDOW CONSTRAINT

    Get PDF
    This study considers a parallel batch processing problem to minimize the makespan under constraints of arbitrary lot sizes, start time window and incompatible families. We first formulate the problem with a mixed-integer programming model. Due to the NP-hardness of the problem, we develop a decomposition-based heuristic to obtain a near-optimal solution for large-scale problems when computational time is a concern. A two-dimensional saving function is introduced to quantify the value of time and capacity space wasted. Computational experiments show that the proposed heuristic performs well and can deal with large-scale problems efficiently within a reasonable computational time. For the small-size problems, the percentage of achieving optimal solutions by the DH is 94.17%, which indicates that the proposed heuristic is very good in solving small-size problems. For large-scale problems, our proposed heuristic outperforms an existing heuristic from the literature in terms of solution quality

    Progress in Material Handling Research: 2012

    Get PDF
    Table of Content
    corecore