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 Simulation and optimization techniques applied in semiconductor 

Assembly and Test operations 

 

Shihui Jia, PhD 

The University of Texas at Austin, 2016 

 

Supervisor:  Jonathan F. Bard 

 

 The importance of back-end operations in semiconductor manufacturing has been 

growing steadily in the face of higher customer expectations and stronger competition in 

the industry. In order to achieve low cycle times, high throughput, and high utilization 

while improving due-date performance, more effective tools are needed to support 

machine setup and lot dispatching decisions. In previous work, the problem of 

maximizing the weighted throughput of lots undergoing assembly and test (AT), while 

ensuring that critical lots are given priority, was investigated and a greedy randomized 

adaptive search procedure (GRASP) developed to find solutions. Optimization techniques 

have long been used for scheduling manufacturing operations on a daily basis. Solutions 

provide a prescription for machine setups and job processing over a finite the planning 

horizon. In contrast, simulation provides more detail but in a normative sense. It tells you 

how the system will evolve in real time for a given demand, a given set of resources and 

rules for using them. A simulation model can also accommodate changeovers, initial 

setups and multi-pass requirements easily.  

The first part of the research is to show how the results of an optimization model 

can be integrated with the decisions made within a simulation model. The problem 

addressed is defined in terms of four hierarchical objectives: minimize the weighted sum 
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of key device shortages, maximize weighted throughput, minimize the number of 

machines used, and minimize makespan for a given set of lots in queue, and a set of 

resources that includes machines and tooling. The facility can be viewed as a reentrant 

flow shop. The basic simulation was written in AutoSched AP (ASAP) and then 

enhanced with the help of customization features available in the software. Several new 

dispatch rules were developed. Rule_First_setup is able to initialize the simulation with 

the setups obtained with the GRASP. Rule_All_setups enables a machine to select the 

setup provided by the optimization solution whenever a decision is about to be made on 

which setup to choose subsequent to the initial setup. Rule_Hotlot was also proposed to 

prioritize the processing of the hot lots that contain key devices.  

The objective of the second part of the research is to design and implement 

heuristics within the simulation model to schedule back-end operations in a 

semiconductor AT facility. Rule_Setupnum lets the machines determine which key 

device to process according to a machine setup frequency table constructed from the 

GRASP solution. GRASP_asap embeds a more robust selection features of GRASP in 

the ASAP model through customization. This allows ASAP to explore a larger portion of 

the feasible region at each decision point by randomizing machine setups using adaptive 

probability distributions that are a function of solution quality. Rule_Greedy, which is a 

simplification of GRASP_asap, always picks the setup for a particular machine that gives 

the greatest marginal improvement in the objective function among all candidates. 

The purpose of the third part of the research is to statistically validate the relative 

effectiveness of our top six dispatch rules by comparing their performance on 30 real and 

randomly generated data sets. Using both GRASP and our ASAP discrete event 

simulation model, we have (1) identified the general order of dispatch rule performance, 

(2) investigated the impact of having setups installed on machines at time zero on rule 
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performance, (3) determined the conditions under which restricting the maximum number 

of changeover affects the rule performance, and (4) studied the factors that might 

simultaneously affect rule performance with the help of a common random numbers 

experimental design. In the analysis, the first two objectives, weighted key device 

shortages and weighted throughput, are used to measure outcomes.  
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Chapter 1:  Introduction 

Semiconductor devices are manufactured from wafers in a fabrication facility or 

fab in what are called front-end operations. Compared to other types of manufacturing, 

wafer fabrication is perhaps the most technologically complex and capital intensive due 

to long cycle times and the need to carry out a precise sequence of processing steps in a 

particle-free clean-room (Leachman 2002, Uzoy et al. 1992). After fabrication, the wafers 

are sent to an assembly and test (AT) facility where they are cut into chips, packaged, and 

tested in what are called back-end operations. During assembly, the chips are protected 

from environmental contamination by encasing them in plastic or ceramic material. Once 

the package is sealed, and tested for leaks and other defects, the end product is sent to 

final test. There, various operations are performed to guarantee that each device satisfies 

the customer’s requirements before being shipped. During this process, a predefined 

sequence of steps is again followed that involves testing on several different machines. In 

many cases, the same machines are used at different steps giving rise to reentrant flow, a 

concept introduced by Graves et al. (1983) and common in wafer fabrication.  

When scheduling AT operations, the goals are to achieve low cycle times, high 

throughput, and high utilization without violating agreed upon delivery dates. The first 

attempt to use optimization technology to achieve these goals was undertaken by Deng et 

al. (2010) who formulated the scheduling problem as a mixed-integer program (MIP) 

with the following four objectives given in order of priority: (1) minimize the shortage of 

critical devices, (2) maximize the weighted throughput of the remaining lots, (3) 

minimize the number of machines used, and (4) minimize the makespan. Solutions were 

obtained with a reactive greedy randomized adaptive search procedure (GRASP) 

designed to examine a diversity of machine-tooling combinations and lot assignments 
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over many iterations (the literature on GRASP is extensive; e.g., see Festa and Resende 

(2009) for an annotated bibliography of algorithms, and Feo et al. (1991) and Monkman 

et al. (2008) for manufacturing applications). In the original version of the model, Deng 

et al. assumed that the machines could only be set up once and that no jobs were running 

at time zero. An extension used here allows for initial setups as well as changeovers 

during the planning horizon, which can be anywhere from 24 hours to 7 days. The 

development of the original and updated versions of the GRASP stemmed from our 

unsuccessful efforts to solve the MIP with a commercial code.  

Another feature that was sidestepped in original research was the need for lots to 

be processed multiple times as they progress through the facility. In fact, each lot must 

undergo a series of steps or operations defined by its route that are spaced no more than a 

predetermined number of minutes apart. When creating schedules, it is necessary to look 

ahead and take into account machine and tooling requirements for all steps in a route. 

Such multi-pass requirements are synonymous with reentrant flow where a job may 

return to a machine several times before its completion.  

In a follow-on paper, Bard et al. (2013) present an updated methodology for 

dealing with the multi-pass requirements associated with a route. Whether more than one 

operation is actually scheduled, though, depends on customer demand, the relative 

priority of the lots in queue, and the current configuration of the shop. To decide on the 

best machine-tooling setups and how to assign lots to machines, a three-phase heuristic 

was used. In phase I, a single-pass algorithm derived from the GRASP in Deng et al. 

(2010) is run to obtain a tentative solution. Initial machine configurations are examined 

and the completion times of the lots in process at time zero are determined. For a given 

planning horizon, this calculation also determines the amount of time remaining on each 

machine. In phase II, the single-pass solution obtained in phase I is adjusted by inserting 
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second and higher-pass steps of the assigned lots into the schedule. In phase III, an 

attempt is made to reset machines when they finish processing the lots assigned to them, 

and then augment their schedules with additional lots. Using the GRASP logic, each 

phase is repeated a fixed number of times using randomization to ensure that diverse 

portions of the feasible region are explored. 

In a parallel effort, we have also developed a discrete event simulation model that 

similarly schedules AT lots over a given planning horizon. The motivation for the 

simulation is several-fold. First, it allows more flexibility in machine setups and in 

applying lot assignment rules that may be more familiar, and in fact, preferred by shop 

supervisors. It is well known that trying to introduce new analytic techniques to support 

operations often meets with strong resistance. Simulation, however, has been used widely 

by industry and hence is likely to be more favorably received. This is especially true in 

semiconductor manufacturing where it provides the computational foundations for 

planning and scheduling; e.g., see Asmundsson et al. (2006), Health and Morrice (2007), 

Hung and Leachman (1996), Lin and Lee (2011). Second, simulation can easily 

accommodate changeovers, which are difficult to include in optimization models while 

maintaining any degree of tractability. Although we are able to deal with changeovers in 

our updated GRASP, the quality of the resultant solutions is open to question because no 

good benchmarks for comparative purposes exist. Third, simulation allows uncertainty to 

be incorporated into the analysis. If it were desirable, for example, to consider machine 

reliability, variable processing times, and changing lot priorities, we would be at a loss to 

do so with an optimization approach. Fourth, simulation offers a comprehensive view of 

the shop floor since starts, completions, and changeovers are reported as they occur.  

With this in mind, the first purpose and contribution of this research is to provide 

a comparison of the strengths and weakness of using simulation and optimization to 
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schedule daily assembly and test operations. While there has been considerable research 

in combining the two methodologies to gain synergy (e.g., see Bispo and Tayur 2001, 

Lee et al. 2013, Xu and Nelson 2013), this is not our main goal. In our experience, it is 

rare that a manufacturer has the expertise and resources to support an integrated 

approach. Shop personnel generally rely on simple rules of thumb to construct schedules 

and sequence jobs, often validating them with a simulation of the facility (Aldakhilallah 

and Ramesh 2001, Lin and Lee 2011, Pfund et al. 2006, Sels et al. 2012). Nevertheless, 

as part of our validation process, we demonstrate how the two techniques can work 

together. The second purpose of this research is to describe our simulation model, which 

was built with AutoSched AP and is currently being used by the sponsoring company at 

several of their AT facilities.  

The key to schedule AT operations is to choose the right machine-tooling 

configurations and also the lots assignments to machines. To decide on the best machine-

tooling configurations and how to assign lots to machines, a three-phase heuristic was 

implemented.  As a real-time alternative tool to the GRASP, Bard et al. (2015) developed 

a deterministic discrete event simulation model using AutoSched AP (ASAP) that 

similarly schedules AT lots over a given planning horizon. The built-in rules in ASAP 

performed poorly compared to the enhanced GRASP, though, so three new dispatch rules 

were formulated.  Rule_First_setup initializes the simulation with the setups obtained 

with the GRASP. Rule_All_setups enables a machine to select the setup provided by the 

optimization solution whenever a decision is about to be made on which setup to choose 

subsequent to the initial setup. Rule_Hotlot is also created to prioritize the processing of 

the hot lots which are defined as those lots containing critical or key devices associated 

with production targets.  
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The customization feature in ASAP was used to implement the new rules. The 

specific motivation for combining the best features of the two approaches was several 

fold.  First, the standard rules in ASAP are inherently myopic in that set up and dispatch 

decisions reflect the best choice for each machine at the current point in time. In contrast, 

GRASP makes decisions in full view of system capacity and prioritized demand for the 

entire planning horizon.  Second, ASAP provides one solution while GRASP makes 

repeated runs to explore a large portion of the feasible region. Third, ASAP handles the 

multiple-pass (reentrant flow) requirements of a lot easily and more efficiently because it 

updates the unassigned lot list when the first pass of a lot finishes.  In contrast, the 

enhanced GRASP only starts to process subsequent passes when all the first passes of lots 

that require the same setup are completed.   

With this in mind, the third purpose and contribution of this paper are to (1) 

further customize ASAP rules by taking advantage of the type and frequency of machine 

setups recommended by GRASP results, (2) evaluate and compare the effectiveness of 

the various dispatch rules for machine setup and scheduling within ASAP, and more 

generally, (3) to demonstrate how to combine the logic of intelligent heuristics with 

discrete event simulation.  

Jia et al. (2015) as discussed in Chapter 4 developed three more advanced 

dispatch rules for configuring machines and assigning lots to machines. The first gives 

priority to hot lots containing key devices while using the setup frequency table obtained 

from GRASP output. The second embeds the more robust selection features of GRASP in 

the ASAP model through customization. This allows ASAP to explore a larger portion of 

the feasible region at each decision point by randomizing machine setups using adaptive 

probability distributions that are a function of solution quality. The third rule, which is a 
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simplified version of the second, always picks the setup for a particular machine that 

gives the greatest marginal improvement in the objective function among all candidates.   

With all these attempts to solve the AT scheduling problem, we select six dispatch rules 

and compare their performance using 30 real and simulated data sets. Specific goals are 

to (1) discover the relative performance of each rule, (2) study the impact of having 

setups installed on machines at time zero on rule performance, (3) investigate how 

restrictions on the maximum number of changeovers during the planning horizon affects 

rule performance, (4) undertake an experimental design to study multiple factors that 

might affect the rule performance when taken together.  In the analysis, the weighted sum 

key device shortages and the weighted throughput of lots are the two measure used to 

order rule performance.  

In the next chapter, semiconductor manufacturing operations are outlined mainly 

with respect to back-end (assembly and test) operations. Chapter 3 explains how to 

combine simulation and optimization to create the new dispatch rules. Chapter 4 focuses 

on more advanced dispatch rules that exploit our intelligent heuristic to configure 

machines and assign lots, and Chapter 5 presents the performance analysis of our 

dispatch rules.    
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Chapter 2:  Semiconductor Manufacturing Operations 

2.1 AT OPERATIONS 

An AT facility can be viewed as a flexible job shop with parallel, 

nonhomogeneous machines in each workcenter. For a typical planning horizon of 1 to 5 

days, hundreds or even thousands of lots must be scheduled, where each lot may consist 

of hundreds of devices. Figure 1 depicts the major back-end operations, and may include 

anywhere from 10 to 30 steps (Van Zant 2000). The devices progress through some or all 

of these steps before being turned out as finished goods and either shipped to customers 

or placed in inventory. Because end-products differ in terms of dimensions, consumables, 

and process specifications, the process flows differ by lot.  

Figure 2.1 shows in part that the test component collectively includes burn-in, 

electrical testing, marking/branding, baking, programming, mechanical scanning, quality 

check and packaging, in this order (Freed et al. 2006). In testing, each lot requires a 

unique subset of operations (burn-in, marking, baking, and programming may or may not 

be required), and several different machines may be eligible for each operation. In some 

cases, these machines may not be identical with respect to processing rates or output 

quality, so there may be lot assignment preferences among the set of eligible machines. 

Yield and lead-time variability in previous (front-end) stages of the manufacturing 

process results in variable lot sizes and lot priorities at the AT steps. Lot priorities range 

from low when ample inventory exists, to ‘hot’ or critical when promise dates are near or 

orders are past due. 
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Figure 2.1 High-level back-end process flow 

At back-end facilities, finished wafers go through an extensive regimen of 

inspection and testing that can take up to 3 hours at each step. Over a planning horizon of 

anywhere from 8 hours to several days, hundreds of thousands of wafers, grouped into 

thousands of lots must be assembled and tested. Each wafer goes through up to 32 

sequential operations before it enters finished goods inventory. At each operation, a 

queued lot must be assigned to one of a subset of appropriate machines, which can 

number in the hundreds, and when two successive lots consist of different devices, a 

setup is incurred between lots. Setups or changeovers are performed by a crew of 

technicians and typically take two hours, although fewer hours may be needed, depending 

on the tooling. If the current device on a machine must be tested at a high temperature 

while its successor requires testing at room temperature, and both use the same fixtures, 

then the setup time is equal to the amount of time it takes for cool down, usually an hour. 

Labor may or may not be a constraining factor.  
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2.2 EXPLANATION OF TERMS 

In specific terms, a lot is a collection of identical chips (also called devices or 

products) that follows a unique route through the facility consisting of a dozen or more 

steps. Each step corresponds to a machine operation that requires specific tooling, and 

must be performed at a predetermined temperature. Two lots may contain the same 

device but a different number of chips. A lot remains in the facility until it undergoes all 

of its prescribed operations. All lots are associated with customers and have delivery due 

dates. When a delivery is late, a penalty is incurred which is a function of lateness and 

volume. Because setups are so time consuming, it is critical for the planners to assign lots 

to machines and tooling to machines in such a way that as few setups as possible are 

required and due dates are taken into account.  

The age of a lot is the current time minus the time it entered the facility. For each 

operation, each lot is assigned to a particular machine. To be eligible, the machine must 

be set up with the appropriate tooling pieces, as specified by the lot's routing table, and 

must be able to operate at the required temperature. Machines are divided into families. 

In most cases, two machines from the same family are identical; however, it is possible 

that “identical” machines operate under different temperatures and hence are not 

interchangeable. The limiting resource at most operations is the number of tooling pieces. 

As with machines, tooling pieces are divided into tooling families and only operate at a 

limited number of temperatures.  

Each lot has a planned cycle time (CT) that is constantly compared to its age, as 

measured by the time it enters the facility. Age, and planned and cumulative CT are used 

in part to determine a weight that reflects the urgency with which a lot should be included 

in the schedule. The step number in the route also affects the weight, with later steps 

having larger values or higher priorities. Two lots may consist of the same device but 
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differ in chip count, age, and upcoming step, and so will have different weights. Hot lots 

contain what are called key devices and have the highest priority. They are typically 

singled out for special treatment. It is thus desirable to ensure that as many of these “hot” 

lots as possible are processed over the planning horizon to avoid or reduce penalties. 

Regular lots are assigned a value that depends on their age and remaining cycle time in 

the facility. Regardless of the weight or designation, though, all devices in a lot must be 

fully processed at each step without preemption, but can be buffered between steps.  

There is a one-to-one relationship between a route and a device, but a route may 

really be a collection of subroutes that differ by machine, tooling, or temperature. At each 

step a different subroute can be selected, depending on the availability of machines and 

tooling. For example, route LTR-T3 might be associated with device QPWPRG4, and for 

step 1 (call it final test 1), there might be three different machine-tooling combinations 

(subroutes) that can be selected. Of the three, the first in the system’s route table is 

typically the primary choice and the remainder, secondary or alternatives choices. 

In the basic AT problem, each operation is treated as independent of the others, 

thus allowing the corresponding problems to be solved separately. As such, the 

discussion in the basic AT problem relates to an individual operation rather than the AT 

facility as a whole. For an incoming lot, a particular subroute must be selected when there 

is more than one option. Each subroute specifies the eligible machine family, the tooling 

requirements, the processing rate, and the operating temperature. Once a subroute is 

selected for the upcoming operation, the lot is assigned to one of the machines in the 

specified family and the required tooling pieces are installed. Each assigned lot is 

processed completely without preemption. At the start of the planning horizon, some lots 

(called initial lots) are likely to be in process so machines running them cannot be altered 

until the lots are completed. 
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Machines and tooling are divided into families with up to ten instances in each 

machine family and one to three instances in each tooling family. Each machine is 

allowed to operate only under a predetermined set of temperatures, so two machines from 

the same family, though identical, may not be able to process the same lots due to 

temperature considerations. The same can be said of the tooling pieces. Each machine 

can not only be set up once during the planning horizon to operate at one temperature, but 

also be re-setup after the machine finishing all the lots assigned to it. That is, if machine 

m is set up with tooling configuration λ1 under temperature τ1, and assigned a set of lots 

l1, then after finishing lots l1, it can run with another tooling setup λ2 under another 

temperature τ2 to process another lot set l2 later in the planning horizon, when τ2 is 

feasible for configuration λ1.  

2.3 PROBLEM STATEMENT 

At the beginning of each planning horizon, typically a shift or a day, a finite 

number of lots are available for processing. A subset of these lots may contain what are 

called key and package devices. Any demand that cannot be satisfied for these two types 

of devices results in a large penalty. It is thus desirable to ensure that as many of these 

“hot” lots as possible are processed over the planning horizon to avoid or reduce 

penalties. Regular lots are assigned a value that depends on their age and remaining cycle 

time in the facility.  

For a given planning horizon, available machines and tooling, and set of lots, the 

problem is to determine how to set up each machine with tooling to operate at a specified 

temperature so that the number of key devices falling short of their demand is minimized 

and the weighted sum of the lots processed is maximized without violating the system's 

capacity. These are the top two priorities; secondary objectives include minimizing the 

number of machines used and the makespan, in that order. In constructing schedules, it is 
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necessary to consider machine-tooling compatibility, machine changeovers when queues 

are empty, and the sequence of steps defined for a lot.  

If a lot must undergo additional processing after completing its current operation, 

it is considered a multipass lot. Depending on the priority of such a lot and its current 

processing step, it may be necessary to include several subsequent operations in the 

upcoming schedule to ensure that its planned cycle time is not exceeded. As mentioned, 

each pass of a lot is associated with a step in the routing table and is called lot-operation. 

2.4 BASIC MODEL 

In this section, we present the basic model for the AT parallel machine scheduling 

problem with resource constraints which considers at most one setup for each machine. It 

is assumed that all machines are idle, all tooling pieces are detached, operating 

temperatures are predetermined (and hence, are omitted), and that setup and unloading 

times are negligible. Nevertheless, even with these simplifications the corresponding MIP 

requires a large amount of notation, and from a practical point of view, is intractable.  

The notation and basic AT model follow. 

Indices and sets 

D set of all devices; j D 

K set of key devices; k  K  D 

L set of lots in WIP; l  L 

Λ set of feasible tooling setups;  Λ 

M set of machines (each machine is a member of a machine family); i M 

R set of routes (each route is a collection of subroutes that represent a specific 

machinetooling combination); r  R 

T set of tooling families; t  T 

Parameters and data 
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bλt number of tooling pieces from family t required by tooling setup λ 

tooling

tn  number of tooling pieces in family t  

devices

ln  number of devices (chips) in lot l 

min_key

kn  minimum number of chips associated with key device k required to be processed 

over the planning horizon 

ilr processing rate of lot l on machine i using subroute r (devices per hour) 

wl weight (benefit) associated with processing lot l (function of lot age and the 

remaining planned cycle time) 

short

k  weight (penalty) associated with shortage of key device k 

r penalty for choosing subroute r 

M penalty on the number of machines used 

T penalty on the makespan 

C normalizing constant associated with the various key device shortages 

Hi (capacity) number of hours available on machine i over the planning horizon 

Decision variables 

xilr 1 if lot l is processed by machine i with subroute r, 0 otherwise 

yiλ 1 if machine i uses tooling setup λ, 0 otherwise 

short

k  shortage of key device k 

t
max

 latest completion time among all machines processing lots (makespan) 

tiλ total time used by machine i with tooling setup λ to process lots 

 

Minimize  
( ) ( , ) ( )

 short short

k k l r ilr M i

k K i M l L i r R i l i M i

w x y 


  
     

          + max

T t  (1a) 

subject to 
( ) ( , )

1ilr

i M l r R i l

x
 

  ,  l  L (1b) 

 
( )

1i

i

y 


 ,  i  M (1c)  
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( , )

tooling

t i t

i M i t

b y n 
  

  ,  t  T, n  N (1d) 

 tiλ =
( , ) ( , , )

devices

l

ilr

l L i r R i l ilr

n
x

   

 
 
 

  ,  i  M, λ  Λ(i) (1e) 

 tiλ ≤ Hiyiλ,  i  M, λ  Λ(i) (1f) 

 t
max

 ≥ tiλ,  i  M, λ  Λ(i)  (1g) 

 
( , ) ( , )

devices short min_key

l ilr k k

i M l L i k r R i l

n x C n
  

     ,  k  K (1h) 

 xilr  {0,1}, i  M, l  L(i), r  R(i,l), yiλ  {0,1}, tiλ ≥ 0,  

   i  M, λ  Λ(i), short

k ≥ 0,  k  K, t
max

 ≥ 0 (1i) 

Note that indices enclosed in parentheses are used to qualify a set; for example, 

L(i,λ) is the set of lots that can be processed on machine i with tooling setup λ. 

As in goal programming, the subscripted weights (w and ) in (1a) are designed to 

prioritize the order in which each objective function term is optimized. The first term 

corresponds to the objective of minimizing the shortage of the key devices and is given 

the largest weights such that short

k >> max{wl : l  L}. The second term is aimed at 

maximizing the total weighted number of lots processed over the planning horizon, which 

is the second objective. For lot l, wl = lot age + total planned cycle time  cumulative 

cycle time. The parameter εr in the second term of (1a) is the penalty incurred when 

(sub)route r is chosen. Both primary and alternate routes exist for most lots. To 

encourage the selection of primary routes when at all possible, we use the following 

settings: εr = 0 for r a primary route, εr  (0, min{wl : l  L}) for r an alternate route.  

The third term in (1a) is intended to minimize the number of machines that are set 

up over the planning horizon before changeovers are considered, and the last term is 

designed to minimize the makespan. The corresponding weights must be specified to 

satisfy the following relationships: min{wl : l  L} >> M >>T. When all the weights wl 
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have the same value and short

k = M = T = 0, the problem is equivalent to maximizing the 

throughput.  

Constraints (1b) require that if lot l is assigned to machine i  M(l), then the 

tooling associated with one of the routes r  R(i,l) must be installed on that machine. Lot 

l cannot be assigned to more than one machine or be given more than one route. These 

constraints do not require that each lot be processed but the objective function ensures 

that the as many lots as possible are selected for processing when there are a sufficient 

number of machines, tooling pieces, and time available. 

Constraints (1c) limit each machine i to at most one tooling configuration  from 

the set Λ(i). (At this point a more complete model would actually include tooling-

temperature combinations, but as mentioned, temperature has been omitted.) When the 

number of lots |L| is small, or when the available tooling is limited, it may not be 

desirable or feasible to set up all machines. Because changeovers are not considered at 

this point, once  is selected for a particular machine, only lots compatible with that 

configuration can be processed on that machine. 

Constraints (1d) restrict the total number of tooling pieces assigned to machines 

from family t to the number of pieces available. The left-hand side of these constraints 

counts the number of tooling pieces from family t associated with the choice of yi over 

all machines and corresponding tooling setups. The right-hand side represents the number 

of tooling pieces in family t.  

Constraints (1e) compute the processing time consumed by machine i  M under 

tooling configuration λ  Λ(i) when lot l  L(i,λ) is assigned to it. The complementary 

constraints (1f) ensure that no machines exceed their capacity. Although we don’t specify 

the length of the planning horizon explicitly, it is bounded by max{Hi : i  M}. The next 

set of constraints (1g) is used to determine the makespan, C
max

. The hierarchical nature of 
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the objective function, though, does not necessarily lead to the minimum makespan, even 

when an exact optimum is obtained for the problem. The makespan will be minimal only 

for the given number of machines required to meet the first three objectives. 

Constraints (1h) ensure that as many lots as possible containing key device k are 

processed, at least until demand min_ key

kn  is satisfied. The shortage short

kC will be positive if 

some of the demand cannot be met due to limited resources. In that case, a penalty equal 

to short short

k k   is incurred, where C = max{wl : l  L} + 0.1
ll L

w
 is a normalizing 

constant used to ensure that the left-hand-side coefficients in (1h) are all the same order 

of magnitude. In (1i), binary restrictions are placed on the x and y variables, and 

nonnegative restrictions are placed on the remaining  and t variables.  

The full version of the AT model includes lot sequencing, changeovers, an 

accounting of lots running at time zero, multiple passes in a route, and a range of 

temperature options for machine setups (see Bard et al. 2013). Solutions are obtained 

with a GRASP, which, for convenience, is referred to as the “optimization” approach in 

the remaining sections. Of course, those solutions are not necessarily optimal since 

GRASP is not an exact algorithm. Ying and Lin (2014) studied a much simplified version 

of the AT problem with the single objective of minimizing the total setup time, a single 

route for each lot, and no hot lots in the mix. They proposed a hybrid artificial immune 

system algorithm to find solutions and tested it on a large number of randomly generated 

instances.  

Solution methodology. To deal with initial lots, machine changeovers, and 

reentrant requirements, we have developed an enhanced GRASP whose various 

components can be adjusted to account for the current scheduling environment. For 

example, when a subset of the machines is set up at time zero, we want to be able to fix 

the corresponding y variables to 1 and bypass them in ULP. Also, provision must be 
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made to update the set of available tooling pieces when the queue of the machines they 

are assigned to empties. The general algorithm consists of the following eight steps.  

Initialization 

Step 1. (Initial lots) Identify the lots L  that are currently in process and the machines M  

on which they are running. Identify the tooling setups   on those machines and 

the operating temperature. For each initial lot ( )l i  L , calculate its remaining 

time 
( )l i

C  on machine i  M and let its remaining capacity be iH  =     
( )l i

C . 

Step 2. (Multi-pass lots) Identify the set of lots LM that require multiple passes through 

the work area being scheduled, noting that some of these might be initial lots. 

Replace each such lot l  LM with multiple copies – one for each pass – to get l
1
, 

l
2
, . . . Include only the first pass lots in L. 

Step 3. (Solve basic MIP). Set yiλ = 1 for all i  M and    . For the updated set of lots 

L, call GRASP to find a solution to model (1) with the objective limited to 

minimizing the shortages of the key-type devices, maximizing the weighted 

throughout, and minimizing the number or machines; that is, without 

consideration of the makespan. Let the solution be  1 1,x y , define L
1
= { l : 1

ilrx = 1 

 i  M, r  R(i,l) }, and set 1

iH  = 
iH + ti,(i) for all i  M, where (i) is the 

tooling configuration assigned to machine i in the solution and ti,(i) is determined 

by Eq. (1e). Also, let t
1
 be the earliest time that one of the scheduled machines 

becomes free. 

Step 4. Call Minimize_Makespan with L
1
 to get C

max
 and a new set of lot assignments, x

1
. 

General iteration  

Step 5. (Add next multi-pass lot) For all l  LM, if l
m
  L


, put L  L  {l

m+1
}; that is, 

add the next copy of multi-pass lot l  LM to L, where l
m
 is the m

th
 copy of l. 

Step 6. (Changeovers)  
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6a. For the current solution (x

, y


), identify the first machine that becomes free when 

the lots assigned to it are completed and release the tooling pieces attached to it so they 

can be reallocated. Let t

 be the time that this event occurs.  

6b. Update the remaining time available with respect to t

; that is, set  

1

iH    = min{
i i

H t 




 , Hi  t


 } for all i  M, where 

  argmax : ( )iy i

    

6c. Considering the subsets of machines and tooling pieces available at t

, try to 

schedule as many of the remaining lots in L as possible with the GRASP. Allow the last 

lot on a machine to extend beyond the planning horizon. Call the solution (x
+1

, y
+1

). 

Step 7. (Update WIP) Set L
+1

 = { l : 1

ilrx  = 1  i  M, r  R(i,l) } and update WIP by 

putting L  L \ L
+1

. 

Step 8. (Termination check) If L =  or 1

iH    ≥ planning horizon  setup time(i,) for all 

i  M and   Λ(i), stop; otherwise put    + 1 and go to Step 5. 

 

Complexity of GRASP. Let |D| be the number of devices, |L| be the number of lots in the 

WIP, |Λ| be the number of setups, |M| be the number of machines, |R| be the number of 

routes and |T| be the number of tooling families. For the initialization process, the 

complexity of the four steps is O(|M|+|L|+|Λ|) + O(|L|) + 

O(|M|∙|L|∙|Λ|+|M|∙log(|M|)+|L|∙log(|L|)+|L|∙|R|) + O(|M|∙|L|∙|R|). Given that log(|M|)  |Λ|∙|L| 

and log(|L|)  |M||Λ|, this summation reduces to O(|M|∙|L|∙|Λ|) + O(|M|∙|L|∙|R|).  

For a general iteration, the total complexity of Steps 5 – 8 is O(|L|) + 

O(|M|∙|Λ|∙|L|+|M|∙log(|M|)+|L|∙log(|L|)+|L|∙|R|) + O(|M|∙|R|) + O(|M|∙|Λ|). Two 

simplifications are possible. The first is that |M|∙|R| is less than |L|∙|R| because the number 

of machine |M| is less than number of lots |L|; the second is that the log(∙) terms are 

dominated by |M|∙|Λ|∙|L|. Removing all dominated terms, we get O(|M|∙|L|∙|Λ| + |L|∙|R|) for 

a general iteration, so the complexity of one full GRASP iteration is O(|M|∙|L|∙|R|) + 
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O(|M|∙|L|∙|Λ|). This value has to be multiplied by the total number of GRASP iterations 

denoted by N
GRASP

. A more detailed complexity analysis of each step in the algorithm is 

in the appendix. 

2.5 INTRODUCTION TO THE SIMULATION MODEL 

In the context of AT operations, the full version of model (1a) – (1i) provides a 

prescription of what should be done over the planning horizon to best achieve the four 

objectives defined in (1a). Under ideal conditions, it might be possible to achieve these 

objectives, but uncertainty in machine and tooling availability, crew shortages and other 

disruptions might thwart the course of action proposed by the optimization approach. In 

order to give shift supervisors more visibility into the operations on the shop floor at any 

point in time, we developed a discrete event simulation model to support real-time 

decisions. The two models are intended to complement each other by improving both 

near-term and long-term system performance. In either case, the same inputs are required 

and include (i) the lots waiting for processing; that is, WIP, (ii) the preferred and 

alternative subroutes for each device, (iii) the machines and tooling available at time 

zero, (iv) lot weights and priorities, (v) targets for key devices, (vi) lots running at time 

zero, and all the values of the parameters that define model (1a) – (1i). 

The simulation was written in AutoSched AP (ASAP), a product of Applied 

Materials, and is considered to be the standard analytic tool in the semiconductor 

industry. The configuration of an AT facility is fairly straightforward consisting of a set 

of machine families M and a set of tooling families F. The machines in each family are 

grouped together on the shop floor and the inactive tooling pieces are stored on racks by 

family. Members of the same machine family i, m  Mi  M, and tooling family j, f  Fj 

 F, are interchangeable. 
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In the current business environment, AT facilities generally runs 24 hours a day 

so when developing schedules for the next shift or the next week, it is necessary to take 

into consideration which lots are being processed on which machine at time zero, as well 

as how those machines are set up with respect to tooling and temperature. Once begun, 

each lot goes through a series of passes or processing steps on one or more machines 

determined by the (sub)route selected for it. As an example, consider lot 4030838 which 

contains the device TPS65856ZQZR. Referring to Table 2.1, the route for this lot is 

labeled “LJBG-T1” and consists of three steps 7100, 2110, and 7121. There are two 

options for 7100 and 7121and three options for 7110 as shown in the column “Alt”. The 

primary or preferred subroute is blank and the secondary subroutes are identified by “alt”. 

The column “Stnfam” indicates the station family, PPH or parts per hour is the 

processing rate on a machine in that family, “Genresfam” is the name of the generic 

resource family referred to in the industry as tooling, and the “Setup” column is simply a 

concatenation of the machine and tooling families. Note that the words steps and passes 

are used interchangeably from hereon out. For device TPS65856ZQZR, all three steps 

can be executed on machines in either of the families ETS-0-64 or ETS-1-128, but only 

step 7110 can use a machine in family ETS-1M-64. 

Table 2.1 Example of a route 

Route Part Step Stnfam PPH Genresfam Alt Setup 

LJBG-T1 TPS65856ZQZR 7100 ETS-0-64 570 6490924B  ETS-0-64_6490924B 

LJBG-T1 TPS65856ZQZR 7100 ETS-1-128 570 6490924B alt ETS-1-128_6490924B 

LJBG-T1 TPS65856ZQZR 7110 ETS-0-64 570 6490924B  ETS-0-64_6490924B 

LJBG-T1 TPS65856ZQZR 7110 ETS-1-128 570 6490924B alt ETS-1-128_6490924B 

LJBG-T1 TPS65856ZQZR 7110 ETS-1M-64 570 6490924B alt ETS-1M-64_6490924B 

LJBG-T1 TPS65856ZQZR 7121 ETS-0-64 570 6490924B  ETS-0-64_6490924B 

LJBG-T1 TPS65856ZQZR 7121 ETS-1M-128 570 6490924B alt ETS-1M-128_6490924B 
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Each lot in WIP has a unique identification number and contains one type of 

device or part. As mentioned, for example, lot 4030838 contains TPS65856ZQZR and 

follows route LJBG-T1. Now, suppose that machine AMAT16-1 is a member of machine 

family ETS-1-128 and that AMAT17-1 is a member of ETS-1M-64. One possible 

schedule for this lot is shown in Figure 2.2, where the first step uses setup ETS-1-

128_6490924B and the next two steps use setup ETS-1M-64_6490924B. 

 

 

Figure 2.2 Example of a lot assigned to different machines for its passes 

 

An AT facility falls somewhere between a reentrant job shop and flow shop since 

each lot follows a fixed path but may require the same machine with different tooling at 

successive steps. In other cases, a lot may require a different machine at each step. Unlike 

the optimization model (1a) – (1i) which assigns tooling to machines and lots to machines 

for the entire planning horizon with an objective function to guide the decisions, the 

simulation makes incremental, shortsighted decisions for each machine as soon as it 

finishes processing its current lot. In ASAP, machines use rules to select the next lot to 

work on from their family work list (FWL), which contains all the available lots that can 

possibly be processed. Each lot on the list is ranked by a predetermined priority measure.  

Rules and ranks work together to decide which lot a machine selects, so picking the 

appropriate combination is one way to try to optimize factory performance. ASAP has 

several built-in rules and ranking schemes.  To guide these decisions, ASAP has a 
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number of built in rules and ranks that it can be applied. For a given work list (i.e., WIP), 

these include: 

Rule_FIRST (first): Select the first job or lot on the work list. 

Rule_FIRST_A (first and all available): Same as Rule_FIRST, except that the 

machine does not choose a lot from the list until all subparts and other resources 

needed to process the lot are available. 

Rule_SSU (same setup): Continue processing lots that require the same setup that 

exists on the machine under consideration. This rule selects the first lot on the list 

that matches the current setup of the machine. 

Rule_SSU_A (same setup all available): Same as Rule_SSU except that the 

machine does not choose a job from the list until all subparts and other resources 

needed to process the job are available. 

Rank_FIFO (first-in, first-out): Lots are ranked based on when they become 

available, with the earliest lot given the highest priority. This is the default rule in 

AutoSched AP when no other priority scheme is specified. 

Rank_HP (highest priority): Lots are ranked in order of their priority as specified 

in the input file, with the highest priority (integer value) chosen first. 

Rank_EDD (earliest due date): Lots are ranked in order of their due date. The lot 

with the earliest due date is ranked first. 

For example, the rule_SSU_A (same setup all available) lets a machine continue 

processing lots that require the current setup, assuming that all the required resources are 

available.  The rank_HP (highest weight) orders the lots on the FWL according to their 

weight.  Figure 2.3 presents an example of how machine AMAT 16-1 (belonging to 

station family ETS-0-64) with setup A (colored green) installed at time 0 makes lot 

selecting decisions at four different points in time, 0 to 3, using rule_SSU_A and 
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rank_HP.  Assume that Lot 1, Lot 2 and Lot 3 all contain part TPS65856ZQZR and have 

to start from Step 7100, and the weight of each lot is specified in parentheses.  The three 

lots are ranked from the highest weight to the lowest on the AMAT 16-1 FWL according 

to rank_HP.  The list contains only the lots that are about to undergo their first pass at 

time 0.  Suppose that the required tooling for setup A and setup B are both available at 

time 0.  AMAT 16-1 will select lot2_7100 with 90 devices, which is the first ranked lot 

requiring the same setup as the machine is currently using.  At time 1 when machine 

AMAT 16-1 finishes step 7100 of lot 2, it looks at the updated FWL (which contains the 

lot just finished) and selects lot2_7110 since it is the first ranked lot on its FWL requiring 

setup A.  Similarly, lot2_7121 will be selected at time 2 when the second pass of lot 2 is 

finished.  At time 3 when the third pass of lot 2 is finished, there are no more lots on the 

FWL that can be processed with setup A so a changeover is required.  The two remaining 

lots both require setup B so there is no choice.  Given that we are using rank_HP, the first 

ranked lot, Lot1_7100, is selected for processing. 
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Figure 2.3 Example of lot selection with Rule_SSU_A and rank_HP 

 

Rules and rankings work together to select the next lot to assign to a machine and 

to decide when changeovers are required. Of course, processing cannot start on a 

machine until the necessary tooling is available. During the first phase of the project, we 

ran the simulation using Rule_SSU_A and Rank_HP and obtained the results in Table 2.2 

for the first of 6 data sets provided by two Asian AT facilities of a major manufacturer. 

The optimization results obtained from our GRASP are also included. For the simulation, 

lots that contained key devices were assigned higher priorities than regular lots for which 

no targets were given. 

Setup 

A 

Setup B Changeover 

Lot3_7100 (80) 

Lot1_7100 (100) 

Lot2_7100 (90) 

Lot3_7100 (80) 

Lot2_7100 Lot2_7110 Lot2_7121 Lot1_7100  

Lot1_7100 (100) 

Lot2_7110 (90) 

Lot3_7100 (80) 

Lot1_7100 (100) 

Lot2_7121 (90) 

Lot3_7100 (80) 

Lot1_7100 (100) AMAT 

16-1’s 

FWL: 

AMAT 16-1 

Time 

0 

Time 

1 

Time 

2 

Time 

3 



 25 

Table 2.2 Optimization and simulation comparisons 

  Simulation model Optimization model 

(GRASP) 

Prob

. no. 

Avg. lot 

processing 

time
†
 

Total 

steps 

finished 

Total 

lots 

finished 

No. of 

machines 

used 

Total 

steps 

finished 

Total 

lots 

finished 

No. of 

machine 

used 

1 8.02 (9.33) 576 392 36 688 419 36 

2 8.02 (9.33) 570 379 36 619 336 36 

3 11.35 (16.84) 483 352 36 647 378 36 

4 11.35 (16.84) 457 326 36 667 420 36 

5 117.55 (110.48) 119 116 131 123 121 48 

6 117.55 (110.48) 126 119 135 122 120 71 

†
time in hours; standard deviation in parentheses. 

The data for problem nos. 1 – 4 were provided by section of the first facility 

which contains 36 machines while the data for the remaining instances come from the 

second facility which contains 136 machines. The details associated with each instance 

are given in Section 2.7. From the Table 2.2 we see that the GRASP generally 

outperforms the simulation with respect to the two performance measures reported: total 

processing steps finished and total lots finished. Two exceptions are problem no. 2 with 

respect to lots finished and problem 6 with respect to steps finished. In the latter case, it is 

worth noting that the optimization model used less than half the number of the machines 

than the simulation. 

The difference in machine usage is due to the difference in logic used by the two 

methodologies. The simulation is myopic and tries to process each lot as soon as possible 

even if that means setting up every machine in the facility. As a consequence some 

machines may be assigned as few as one lot. In contrast, the optimization model takes a 

longer view and tries to determine the “best” machine-tooling combinations with respect 

to all the lots in WIP. Lots are then assigned to machines in groups rather than one at a 

time. Also, the simulation model does not consider the processing time of a lot and so 

makes assignments based only on the dispatch rule in use. The optimization model, 
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however, will only assign a lot to a machine if the current step can be completed within 

the time remaining on the machine. From Table 2.2, it can be seen that the average 

processing time of the lots in problem nos. 5 and 6 is almost as long as the planning 

horizon which is 120 hours. As a result the simulation model begins processing many 

more lots than the optimization model but doesn’t finish as many and doesn’t complete as 

many steps. Extending the planning horizon another few days would better even things 

out.  

The overall results are not surprising since the optimization looks over the entire 

planning horizon when making decisions while the simulation makes local, greedy 

decisions using dispatch rules and prioritized rankings. In all cases, the GRASP set up a 

smaller or equal number of machines and came closer to meeting the key device targets 

(not shown in Table 1) than did the simulation. This is a direct result of hierarchical 

objective function in (1a) that drives the GRASP. In contrast, the simulation model does 

not look ahead; it always sets up an available machine if there is a lot on the work list that 

could be processed by the machine. 

In an effort to improve the performance of the simulation we tried to individually 

and collectively adapt the dispatching rules built into AutoSched AP so that they 

approximated the logic used by the GRASP to set up machines and assign lots to them. 

The effort failed, however, on several counts, mainly due to the inherent rigidity of the 

rules. As a consequence, we decided to develop our own rules that more closely 

mimicked the steps in the optimization code. The approach taken is described in the next 

chapter. 
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Chapter 3:  Design of new Scheduling Rules 

To go beyond the standard functions and commands available in AutoSched AP it 

is necessary to embed user-written C++ code in the simulation model at each decision 

point where modifications to existing rules are desired. The process is called 

customization and offers a powerful means of increasing system performance.  

3.1  INITIALIZATION: RULE_FIRST_SETUP 

The solution to the optimization model provides the “best” machine-tooling 

setups, lot assignments and changeovers for the given planning horizon. The general goal 

is to maximize the use of the available resources in light of the four hierarchical 

objectives. The first setup used by each machine plays an important role in achieving 

those objectives because it assures that lots with the greatest benefits are given top 

priority even though they may not be at the beginning of the optimal sequence. In fact, 

the GRASP does not sequence the lots at first but simply assigns them to machines. 

Feasible sequences are only determined when second and higher number passes are being 

considered. This is in contrast to the simulation which by design sequences each lot as it 

is assigned to a machine so solutions are always feasible.  

Our first modification is to initialize the simulation with the setups obtained with 

the GRASP. This is achieved by including the appropriate values in the “Cursetup” field 

in ASAP’s machine file “stn.txt” which represents which setup the machine uses at time 

0. The approach is termed Rule_First_setup. To select lots, we still use Rule_SSU_A and 

Rank_HP. For those machines that are not included in the GRASP solution, we again rely 

on the two latter rules to perform the initial setups and lot selections. 

Figure 3.1 illustrates the potential advantage of using Rule_First_setup. In the 

upper panel, if the machine starts with the setup specified by AutoSched AP (setup A in 

the example), then according to the assumed work list, lots 1, 2 and 3 can be processed 
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after a 30-minute setup. Next, setup B is selected which allows lots 4 and 5 to be 

processed before the end of the planning horizon is reached. In the lower panel, when the 

“Cursetup” value (setup C in the example) is specified for the machine, it is possible to 

process all five lots plus lot 6. By looking ahead, the optimization model determines that 

setup C will allow more lots to be processed with fewer changeovers than then starting 

with setup A. 

 

Figure 3.1 Gantt charts with and without exploiting the optimization result 

 

3.2 RULE_ALL_SETUPS 

When Rule_First_setup is used, the simulation tries to process all lots on the work 

list that can be accommodated under “Cursetup,” and when no lots remain that are 

feasible, it looks to Rule_SSU_A and rank_HP to reconfigure the machines. As an 

enhancement, we constructed Rule_All_setups, which uses all the setups provided by the 

GRASP and not just the first setup. In other words, whenever a decision is about to be 

made on which setup to choose subsequent to the initial setup, those provided by the 
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optimization solution are selected. However, because the logic used by the simulation and 

GRASP to pick lots is different, using Rule_All_setups rarely produces the same solution 

as the GRASP.  

The upper and lower panels in Figure 3.2 complement each other by illustrating 

the cases in which Rule_First_setup and Rule_All_setups are used, respectively. Both 

start out with setup A as specified by “Cursetup” and are able to process lots 1, 2, and 3. 

Upon completion, the machines must be reset to make use of their remaining capacity. 

For the first machine, Rank_HP identifies the highest priority lot on the work list and, 

depending on the available tooling, chooses a specific setup. In this case, it is setup B 

although setup D was also a possibility. After lots 4 and 5 are finished, a second setup is 

called for. This time it is setup C.  For the second machine, setup D is chosen because 

that’s what was indicated by the GRASP solution. As a result, it is possible to process 

lots 4 – 6 plus lot 7 in the remaining time. Although the example is somewhat contrived, 

it demonstrates what might happen with and without Rule_All_setups. 

Figure 3.2 Gantt charts for assigning the first setup only verses all setups  
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3.3 RULE_HOTLOT 

Critical devices or hot lots are given the highest priority in model (1) as long as 

their target is not met. When a sufficient number of lots containing a specific key device 

are processed through all their steps, the weights of the remaining lots that contain that 

device revert to their regular values. Rule_HotLot is designed to improve the due date 

performance of the simulation in a similar manner. The goal of minimizing the shortage 

of key devices in the optimization model is equivalent to maximizing the throughput of 

the hot lots in the simulation model. We want to be careful, though, not to tie up 

resources and continuing processing hot lots after their target is met, unless the hot lot list 

is empty. 

To construct the hot lot list, we do the following: for each key device, first sort 

those lots that contain this device from the highest weight to the lowest weight, and then 

sequentially place a sufficient number on the hot lot list until the sum of pieces in the lots 

selected meets or exceeds the target. For example, assume that part XPS54286PWPR is a 

key device with a target of 22,910 pieces. Table 3.1 lists the lots that contain 

XPS54286PWPR and the number of pieces in each. Because they are already sorted in 

accordance with their priority, we go down the list until the target is met. For the seven 

lots in the table, the first five are selected and designated as a hot lot (see last column) 

since the sum of their components is 29,293. This value exceeds the target by as little as 

possible while preserving the original order. 
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Table 3.1 An example of hot lot designation 

Lot Part 

Current 

step Pieces 

Original 

priority 

Updated 

priority Hotlot 

9911008 XPS54286PWPR 7100 4536 4304400 22910 yes 

9911014 XPS54286PWPR 7100 6371 4304400 18374 yes 

9921414 XPS54286PWPR 7100 1106 3903600 12003 yes 

9923471 XPS54286PWPR 7100 8640 3835400 10897 yes 

9923472 XPS54286PWPR 7100 8640 3835400 2257 yes 

9923473 XPS54286PWPR 7100 8640 3835400 3835400 no 

9923474 XPS54286PWPR 7100 8640 3835400 3835400 no 

 

After constructing the list, the priority of each lot is modified to reflect its 

distance from the target, assuming that lots are processed in nonincreasing order of their 

original weight. Taking each key device separately, the priority of the first hot lot is set to 

the target; the priority of the second hot lot is set to the priority of the first lot minus the 

number of pieces in the first lot, and so on. For example, there are five hot lots in Table 

3.1 for key device XPS54286PWPR. We set the priority of lot 9911008 to the target 

22,910. Next, we set the priority of lot 9911014 to 22,910 – 4536 = 18,374, and similarly 

for the remaining three lots. The results are given in the “Updated priority” column in 

Table 3.1. 

After defining hot lots and modifying their corresponding weights, they will be 

assigned to machines according to the logic in Figure 3.3 at a high level. Lots pass 

through a series of filters and the ones that emerge are assigned to a machine on which it 

can be processed. Machines are ranked in nonincreasing order of their capacity with ties 

being broken arbitrarily. Each station family has associated with it a family work list 

(FWL) of feasible lots. Hot lots on the FWL are the primary candidates for processing 

and will be selected in accordance with their priority when the current setup can 

accommodate them. If not, a decision is made on how to reset the machine so that it can 

continue processing hot lots. At this point, when there are two or more hot lots on the 
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FWL, all those that can be processed by a machine in the same family using its current 

setup are bypassed because a feasible setup already exists for them. The remaining hot 

lots for which there is no current feasible setup are considered one at a time according to 

their priority. The highest ranking one for which the required resources are available is 

selected and the changeover is performed. 

  When it is not possible to reset the machine to process any of the remaining hot 

lots on the FWL, regular lots are considered. The one with the highest rank that can be 

processed with the current setup is selected first. Lower ranking regular lots are selected 

in turn until a changeover is required. At that point, the same logic used to reset the 

machine for hot lots is used for the regular lots.  

In summary, taking hot lots first, the machine will first try to select the first 

ranked lot that has all of the required resource available and can be processed with the 

current setup. If this fails, then the machine will select the first ranked lot that has all of 

the required resource available that cannot be processed with the current setup used by 

other machines in the same machine family. If that still fails, the machine will just select 

the first ranked lot for which all of the required resources are available. This logic is 

designed to process hot lots first even if changeovers are required. In contrast, the 

GRASP tries to process all feasible lots before considering a changeover. Therefore, 

when Rule_Hotlot is used, the simulation may outperform the GRASP with respect to 

minimizing shortages. 

To describe the logic associated with Rule_Hotlot in more detail, we make use of 

the following additional notation.  

Sets and indicies 

M   set of machines in the factory; i  M 

FWL(i)   set of lots that can be processed on machine i  
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Hotlot    set of hot lots 

M(i)    set of machines belonging to the same machine family as machine i  

DES(i)   set of lots that passes through various filters for l  FWL(i)  

Allavail(i) set of lots in FWL(i) for which the required machine and tooling are 

available;  Allavail(i)  FWL(i)    

λ(i)   current setup for machine i  

λ(i,l)   setup that can be used to process lot l with machine i 

Λ(M(i))   setups used by the machines belonging to M(i) except machine i 

Alorigthm_Rule_Hotlot 

Step 0. Initialization: 

For current i, determine the entries in the sets FWL(i), Allavail(i), DES(i), M(i), 

λ(i) and Λ(M(i)). For each l  Allavail(i), retrieve the values of λ(i,l) and 

determine whether l is a hot lot. 

Step 1. Rank all of hot lots in the set FWL(i) in nonincreasing order of their priority, and 

then below them rank all regular lots in FWL(i), also in nonincreasing order of 

their priority. 

Step 2. Apply multiple filters to FWL(i) and put the lots that pass through these filters to 

the DES(i).  

If Allavail(i) ≠ , then 

FOR each l  Allavail(i) 

If l  Hotlot and λ(i) = λ(i,l), then 

          DES(i)  DES(i)  {l} 

      Endif 

 ENDFOR(l) 

If DES(i) ≠ , then 
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   Go to Step 3. 

Else 

FOR each l  Allavail(i) 

If l  Hotlot and λ(i,l) ∉ Λ(M(i)), then 

DES(i)  DES(i)  {l} 

  Endif 

ENDFOR(l) 

    If DES(i) ≠ , then 

     Go to Step 3. 

    Else 

       FOR each l  Allavail(i) 

   If l  Hotlot, then 

DES(i)  DES(i)  {l} 

       Endif 

  ENDFOR(l) 

     If DES(i) ≠ , then 

      Go to Step 3. 

     Else 

        FOR each l  Allavail(i) 

         If λ(i) = λ(i,l), then 

DES(i)  DES(i)  {l} 

         Endif 

         ENDFOR(l) 

          If DES(i) ≠ , then 

           Go to Step 3. 
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          Else 

           FOR each l  Allavail(i) 

            If λ(i,l) ∉ Λ(M(i)), then 

         DES(i)  DES(i)  {l} 

            Endif 

          ENDFOR(l) 

           If DES(i) ≠ , then 

            Go to Step 3. 

           Else 

       DES(i)  Allavail(i)  

       Go to Step 3. 

 Endif 

Step 3. Select the first lot of the DES(i) to assign to machine i. 

Figure 3.3 Logic for Rule_Hotlot 

Complexity of Rule_HotLot. Let |M| be the number of machines in the factory, |L| the 

number of lots in WIP, |T| the number of tooling pieces, and |Λ| the number of feasible 

setups. At Step 0, determining FWL(i) requires an examination of each lot in L so the 

complexity is O(|L|) for machine i. Similarly, Allavail(i) can be determined in O(|L||T|) 

time, M(i) in O(|M|) time, (i) in O(|Λ|) time, and Λ(M(i)) in O(|M||Λ|) time. The 

complexity of determining whether l is a hot lot is O(|L|) and the complexity of finding 

the entries in  (i,l) is O(|L||Λ|). Recognizing that |M|×|Λ| is dominated by |L|×|Λ| because 

|M| is small than |L|, the complexity of Step 0 reduces to O(|L||T| + |L||Λ|). 

 Step 1 involves the ranking of all the lots in FWL(i) and can be done 

O(|L|log(|L|)) time. Considering Step 2, for any i, there are at most six filters (a filter is 
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referred to by an “if” statement before placing a lot l in the set DES(i) in Step 2) that will 

be applied to the FWL(i). The second and the fifth filters take O(|Λ|) time while the 

remainder filters take constant time O(1). Thus Step 2 requires at most O(|L||Λ|) time. 

Taking into account that Step 3 can be performed in O(1) itme and that log(|L|) |M||Λ|, 

the complexity of Rule_HotLot for a single machine is O(|L||T| + |L||Λ|). 

3.4 RULE_FIRST_SETUP_LIMITED 

Recall that the third objective in model (1) is to minimize the number of machines 

used, a component of the GRASP but not a feature of the simulation as originally 

conceived. Referring to the comparisons in Table 2, we see that for two of the six data 

sets the simulation using Rule_SSU_A and Rank_HP required many more machines than 

the GRASP but failed to achieve a noticeable improvement in performance. These rules 

try to limit the number of machine setups but rarely achieve this goal. To avoid 

unnecessary setups we developed Rule_ First_setup_limited which restricts the machines 

that the simulation can use to only those that are included in the GRASP solution. This 

rule works in conjunction with Rule_SSU_A and Rank_HP. 

3.5 DISCUSSION AND CONCLUSION 

Backend operations in semiconductor assembly and test facilities give rise to 

reentrant flow. Each lot needs to be processed using different tooling in a predefined 

sequence. Scheduling thousands of lots a day to minimize throughput, minimize key 

device shortage, reducing the number of machines used and minimize the makespan is a 

complex problem that has not been adequately addressed by the research community. In 

this paper, the optimization and the simulation procedures were both presented and 

compared to schedule the back-end operations in the semiconductor manufacturing. The 
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mathematical model was formulated and high-quality solution for the multi-pass 

scheduling problem was obtained by using the GRASP heuristics.  

The simulation model was developed using the simulation software AutoSched 

AP 10.0.2, but the software built in rules performed poorly compared to the GRASP 

results from almost every measurement that was used in this paper. Three new rules were 

designed by using AutoSched AP customization aims at improving simulation model 

performance. The Rule_First_setup initializes the simulation with the setups obtained 

with the GRASP. The Rule_All_setups uses all the setups provided by the GRASP. The 

Rule_HotLot focuses highly on minimizing the key device shortage by defining the 

hotlots and developing new algorithm for the machines to do lot selection. The 

Rule_Setupnum puts higher priority in processing the hotlots and also take account into 

the setup frequency results from machine optimizer. Extensive computational 

comparisons were made between different rules and the GRASP results using various 

metrics with six real datasets provided by the Taiwan and Clark probe AT facilities of the 

collaborating company. The computational results showed that the Rule_First_setup and 

the Rule_All_setups have both improved the performance the basic simulation rule in 

most of the performance measures, and these two rules even outperformed the GRASP 

when comparing the total lots finished and the key device shortage. These three rules 

combine the merits of optimization model and the simulation model by using the same 

setups as the optimization model and grouping the sequential steps in a lot’s route. The 

Rule_HotLot performed the best in minimizing the key device shortage as how it was 

designed.  
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Chapter 4:  Improving the performance of dispatch rules in A&T 

operations 

Three new dispatch rules with more intelligent algorithms are developed in order 

to combine the merits of both GRASP and ASAP with customization. The comparison 

results of all developed dispatch rules on eight data sets are presented in Section 4.5.  

4.1 LITERATURE REVIEW  

For an overview of dispatch rules typically applied in the semiconductor industry, 

see Atherton and Atherton (1995).  Wu et al. (2008) developed a dispatching algorithm 

that tries to balance the output rate of each product segment with the goal of improving 

on-time delivery for a make-to-order semiconductor wafer fab. They showed that the 

algorithm outperformed the scheduling procedures favored by the company on 10 test 

scenarios with respect to on-time delivery rates and cycle times.  Saito (2007) proposed a 

pseudo periodical priority dispatching (P3D) rule for dynamic allocation of WIP in mixed 

products semiconductor manufacturing.  The P3D rule evaluated both the amount of WIP 

and the arrival rate of lots for each quantum, where a quantum is defined as a period 

during which a single type of product is processed on a machine.  Results comparing P3D 

with first-come, first served logic, and the shortest processing time rule for simulated data 

with Poisson arrivals showed that P3D uniformly outperformed the other rules in terms of 

adjustment rate, throughput, response time, and tardiness.   

For scheduling semiconductor back-end operations, Chiang (2008) introduced a 

fuzzy analytical hierarchy process to identify acceptable WIP deviation levels, which 

were then used to determine job priorities. The approach was shown to balance on-time 

delivery goals and WIP targets with the help of a simulation model that was calibrated 

with real data.  Fu et al. (2011) presented a MIP model and a deterministic scheduling 

system (DSS) to minimize prioritized tardiness for the weekly production scheduling of a 
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semiconductor back-end facility.  Depending on customer orders, the DSS uses either a 

linear programming optimizer or a material-requirements-planning optimizer along with 

one of two scheduling rules: dynamic lot prioritization or dynamic machine prioritization, 

for finding schedules.  The results were consistent and satisfactory from management’s 

point of view, and required less solution time for randomly generated large problem 

instances than the MIP formulation. Related research in a job shop environment was 

undertaken by Sels et al. (2012) who compared 30 rules under two flow time-related and 

three tardiness-related objectives. 

For a single product, Narahari and Khan (1996) proposed an approximation 

method for predicting the performance of heuristics for scheduling reentrant flows based 

on mean value analysis (MVA).  They modeled reentrant lines with buffers as a non-

traditional queuing network and were able to show that MVA was better than simulation-

based methods with respect to accuracy and time complexity.  One shortcoming of their 

approach was the need to treat each machine as a unique family, so they couldn’t take 

advantage of situations in which some machines were identical.  To address the more 

general case, Park et al. (2002) considered a facility that processed multiple products 

using multi-servers, where each server consisted of one or more identical machines.  Choi 

et al. (2011) proposed a decision tree-based real-time scheduling mechanism for the 

reentrant hybrid flow shop scheduling problem. A decision tree was created using four 

attributes related to the jobs in the queue; the extremities of the tree contained the 

proposed dispatching rule of which one was identified as being the best through the roll-

up logic. Testing showed that the approach led to higher throughput in less time when 

compared to discrete event simulation.  

Freed et al. (2007) developed a dispatcher within an Excel-VBA decision support 

system.  The dispatcher takes current WIP data and sorts it based on due-date and 
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processing requirements, and gathers feedback from managers to prioritize the use of 

resources before providing the operators with the final schedule. Testing showed that on-

time delivery increased from 70% to 90% and lot lead time was reduced by 30% due to 

the dispatcher.  Knutson et al. (1999) proposed a method for deciding the lot assignments 

on a given day with the overall goals of maximizing on-time delivery and minimizing 

excess product that had to be stored.  The problem was formulated as nonlinear integer 

program with three objectives: maximize the number of die sent to the customers, 

minimize the number of die sent to the warehouse, and meet due date requirements for 

orders.  A two-stage decomposition approach was used to find solutions. Stage 1 

consisted of a knapsack problem whose objective was to maximize a combination of 

factory utilization and on-time-delivery, while Stage 2 was a modified bin covering 

problem in which the orders represented variable size bins.  A first-fit-decreasing (FFD) 

heuristic with order sizes modified by their due date was used in Stage 1. The results 

were used to fill orders one at a time in Stage 2.  The results showed that FFD performed 

significantly better than a FIFO algorithm.   

Song et al. (2007) applied ant colony optimization (ACO) to reduce the 

conversion time of a bottleneck machine during assembly and test. Machine conversion is 

necessary when the product type switches between time intervals. The authors considered 

three objectives: minimize total unsupported customer demand, minimize the total 

number of conversions, and minimize the total conversion time.  The optimization 

problem was mapped to an undirected multipartite network and solved using ACO.  It 

was shown that this approach was able to reduce conversion time by 20% compared to 

the quantity-per-shift method, which was in use at the time.  
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4.2 RULE_SETUPNUM 

When Rule_Hotlot is used, the simulation tries to process hot lots first, and when 

there are multiple types of hot lots remain on the FWL that are feasible, the first ranked 

hotlot with required setup not used by other machines in the same machine family will be 

selected. As another option, we constructed Rule_Setupnum, which is to first determine 

how many same setup as the hot lot’s required setup that has been already used by other 

machines in the same machine family named as setup count, and then select the hot lot 

with setup count less than the frequency number listed in the setup frequency table. 

Rule_Setupnum uses the same logic of constructing the hot lot list and update the 

priority, the algorithm requires the setup frequency table from the machine optimizer. 

Table 4.1 lists the setup results provided by machine optimizer for machine family 

ETS564. 

Table 4.1 An example of setup result from machine optimizer 

Machine instance Setup 1 Setup2 

T4 ETS564_6455407A ETS564_6462741B 

T5 ETS564_6442302C ETS564_6462741B 

T6 ETS564_6440109A ETS564_6462741B 

T7 ETS564_6453620A ETS564_6462741B 

T10 ETS564_6430442A ETS564_6462741B 

T13 ETS564_6462741B  

T18 ETS564_6459957B  

 

According to the machine optimizer result, machine T4 used the setup 

ETS564_6455407A as the initial setup and then changed to setup ETS564_6462741B to 

process lots until no more lots left. Machine T13 has used one type of the setup 

ETS564_6462741B. Table 5 is an example of a setup frequency table that summarized 

the setup result. 
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Table 4.2 An example of setup frequency from machine optimizer  

Setup Setup number by optimization 

ETS564_6430442A 1 

ETS564_6440109A 1 

ETS564_6442302C 1 

ETS564_6453620A 1 

ETS564_6455407A 1 

ETS564_6459957B 1 

ETS564_6462741B 6 

Table 4.2 tells that the setup ETS564_6430442A has been set up once in the 

whole planning horizon, and similarly the setup ETS564_6462741B has been used for 6 

times by the machines according to the optimization result. The following is an example 

to show the use of the setup frequency table. If machine T4 wants to select a lot, and hot 

lot A that requires setup ETS564_6430442A and hot lot B that requires setup 

ETS564_6462741B are both feasible, next is to determine the setup counts for both 

setups. In the simulation model, machine T5 that belongs to the same machine family as 

T4 is currently using setup ETS564_6430442A which makes the setup count of 

ETS564_6430442A as 1, and similarly the setup count of ETS564_6462741B is found as 

1. So the hot lot that requires ETS564_6462741B will be selected by T4 since its setup 

count 1 is less than the frequency number 6 that is listed in the setup frequency table. 

After defining hot lots, modifying their corresponding priorities and obtaining the setup 

frequency table, the machine will select lots according to the logic in Figure 6. Overall, 

lots pass through a series of filters and the ones that emerge are assigned to a machine on 

which they can be processed.  

Taking hot lots first, the machine will first try to select the first ranked lot that has 

all of the required resource available and can be processed with the current setup. If this 

fails, then the machine will select the first ranked lot that has all of the required resource 

available with the required setup count less than the frequency in the setup frequency 
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table. If that still fails, the same logic used by Rule_Hotlot for regular lots is used to 

select the regular lots.  

To describe the logic associated with Rule_Setupnum in more detail, we make use 

of the following additional notation.  

Sets and indicies 

M   set of machines in the factory; i  M  

FWL(i)   set of lots that can be processed on machine i  

Hotlot    set of hot lots 

M(i)    set of machines belonging to the same machine family as machine i  

DES(i)   set of lots that passes through various filters for l  FWL(i)  

Allavail(i) set of lots in FWL(i) for which the required machine and tooling are  

available;  Allavail(i)  FWL(i)    

λ(i)   current setup for machine i  

λ(i,l)   setup that can be used to process lot l with machine i 

Λ(M(i))   setups used by the machines belonging to M(i) except machine i 

O(λ)   setup frequency used by machine optimizer for setup λ 

CT(i,l) count of the setup that required by lot l on machine i used by other 

machines in the same machine family 

Alorigthm_Rule_Setupnum 

Step 0. Initialization: 

For current i, determine the entries in the sets FWL(i), Allavail(i), DES(i), M(i), 

λ(i) and Λ(M(i)). For each l  Allavail(i), retrieve the values of λ(i,l) and 

determine whether l is a hot lot. 
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Step 1. Rank all of hot lots in the set FWL(i) in nonincreasing order of their priority, and 

then below them rank all regular lots in FWL(i), also in nonincreasing order of 

their priority. 

Step 2. Apply multiple filters to FWL(i) and put the lots that pass through these filters to 

the DES(i).  

If Allavail(i) ≠ , then 

FOR each l  Allavail(i) 

If l  Hotlot and λ(i) = λ(i,l), then 

         DES(i)  DES(i)  {l} 

     Endif 

 ENDFOR(l) 

If DES(i) ≠ , then 

   Go to Step 3. 

Else 

FOR each l  Allavail(i)  Hotlot 

    FOR each m  M(i) 

    If λ(m) = λ(i,l) 

    CT(i,l)= CT(i,l) + 1 

   ENDFOR(m) 

If CT(i,l)  O(λ(i,l)) then 

DES(i)  DES(i)  {l} 

     Endif 

ENDFOR(l) 

    If DES(i) ≠ , then 

     Go to Step 3. 
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    Else 

   FOR each l  Allavail(i) 

         If λ(i) = λ(i,l), then 

DES(i)  DES(i)  {l} 

         Endif 

       ENDFOR(l) 

       If DES(i) ≠ , then 

        Go to Step 3. 

       Else 

        FOR each l  Allavail(i) 

          If λ(i,l) ∉ Λ(M(i)), then 

DES(i)  DES(i)  {l} 

          Endif 

        ENDFOR(l) 

        If DES(i) ≠ , then 

         Go to Step 3. 

        Else 

DES(i)  Allavail(i)  

Go to Step 3. 

Endif 

Step 3. Select the first lot in DES(i) to assign to machine i. 

Figure 4.1 Logic for Rule_Setupnum 

Complexity of Rule_Setupnum. Let |M| be the number of machines in the factory, 

|L| the number of lots in WIP, |T| the number of tooling pieces, and |Λ| the number of 



 46 

feasible setups. At Step 0, determining FWL(i) requires an examination of each lot in L so 

the complexity is O(|L|) for machine i. Similarly, Allavail(i) can be determined in 

O(|L||T|) time, M(i) in O(|M|) time, (i) in O(|Λ|) time, and Λ(M(i)) in O(|M||Λ|) time. 

The complexity of determining whether l is a hot lot is O(|L|) and the complexity of 

finding the entries in (i,l) is O(|L||Λ|). Recognizing that |M|×|Λ| is dominated by |L|×|Λ| 

because |M| is small than |L|, the complexity of Step 0 reduces to O(|L||T| + |L||Λ|). 

Step 1 involves the ranking of all the lots in FWL(i) and can be done 

O(|L|log(|L|)) time. Considering Step 2, for any i, there are at most five filters (a filter is 

referred to by an “if” statement before placing a lot l in the set DES(i) in Step 2 that will 

be applied to the lots in FWL(i). The second filter takes O(|M||Λ|) time, the fifth filters 

take O(|Λ|) time while the remaining filters take constant time O(1). Thus Step 2 requires 

at most O(|L||M||Λ|) time. Taking into account that Step 3 can be performed in O(1) time 

and that log(|L|)  |M||Λ|, the complexity of Rule_Setupnum for a single machine is 

O(|L||T| + |L||M||Λ|). 

4.3 RULE_GRASP_ASAP 

The high-quality solutions provided by GRASP_opt motivatesd us to construct 

new rules for the simulation that mimic its logic. Referring to Deng et al. (2010), 

GRASP_opt was designed to uncover a diversity of good feasible solutions by randomly 

selecting the machine setups at the upper level in accordance with an adaptive greedy 

measure and then solving the resultant lower level problem to obtain the optimal lot 

assignments. Since ASAP is somewhat limited in how it can be customized, 

Rule_GRASP_asap only adopts the GRASP_opt logic for solving the upper level 

problem and uses a combination of filters already available to determine the lot 

assignments.  
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In ASAP, a scheduling rule contains a set of filters that is used to place lots that 

meet certain criteria on one of several processing lists. The customized filter, 

filter_GRASP, is used to assign a setup to idle machines at time 0.  Essentially, it 

determines the “best” setup for all machines using logic similar to that used by 

Rule_First_setup.  The major difference between Rule_GRASP_asap and all other rules 

is that it is run for n = 1000 major iterations and the best solution found is selected.  In 

each inner iteration, a candidate list (CL) is constructed with all possible machine-tooling 

combinations and sorted in nonincreasing order according to their benefit value.  Then, a 

restricted candidate list (RCL) is obtained by selecting the first lRCL elements on CL.  The 

length lRCL is adjusted dynamically based on the quality of solutions obtained from the 

previous iterations.   

Next, an element on RCL is randomly selected and the corresponding machine is 

set up with the indicated tooling.  To complete an inner iteration the available resources 

and set of unassigned lots are updated.  This process continues until each idle machine 

has been set up or there are no more lots that can be assigned.  

Calculating benefit of a lot. Let L0 be the set of unassigned lots and let ben(l) be 

the benefit value associated with each lot l ∈ L0.  The latter is an approximation of the 

marginal improvement in the objective function if lot l is processed.  The following 

formula is used in the calculations. 

 

ben(l) = wl+  
ldw C ∙ min{ , ( )}chips

l ln sh d ∙ { ( ) 0}lI sh d  ∙ { { }}lI d K P KP                (1) 

The first term on the right-hand side of (1), wl, is the weight of lot l; the second 

term takes into account the size of the lot and its relative importance with respect to 

meeting key device targets. Here, the weight of device dl contained in the lot l is 

represented by
ldw .  The ratio  

ldw C is the unit benefit value associated with the device 
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in lot l.  The term sh(dl) represents the shortage of device dl, which is calculated by 

subtracting the number of completed pieces from its target.  The magnitude of the penalty 

reduction depends on min{ , ( )}chips

l ln sh d . If chips

ln < sh(dl), then all chips

ln  chips contained in 

lot l go towards reducing the penalty. Otherwise, only sh(dl) of them contribute.  The 

term I{} is an indicator function equal to 1 if the phrase  is “true” and 0 otherwise.  

For the two indicator functions, I{ sh(dl) > 0} = I{ dl ∈ {K ∪ P ∪KP}} = 1 when dl ∈ {K 

∪ P ∪KP } and sh(dl) > 0. The set K contains all the key devices, set P contains all the 

package devices and set KP contains all the pin package devices.  Lots that contain these 

devices will have a benefit larger than their weight when respective shortages exist. 

Building the candidate list (CL). The setup selected by each machine greatly 

affects the objective function value, so it is of interest to evaluate the benefit of a setup to 

see the potential gain in the objective function value when machine i in machine family j 

is assigned setup (j, λ). The benefit of a setup ben(j, λ, L0) is defined as the maximum sum 

of benefits of the unassigned lots in L0 that can be processed within the planning horizon 

using setup (j, λ).  It is computed by solving the following knapsack problem, 

ben(j, λ, L0) = max
( , ) 0

( )
l L j L

lben l z
 





 : 
( , ) ( , , )0

0, {0,1}, ( , )
l L j L m M i l s

chips

l
l i l

ilsm

n
z H z l L j L

r


  

  
      

  
   

where ben(l) is the benefit value for lot l calculated by equation (1), and set L(j, λ)  L0 

contains the lots that haven’t been assigned to any machine and can be processed using 

setup (j, λ).  The term chips

l ilsmn r  is the time required to process lot l on machine i with 

route s at pass m, and the inner summation is the time required to process all passes of lot 

l on machine i.  The decision variables zl, for all l ∈ L(j, λ) ∩ L0, are binary such that zl = 

1 when lot l is assigned to the machine i  SIMj (where SIMj is the machine family to 

which machine i belongs) and 0 otherwise.  Instead of solving the knapsack problem 

exactly, a heuristic is used to find the solution.  The lots l ∈ L(j, λ) ∩ L0 are first sorted 



 49 

according to the benefit rate given by  ( , , )
( ) chips

l ilsmm M i l s
ben l n r s

  in nonincreasing order.  

Then, the lots are assigned to machine i in a greedy way until the end of the planning 

horizon is reached or there are no more feasible lots.  The term ben(j, λ, L0) is the sum of 

benefits of the assigned lots.  

This value is calculated for each setup (j, λ) defined in the route table when there 

is at least one machine i ∈ SIMj and one tooling piece required by setup λ available.  Each 

element in CL is a triplet consisting of some j  SIM, a tooling setup λ  j), and the 

corresponding benefit ben(j, λ, L0), where SIM is an abbreviation for set of identical 

machines  The elements in CL are sorted in nonincreasing order of ben(j, λ, L0).  Table 

4.3 gives an example of CL. 

Table 4.3 Example of CL 

SIM, j Tooling setup, λ ben(j, λ, L0) 

2 1 100 

2 3 90 

3 2 80 

1 3 70 

2 2 60 

1 1 50 

Constructing the self-adjusted restricted candidate list. RCL is derived from CL 

by keeping only the top candidates.  The length of RCL, lRCL, has to strike a balance 

between solution quality and diversity. If lRCL is large then it is likely to produce many 

inferior solutions; if it is small, many good solutions may be missed.  Therefore, instead 

of setting lRCL to a fixed value, it is restricted within the following range: lRCL ∈ {2, 

3,…,11}. The value of lRCL is adjusted during the GRASP iterations according to the 

quality of observed solutions. 
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Let A = {α1, α2, … , α10} be the set of considered values for lRCL and let pi be the 

corresponding probability of selecting αi in A, i =1,…,10.  Initially, pi is uniformly 

distributed; that is,  

 pi = 0.1, i = 1,…,10  

Subsequently, these probabilities are adjusted in the following way.  Let 
* be the 

best solution found in all previous GRASP iterations and let Ai be the average value of 

the solutions obtained for lRCL = αi.  Now, define 

 
*

i

i

q
A



 
  

 
, i = 1,…,10            (2)  

as the relative performance of the algorithm when lRCL = αi, where δ is a shape 

parameter.  For higher values of Ai, qi will be lower since 
*
 ≤ Ai.  Normalizing qi’s gives 

 
10

1i i jj
p q q


  , i = 1, …,10            (3)  

The probability distribution given in (2) and (3) is updated after the execution of 

each block of n
block

 iterations.  When lRCL is set to αi yields relatively small average 

solutions, a higher probably pi will be assigned to αi.  In the next block of n
block

 iterations, 

αi will have a higher chance to be selected and lead to a better solution.  In the 

implementation, we set δ = 10, A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and n
block

 = 100. Also, 

some adjustments are made at each iteration to assure that each i has a finite, though 

small, chance of being selected. 

After determining the length of RCL, it is constructed by keeping the top lRCL 

candidates on CL.  For example, if the lRCL = 3, then the RCL in Table 5 is the top 3 

elements in CL given in Table 4.4. 
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Table 4.4 Example of RCL 

SIM, j Tooling setup, λ ben(j, λ, L0) 

2 1 100 

2 3 90 

3 2 80 

Selecting from RCL and updating. In the first inner iteration, one random setup (j, 

λ) from RCL is selected and an available machine i  SIMj is configured with a tooling 

piece associated with setup λ.  Next, the number of available machines and other 

resources are updated, and the set of unassigned lots L0 is updated by removing those lots 

that contributed to the ben(j, λ, L0) calculation.  The second inner iteration starts with an 

updated CL and RCL, and a second setup is randomly selected.  These iterations stop 

when there is either no resources left or the set of unassigned lots L0 = .   

The pseudocode for the logic contained in filter_GRASP is outlined in Figure 4.2.  

In the description, the following additional notation is used. 

Sets and indices  

Li  set of lots that contribute to the benefit calculation for setup (j,λ); i ∈ SIMj 

L   set of lots are processing at time 0; L  L 

M0  set of unassigned machines; M0  M 

M   set of machines working at time 0; M  M 

T   set of tooling pieces required by the setups on machines M ;T  T 

T0  set of available tooling at time 0 

SPGRASP      set of setups obtained by filter_GRASP 

SPGRASP(i)   setup obtained by filter_GRASP for machine i; i ∈ M 

IFASSIGN(l)   binary variable equal to 1 if lot l contributes to the benefit calculation for   

some setup, 0 otherwise 

Setup(i) setup that is assigned to machine i 
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Lotassign      set of lots that contribute to the benefit calculation of the setup being 

considered  

rilsm  speed of processing lot l on machine i with route s at pass m 

M(i,l,s)  set of remaining passes when lot l is processed on machine i with route s  

 

Procedure: Filter_GRASP (L, M, T, SPGRASP) 

Input:   Set of lots L, set of machine M, and set of tooling families T 

Output: Setups SPGRASP and value of IFASSIGN(l) for l ∈ L 

Step 1: //initialization 

Put L0 ← L \ L ; M0 ← M  \ M ; T0 ← T  \T ;  Li ← ∅, ∀ i ∈ M; IFASSIGN(l)=0, for 

l ∈ L0; 

Step 2: for (k = 1, 2,…, n) { 

 Compute ben(l), ∀ l ∈ L0; 

Sort the lots in L0 according to  ( , , )
( ) chips

l ilsmm M i l s
ben l n r

  in nonincreasing 

order; 

while (some machine i ∈ M0 is idle and sufficient tooling t ∈ T0 is  

available) { 

  //construct CL 

  for (all feasible (j, λ) combinations) { 

   Calculate the benefit of the triplet (j, λ, L0) and call it b; 

   Append (j, λ, b) to CL 

  } 

  Sort CL according to benefit b in nonincreasing order; 

  Construct RCL; 

  Randomly select one (j
*
, λ

*
) combination from RCL; 
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  //perform the machine tooling setup 

Find an available machine i ∈ SIMj* and configure it with tooling t 

required by setup λ
*
 and put SPGRASP(i)  (j

*
, λ

*
).  

Greedily assign lots to machine i until no time remains; let L
*
 

contain the assigned lots; 

  IFASSIGN(l) = 1 for l ∈ L
*
, then 

  Put Li ← L
*
, L0 ← L0 \ L

*
, and L

* 
=  

  Update machine and tooling usage; 

 } 

If mod(k, n
block

 ) = 0  

Update the probabilities for selecting the RCL length. 

} 

Figure 4.2 Pseudocode for filter_GRASP 

After applying the filter_GRASP and getting SPGRASP(i) for each machine i, 

Rule_GRASP_asap is called to determine whether the first ranked lot on FWL(i) can be 

processed with this setup.  If not, machine i will select the first ranked lot l such that all 

the required resources are available, the required setup has not been used by other 

machines in the same machine family, and the associated IFASSIGN (l) = 0. The reason 

for not using a current setup in the same machine family is to reduce competition for the 

same tooling among those machines and to avoid setting up an additional machine to 

process lots that could be assigned to machines already appropriately configured. The 

condition IFASSIGN(l) = 0 is included to prevent machine i from selecting a lot that has 

contributed to the benefit calculation for some other setup on another machine. If still no 

assignment is made, then the machine will select the first ranked lot that has all required 
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resources available. The logic associated with Rule_GRASP_asap is presented in Figure 

4.3.  

Rule_GRASP_asap 

Input: Machine i, set of machines M, set of lots L, set of tooling families T, set of 

setups SPGRASP, value of IFASSIGN(l) for l ∈ L 

Output: Lot to process next on machine i 

Step 0. Initialization: 

At time 0, if M0 = {i  M: λ(i) = } ≠ , then run filter_GRASP and determine 

SPGRASP(i) for machine i  M0 . For machine i  M , SPGRASP(i) = λ(i).  

For current machine i, determine FWL(i), Allavail(i), DES(i), M(i), λ(i) and 

Λ(M(i)).  

For each l  Allavail(i), retrieve the values of λ(i,l).  

For each l, if IFASSIGN(l) = 1, then Lotassign  Lotassign  {l}. 

Step 1. Rank all lots in set FWL(i) in nonincreasing order of  ( , , )
( ) chips

l ilsmm M i l s
ben l n r

 . 

Step 2. Apply multiple filters to FWL(i) and place the lots that pass through these filters 

in DES(i).  

If Allavail(i) ≠ , then 

FOR each l  Allavail(i) 

If l {FWL(i) : SPGRASP(i)=  λ(i,l)}, then 

       DES(i)  DES(i)  {l} 

    Endif 

 ENDFOR(l) 

If DES(i) ≠ , then 

   Go to Step 3. 

Else 
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FOR each l  Allavail(i) 

If l {{FWL(i) : λ(i,l) ∉ Λ(M(i))} \ Lotassign}, then 

DES(i)  DES(i)  {l} 

  Endif 

   ENDFOR(l) 

   If DES(i) ≠ , then 

    Go to Step 3. 

   Else 

DES(i)  Allavail(i)  

   Go to Step 3. 

Endif 

Step 3. Select the first lot in DES(i) to assign to machine i. 

Figure 4.3 Logic for Rule_GRASP_asap 

 

Operationally, the simulation is run for n = 1000 major iterations when 

Rule_GRASP_asap is used to select lots from the FWL.  The configuration that returns 

the smallest objective function value is reported as the best solution.   

Complexity of Rule_GRASP_asap. Let |M| be the number of machines in the 

factory, |L| be the number of lots in WIP, |T| be the number of tooling pieces, |Λ| be the 

number of feasible setups and |D| be the number of devices. At Step 0, as in the 

complexity analysis of Rule_SetupNum, the total time to determine FWL(i), Allavail(i), 

M(i), (i) and Λ(M(i)) is O(|L||T|)+ O(|M||Λ|) after simplification. The complexity of 

constructing the set Lotassign is O(|L|) and the complexity of finding the entries in (i,l) 

is O(|L||Λ|).  The complexity of running filter_GRASP is O (|M||T|(|Λ||L|+|Λ|log(|Λ|) 
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+|M||T|+|L|)).  Recognizing that |M|×|Λ| is dominated by |L|×|Λ| because |M| is small than 

|L|, the complexity of Step 0 reduces to O (|M||T| |Λ|(|L|+log(|Λ|)).  

Step 1 involves the calculating the ratio and ranking of all the lots in FWL(i).  The 

ratio can be computed in O(|L||D|)) and the ranking can be done O(|L|log(|L|)) time, so 

the complexity of Step 1 is O(|L|(|D|+ log(|L|))).  Considering Step 2, for any i at most 

three filters (a filter is referred to by an “if” statement) that will be applied to lots in 

FWL(i) before placing a lot l in the set DES(i). The second filter takes O(|L||M||Λ|) time, 

and the remaining filters take constant time O(1).  Thus Step 2 requires at most 

O(|L||M||Λ|) time.  Noting that Step 3 can be performed in O(1) time, O(|L||M||Λ|)  O 

(|M||T| |Λ||L|), that log(|L|)  |M||Λ|, the complexity of Rule_ GRASP_asap for a single 

machine is O (|M||T| |Λ|(|L|+log(|Λ|))+ |L||D|).   

4.4 RULE_GREEDY 

Recall that filter_Greedy determines the setup to assign to each machine i.  In 

contrast, Rule_Greedy decides which lot to select next according to the setup from 

filter_Greedy along with other logic. In many problems, a greedy strategy does not in 

general produce an optimal solution but nonetheless may yield a local optimum that may 

be very close to the global optimum.  Although we have no way of verifying global 

optimality, it is of interest to see how well Rule_GRASP_asap performs when lRCL = 1 

compared to lRCL ∈ {2, 3,…,11}.  Setting lRCL = 1 greatly reduces the computational 

burden of the GRASP. To implement this simplification we introduce Rule_Greedy and 

use filter_Greedy to determine the setup for idle machines at time 0 by always selecting 

the top candidate on CL, i.e., lRCL = 1.  The pseudocode for the logic contained in 

filter_Greedy is presented in Figure 4.4.  

 

Procedure: filter_Greedy (L, M, T, SPGRASP) 
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Input:   Set of lots L, set of machines M and set of tooling families T 

Output: Set of setups SPGRASP and the value of IFASSIGN(l) for l ∈ L 

Step 1: //initialization 

Put L0 ← L \ L ; M0 ← M \ M ; T0 ← T  \T ;  Li ← ∅, ∀ i ∈ M; IFASSIGN(l) = 0 for 

l ∈ L0. 

Step 2:  Compute ben(l) ∀ l ∈ L0; 

Sort the lots in L0 according to  ( , , )
( ) chips

l ilsmm M i l s
ben l n r

  in nonincreasing order; 

while (some machine i ∈ M0 is idle and sufficient tooling t ∈ T0 is available){ 

//construct CL 

for (all feasible (j, λ) combinations) { 

Calculate the benefit of the triplet (j, λ, L0) and set it to b; 

Append (j, λ, b) to CL 

} 

Sort CL according to benefit b in nonincreasing order; 

Select the first (j
*
, λ

*
) element from CL; 

//perform the machine tooling setup 

Find an available machine i ∈ SIMj* and configure it with available tooling t 

associated with setup λ
*
 and put SPGRASP(i)  (j

*
, λ

*
). 

Greedily assign lots to machine i until no time remains; let L
*
 contain the assigned 

lots; 

IFASSIGN(l) = 1 for l ∈ L
*
, then 

Put Li ← L
*
, L0 ← L0 \ L

*
, and L

* 
=  

Update machine and tooling availability; 

} 

Figure 4.4 Pseudocode of the logic in filter_Greedy 



 58 

After applying filter_Greedy and getting SPGRASP(i) for each machine i, 

Rule_Greedy begins with some machine i and selects the first ranked lot for which all of 

the required resources are available and can be processed with setup SPGRASP(i).  If this 

fails, the same logic used for Rule_GRASP_asap is applied. Because lRCL = 1 only one 

major iteration of the procedure is required to obtain a solution. 

The complexity of Rule_Greedy is the same as the complexity of 

Rule_GRASP_asap given that the operation of selecting a random number can be 

implemented in O(1).  As such, the complexity of Rule_ Greedy for a single machine is O 

(|M||T| |Λ|(|L|+log(|Λ|))+ |L||D|). 

4.5 COMPUTATIONAL RESULTS 

Testing was done using both real and randomly generated data under Windows 7 

on a ThinkPad T440 laptop with a 1.60 GHz Intel core i5 processor and 4 GB of memory.  

The real data were provided by the Taiwan and Clark Probe AT facilities of the 

collaborating company.  In all, we evaluated eight problem instances with the following 

characteristics. 

Problem no. 1: Real Taiwan data with no initial setups specified for the machines 

Problem no. 2: Real Taiwan data with 26 machines having an initial setup 

Problem no. 3: Randomly generated data obtained by sampling the number of pieces 

contained in each lot and no initial setups specified for the machines 

Problem no. 4: Randomly generated data obtained by sampling the number of pieces 

contained in each lot with 9 machines having an initial setup 

Problem no. 5: Randomly generated data by keeping 10 initial setups in the Taiwan 

data that originally with 26 machines having an initial setup  

Problem no. 6: Randomly generated data by keeping 18 initial setups in the Taiwan 

data that originally with 26 machines having an initial setup 
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Problem no. 7: Real Clark Probe data with no initial setups specified for the machines 

Problem no. 8: Real Clark Probe data with some machines having an initial setup 

Problem nos. 1 – 6 have 36 machines partitioned amongst 6 machine families, 

284 tooling pieces from 160 tooling families, one temperature setting, and 983 lots. 

Problem nos. 7 and 8 each contain 136 machines from 9 machine families, 233 tooling 

pieces from 34 tooling families, one temperature setting, and 193 lots.  According to the 

corresponding routes, the average processing rate is 20 parts per minute for problem nos. 

1 – 6 and 342 parts per minutes for problem nos. 7 – 8. The planning horizons were 3 

days and 5 days, respectively, for the two different facilities.  

In the experimental design, we compared the results obtained with the enhanced 

GRASP (GRASP_opt) with those obtained with seven variants of the simulation: (i) basic 

Rule_SSU_A and Rank_HP (Sim), (ii) Rule_First_setup (First), (iii) either 

Rule_All_setups or Rule_First_limited (All/Lim), (iv) Rule_HotLot (Hotlot), (v) 

Rule_SetupNum (SetupNum), (vi) Rule_Greedy (Greedy) and (vii) Rule_GRASP_asap 

(GRASP_asap). The abbreviations in parentheses refer to the eight approaches evaluated 

below. With respect to (iii), Rule_All_setups is used for problem nos. 1 – 6 while 

Rule_First_limited is used for problem nos. 7 – 8. Because each machine is only set up 

once for problem nos. 7 – 8 according to GRASP_opt, there is no point in using 

Rule_All_setups. Instead, we replace it with Rule_First_limited which restricts 

AutoSched AP to use only the machines in the GRASP_opt solution. 

Table 4.5 summarizes the built-in rules, ranking schemes, new dispatch rules, and 

logic used in our computational experiments. Output was divided into three categories.  

The first category discusses the values of the first objective function component, i.e., the 

weighted sum of key device shortages, and the second objective function component, i.e., 

the weighted throughput and the total objective value. The second category reports the 
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number of lots finished, the total number of steps finished, and the number of machines 

used. The third category includes the total number of key device shortages, and the 

number of changeovers. The results are discussed in the following three subsections. 

Additional detail is available from the authors. 
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Table 4.5 Summary of the different rules and rank evaluated 

Rules /Rank Description 

GRASP_opt GRASP_opt solves the AT mixed-integer program with a greedy 

randomized adaptive search procedure and was implemented in 

C++. 

Rank_HP Rank_HP (highest weight) orders the lots on the family work list 

according to their weight in descending order. 

Rule_SSU_A Rule_SSU_A (same setup all available) lets a machine continue 

processing lots that require the current setup, assuming that all 

the required resources are available. 

Rule_First_setup Rule_First_setup initializes the simulation with the first setup 

obtained with GRASP_opt until additional setups are required. At 

that point, machines select lots using Rule_SSU_A and 

Rank_HP. 

Rule_First_limited Rule_First_limited restricts the machines that the simulation can 

use to only those that are included in the GRASP_opt solution. 

This rule works in conjunction with Rule_SSU_A and Rank_HP. 

Rule_All_setups Rule_All_setups uses all the setups provided by the GRASP_opt 

solution so that whenever a changeover is called for, the choice is 

prespecified. 

Rule_HotLot Rule_HotLot is designed to reduce the shortage of key devices in 

a greedy way.  After defining hot lots and dynamically redefining 

their weights, a machine will try to select hot lots first even if 

changeovers are required. 

Rule_SetupNum Rule_SetupNum gives priority to hot lots while using the setup 

frequency table obtained from GRASP_opt output to guide the 

setup decisions. 

Rule_GRASP_asap Rule_GRASP_asap embeds the more robust selection features of 

GRASP in the simulation code through customization. 

Rule_Greedy Rule_Greedy, a simplification of Rule_GRASP_asap, always 

picks the setup for a particular machine that gives the greatest 

marginal improvement in the objective function among all 

candidates. 

4.5.1  Objective function values 

The results for the first two metrics are reported in Tables 4.6 and 4.7 for the eight 

data sets. For problem no. 1 in Table 4.6, for example, the smallest weighted key device 

shortage is produced when Rule_SetupNum was used, while in Table 4.7 we see that the 

largest weighted throughput was achieved with Rule_All_setups. Figure 4.5 depicts the 
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first objective, that is, the weighted sum of key device shortages for all steps in total. In 

most cases, the largest shortages are associated with the basic simulation and the smallest 

shortages are associated with Rule_HotLot and Rule_SetupNum. The smallest number of 

shortages is only 20% of the largest number of shortages, on average. The good 

performance of these two rules is due to the fact that they were designed to process as 

many key device lots as possible and were hence implemented in ASAP with a focus on 

lot completion rather than on the overall number of setups or machines used. 

Rule_GRASP_asap outperformed the basic simulation by 38%. Recall that the GRASP 

logic allows ASAP to explore a larger portion of the feasible region by randomizing 

machine setups using adaptive probability distributions that are a function of solution 

quality. After a 1000 runs, the solution that yields the smallest objective function value 

with a dominant first objective function value is reported.  

Also, Rule_Greedy outperformed the basic simulation model by 31% on average 

in minimizing the first objective. This was to be expected since it always picks the setup 

for a particular machine that gives the greatest marginal improvement in the objective 

function among all candidates. A second reason, again, is that it is driven by lot 

completion.  

Rule_First_setup and Rule_All_setups both outperformed the basic simulation by 

25% on average, primarily because they both use the setup results from GRASP_opt as 

input. This helped reduce key devices shortages for lots that contain multiple passes. For 

problem nos. 7 – 8, GRASP_opt performed better than its competitors by up to 60% in 

minimizing the first objective. This was due to the fact that GRASP_opt emphasizes step 

completion rather than lot completion and the fact that all the key devices in these 

instances have only one step in their route. 
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Table 4.6 Comparison of the first objective values 

 Weighted key device shortages (1013) 

Prob. no. Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

1 7.168 3.813 3.816 1.040 0.875 4.785 3.759 3.650 

2 6.705 6.584 6.801 0.925 4.152 8.542 5.833 5.833 

3 5.115 4.368 4.142 1.671 1.445 4.971 4.392 3.056 

4 8.214 4.284 3.994 1.580 1.354 4.262 3.833 3.000 

5 3.641 3.519 3.407 0.903 0.903 4.824 3.202 3.168 

6 6.874 3.519 3.407 0.914 0.903 4.897 3.615 3.197 

7 2.326 2.326 2.327 2.375 2.336 2.256 2.352 2.276 

8 2.221 2.221 2.264 2.225 2.225 1.250 2.266 2.225 

 

Table 4.7 Comparison of the second objective values 

 Weighted throughput (109) 

Prob. no. Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

1 1.025 1.033 1.037 1.008 1.019 0.980 0.869 0.883 

2 1.030 1.031 0.923 1.017 1.015 0.966 0.914 0.914 

3 0.988 0.983 0.997 0.990 0.991 0.944 0.901 0.883 

4 0.908 0.994 0.998 0.988 0.990 0.957 0.921 0.933 

5 1.005 1.031 1.034 1.001 1.011 0.978 0.934 0.911 

6 1.005 1.025 1.025 1.010 1.009 0.955 0.964 0.958 

7 1.679 1.679 1.672 1.617 1.666 1.715 1.566 1.583 

8 1.763 1.763 1.733 1.719 1.719 1.799 1.618 1.697 
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Figure 4.5 Comparison of the first objective value  

The second component in the objective function, the weighted sum of all lots 

processed over all passes, is depicted in Figure 4.6. The basic simulation performed well 

on this measure since all lots are ranked in descending order by Rank_HP. The results 

indicate that the lots that were finished were usually those with large weights giving a 

larger weighted throughput value when compared to the other approaches. GRASP_opt, 

Rule_GRASP_asap and Rule_Greedy have no apparent relative advantage from the 

perspective of maximizing the weighted throughput because it is driven by the first term 

which dominates the second term in an absolute sense.  
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Figure 4.6 Comparison of second objective value 

Of course, the total objective function value is the weighted sum of four terms 

including number of machines used and makespan. However, due to the dominance of 

the first term – key device shortages, the conclusions drawn with respect to the 

performance of the different approaches doesn’t change. The full sets of results for the 

four objective function terms are tabularized in the Appendix. 

4.5.2 Number of lots and steps finished and number of machines used 

The statistics associated with these metrics are reported in Tables 4.9, 4.10 and 

4.11, respectively, for the eight data sets. For problem no. 1 in Table 4.9, the greatest 

number of lots were processed when Rule_All_setups (column 4) was used. Here, a lot is 

said to be finished when all the remaining steps in its route are finished. Table 4.10 shows 

that when GRASP_opt was applied, the greatest number of steps were finished for 

problem no. 1. For the Taiwan data, Table 4.11 indicates that all 36 machines were used 

for the first six data sets. This suggests that the facility is running at capacity. For the 

remaining two data sets machine usage varied widely, pointing out the differences in 

efficiency amongst the eight approaches. 
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Table 4.8 Comparison of the number of lots finished  

 

Table 4.9 Comparison of the number steps finished  

 Total steps finished 

Prob. 

no. Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy 

GRASP_asa

p 

1 576 645 649 620 640 688 640 640 

2 570 585 585 607 593 619 619 619 

3 483 520 509 507 528 647 633 646 

4 457 541 537 509 532 667 681 690 

5 583 609 586 607 611 627 658 659 

6 574 607 613 632 616 639 657 670 

7 119 120 118 114 119 123 109 111 

8 126 126 123 123 123 122 114 119 

 

 Total lots finished 

Prob. no. Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

1 392 468 459 431 452 419 434 434 

2 379 390 390 413 401 419 400 400 

3 352 388 371 369 389 378 447 439 

4 326 410 401 371 393 420 470 475 

5 397 421 407 415 418 363 438 437 

6 387 424 423 440 421 370 442 444 

7 116 117 115 111 116 121 107 109 

8 119 119 116 116 116 120 107 112 
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Table 4.10 Comparison of the number of machines used 

 Number of machines used 

Prob. 

no. Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy 

GRASP_asa

p 

1 36 36 36 36 36 36 36 36 

2 36 36 36 36 36 36 36 36 

3 36 36 36 36 36 36 36 36 

4 36 36 36 36 36 36 36 36 

5 36 36 36 36 36 36 36 36 

6 36 36 36 36 36 36 36 36 

7 131 130 48 131 128 48 76 77 

8 135 135 71 135 135 71 99 98 

 

Considering the lots processed, Figure 4.7 depicts the total number of lots finished 

for the eight approaches. Although this metric is not one of the four objectives we were 

aiming to optimize because it doesn’t distinguish between regular lots and key device 

lots, it is a rough measure of factory throughput. The basic simulation proved inferior to 

the seven other approaches on most of the data sets by as much as 50% down to 5%. In 

the former approach, machines select the first lot on their FWL with highest weight. 

GRASP_opt, Rule_GRASP_asap and Rule_Greedy all let the machines select those 

setups that produce the largest immediate benefit. Recall that Rule_First_setup and 

Rule_All_setups use the same first setup provided by the optimization results, so 

transitivity suggests that they should do better than the basic simulation in most cases. 

For problem nos. 7 – 8, there doesn’t appear to be much difference in the number of lots 

processed. 

Considering the steps processed, Figure 4.8 depicts the total number of steps 

finished by each of the eight alternatives. GRASP_opt, GRASP_asap and Greedy 

outperformed the five simulation variants on problem nos. 1 – 6 by 8% to 50% even 

though they used the same number of machines (see Table 4.10). This is not surprising 

since the GRASP_opt is specifically designed to maximize the weighted throughput 
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(steps) while minimizing the number of machine used. Both GRASP_asap and Greedy 

evaluate a diversity of setups before making a selection. This “look ahead” logic results 

in more steps completed. Considering the five simulation approaches, Rule_First_setup, 

Rule_First_setup, Rule_All_setups, Rule_HotLot and Rule_SetupNum all completed 

more steps than the basic simulation by up to 18%. 

 

 

Figure 4.7 Comparison of total lots finished 
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Figure 4.8 Comparison of total steps finished 

The number of machines used for each problem instance and each approach is 

shown in Figure 4.11. For problem nos. 1 – 6, the number of lots in the queue at time 0 in 

the Taiwan factory is much greater than the number of machines, which are kept 

constantly busy. The reverse is true of instances 7 and 8. The GRASP_opt solution called 

for the smallest number of machines that is sometimes a third of the number of machines 

used in the basic simulation. This is as expected since GRASP_opt was explicitly 

designed to take this measure into account. Rule_First_setup_limited used the same 

number of machines as GRASP_opt since it takes as input the setup plan produced by 

GRASP_opt. Machines not included in that solution remain idle throughout the planning 

horizon. Rule_GRASP_asap and Rule_Greedy also set up, on average, 70% of numbers 

of machines that were available. Because the filter_GRASP and filter_Greedy both 

evaluate the benefits of feasible setups, which depend on the benefit values of the lots 

that can be processed within the planning horizon, lots that require more time than 
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available will not be assigned. Also, regular lots that require the same setup on a machine 

are scheduled immediately after the hot lots and before any changeovers take place.  

As opposed to the approaches that exploit results from GRASP, the simulation 

approaches do not have forward vision and may unnecessarily set up idle machines to 

process lots in the upcoming time period although other machines are already set up that 

could process the same lots in the future. The basic simulation, Rule_First_setup, 

Rule_HotLot and Rule_SetupNum don’t control for the number of machines used so 

setups occur whenever a machine becomes idle and a qualified lot appears on its work 

list.  

 

Figure 4.9 Comparison of total number of machines used 

4.5.3 Number of key device shortages and number of changeovers 

The results for these metrics are reported in Tables 4.11 and 4.12 for the eight 

data sets. Total key device shortages are calculated by first subtracting the quantity of 

each key device processed from its target value (only positive shortages are counted) and 
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then summing the results. For problem no. 1 in Table 4.11, the smallest key device 

shortage is produced when Rule_SetupNum was used. Table 4.12 shows that when 

Rule_Greedy was applied, the least number of changeovers were performed for problem 

no. 1.  

As seen in Figure 4.10, for problem nos. 1 – 6, Rule_HotLot and Rule_SetupNum 

resulted in the smallest number of key device shortages among all approaches. Relative 

improvement ranged from 25% to 80%. This may have been expected because these two 

rules are designed to focus on reducing the key device shortage in a greedy manner 

without considering other goals such as the number of setups that may occur. Although 

the GRASP_opt model similarly tries to minimize key device shortages it only permits 

changeovers when no key or regular lot is available for processing. That is, it assigns as 

many lots as possible to each machine as long as its FWL and capacity are not exhausted. 

This logic maximizes machine utilization at the expense of the first objective when 

changeovers are possible. Rule_First_setup and Rule_All_setups exploit the merits of the 

optimization approach within the simulation by using the same first setups provided by 

the GRASP solution and processing as many consecutive steps in a lot’s route as possible 

on the same machine before selecting another lot rather than considering only a single 

step at a time. Rule_GRASP_asap and Rule_Greedy yield, on average, 35% fewer key 

device shortage than GRASP_opt because they were implemented in ASAP to emphasize 

lot completion while GRASP_opt emphasizes step completion. Recall that a lot is 

considered to be finished only when all its remaining steps are finished.  
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Table 4.11 Comparison of the total key device shortage 

 Total key device shortage (105) 

Prob. 

no. Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy 

GRASP_asa

p 

1 2.846 1.176 1.237 0.490 0.409 1.819 1.397 1.342 

2 2.765 2.704 2.790 0.459 2.065 3.545 2.591 2.591 

3 1.787 1.462 1.353 0.821 0.713 2.077 1.422 1.122 

4 3.327 1.421 1.280 0.776 0.667 1.795 1.008 0.941 

5 1.179 1.119 1.122 0.447 0.447 1.887 1.272 1.272 

6 2.788 1.119 1.122 0.452 0.447 1.907 1.297 1.240 

7 0.106 0.106 0.106 0.108 0.107 0.103 0.107 0.104 

8 0.101 0.101 0.103 0.101 0.102 0.058 0.103 0.101 

 

Table 4.12 Comparison of the number of changeovers 

 

Figure 4.11 provides a graphical comparison of the number of changeovers for the 

eight alternatives. For problem nos. 1 – 6, Rule_HotLot produced the largest number of 

changeovers, which is reasonable since it calls for a changeover whenever a machine runs 

out of hot lots. Rule_SetupNum yields a 25% reduction, on average, compared to 

Rule_HotLot in most of the cases because it limits changeovers to the number in the 

GRASP_opt schedule. GRASP_opt did better than the basic simulation by an average of 

40% with respect to the number of changeovers, but Rule_First_setup and 

 Number of changeovers 

Prob. 

no. Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

1 32 12 18 34 23 20 7 13 

2 26 18 18 39 29 20 15 15 

3 31 23 17 33 22 24 15 15 

4 26 20 18 32 25 22 16 17 

5 28 22 14 29 26 21 17 16 

6 25 23 18 30 28 18 16 17 

7 17 28 39 13 17 0 0 0 

8 13 30 39 11 11 0 0 1 
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Rule_All_setups outperformed GRASP_opt by 12% on average for problem nos. 1-6. 

Rule_GRASP_asap and Rule_Greedy yielded the fewest changeovers compared to the 

basic simulation model on all data sets. The differences averaged 40%. To a large extent, 

this is a reflection of the second objective which is aimed at maximizing throughput, 

which is achieved in part by minimizing changeovers. For problem nos. 7 and 8, 

GRASP_opt, Greedy and GRASP_asap performed (at most) only one changeover 

between them. This was due to the relatively long average processing time of the lots 

with respect to the planning horizon and the fact that no lots are assigned to machines that 

cannot be finished within the available time.  

 

 

Figure 4.10 Comparison of total key device shortage 
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Figure 4.11 Comparison of number of changeovers 

4.5.4 Comparison of key device shortages at each pass 

For problem nos. 1 – 6, the number of passes for the key devices ranged from 1 to 

5. Figures 4.12, 4.13 and 4.14 plot the key device shortage results after the first, second 

and third passes, respectively. In Figure 4.12, Rule_HotLot and Rule_SetupNum are seen 

to have achieved the smallest number of shortages after the first pass. This follows 

because they were designed to greedily process hot lots as a first priority. GRASP_opt 

performed comparably well since it was also deliberately designed to take this measure 

into account. Rule_GRASP_asap, Rule_Greedy, Rule_First_setup and Rule_All_setups, 

listed in the decreasing order of performance, were not as successful with respect to this 

measure but all outperformed the basic simulation.  
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Figure 4.12 Comparison of key device shortages after first pass 

As seen in Figures 4.13 and 4.14, Rule_HotLot and Rule_SetupNum still 

performed the best in reducing key device shortage at subsequent passes, again because 

these rules avoid setups as long as hot lots remain on their FWL. Rule_Greedy and 

Rule_GRASP_asap did better than the remaining approaches in reducing the shortages of 

later passes. As a reminder, if successive steps in a route of a lot can be processed on the 

same machine, ASAP rules favor this situation. GRASP_opt, however, aims at finishing 

the first pass of all lots in queue before turning to subsequent passes provided they can be 

done without new setups. As a consequence, it may not complete all the steps of the key 

devices when compared to ASAP. As we have seen, this may result in larger shortages 

when lots have more than one or two passes in their route.  
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Figure 4.13 Comparison of key device shortage at second pass 

 

 

Figure 4.14 Comparison of key device shortage at third pass 

4.5.5 Comparison of the results when the number of initial machines varies 

In Section 4.4.1, the objective function values for eight different approaches were 

presented. When there are initial setups on some machines, the number and configuration 
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of those machines can affect system performance. To study the impact of initial setups, 

we considered the total objective values with respect the eight alternatives for problem 

nos. 1, 2, 5 and 6 associated with the Taiwan facility. Table 4.13 lists the number of 

machines that are already configured with tooling at the beginning of the planning 

horizon for these four instances. Note that the number of pieces of WIP associated with 

problem nos. 3 and 4 is different than for the other four data sets so they were omitted 

from this phase of the analysis. Here, we only want to determine how the results are 

affected by the number of initial setups with the other factors fixed. 

Table 4.13 Parameter values for initial setups 

Prob. no. Number of machines with initial setups 

1 0 

2 26 

5 10 

6 18 

 

Figure 4.15 plots the results. The relative performance of the eight approaches is 

the same when the number of machines that have initial setup varies. Rule HotLot and 

Rule_SetupNum performed the best, Rule_GRASP_asap and Rule_Greedy were in the 

second tier, followed by Rule_First_setup and Rule_All_Setups, which outperformed 

GRASP_opt and the basic simulation. From Figure 4.15, we can also conclude that 

Rule_HotLot performed consistently well with different numbers of initial machines.  
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Figure 4.15 Comparison of the total objective with different number of initial setups 

 

4.5.6 Comparison of different rules on an additional data set 

For the purpose of testing the robustness of our rules, an additional data set was 

obtained from the Clark Probe facility of the collaborating company. The scenario 

included 78 machines from 11 machine families, 1204 tooling pieces from 453 tooling 

families, one temperature setting, and 1756 lots. From the route file, we calculated the 

average processing rate to be 35.5 parts per minute. The analysis was conducted for a 3-

day planning horizon.  

The output associated with the metrics used in Sections 4.4.1 – 4.4.3 is reported in 

Table 4.14 and indicates that the smallest weighted key device shortage (first objective) is 

realized when either Rule_HotLot or Rule_Setupnum is used, and the largest weighted 

throughput (second objective) is achieved with Rule_First_setup. For each of the rules, 
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to changeovers, the fewest were performed with Rule_All_setups but at the expense of 

the minimizing key device shortages. 

 

Table 4.14 Results for Clark Probe data set with no initial setups  

Measures Sim First 

All 

/Lim 

Hot 

lot 

Setup

Num 

GRASP

_opt Greedy 

GRASP

_asap 

First objective 

(weighted key 

device 

shortage)(10
9
)               

1.574 1.574 1.787 1.281 1.281 1.494 1. 315 1.315 

Second 

objective (10
4
) 

2.483 2.623 2.565 2.519 2.519 2.561 2.347 2.347 

Total lots 

finished 

1343 1420 1398 1363 1363 1410 1269 1269 

Total steps 

finished 

1346 1421 1402 1367 1367 1411 1270 1270 

Number of 

machines used 

78 78 78 78 78 78 78 78 

Key device 

shortage in 

pieces (10
5
) 

8.616 8.616 9.785 7.011 7.011 8.180 7.109 7.109 

Changeovers 183 165 99 196 194 101 127 127 

Third objective 78 78 78 78 78 78 78 78 

Fourth 

objective 

720 720 720 720 720 720 720 720 

Total objective 

(10
9
) 

1.574 1.574 1.787 1.281 1.281 1.494 1.315 1.315 

The relative performance of the various rules on the new data set parallels our 

experience with the original eight data sets.  Overall, the new dispatch rules yield better 

results than the basic simulation model.  Rule_Setupnum and Rule_Hotlot consistently 

performed best in minimizing the first objective, that is, the weighted sum of key device 

shortages for all steps, on all nine data sets. The ratio of the smallest to the largest first 

objective function values was 70% for the new data set, which is less significant than the 

20% average ratio observed for the other eight data sets.  
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With respect to changeovers, as we observed previously, GRASP_opt, 

Rule_GRASP_asap and Rule_Greedy required the least number of changeovers on 

average, which is similar to the case here with the exception of Rule_All_setups.  The 

same was true for Rule_GRASP_asap and Rule_Greedy with respect to the number of 

lots finished.  For this metric, Rule_First_setup and GRASP_opt outperformed the other 

rules in maximizing the number of lots finished by 10% in both the new data set and 

problem nos. 7 - 8. Overall, the results indicate that the rules are robust. 

4.6 SUMMARY AND CONCLUSIONS 

This chapter presented three new dispatch rules for setting up machines and 

assigning lots to them in semiconductor assembly and test facilities, each exploiting 

metaheuristic logic.  Rule_SetupNum gives priority to hot lots while using the setup 

frequency table obtained from GRASP_opt output to guide the setup decisions.  

Rule_GRASP_asap embeds the more robust selection features of GRASP in the 

simulation code through customization. This allowed ASAP to explore a larger portion of 

the feasible region at each decision point by randomizing machine setups using adaptive 

probability distributions that are a function of solution quality. As the iterations progress, 

more becomes known about the effectiveness of each machine-tooling combination.  This 

information is used to update the probabilities so the better setups have a higher chance 

of being selected.  After a 1000 runs, the solution that yields the smallest objective 

function value is reported.  Finally, Rule_Greedy, a simplification of Rule_GRASP_asap, 

always picks the setup for a particular machine that gives the greatest marginal 

improvement in the objective function among all candidates. 

Computational experiments were performed using eight data sets that reflect the 

average demand at two of the sponsoring company’s AT facilities.  The following 

insights were gained from the analysis. 
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 Rule_HotLot yielded the smallest total objective values but required an excessive 

number of changeovers. 

 Rule_SetupNum achieved relatively good performance with a smaller number of 

changeovers.  If there are sufficient workers in the factory be able to perform the 

changeover whenever needed, the Rule_SetupNum should be chosen over 

Rule_HotLot.  Using Rule_HotLot, though, avoids the need to run GRASP_opt first.  

 If there is only one pass required for most of the key devices, then GRASP_opt 

should be used due to its superior performance in minimizing key device shortages, 

as well as reducing the number of machines and changeovers. 

 For any other scenario, the advantages of including the logic of GRASP into ASAP 

makes Rule_GRASP_asap a good approach to schedule AT operations, since it 

achieves the smallest number of key device shortage with the fewest changeovers, 

the least number of machines, and no dependence on GRASP_opt output. 

 The performance of Rule_Greedy was dominated by Rule_GRASP_asap due to the 

greedy manner in which it selects setup candidates.  Rule_First_setup and 

Rule_All_setups were outperformed by Rule_GRASP_asap, and have the 

disadvantage of requiring the extra step of running GRASP_opt. 

 All the proposed approaches outperformed the basic simulation. 

The relative performance of the different approaches was not affected by the 

number of machines that have an initial setup.      
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Chapter 5:  A performance analysis of the dispatch rules on 

semiconductor Assembly & Test operations 

This chapter presents a comprehensive performance analysis of the dispatch rules 

developed to solve the scheduling problem using the statistical tests and factorial design. 

The goals of the analysis are to discover the general order of rule performance, and 

investigate the impact of two factors: having initial setups and posing a setup control on 

the rule performance.  

5.1 LITERATURE REVIEW 

There has been a significant amount of work in developing dispatch rules for discrete 

parts manufacturing and semiconductor fabrication but little with regard to assembly and 

test. Li et.al (2013) proposed an adaptive dispatch rule whose parameters were 

determined reactively by the real-time scheduling information to deal with the 

uncertainty in semiconductor fabrication facilities. They showed that the adaptive rule 

performed better than commonly used rules such as Earliest Due Date (EDD) and Critical 

Ratio (CR) in terms of movement of WIP and bottleneck utilization. Gowling et al. 

(2013) developed a framework that initialized an AutoSched AP simulation model to the 

current state of the facility and used real-time dispatch rules for releasing lots into 

production within the simulation at Seagate Technology. The benefits of the integrated 

system included shared data modeling capabilities across products, expanded analytical 

capabilities, and reduced total cost of ownership. They demonstrated how different 

parameters of the customized dispatch policy Largest Batch First affected the average 

WIP and average batch size. A four phase plan was proposed to complete the integrated 

dispatch framework.  

Chen et al. (2013) modeled a typical semiconductor manufacturing environment 

as multiple parallel queuing systems and formulated a mixed-integer nonlinear 
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programming (MINLP) model to determine the optimal dispatching policy. Three 

simplified cases were used to demonstrate the effectiveness of the model. For validation 

purposes, they also developed a numerical simulation procedure with exponentially 

distributed inter-arrival and service times. The simulation results were consistent with 

those predicted by the MINLP.  

Wu et al. (2008) developed a dispatching algorithm for a make-to-order fab with 

machine-dedication features and setup requirements. The algorithm used ideas from line 

balancing in selecting lots, applied starvation avoidance principles to control the input 

and output patterns of bottlenecks, and followed a family-based approach for mask 

dispatching. The simulation experiments showed that the algorithm outperformed 

pervious methods with respect to on time delivery and cycle time, and did almost as well 

with respect to throughput on a standard benchmark instances.  

Bang and Kim (2011) presented a dispatching algorithm to solve a scheduling 

problem in a semiconductor wafer probing facility with the goal of minimizing total 

tardiness of orders. A bottleneck-focused scheduling method was used in the algorithm, 

which means schedules for other workstations were determined based on the schedule 

derived for the bottleneck workstation which is determined first. Individual lot tardiness 

and sequence-dependent setup times were the two major factors considered. A rolling 

horizon method was proposed to implement the algorithm in a dynamic environment. The 

computational experiments showed that it outperformed the heuristic currently in use.  

Lin et al. (2013) proposed two heuristics and a genetic algorithm (GA) to find 

nondominated solutions to multiple-objective unrelated parallel machine scheduling 

problems. Three criteria were of interest, namely, makespan, total weighted completion 

time, and total weighted tardiness. Each heuristic attempted to simultaneously minimize 

two of the three criteria while the GA tackled all three at once. The computational results 
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showed that the proposed heuristics are computationally efficient and yielded good 

solutions. They were outperformed by the GA, though on all measures. Saito (2007) 

proposed a pseudo-periodical priority dispatching (P3D) rule for dynamic allocation of 

WIP in mixed products semiconductor manufacturing.  The P3D rule evaluated both the 

amount of WIP and the arrival rate of lots for each quantum, where a quantum is defined 

as a period during which a single type of product is processed on a machine. Results 

comparing P3D with first-come, first served logic, and the shortest processing time rule 

for simulated data with Poisson arrivals showed that P3D uniformly outperformed the 

other rules in terms of adjustment rate, throughput, response time, and tardiness.  

Perdaen et. al (2008) simulated a reduced model of a reentrant semiconductor fab 

in their study of process control. A push dispatch policy (i.e., a first-buffer, first-served 

policy) at the beginning of the line and a pull dispatch policy (i.e., a shortest expected 

remaining process time policy) at the end of the line were applied. The switch from a 

push to a pull policy takes place at what is called the push-pull point (PPP).  The results 

showed that (1) only moving the PPP doesn’t significantly improve on policies that use a 

pure push or pull dispatch policy with respect to throughput, and (2) when PPP control is 

coupled with a CONWIP policy, performance improved fourfold.  

Pfund et. al (2006) discussed scheduling and dispatching in wafer fabs, and 

provided a review of dispatching approaches and deterministic scheduling policies up 

through the mid-2000s. For the purpose of understanding the tools that are currently 

being used in a fab, a survey was conducted that asked questions about the types of 

scheduling methodologies currently used, and the limitations and needs of future 

generation scheduling systems. The survey results indicated that (1) many dispatching 

systems were aging, but they still performed well; (2) cycle time and on-time delivery 

were most affected by a bottleneck machine breakdown requiring that jobs had to be 
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placed on hold; and (3) most respondents thought that rescheduling, that is, the 

reevaluation and modification of dispatch decisions, should be performed periodically to 

better handle system disruptions.  With respect to point (3), around 35% of the 

respondents thought it best to reschedule after every job movement while the remainder 

favored longer rescheduling intervals within the planning horizon such as every 8 hours.  

In their review of dispatching rules, Pfund et al. first examined two commonly-

used priority-based rules, and then discussed several advanced strategies including 

toolgroup-specific dispatching rules and full-wafer fab dispatching rule.  Development 

and implementation efforts at three companies were also reported.  In the third section of 

their paper, they introduced shifting bottleneck heuristic for classical job shops, and the 

modified shifting bottleneck heuristic for complex job shops. AutoSched was used 

evaluate scheduling approaches, and the results showed that the shifting bottleneck 

approach had the potential to improve the on time delivery performance without loss of 

throughput.  

Li et al. (2003) developed a dispatching rule named ODDR to improve on-time 

delivery for semiconductor wafer fabs. ODDR considers dispatching of bottleneck 

machines, non-bottleneck machines, batching machines, and hot lots, that is, those lots 

that need to be processed to guarantee on-time delivery.  To avoid starvation at 

bottleneck machines, WIP is controlled by placing a lower limit on its value based on 

WIP levels at non-bottleneck machines.  Similarly, WIP at non-bottleneck machines is 

controlled by limiting its value to be no higher than the corresponding values at the 

bottleneck machines. Using simulated data, the authors showed that ODDR outperformed 

first-in, first-out, EDD and CR with respect to throughput, cycle time, and especially on-

time delivery.  
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Chen et al. (2012) presented an optimal dispatching rule for a semiconductor 

assembly production line (ODR-SAP), which takes into account batch processors, 

multiple reentrant flow, and hybrid processing on the standard measures used to gauge 

performance. The rule was designed to incorporate policies for batch and non-batch 

processing with and without setup times, and the need to accommodate emergency jobs. 

The production process was simulated using ExtendSim, and the results showed that 

ODR-SAP significantly outperformed traditional dispatching rules with respect to cycle 

time, production efficiency, WIP, processor utilization, on-time delivery rate, and other 

key performance indexes. 

Similar to our work, Hood and Welch (1992) conducted a statistical analysis of 

their results obtained from simulating a reentrant semiconductor manufacturing facility 

that included multiple products and multiple tool groups. They studied four main factors: 

distribution type and mean for the distribution of the time between interrupts, and 

distribution type and mean for the duration of interrupts.  All possible interaction terms 

were considered.  Response variables included the setup cycle time, preventative 

maintenance, and the failure-repair process. The four main factor effects along with two-

way, three-way and four-way interactions were considered in a full factorial design.  One 

of the major findings was that only the mean duration associated with interruptions had a 

significant negative impact on the cycle time for the failure-repair process.   

Gharbi and Kenne (2000) considered a manufacturing system with multiple 

identical machines, random breakdowns, and repair and preventive maintenance 

activities. Their objective was to minimize the total cost of inventory by determining 

production and preventive maintenance rates for the machines. Solutions were obtained 

with a heuristic dispatch policy, and an experimental design was conducted to determine 

which factors, each with three levels, affect overall cost.  
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Mackulak and Savory (2001) demonstrated how simulation in combination with 

design of experiments can be used to compare the layout of two automated material 

handling systems: distributed storage versus center storage. The experimental design was 

used to study the impacts of the following five factors on the average delivery time: total 

number of tools used per day, stocker cycle time, speed of the overhead hoist vehicles, 

tool processing time, and the number of storage locations [each containing a single front 

opening unified pod per input/output port]. The delivery time was defined as the 

difference between the time when the lot in a stocker makes a request for a transporter to 

when it arrives at its destination. The conclusion was the average delivery time associated 

with the distributed system was strictly less than the value for the centralized system.  

Additional results included, for example, that increasing vehicle speed improved 

performance but not as large as one might expect.  For a statistical design of experiments 

used to analyze the critical dimensions of gate poly-silicon, see Park (2004). 

5.2 DESCRIPTION OF A&T OPERATIONS AND OVERVIEW OF PREVIOUS RULES 

Back-end operations in semiconductor AT facilities give rise to reentrant flow and the 

combinatorial problem associated with machine setups and lot assignments.  Each lot 

must be processed using different tooling in a predefined sequence of steps on one or 

more appropriately configured machines.  Scheduling thousands of lots a day to minimize 

key device shortages as well as optimize any number of other objectives is a complex 

problem for which more advanced analytic techniques are still needed. More details of 

AT operations can be found in Bard et al. (2015). 

The AT scheduling problem under investigation was first formulated as a mixed-

integer linear program and solved by an enhanced GRASP referred as GRASP_opt in the 

later analysis.  Preemptive goal programming logic was used to deal with the hierarchical 

nature of the four objective function components previously mentioned. Solutions 
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obtained from the enhanced GRASP included a spectrum of machine-tooling 

combinations and lot assignments over multiple iterations.    

As a real-time alternative tool to the GRASP, Bard et al. (2015) developed a 

deterministic discrete event simulation model using AutoSched AP which relies on 

dispatch rules to schedule lots over a given planning horizon, typically two to seven days. 

Rule_SSU_A, is built into ASAP and lets a machine continue processing lots that require 

the current setup, assuming that all the required resources for that lot are available. The 

lots on the Family Work List (FWL), a data structure in ASAP, are ordered from the 

highest weight to the lowest using the feature called Rank_HP.  Results obtained from 

Rule_SSU_A are viewed as the benchmark.   

After much experimentation, we found that Rule_SSU_A as well as the other 

built-in rules proved ineffective relative to the GRASP so we developed several new 

rules using the customization feature in ASAP.  The first was Rule_First_setup which 

initializes the simulation with the first setup obtained with GRASP_opt.  When additional 

setups are required, machines select lots using Rule_SSU_A and Rank_HP.  

Rule_HotLot was designed to reduce the shortage of key devices in a greedy way.  After 

defining hot lots and dynamically redefining their weights, a machine will try to select 

hot lots first even if changeovers are required. Further discussion of these dispatch rules 

can be found in Bard et al. (2015). 

Jia et al. (2015) went a step further by combining the logic of GRASP with 

discrete event simulation to produce several more customized rules.  In particular, 

Rule_SetupNum tries to limit new setups to the number provided in the GRASP_opt 

solution. We start by constructing a table of setup results that enumerates all the machine 

instances and their setup sequence over the planning horizon in the GRASP_opt solution.  

We then construct a setup frequency table that lists each setup and the number of times it 
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appears in the solution. Now, when a machine becomes free, we search the frequency 

table to determine which setup to select by comparing the number in the table with the 

number of machines on the shop floor that have the same set ups. The first setup 

associated with a positive difference is chosen.   

The same logic embedded in Rule_HotLot is used to construct the hot lot list and 

to update lot priorities.  Continuing, Rule_SetupNum gives priority to hot lots containing 

key devices while using the setup frequency table obtained from our GRASP optimizer. 

GRASP_asap embeds the more robust selection features of GRASP in the ASAP model 

through customization. This allows ASAP to uncover many good feasible solutions by 

randomly selecting the machine setups probabilistically based on the quality of solutions 

previously realized. 

5.3 EXPERIMENTAL DESIGN AND ANALYSIS 

The purpose of this study is to determine the relative performance of the above 

mentioned dispatch rules with respect to the first two hierarchical objectives; that is, (1) 

minimizing the weighted sum of key device shortages, and (2) maximizing the weighted 

throughput when different scheduling policies are used for AT operations. The first 

objective value is referenced as firstobj and second objective value is called secondobj in 

the discussion. We also study the impact of different factors on the rule performance.  

The first factor is binary and relates to whether or not a subset of the machines on the 

shop floor are configured with tooling at time zero; the second factor limits the number of 

setups over the planning horizon to a given value.  

All computations were performed under Windows 7 on a ThinkPad T440 laptop 

with a 1.60 GHz Intel core i5 processor and 4 GB of memory.  Testing was performed 

using 30 real and randomly generated data sets, where each data set consists of five 

separate files: the machine file identifies the machine families and the temperatures at 
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which each machine instance can operate; the tooling file includes similar information; 

the route file lists the requirements of processing each product device including the 

various sequence of steps, the machine family and tooling family requirements, and the 

temperature at which testing takes place; the WIP file contains information on each lot 

including its weight, the device name, the quantity of devices in the lot, the upcoming 

step number, and whether or not is its being processed at time zero.   

In an AT facility, the daily operations vary due to the current lots in WIP, the 

quantity of devices in each lot, machine and tooling availability, and the configuration of 

each machine at time zero. In the study, the differences between the 30 data sets are: (1) 

the number of pieces contained in each lot in the WIP file, and (2) the initial setup 

assigned to each machine.  To create lot of varying size, the number of devices in each lot 

is sampled from a normal distribution with the parameters determined from the 

sponsoring company’s Taiwan AT facilities.  More specifically, the lot size was 

generated from a normal distribution with mean equal to the average size of the lots that 

contain the same device and standard deviation equal to min{sample standard deviation 

of the lots with same device, 1500}. Capping the standard deviation at 1500 was done to 

strike a balance between diversity and too much variation. All of the 30 data sets have 36 

machines partitioned among 6 machine families, 284 tooling pieces from 160 tooling 

families, one temperature setting, and 983 lots.  

5.3.1 Scheduling rules 

Table 5.1 lists the six dispatch rules included in this study.  The corresponding 

values of firstobj and secondobj were calculated after each scheduling rule was applied to 

each of the 30 data sets. According to the statistics listed in Table 5.2, the average firstobj 

value associated with GRASP_opt is 3.4 times as large as of the average firstobj value 

obtained with Rule_SetupNum, and the average secondobj value associated with 
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Rule_First differs from the secondobj value obtained with Rule_HotLot by approximately 

10
8
.  Thus, the overall differences among the objective function values can be substantial, 

depending on the dispatch rules selected. 

Table 5.1 Summary of the rules studied 

Rules  Description 

GRASP_opt GRASP_opt solves the AT mixed-integer program with a greedy 

randomized adaptive search procedure and was implemented in 

C++. 

Rule_SSU_A 

(referred as Sim) 

Rule_SSU_A (same setup all available) lets a machine continue 

processing lots that require the current setup, assuming that all the 

required resources are available. 

Rule_First_setup 

(referred as 

Rule_First) 

Rule_First_setup initializes the simulation with the first setup 

obtained with GRASP_opt until additional setups are required. At 

that point, machines select lots using Rule_SSU_A and Rank_HP. 

Rule_HotLot 

 

Rule_HotLot is designed to reduce the shortage of key devices in a 

greedy way.  After defining hot lots and dynamically redefining 

their weights, a machine will try to select hot lots first even if 

changeovers are required. 

Rule_SetupNum Rule_SetupNum gives priority to hot lots while using the setup 

frequency table obtained from GRASP_opt output to guide the 

setup decisions. 

GRASP_asap GRASP_asap explores a larger portion of the feasible region at 

each decision point by randomizing machine setups using adaptive 

probability distributions that are a function of solution quality.  

 

Table 5.2 Average values of firstobj and secondobj values for different scheduling rules 

Rule Average firstobj values Average secondobj values 

Sim   3.915e+13 1.070e+9 

Rule_First 3.573e+13 1.077e+9 

Rule_HotLot 1.608e+13 0.971e+9 

Rule_SetupNum 1.559e+13 1.070e+9 

GRASP_opt 5.326e+13 1.027e+9 

GRASP_asap 2.860e+13 1.032e+9 
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Figure 5.1 contains the firstobj and the secondobj values associated with the 

different rules. The better performing rules should have smaller firstobj values and larger 

secondobj value, implying that a rule with coordinates at the upper left corner of the 

graph performs the best and a rule with coordinates at the lower right corner perform the 

worst. Accordingly, Rule_SetupNum and Rule_HotLot appear to perform best.  

GRASP_opt looks to be the worst in the group, and, Rule_First appears to do better than 

Sim. One might also argue that GRASP_asap performs better than the Rule_First because 

one unit on the horizontal axis is around 3000 times larger than one unit on the vertical 

axis. An explanation for GRASP_opt’s poor showing is given after the results in Table 

5.3 are analyzed. 

 

 

Figure 5.1 Comparison of the firstobj and secondobj values for the different rules 
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Since there are differences among the firstobj and secondobj values across the six 

rules, pairwise comparisons were conducted with the R software to gain more insights in 

their relative effectiveness. Table 5.3 contains the test results. The top number in each 

cell represents the average difference between the firstobj values for the scheduling rule 

in each row and each column. For example, for the cell (Sim, Rule_First), 1.67e+13 is the 

estimated average difference between firstobj with Sim and Rule_First . The results are 

based on the paired t-test which accounts for the Bonferroni experiment-wise error rate 

(Abdi 2007). The bottom number represents the corresponding p-value, that is, the 

probability of obtaining a result equal to or more extreme than what was actually 

observed, assuming that there is no difference between the firstobj values for the two 

rules. The threshold is selected as 0.05, so a small p-value (≤ 0.05) indicates strong 

evidence against the null hypothesis (i.e., there is no difference in firstobj values) and it 

should be rejected. Again for cell (Sim, Rule_First), the bottom entry is less than 0.05 

which means that statistically there is significant difference between the firstobj values 

obtained with Sim and Rule_First. 

The pairwise comparisons confirm the results for firstobj implied in Figure 5.1. 

Rule_HotLot and Rule_SetupNum perform best, but they are statistically 

indistinguishable.  This follows because they were designed to process as many key 

device lots as possible and were hence implemented in ASAP with a focus on lot 

completion. The remaining rules can be ordered from best to worst as follows: 

GRASP_asap, Rule_First, Sim, and GRASP_opt. GRASP_asap performed well because 

it included the GRASP logic which allows ASAP to explore a larger portion of the 

feasible region by randomizing machine setups. Rule_First outperformed the Sim 

because the former included the setup results from GRASP_opt as input which helps 

reduce key devices shortages for lots that contain multiple passes. GRASP_opt gave the 
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poorest results because it is designed to maximize step completion rather than the lot 

completion, its original objective. In addition, the logic embedded in GRASP does not 

allow for changeovers if any regular lot can still be processed with the current setup, 

while ASAP may change the setup on a machine to process key device lots even though 

regular lots are available.  Resetting the machine under these circumstances depends on 

the rule being used. 

Table 5.3 Pairwise (from left to right) test results of firstobj value  

t-test results Rule_First Rule_HotLot Rule_SetupNum GRASP_opt GRASP_asap 

Sim 1.67e+13 

1.57e-05 

2.31e+13 

< 2.2e-16 

2.36e+13 

< 2.2e-16 

-1.61e+13 

0.0008 

1.05e+13 

< 2.2e-16 

Rule_First  2.18e+13 

1.55e-13 

1.98e+13 

< 2.2e-16 

-3.28e+13 

1.8e-11 

5.29e+12 

0.0005 

Rule_HotLot   -2.03e+12 

0.177 

-3.72 e+13 

< 2.2e-16 

-1.26e+13 

< 2.2e-16 

Rule_SetupNum    -3.77e+13 

< 2.2e-16 

-1.31e+13 

< 2.2e-16 

GRASP_opt     2.46e+13 

< 2.2e-16 

 

The pairwise comparison results for the secondobj value are reported in Table 5.4.  

A quick examination shows that the ordering of the rules from the secondobj value 

perspective from best to worst is also implied in Figure 5.1, namely, Rule_First, Sim, 

Rule_SetupNum, Rule_HotLot, GRASP_asap and GRASP_opt, with the last two rules 

being statistically indistinguishable. The good performance of Rule_First and Sim is due 

to the fact that the lots with larger weights were ranked higher on the family work list and 

so are processed first. Rule_SetupNum and Rule_HotLot are not as effective as the top 

two rules due to the fact they focus on processing lots containing key devices but not 

necessarily with high weights. GRASP_asap and GRASP_opt were the worst performers 
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since they were designed primarily to minimize key device shortages (firstobj) at each 

step rather than at lot completion, and not to minimize secondobj. 

Table 5.4 Pairwise (from left to right) test result of secondobj value 

t-test results Rule_First Rule_HotLot Rule_SetupNum GRASP_opt GRASP_asap 

Sim -1.57e+7 

0.002856 

1.53e+7 

4.824e-14 

1.44 e+7 

1.211e-13 

5.60e+7 

< 2.2e-16 

5.92e+7 

<2.2e-16 

Rule_First  1.69e+7 

2.393e-14 

1.60e+7 

5.497e-14 

5.76e+7 

< 2.2e-16 

6.07e+7 

<2.2e-16 

Rule_HotLot   -0.91e+6 

4.09e-05 

4.07e+7 

< 2.2e-16 

4.31e+7 

< 2.2e-16 

Rule_SetupNum    4.16e+7 

< 2.2e-16 

4.40e+7 

< 2.2e-16 

GRASP_opt     2.34e+6 

0.2489 

 

5.3.2 Effect of initial setup 

One of the issues that we want to investigate is how the initial setups will affect 

rule performance. In AT facilities, most machines are configured with tooling at all times 

although they may not be constantly running lots. Figure 5.2 plots the average firstobj 

value versus the average secondobj value for the six different rules with and without 

initial setups. The postfix on the legends represents whether the value is obtained when 

there was initial setups. For example, the point with legend “first_no” represents the 

average performance of Rule_First without initial setups, and the point with legend 

“first_yes” denotes the average performance of Rule_First with initial setups. The point 

“first_no” is located northwest of the point “first_yes,” indicating that on average 

Rule_First without initial setups achieves a smaller firstobj value and a larger secondobj 

value than with initial setups. A similar situation on the graph exists for the paired points 

associated with Rule_Setupnum, Sim, and GRASP_asap. For GRASP_opt, although a 

slightly larger secondobj value is achieved, firstobj is much smaller without initial setups. 
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In general, most of the rules except Rule_HotLot appear to perform better, on average, 

when there are no initial setups. The order of rule performance appears to be preserved 

when there are initial setups.  

 

 

Figure 5.2 Average firstobj and secondobj value for the six rules with and without initial 

setups 

The comparison results for the firstobj value pairs (no initial setup verses with 

initial setup) are given in Table 5.5. The top numbers represent the mean difference 

between the firstobj value obtained without initial setups and with initial setups for each 

schedule rule. For example, when comparing firstobj values calculated after applying Sim 

for the scenarios no initial setup versus initial setup, the result shows that the average 

firstobj value with no initial setups is less than the firstobj with initial setup by 1.70e+13.  

Because the p-value in the bottom cell is (much) less than 0.05 we can conclude that the 
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difference is statistically significant. Overall, having initial setups significantly increases 

the firstobj value when Sim, GRASP_opt or GRASP_asap are used as the scheduling 

policy. Having initial setups hurts the performance of Sim because every machine that is 

configured with tooling at time zero keeps processing lots that require the same setup 

regardless of their benefit.  A changeover only occurs when the lot list is empty.  More 

often than not, the initial setup is suboptimal with respect to firstobj.  Although GRASP 

is able to look ahead over the planning horizon, it is similarly constrained by the initial 

tooling on the machines.  

 

Table 5.5 Paired t-test result for firstobj: no initial setup vs with initial setup (bottom cell 

entry is p-value) 

Rule Sim Rule_First 

Rule_ 

HotLot 

Rule_ 

SetupNum 

GRASP_ 

opt 

GRASP_ 

asap 

No initial 

vs initial 

-1.70e+13 

2.00e-6 

-3.25e+12 

0.095 

2.10e+11 

0.145 

-3.401e+12 

0.074 

-1.90e+13 

4.26e-07 

-5.48e+12 

0.011 

 

There are no statistical differences in the results for Rule_First, Rule_HotLot and 

Rule_SetupNum with or without initial setups. While the differences for Rule_First, 

Rule_HotLot and Rule_SetupNum appear to be large in Table 5.5, statistical significance 

could not be established due to the large variances associated with the firstobj values.  

Table 5.6 reports the comparison results for secondobj values with and without 

initial setups. Except when Sim is the scheduling rule, the p-values indicate that there is 

no significant difference between the secondobj values. Our interpretation for the slightly 

significant differences that occur with Sim is based on the simplicity of its logic.  Similar 

to GRASP, Sim processes all lots available under the current setup so the lots choice 
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often have smaller weights than other lots in WIP.  Limiting the freedom of choosing the 

setup on each machine after it completes a lot leads to poor performance. 

   

Table 5.6 Paired t-test result for secondobj: no initial setup vs with initial setup (bottom 

cell entry is p-value) 

Rule Sim 

Rule_ 

First 

Rule_ 

HotLot 

Rule_ 

SetupNum GRASP_opt GRASP_asap 

No initial 

vs initial 

1.29e+7 

0.043 

1.18e+7 

0.059 

3.04e+5 

0.7423 

3.21e+6 

0.053 

-1.79+7 

0.521 

3.76e+6 

0.453 

 

5.3.3 Effect of setup control 

In the facility, each setup requires a crew of several workers and may take 

anywhere from 0.5 to 2 hours or more to complete. If too many changeovers are called 

form in a solution, the workforce may not be able to handle them in a timely manner.  

From a practical point of view, we want to determine the degree to which imposing an 

upper limit on the total number of changeovers impacts rule performance. After 

discussing this issue with several shop floor supervisors we determined that not more 

than 15 setups (not including those at time zero) over a 2-day period should be allowed. 

When this limit is reached, only lots that are compatible with one of the existing setups 

will be processed. Setup control was implemented using the customization feature of 

AutoSched.  

Figure 5.3 plots of average firstobj value versus average secondobj value of the 

six rules for both cases: with and without setup control. For example, the point with 

legend “first_no” represents the average performance of Rule_First without setup control, 

and the point with legend “first_yes” denotes the average performance of Rule_First with 

setup control. The point “first_no” is located to the northwest of the point “first_yes,” 
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indicating that Rule_First without setup control on average achieves a smaller firstobj 

value and a larger secondobj value than with setup control. The performance of the 

remaining pairs can be similarly found on the graph.  As we can see in Figure 5.3, all of 

the rules appear to perform better, on average, when there is no setup control. This is to 

be expected and is validated below. The order of rule performance is almost the same 

with and without setup control.  

 

 

Figure 5.3 Average firstobj and secondobj value of different rules with and without setup 

controls 

The comparison results of the firstobj values pairs (no setup control vs setup 

control) are reported in Table 5.7. The top number in each comparison represents the 

mean difference between firstobj values without setup control and with setup control for 

each dispatch rule. For example, when comparing firstobj values calculated after 

applying Sim for the two cases, the result shows that the average difference is 3.03e+13.  
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The p-value 5.304e-12 in the bottom cell indicates statistical significance. Of the six 

rules, all but GRASP_asap and Rule_HotLot provide firstobj values provide smaller 

firstobj values without setup control than with setup control. Poorer performance when 

setup limits are imposed is expected since the machines are not able to process any more 

lots after the changeover limit was reached.  For GRASP_asap, no statistically significant 

differences between firstobj values were observed because the embedded logic requires 

each machine to process as many regular and hot lots as possible before a changeover is 

considered.  The limit was rarely reached for the data sets examined.  The fact that the 

difference is positive (2.29e+10) is immaterial, and is simply due to the randomness built 

into the methodology.  For Rule_HotLot, the increase in firstobj values when setup 

control was imposed appeared to be large, but due to large the variances associated with 

the firstobj values it was not possible to establish a statistically significant difference. 

 

Table 5.7 Paired t-test results for firstobj values with no setup control vs setup control  

Rule Sim 

Rule_ 

First 

Rule_ 

HotLot 

Rule_ 

SetupNum 

GRASP_ 

opt 

GRASP_ 

asap 

No setup control 

vs setup control 

-3.03e+13 

5.304e-12 

-5.92e+12 

1.08e-05 

-3.19e+11 

0.175 

-1.08e+12 

1.798e-09 

-4.69e+13 

< 2.2e-16 

2.29e+10 

0.190 

 

The comparison results of the secondobj values are given in Table 5.8. The top 

number in each cell again represents the mean difference between the secondobj values 

without setup control versus with setup control.  For every scheduling rule except 

GRASP_asap (for reasons stated above), the secondobj value is statistically larger as 

expected when there is no limit on the number of permissible changeovers. Weighted 

throughput decreases due to the fact that machines stop processing lots when no WIP 

exists that can be handled by the current setups and the changeover limit is reached. 
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Table 5.8 Paired t-test results for secondobj values with no setup control vs setup control 

Rule Sim 

Rule_ 

First 

Rule_ 

HotLot 

Rule_ 

SetupNum 

GRASP_

opt 

GRASP_

asap 

No setup control 

vs setup control 

3.46e+07 

<2.2e-16 

1.41e+07 

3.986e-09 

7.56e+07 

4.26e-08 

1.32e+07  

7.98e-12 

4.28e+06  

7.60e-04 

1.21e+06 

0.404 

 

5.3.4 Full factorial design with common random numbers 

To study the interactive effects that two control settings have on system performance 

when combined with the different dispatch rules under the two control settings, we 

conducted a full factorial design. The three factors and their levels are as follows: 

1) Scheduling rules (GRASP_opt, Rule_HotLot, Rule_Setupnum and Rule_First). 

This factor is referred as “rule” in the following analysis. 

2) Initial setups (no initial setup versus with initial setups). In the following analysis, 

this factor is named as “inisetup”. 

3) Setup control (no setup control versus maximum setup allowed set as 15). For 

further analysis, this factor is called as “control”. 

These factors and their levels were selected based on the results from the analysis 

discussed in the two previous sections. GRASP_opt was chosen because it is very close 

to the procedure being used by the sponsoring company in their AT facilities; 

Rule_HotLot and Rule_Setupnum were selected because of their top performance in 

reducing the firstobj value among all dispatch rules; Rule_First was included because it 

does the best job in maximizing secondobj.  

The regression model for our full factorial design is given in Eq. (1).  In the coding, 

the response variable is either log (firstobj value) or log (secondobj value). The variable 

“rule” is a categorical variable that gets converted into three dummy variables in the 
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regression analysis with GRASP_opt as the base case. The variables “initsetup” and 

“control” are also dummy variables representing initial setups and setup control, 

respectively. The remaining terms in the Eq. (1) are the two-way interact effects. The 

coefficient 0 is the intercept term in the regression model. Since the model contains 

dummy variables, the intercept corresponds to the base case, which is GRASP_opt, no 

initial setup, and no controls. The remaining  coefficients represent the effect of each 

factor on the response variable.  For each of the 30 data sets generated in our 

experimental study, 16 (= levels of “rule”  levels of “initsetup”  levels of “control” = 

422) firstobj or secondobj values were calculated for the different dispatch rules and 

different options for “initsetup” and “control.”   

 

Log (firstobj value or secondobj value) = 0 + 1*rule + 2*initsetup + 3*control  

+4*rule*initsetup+5*rule*control +6*initsetup*control +   (1) 

 

To estimate the coefficients in Eq. (1), Ordinary Least Squares (OLS) can be used. 

However, OLS requires that the experimental errors  be normally distributed and 

statistically independent from one observation to the next. To reduce variation and better 

isolate the effect of each factor, we used common random numbers (CRN) across the 

design points [see Kleijnen (1988) for more detail].  However, CRN complicates the 

analysis of simulation data in an experimental design because it induces correlation. This 

in turn results in more a complicated variance/covariance structure of the errors. Kleijnen 

(1988) proposed two possibilities in such situations: (1) continue to use OLS, and (2) 

switch to estimated generalized least squares (EGLS) to investigate the effects of the 

factors and interactions. The second possibility is more accurate due to its ability to better 

cope with more general variance/covariance structures. 
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For the normality assumption, it was necessary to take the log transformation of the 

firstobj and secondobj values to more closely satisfy this requirement. The Q-Q plot is a 

useful graphical tool to help determine whether a set of points plausibly comes from a 

normal distribution. In our case, when the experimental errors are normally distributed, 

the points should lie on a straight line. For OLS and EGLS estimators, when using 

firstobj as the response, the residual Q-Q plots are depicted in Figure 5.4.  The upper and 

lower graphs on the right in the figure indicate that the normality assumption is better met 

after taking the log transformation, since more points appears to lie closer to the straight 

line. The residual Q-Q plots for the OLS and EGLS estimators when using secondobj as 

the response are shown in Figure 5.5. Again, the log transformation does better in 

meeting the normality assumption, although the differences with and without the 

transformation are not as pronounced. 

 



 104 

 

Figure 5.4 Q-Q plots for residuals of OLS and ELGS estimators before and after log 

transformation with firstobj as the response 
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Figure 5.5 Q-Q plots for residuals of OLS and ELGS estimators before and after log 

transformation with secondobj as the response 

Figure 5.6 plots the autocorrelation of the residuals for the OLS estimator with 

firstobj as response for lags between 0 and 26. The autocorrelation plot is a commonly-

used tool for checking randomness for a series of data points. Randomness can be 

determined by computing autocorrelations for data values at varying time lags. The 
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autocorrelation at lag h for N observations is the correlation between the first N-h 

observations and the last N-h observations. If the residual errors random, the 

autocorrelations should be near zero for any and all time-lag separations. If not random, 

then one or more of the autocorrelations will be significantly different than zero. The 

Durbin-Watson test for lag 1 autocorrelation is used to check the assumption that the 

experimental errors  in Eq. (1) are independent for the 30 data points. If the p-value of 

the Durbin-Watson test is less than 0.05, then we will reject the null hypothesis that there 

is no correlation among the experimental errors. The graph shows high autocorrelation 

among the residuals since most values are larger than the threshold indicated by the 

dotted (blue) line. This line represents the approximate 95 % confidence interval for the 

significant autocorrelations which is computed as ± 2/  ), where N is the number of data 

points (= 16 × 30 = 480 in our data set). Statistically, the test results lead to the 

conclusion that the null hypothesis that there is no autocorrelation should be rejected.   

Figure 5.7 contains the autocorrelation plot of the residuals for OLS estimator 

with secondobj as the response.  No autocorrelation among residuals is evident until lag 

reaches 4, but according to the Durbin-Watson test for lag 1, we can’t reject the null 

hypothesis that there is autocorrelation.  However, the Breusch-Godfrey test (Godfrey 

1978), which is able to assess whether autocorrelation exists for lags greater than 1, 

indicates that there is statistically significant autocorrelation among the residuals when 

the lag is 4.  Taken together, the OLS assumption that the residuals should be 

independent is violated when either firstobj or second is set as the response. This is not 

surprising because correlation is being induced by CRN.   We will present results for both 

cases as suggested by Kleijnen (1988), but our analysis will focus on EGLS estimators 

which are more accurate. 
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Durbin-Watson test 

Data: OLSres_firstobj 

DW = 1.338, p-value =3.662e-13 

Alternative hypothesis: true autocorrelation is not 0 

 

Figure 5.6 Autocorrelation plot and test of the OLS residuals with firstobj as response 
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Durbin-Watson test 

Data: OLSres_secondobj 

DW = 1.338, p-value = 3.662e-13 

Alternative hypothesis: true autocorrelation is not 0 

 

Breusch-Godfrey tests for serial correlation of order up to 2 

Data: OLSres_secondobj 

LM test = 6.0632, df = 2, p-value = 0.0482 

Figure 5.7 continues on next page 
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Breusch-Godfrey tests for serial correlation of order up to 4 

Data: OLSres_secondobj 

LM test = 11.7588, df = 4, p-value = 0.01924 

Figure 5.7 Autocorrelation plot and tests of the OLS residuals with secondobj as response 

Table 5.9 contains the regression analysis results for the OLS estimators of the 

factor effects on the log of the firstobj values; Table 10 reports the same results for the 

EGLS estimators. Generally speaking, EGLS and OLS lead to the same qualitative 

conclusion for the estimation of main effects including Rule_First, Rule_HotLot, 

Rule_SetupNum, initsetup_yes and control_yes.  However, the two interaction terms 

Rule_HotLot*initsetup_yes and Rule_SetupNum*initsetup_yes are significant in EGLS. 

We know that OLS can yield biased variance estimates if the covariance matrix is more 

general than the identity matrix (Judge et al. 1985, Section 5.5). In our particular case, 

OLS appears to yield a positive bias, which is the main differentiator between the two 

sets of results. More specifically, due to the inflated variance estimates generated by 

OLS, some of the interaction terms that are insignificant become significant in EGLS.  
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Table 5.9 Experimental design with CRN results for log of firstobj values using OLS 

     log(firstobj) Estimate of  Std. error t value p > |t| 

Intercept 13.7673 0.0059 2316 <2e-16 

Rule_First -0.2236 0.0151 -14.81 <2e-16 

Rule_HotLot -0.5920 0.0129 -45.71 <2e-16 

Rule_SetupNum -0.5907 0.0139 -42.48 <2e-16 

inisetup_yes 0.0388 0.0180 2.151 0.0200 

control_yes 0.1884 0.0089 21.17 <2e-16 

Rule_First*inisetup_yes 0.0189 0.0232 0.8149 0.2109 

Rule_HotLot*inisetup_yes 0.0090 0.0229 0.3914 0.3492 

Rule_SetupNum*inisetup_yes 0.0343 0.0272 1.2626 0.1084 

Rule_First*control_yes -0.1137 0.0145 -7.8666 5.6e-9 

Rule_HotLot*control_yes -0.1249 0.0168 -7.429 1.7e-8 

Rule_SetupNum*control_yes -0.1359 0.0125 -10.88 <2e-16 

Inisetup_yes*control_yes -0.0328 0.0121 -2.713 0.0055 

Table 5.10 Experimental design with CRN results for log of firstobj values using EGLS 

    log(firstobj) Estimate of  Std. error t value p > |t| 

Intercept 13.7141 0.0035 3967 <2e-16 

Rule_First -0.1936 0.0135 -14.33 <2e-16 

Rule_HotLot -0.5564 0.0106 -52.58 <2e-16 

Rule_SetupNum -0.5768 0.0119 -48.27 <2e-16 

inisetup_yes 0.0553 0.0179 3.086 0.0022 

control_yes 0.2184 0.0084 26.05 <2e-16 

Rule_First*inisetup_yes -0.0218 0.0184 -1.185 0.1228 

Rule_HotLot*inisetup_yes -0.0522 0.0180 -2.896 0.0036 

Rule_SetupNum*inisetup_yes -0.0405 0.0217 -1.867 0.0360 

Rule_First*control_yes -0.1287 0.0128 -10.04 <2e-16 

Rule_HotLot*control_yes -0.1972 0.0089 -22.22 <2e-16 

Rule_SetupNum*control_yes -0.1685 0.0097 -17.43 <2e-16 

Inisetup_yes*control_yes -0.1113 0.0096 -11.64 <2e-16 

 

In Table 5.10, the first column lists the names of the factors whose effects are 

estimated, the second column contains the estimated parameters for each of the factors, 

the third column is the estimated standard deviation, the fourth column is the t statistic 

that tests the hypothesis that a population coefficient is zero when the other predictors are 

in the model, and the last column contains the p-value which is the observed significance 
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levels for the t value. According to the results in Table 5.10, when there is no initial setup 

and no setup control, the firstobj value with GRASP_opt (the base) is 5.1773e+13 (i.e., 

10
13.7141

).  From the main effects and plugging the coefficient values into Eq. (1), we can 

see that the firstobj value is significantly smaller when Rule_First, Rule_HotLot or 

Rule_SetupNum is used, where Rule_SetupNum marginally outperformed Rule_HotLot.  

The estimated coefficients with Rule_SetupNum and Rule_HotLot are both smaller than 

the coefficient with Rule_First, which is consistent with the results in Table 5.3.  

The main effects for initial setup and setup control noticeably increase the firstobj 

value, which is as expected due to the fact that these two factors impose additional 

constraints on the scheduling problem. Moreover, all of the interaction effects considered 

except Rule_First*initsetup_yes turn out to be significant, and all have negative 

coefficients indicating that they can help reduce the increase in firstobj. As seen in Table 

9, the negative interaction of the factor Rule_HotLot*initsetup_yes nearly cancels out the 

positive effect associated with the initial setup.  This means that if Rule_HotLot is used 

for dispatching there is not a significant difference in the firstobj value when we add 

initial setups. This is in line with the results in Table 5.5 which indicate that there is a 

significant different with and without initial setups for GRASP_opt but not for 

Rule_HotLot.  A similar conclusion can be drawn for Rule_Setupnum and Rule_First, 

although the difference between the negative main effect of initial setups and the 

interactions effects is not quite as strong. The analysis illustrates the benefit of 

conducting a full factorial design, which is able to detect finer distinctions in the factor 

effects than a pairwise comparison.  

The interaction terms associated with control_yes and Rule_First, Rule_HotLot 

and Rule_SetupNum separately were all estimated to be negative, which matches with 

the paired t-test results in Table 5.7. According to those results, having setup control 
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hurts the performance of GRASP_opt (the base) the most (i.e., the largest estimated 

difference).  For the other rules, performance is affected less severely relative to the base.  

Another finding was that the interaction associated with having an initial setup 

and a setup control: Initsetup_yes*control_yes was estimated as -0.0023. The negative 

interaction helps to mitigate the increase in firstobj caused by the two corresponding 

main effects.  One possible explanation is that the number of machines that will require a 

changeover within a short amount of time is relatively small when there are initial setups. 

Thus, setup control will be less constraining in this case so when the initial setups are 

aimed at processing key devices, fewer shortages are likely.  

Taken together, if the facility wants to reduce the firstobj value, then 

Rule_SetupNum should be adopted when there is no initial setup and no setup control. If 

initial setups must be considered, both rules perform about the same when the interaction 

effects are taken into account. Rule_HotLot should be used if there is setup controls. The 

relatively larger interaction effect associated with Rule_HotLot*control_yes reduces part 

of the increase in firstobj brought about by the setup control for Rule_HotLot. 

Regarding the secondobj, Table 5.11 reports the results for the OLS estimators 

and Table 5.12 for the EGLS estimators. Again with respect to estimators for the main 

effects, EGLS and OLS qualitatively lead to the same qualitative conclusions.  For 

reasons mentioned in the analysis of the firstobj value, we will focus on the EGLS results 

in Table 5.12.  Accordingly, the intercept means that when there is no initial setup and no 

setup control, the secondobj value associated with GRASP_opt is 1.035e+9 (i.e., 10
9.0149

). 

When Rule_First, Rule_HotLot or Rule_SetupNum is used for dispatching this value is 

significantly larger than the intercept.  Rule_First achieves the greatest secondobj value 

which is consistent with the multiple comparison results in Table 5.4. When there is setup 

control, secondobj is smaller.  The interaction terms between control_yes and each of the 
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latter three rules are estimated to have negative coefficients, and thereby reinforce the 

decrease of secondobj realized with setup control. The negative coefficients of the 

interaction terms are in line with the results in Table 5.8, which illustrate that having 

setup control hurts GRASP_opt (the base) the least. Rule_HotLot, Rule_First and 

Rule_Setupnum are more critically affected, but the degree is relative to the order in 

which they are listed. The interactions of these three rules and control_yes are all 

negative and the order of their coefficients is exactly the same as indicated in Table 5.8. 

 

Table 5.11 Experimental design with CRN results for log of secondobj values using OLS 

     log(secondobj) Estimate of  Std. error t value p > |t| 

Intercept 9.0161 0.0008 11407 <2e-16 

Rule_First 0.0210 0.0011 19.67 <2e-16 

Rule_HotLot 0.0154 0.0011 14.31 <2e-16 

Rule_SetupNum 0.0169 0.0015 11.21 <2e-16 

inisetup_yes -0.0013 0.0016 -0.84 0.2044 

control_yes -0.0039 0.0010 -3.85 0.0003 

Rule_First*inisetup_yes -0.0007 0.0016 -0.46 0.3235 

Rule_HotLot*inisetup_yes 0.0021 0.0017 1.26 0.1091 

Rule_SetupNum*inisetup_yes -0.0015 0.0029 -0.52 0.3039 

Rule_First*control_yes 0.0011 0.0013 0.85 0.2005 

Rule_HotLot*control_yes -0.0189 0.0017 -11.27 <2e-16 

Rule_SetupNum*control_yes -0.0031 0.0024 -1.28 0.1048 

Inisetup_yes*control_yes 0.0016 0.0017 0.95 0.174 
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Table 5.12 Experimental design with CRN results for log of secondobj values using 

EGLS 

     log(secondobj) Estimate of  Std. error t value p > |t| 

Intercept 9.0149 0.0006 15629 <2e-16 

Rule_First 0.0230 0.0010 24.26 <2e-16 

Rule_HotLot 0.0160 0.0009 17.90 <2e-16 

Rule_SetupNum 0.0012 0.0009 17.96 <2e-16 

inisetup_yes 0.0012 0.0011 1.099 0.1403 

control_yes -0.0019 0.0005 -3.892 0.0003 

Rule_First*inisetup_yes 0.0035 0.0012 2.959 0.0030 

Rule_HotLot*inisetup_yes -0.0009 0.0011 -0.826 0.2076 

Rule_SetupNum*inisetup_yes -0.0019 0.0013 -1.519 0.0698 

Rule_First*control_yes -0.0032 0.0009 -3.683 0.0005 

Rule_HotLot*control_yes -0.0182 0.0016 -11.18 <2e-16 

Rule_SetupNum*control_yes -0.0025 0.0007 -3.758 0.0004 

Inisetup_yes*control_yes -0.0023 0.0005 -4.408 6.5e-5 

 

In summary, Rule_First achieves the highest secondobj value whether or not there 

are initial setups and setup control.  However the top performance of Rule_First with 

respect to secondobj doesn’t make it an attractive dispatch rule in the facility due to its 

inferior performance with respect to firstobj which is considered to be hierarchically 

more important.  

Tables A15-A18 in the appendix contain the OLS and EGLS statistics for firstobj 

and secondobj values before the log transformation. Although the results in Tables 5.9 – 

5.12 should be more accurate, there is almost no qualitative difference between these 

estimators before and after the transformation.  Even the order of the estimators for the 

effects is preserved in each table.  

 

5.4  SUMMARY AND CONCLUSIONS 

This chapter investigated six dispatch rules developed in our previous work that 

can be used by shop floor personnel to configure their machines and to assign lots to each 

in semiconductor assembly and test facilities. Two common functions were used to 
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measure performance: the weighted sum of key device shortages denoted by firstobj, and 

weighted throughput. Multiple comparisons were undertaken by analyzing the results 

obtained for 30 real and randomly generated instances.  Output statistics were evaluated 

using paired t-tests for scenarios with and without machine setups at time zero, and when 

limits were placed on the maximum number of changeovers permitted over the planning 

horizon. For the more comprehensive case, interactive effects were evaluated using an 

experimental design that applied the common random number technique to better isolate 

factor effects.  Since minimizing firstobj was given a much higher priority than 

maximizing secondobj, the former is a better measure of system performance. 

 Accordingly, we gained the following insights from the analysis with respect 

firstobj. 

 When there were no initial setups and no setup control, the rules from best to 

worst are Rule_HotLot, Rule_SetupNum, GRASP_asap, Rule_First, Sim and 

GRASP_opt.  

 Having initial setups significantly impacts rule performance negatively when Sim 

and GRASP_asap are used for dispatching.  

 Most of the dispatch rules perform substantially worse when there is setup 

control, except for GRASP_asap and Rule_HotLot.  

 The full factorial design results with common random numbers show that 

(1) Rule_HotLot and Rule_SetupNum achieve the smallest firstobj values 

compared to GRASP_opt and Rule_First which is consistent with the 

paired t-test results.  

(2) Rule_SetupNum should be used when there is no setup control and 

Rule_HotLot should be selected when there is setup control.  
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(3) Rule_First performs the best in maximizing secondobj with and without 

initial setups and setup control.  

(4) Both initial setups and setup control hurt system performance for all rules; 

however, statistically significant interaction terms associated with setup 

control and Rule_First, Rule_HotLot and Rule_SetupNum separately are 

able to mitigate part of the negative resulting from setup control.  

(5) The interaction between initial setup and setup control turns out to be 

negative and statistically significant. One possible reason is that the setup 

control limit does not come into play when there are initial setups with 

respect to the case when there no initial setups for the given data sets. 

This interaction terms reduce the increase in firstobj related to the 

corresponding main effects. 

Currently, the sponsoring company is running GRASP_opt in most of its AT 

facilities and has developed an plan to integrate it with the ASAP model.  The goal is to 

use the same input files for both approaches, but this has not yet been achieved. The main 

stumbling block is the inability of their database system to reliably generate accurate WIP 

and machine setup files.  Neither the GRASP or ASAP is sufficiently robust at this time 

to handle contradictory data elements in these files. 
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Appendix A1: Flow diagram of GRASP_OPT 

 
 

Figure A1. Flow diagram of the enhanced GRASP_opt  
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Appendix A2: Algorithm for Basic Simulation 

 

The logic followed by AutoSched AP is to rank all the lots on the family work list for 

each machine and then try to assign them sequentially in accordance with the specified 

scheduling rule.   The machine families and the machines within each family are arrayed 

alphabetically and examined in that order.  In the presentation of the basic algorithm it is 

assumed that all necessary tooling is available so there is no waiting required.  In the 

description, lot ranking and machine selection rules are generic.  The built-in rules are 

given in Section 5 and our customized rules are given in Section 6. 

Notation 

MF  set of machine families in the facility; i ∈MF 

FWL(i)   set of lots that can be processed on machine family i  

Allavail(i)   set of lots on FWL(i) with the required machine and tooling are available; 

 Allavail(i) ⊆ FWL(i); l ∈Allavail(i)  

Idle(i)  set of machines in machine family i that are currently idle; j∈Idle(i)  

P(i,l)   processing time of lot l when processed using machine family i  

T(i,l)  set of currently available tooling pieces that are required to process lot l   

on machine family i; k∈T(i,l)  

Simbegin  beginning of the planning horizon 

Simend  end of the planning horizon 

 

Algorithm_Simulation 

Step 0. Initialization at time t ∈ [Simbegin, Simend]: 

 FOR each i ∈ MF, get the values of FWL(i), Allavail(i) and Idle(i). 

 FOR each l ∈ Allavail(i), get the values of P(i,l) and T(i,l). 

Step 1. Rank all of the lots in FWL(i) according to the rule specified in the station file.  

Step 2. Selection at time t ∈ [Simbegin, Simend]: 

FOR each i ∈ MF  \\ Machine families are selected alphabetically. 

  WHILE Idle(i) ≠ ∅  

FOR each j∈Idle(i) \\ Machines are selected alphabetically. 

    WHILE Allavail(i) ≠ ∅ 

Machine j selects lot l according to the rule 

specified 

Tooling piece k∈T(i,l)  is installed on machine j 

FWL(i)← FWL(i) \ {l}  

Allavail(i) ← Allavail(i) \ {l} 

Idle(i) ← Idle(i) \ {j}  

T(i,l) ← T(i,l) \ {k}  

If t + P(i,l) < Simend 

At time t ← t + P(i,l)  

Idle(i) ← Idle(i) ⋃ {j}  

T(i,l) ← T(i,l) ⋃ {k} 

     Endif 
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    ENDWHILE 

ENDFOR 

  ENDWHILE 

 ENDFOR 

Figure A2.Algorithm of basic simulation 

 

 
Initialization at time t between 

Simbegin to Simend: for each MF(i) 

get values of

FWL(i), Allavail(i), Idle(i);

For each lot l belonging to Allavail(i) 

get the values of P(i,l), T(i,l).

Rank all lots in FWL(i) according to 

the rule specified in the station file. 

(Machine families in the facility and 

the machines in the same machine 

family are ordered alphabetically.) 

Is Idle(i) = ?

Machine j(i)  Idle(i) is 

looking for a lot.

Is Allavail(i) = ?

Select lot l  FWL(i) for machine j(i) and 

install tooling piece k  T(i,l).

Update the FWL(i), Allavail(i) by 

removing lot l;

Update Idle(i) by removing machine j;

Update T(i,l) by removing the tooling 

piece k.
Wait for Idle(i) 

to become 

nonempty.

Is FWL(i) =  

?

Machine j 

terminates due 

to no lots can be 

processed.

Wait for tooling 

to became 

available.

Is t + P(i,l) < Simend?

 End of planning 

horizon reached for

machine j; 

terminate its 

activity.

After time P(i,l):

Update Idle(i) by adding machine j;

Update T(i,l) by adding tooling piece k.

No

No

Yes

Yes

Yes

No

Yes

No

 

Figure A3. Flow diagram of the AutoSched AP simulation model 
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Appendix A3: More computation results when comparing different 

dispatch rules 

 

Table A1. Results for Taiwan 1 data set without initial setups 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Total lots 

finished 392 468 459 431 452 419 434 434 

Total steps 

finished 576 645 649 620 640 688 640 640 

Key device 

shortage in 

pieces (10
5
) 2.846 1.176 1.237 0.489 0.410 1.819 1.397 1.342 

First objective 

(weighted 

key device 

shortage) 

(10
13

) 7.168 3.813 3.816 1.040 0.875 4.786 3.759 3.650 

Changeover 32 12 18 34 23 20 7 13 

Number of 

machines used 

36 36 36 36 36 36 36 36 

Second 

objective (10
9
) 1.025 1.033 1.037 1.008 1.019 0.980 0.869 0.883 

Third objective 36 36 36 36 36 36 36 36 

Fourth 

objective 71.2 71.3 71.3 71.3 71.3 71.59 71.5 71.5 

Total objective 

(10
13

) 7.168 3.813 3.816 1.040 0.875 4.785 3.759 3.650 

Table A2. Sum of shortages for key devices at each pass for Taiwan 1 data set without 

initial setups 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Shortage after 

first pass (10
5
) 2.704 1.035 1.038 0.323 0.303 0.303 1.239 1.184 

Shortage after 

second pass 

(10
5
) 

0.428 0.428 0.428 0.024 0.024 1.340 0.236 0.236 

Shortage after 

third pass 

(10
5
) 

0.411 0.411 0.411 0.167 0.106 0.632 0.374 0.374 
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Table A3. Results for Taiwan 1 data set with initial setups (26/36 of the machines have 

initial setups) 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Total lots 

finished 

379 390 390 413 401 419 400 400 

Total steps 

finished 

570 585 585 607 593 619 619 619 

Key device 

shortage in 

pieces (10
5
) 

2.765 2.704 2.790 0.459 2.065 3.545 2.591 2.591 

First objective 

(weighted 

key device 

shortage) 

(10
13

)                       

6.705 6.584 6.801 0.925 4.152 8.542 5.833 5.833 

Changeover 26 18 18 39 29 20 15 15 

Number of 

machines used 

36 36 36 36 36 36 36 36 

Second objective 

(10
9
) 

1.030 1.031 0.923 1.017 1.015 0.966 0.914 0.914 

Third objective 36 36 36 36 36 36 36 36 

Fourth objective 7.13 7.09 7.09 7.15 7.15 7.20 7.15 7.15 

Total objective 

(10
13

) 

6.705 6.584 6.801 0.925 4.152 8.542 5.833 5.833 

Table A4. Sum of shortages for key devices at each pass for Taiwan 1 data set with 26 

initial setups  

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Shortage after 

first pass (10
5
) 2.520 2.460 2.520 0.367 1.973 1.973 2.432 2.432 

Shortage after 

second pass 

(10
5
) 

0.440 0.440 0.431 0 0 0.149 0.169 0.169 

Shortage after 

third pass 

(10
5
) 

0.358 0.358 0.409 0.092 0.923 0.672 0.284 0.284 



 122 

Table A5. Results for Taiwan 2 data set without initial setups 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Total lots 

finished 

352 388 371 369 389 378 447 439 

Total steps 

finished 

483 520 509 507 528 647 633 646 

Key device 

shortage in 

pieces (10
5
) 

1.787 1.462 1.353 0.821 0.713 2.077 1.422 1.122 

First objective 

(weighted 

key device 

shortage) 

(10
13

) 

5.115 4.368 4.142 1.671 1.445 4.971 4.392 3.056 

Changeover 31 23 17 33 22 24 15 15 

Number of 

machines 

used 

36 36 36 36 36 36 36 36 

Second 

objective 

(10
9
) 

0.988 0.983 0.997 0.990 0.991 0.944 0.901 0.883 

Third 

objective 

36 36 36 36 36 36 36 36 

Fourth 

objective 

71.1 71.4 71.4 71.1 71.4 71.5 71.5 71.5 

Total 

objective 

(10
13

) 

5.115 4.368 4.142 1.671 1.445 4.971 4.392 3.056 

Table A6. Sum of shortage for the device at each pass for Taiwan 2 data set without 

initial setups 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Shortage after 

first pass (10
5
) 1.623 1.153 1.153 0.455 0.455 0.455 1.313 1.012 

Shortage after 

second pass 

(10
5
) 

0.410 

 

0.394 

 

0.394 

 

0 

 

0 

 

1.168 

 

0.452 

 

0.245 

 

Shortage after 

third pass 

(10
5
) 

4.872 

 

5.959 

 

4.872 

 

3.663 

 

2.576 

 

7.490 

 

3.912 

 

2.449 
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Table A7. Results for Taiwan 2 data set with initial setups (9/36 of the machines have 

initial setups) 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Total lots 

finished 

397 421 407 415 418 363 438 437 

Total steps 

finished 

583 609 586 607 611 627 658 659 

Key device 

shortage in 

pieces (10
5
) 

1.180 1.119 1.122 0.447 0.447 1.887 1.272 1.272 

First objective 

(weighted 

key device 

shortage) 

(10
13

)                       

3.641 3.519 3.407 0.903 0.903 4.824 3.202 3.168 

Changeover 28 22 14 29 26 21 17 16 

Number of 

machines 

used 

36 36 36 36 36 36 36 36 

Second 

objective 

(10
9
) 

1.005 1.031 1.034 1.001 1.012 0.978 0.934 0.911 

Third 

objective 

36 36 36 36 36 36 36 36 

Fourth 

objective 

71.5 71.5 71.5 71.5 71.5 72 72 72 

Total 

objective 

(10
13

) 

3.641 3.519 3.407 0.903 0.903 4.824 3.202 3.168 

Table A8. Sum of shortages for key devices at each pass for Taiwan 2 data set with 9 

initial setups 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Shortage after 

first pass (10
5
) 0.966 0.905 0.850 0.303 0.303 0.303 1.140 1.140 

Shortage after 

second pass 

(10
5
) 

0.413 0.413 0.413 0 0 1.333 

 

0.171 0.155 

Shortage after 

third pass 

(10
5
) 

0.411 0.411 0.411 0.144 

 

0.144 

 

0.657 

 

0.269 0.269 
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Table A9. Results for Clark Probe data set without initial setups 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Total lots 

finished 

116 117 115 111 116 121 107 109 

Total steps 

finished 

119 120 118 114 119 123 109 111 

Key device 

shortage in 

pieces (10
5
) 

1.060 1.060 1.059 1.083 1.065 1.026 1.073 1.036 

First objective 

(weighted key 

device 

shortage) 

(10
13

) 

2.326 2.326 2.327 2.375 2.336 2.256 2.352 2.276 

Changeovers 17 28 39 13 17 0 0 0 

Number of 

machines 

used 

131 130 48 131 128 48 76 77 

Second 

objective 

(10
9
) 

1.679 1.679 1.672 1.617 1.666 1.715 1.566 1.583 

Third 

objective 

131 130 48 131 128 48 76 77 

Fourth 

objective 

85.1 89.3 111.1 109 104 116 119.5 119.5 

Total 

objective 

(10
13

) 

2.326 2.326 2.327 2.375 2.336 2.256 2.352 2.276 
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Table A10. Results for Clark Probe data set with initial setups (45/136 machines have 

initial setups) 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Total lots 

finished 

119 119 116 116 116 120 107 112 

Total steps 

finished 

126 126 123 123 123 122 114 119 

Key device 

shortage in 

pieces (10
5
) 

0.101 0.101 0.103 0.101 0.102 0.058 0.103 0.101 

First objective 

(weighted key 

device 

shortage) 

(10
13

)                       

2.221 2.221 2.264 2.225 2.225 1.250 2.266 2.225 

Changeover 13 30 39 11 11 0 0 1 

Number of 

machines 

used 

135 135 71 135 135 71 99 98 

Second 

objective 

(10
9
) 

1.763 1.763 1.733 1.720 1.720 1.799 1.618 1.697 

Third 

objective 

135 135 71 135 135 71 99 98 

Fourth 

objective 

112 112 111 112 112 120 120 120 

Total 

objective 

(10
13

) 

2.221 2.221 2.264 2.225 2.225 1.250 2.266 2.225 
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Table A11. Results for Taiwan 1 data set with initial setups (10/36 machines have initial 

setups) 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Total lots 

finished 

326 410 401 371 393 420 470 475 

Total steps 

finished 

457 541 537 509 532 667 681 690 

Key device 

shortage in 

pieces (10
5
) 

3.327 1.421 1.280 0.776 0.667 1.795 1.008 0.941 

First objective 

(weighted key 

device 

shortage) 

(10
13

)                       

8.214 4.284 3.994 1.580 1.354 4.262 3.833 3.000 

Changeover 26 20 18 32 25 22 16 17 

Number of 

machines 

used 

36 36 36 36 36 36 36 36 

Second 

objective 

(10
9
) 

0.908 0.994 0.998 0.988 0.990 0.957 0.921 0.933 

Third 

objective 

36 36 36 36 36 36 36 36 

Fourth 

objective 

7.11 7.06 7.11 7.11 7.14 7.2 7.2 7.2 

Total 

objective 

(10
13

) 

8.214 4.284 3.9940 1.580 1.354 4.262 3.833 3.000 

Table A12. Sum of shortage for key devices at each pass for Taiwan 1 data set with 10 

initial setups  

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Shortage after 

first pass (10
5
) 3.054 1.111 1.080 0.410 0.410 0.411 0.901 0.719 

Shortage after 

second pass 

(10
5
) 

0.410 0.394 0.394 0 0 0.865 0.526 0.372 

Shortage after 

third pass 

(10
5
) 

0.596 0.596 0.487 0.366 0.258 0.759 0.445 0.377 
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Table A13. Results for Taiwan data set 1 with initial setups (18/36 of the machines have 

initial setups) 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Total lots 

finished 

387 424 423 440 421 370 442 444 

Total steps 

finished 

574 607 613 632 616 639 657 670 

Key device 

shortage in 

pieces (10
5
) 

2.788 1.119 1.122 0.452 0.447 1.907 1.297 1.240 

First objective 

(weighted key 

device 

shortage) 

(10
13

)                       

6.874 3.519 3.407 0.914 0.903 4.897 3.615 3.197 

Changeover 25 23 18 30 28 18 16 17 

Number of 

machines 

used 

36 36 36 36 36 36 36 36 

Second 

objective 

(10
9
) 

1.005 1.025 1.025 1.010 1.009 0.955 0.964 0.958 

Third 

objective 

36 36 36 36 36 36 36 36 

Fourth 

objective 

72 72 72 72 72 72 72 72 

Total 

objective 

(10
13

) 

6.874 3.519 3.407 0.914 0.903 4.897 3.615 3.197 

Table A14. Sum of shortage for the device at each pass for Taiwan data set 1 with 18 

initial setups 

Measures Sim First All/Lim Hot lot SetupNum GRASP_opt Greedy GRASP_asap 

Shortage after first 

pass (10
5
) 2.575 0.905 0.850 0.308 0.303 0.303 1.177 1.162 

Shortage after 

second pass (10
5
) 

0.413 0.413 0.413 0 0 1.348 0.311 0.181 

Shortage after 

third pass (10
5
) 

0.411 0.411 0.411 0.144 0.144 0.677 0.291 0.234 
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Appendix A4: Regression with CRN results before taking log 

transformation  

 

 

Table A15. Experimental design with CRN results for firstobj values using OLS 

firstobj Estimate of  Std. error t value p > |t| 

Intercept 5.9871e+13 7.5473e+11 79.21 <2e-16 

Rule_First -2.5575e+13 1.3484e+12 -18.97 <2e-16 

Rule_HotLot -4.6650e+13 1.0401e+12 -44.85 <2e-16 

Rule_SetupNum -4.6200e+13 9.4420e+11 -48.93 <2e-16 

inisetup_yes 5.9375e+12 2.9353e+12 2.02 4.42e-5 

control_yes 3.3738e+13 1.5795e+12 21.36 <2e-16 

Rule_First*inisetup_yes 2.2500e+12 3.2298e+12 0.70 0.2448 

Rule_HotLot*inisetup_yes -2.0000e+11 3.1230e+12 -0.06 0.5237 

Rule_SetupNum*inisetup_yes 1.5000e+12 3.0245e+12 0.50 0.3104 

Rule_First*control_yes -2.4850e+13 1.8951e+12 -13.11 <2e-16 

Rule_HotLot*control_yes -2.7500e+13 1.7788e+12 -15.46 <2e-16 

Rule_SetupNum*control_yes -2.8600e+13 1.6951e+12 -16.87 <2e-16 

Inisetup_yes*control_yes -6.8750e+12 1.2356e+12 -5.56 2.61e-6 

  

 

Table A16. Experimental design with CRN results for firstobj values using EGLS  

firstobj Estimate of  Std. error t value p > |t| 

Intercept 5.1270e+13 4.1020e+11 124.99 <2e-16 

Rule_First -1.6941e+13 1.0587e+12 -16.00 <2e-16 

Rule_HotLot -3.6696e+13 5.5947e+12 -65.59 <2e-16 

Rule_SetupNum -3.7462e+13 5.8214e+11 -64.35 <2e-16 

inisetup_yes 1.3117e+13 1.5626e+12 4.55 4.421e-5 

control_yes 3.0930e+13 1.5626e+12 19.79 <2e-16 

Rule_First*inisetup_yes -1.2698e+13 2.7094e+12 -4.69 3.00e-5 

Rule_HotLot*inisetup_yes -1.3049e+13 2.8909e+12 -4.51 4.94e-5 

Rule_SetupNum*inisetup_yes -1.2226e+13 2.6591e+12 -4.60 3.85e-5 

Rule_First*control_yes -2.5076e+13 1.7607e+12 -14.24 <2e-16 

Rule_HotLot*control_yes -3.0409e+13 1.5428e+12 -19.71 <2e-16 

Rule_SetupNum*control_yes -2.9238e+13 1.5938e+12 -18.35 <2e-16 

Inisetup_yes*control_yes -6.1714e+12 1.1078e+12 -5.57 7.768e-9 
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Table A17. Experimental design with CRN results for secondobj values using OLS 

secondobj Estimate of  Std. error t value p > |t| 

Intercept 1.0378e+9 1.8362e+6 565.17 <2e-16 

Rule_First 5.1567e+7 2.6446e+6 19.50 <2e-16 

Rule_HotLot 3.7489e+7 2.6060e+6 14.39 <2e-16 

Rule_SetupNum 4.0740e+7 3.3906e+6 12.02 <2e-16 

inisetup_yes -3.2922e+6 3.6201e+6 -0.91 0.1852 

control_yes -9.3614e+6 2.2653e+6 -4.13 0.0001 

Rule_First*inisetup_yes -1.8382e+6 3.8182e+6 -0.48 0.3174 

Rule_HotLot*inisetup_yes 4.9023e+6 3.8994e+6 1.26 0.1089 

Rule_SetupNum*inisetup_yes -2.9755e+6 6.2503e+6 -0.48 0.3174 

Rule_First*control_yes 2.2660e+6 3.1629e+6 0.72 0.2386 

Rule_HotLot*control_yes -4.5629e+7 3.9768e+6 -11.47 <2e-16 

Rule_SetupNum*control_yes -7.0864e+6 5.1231e+6 -1.38 0.0891 

Inisetup_yes*control_yes 4.3184e+6 3.7770e+6 1.14 0.1318 

 

 

Table A18. Experimental design with CRN results for secondobj values using EGLS 

secondobj Estimate of  Std. error t value p > |t| 

Intercept 1.0350e+9 1.3737e+6 753.45 <2e-16 

Rule_First 5.6259e+7 2.3754e+6 23.68 <2e-16 

Rule_HotLot 3.8933e+7 2.2028e+6 17.67 <2e-16 

Rule_SetupNum 3.9901e+7 2.2533e+6 17.71 <2e-16 

inisetup_yes 3.0044e+6 2.5941e+6 1.16 0.1278 

control_yes -4.4482e+6 1.1362e+6 -3.91 0.0003 

Rule_First*inisetup_yes 8.2783e+6 2.7893e+6 2.97 0.0030 

Rule_HotLot*inisetup_yes -2.3039e+6 2.6797e+6 -0.86 0.1984 

Rule_SetupNum*inisetup_yes -4.6234e+6 2.9904e+6 -1.55 0.0660 

Rule_First*control_yes -7.8713e+6 2.0570e+6 -3.83 0.0003 

Rule_HotLot*control_yes -4.3652e+7 3.8207e+6 -11.43 <2e-16 

Rule_SetupNum*control_yes -6.2394e+6 1.6120e+6 -3.87 0.0003 

Inisetup_yes*control_yes -5.4380e+6 1.2496e+6 -4.35 7.68e-5 
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