A DECOMPOSITION-BASED HEURISTIC ALGORITHM FOR PARALLEL BATCH PROCESSING PROBLEM WITH TIME WINDOW CONSTRAINT

Anh H. G. Nguyen ${ }^{1}$ and Gwo-Ji Sheen ${ }^{2}$, *
${ }^{1}$ School of Industrial Engineering Management
International University
Ho Chi Minh, Vietnam
${ }^{2}$ Institute of Industrial Management
National Central University
Taoyuan, Taiwan
*Corresponding author's e-mail: gjsheen@mgt.ncu.edu.tw

Abstract

This study considers a parallel batch processing problem to minimize the makespan under constraints of arbitrary lot sizes, start time window and incompatible families. We first formulate the problem with a mixed-integer programming model. Due to the NP-hardness of the problem, we develop a decomposition-based heuristic to obtain a near-optimal solution for largescale problems when computational time is a concern. A two-dimensional saving function is introduced to quantify the value of time and capacity space wasted. Computational experiments show that the proposed heuristic performs well and can deal with large-scale problems efficiently within a reasonable computational time. For the small-size problems, the percentage of achieving optimal solutions by the DH is 94.17%, which indicates that the proposed heuristic is very good in solving smallsize problems. For large-scale problems, our proposed heuristic outperforms an existing heuristic from the literature in terms of solution quality.

Keywords: Scheduling; Parallel Batch Processing Problem; Time Window Constraint; Decomposition Approach; Saving Method.
(Received on December 6, 2022; Accepted on February 20, 2023)

1. INTRODUCTION

We consider an identical parallel batch processing machine (BPM) scheduling problem when minimizing the makespan under various constraints. The BPM scheduling problems with incompatible families were addressed by several researchers, such as Uzsoy (1995); Koh et al. (2004); Bilyk et al. (2014); and Jia et al. (2016). However, time window constraints were not considered in the aforementioned studies. Our study considers time window constraints which have been studied for several problems such as cross-docking problem (Li et al., 2004), parallel machine scheduling problem (Bard and Rojanasoonthon, 2006; Brucker and Kravchenko, 2008; Lee et al., 2018), realistic cyclic scheduling problem (Shirvani et al., 2014), traveling salesperson problem (Hungerländer and Truden, 2018), and vehicle routing problem (Hashemi et al., 2020). It is shown that time window constraints are essential in the production environment but earn less attention in the context of parallel BPMs. In recent years, researchers have shown significant interest in parallel BPMs. Due to the NP-hardness of the parallel BPMs, most researchers solved their parallel BPMs by heuristic approaches. Note that we use the $\alpha|\beta| \gamma$ notation suggested by (Graham et al., 1979) to describe each scheduling problem. The α field describes the machine environment, the β field provides different process restrictions, and the γ field presents the performance measures. We discuss scheduling problems with respect to these three dimensions in the remaining sections. Uzsoy (1995) presented heuristics based on the longest processing time first and earliest due date first rules for the problems Pm \mid batch $\mid C_{\max }$ and $\operatorname{Pm} \mid$ batch $\mid L_{\max }$. Koh et al. (2004) proposed several rule-based heuristics and designed a random key-based genetic algorithm (GA) for the problems Pm|batch, incompatible, $s_{i} \mid C_{\max }\left(\sum w_{i} C_{i}\right)$. Jia et al. (2016) also solved the problem Pm \mid batch, incompatible, $s_{i} \mid C_{\max }$ by developing a metaheuristic based on max-min ant system. Chang et al. (2004) applied a simulated annealing algorithm to address the problem $\operatorname{Pm} \mid$ batch, $s_{i} \mid C_{\max }$ which was also solved by a hybrid genetic heuristic in Kashan et al. (2008). Balasubramanian et al. (2004) solved the problem Pm|batch, incompatible $\mid \sum w_{i} T_{i}$ by developing different decomposition approaches, which combined several dispatching rules with a proposed GA. Similar to Balasubramanian et al. (2004), Mönch et al. (2005) proposed two decomposition approaches to deal with the problem Pm|batch, incompatible $\mid \sum w_{i} T_{i}$. Chiang et
al. (2010) addressed the problem Pm|batch, incompatible, $r_{i} \mid \sum w_{i} T_{i}$ by a memetic algorithm. In this memetic algorithm, they proposed to encode batch formation and batch sequence simultaneously in the proposed chromosome, while machine assignment was done during the decoding. Malve and Uzsoy (2007) combined iterative improvement heuristics with a GA using the random key representation to solve the problem Pm|batch, incompatible, $r_{i} \mid L_{\text {max }}$. Chung et al. (2009) proposed a mixed integer programming (MIP) model, a MIP-based algorithm, and three constructive heuristics to address the problem Pm|batch, compatible, $s_{i}, r_{i} \mid C_{\max }$. Ozturk et al. (2014) presented a branch and bound-based heuristic for solving the problem Pm|batch, $s_{i}, r_{i}, p_{i}=p \mid C_{\text {max }}$. Zhou et al. (2018) developed a GA based on the random keys representation to address the problem $R m \mid$ batch, $s_{i}, r_{i} \mid C_{\max }$. Besides, The aforementioned studies solved different parallel BPMs by either mathematical models or near-optimal heuristics. The heuristic-based problem-solving approaches include genetic algorithm, ant colony optimization, simulated annealing, tabu search, variable neighborhood search or decomposition approach.

According to Mathirajan and Sivakumar (2006), the decomposition approach, which has received considerable attention, is one of the typical approaches for solving BPMs. The decomposition approach has also been applied successfully to solve the BPMs with incompatible families by other researchers. Reichelt and Mönch (2006) proposed the three-phase approach, including batch formation, batch assignment and batch sequencing, to solve the problem Pm|batch, incompatible, $\boldsymbol{r}_{\boldsymbol{i}} \mid \sum \boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{T}_{\boldsymbol{i}}, \boldsymbol{C}_{\boldsymbol{m a x}}$. Chung et al. (2009) developed two heuristics consisting of two phases, batch formation and batch scheduling, for solving the problem Pm|batch, compatible, $\boldsymbol{s}_{\boldsymbol{i}}, \boldsymbol{r}_{\boldsymbol{i}} \mid \boldsymbol{C}_{\boldsymbol{m a x}}$. Almeder and Mönch (2011) proposed to solve the problem $\boldsymbol{P m} \mid \boldsymbol{b a t c h}$, incompatible $\mid \sum \boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{T}_{\boldsymbol{i}}$ by metaheuristics which are hybridized with a decomposition heuristic and a local search. Cheng et al. (2014) proposed a polynomial time heuristic which is based on a two-phase decomposition approach for the problem $\boldsymbol{P m}\left|\boldsymbol{b a t c h}, \boldsymbol{s}_{\boldsymbol{i}}\right| \boldsymbol{C}_{\boldsymbol{m a x}}$. Arroyo and Leung (2017a) developed two-phase decomposition heuristics to address the problem $\boldsymbol{R m}\left|\boldsymbol{b a t c h}, \boldsymbol{s}_{\boldsymbol{i}}, \boldsymbol{r}_{\boldsymbol{i}}\right| \boldsymbol{C}_{\boldsymbol{m a x}}$. It shows that the decomposition approach divides a parallel BPM into several sub-problems and solves sub-problem by sub-problem to obtain a solution for the original problem. Based on its advantages, in this study, we also propose a decomposition-based heuristic to obtain a near-optimal solution for our large-scale problem.

The above literature indicates that the parallel BPMs with incompatible families have been one of an interesting topic for many researchers. This paper contributes to the literature for parallel BPMs with incompatible families by further considering the practical start time window constraints. To solve the studied problem, a MIP model is first proposed to obtain optimal solutions. We then develop an efficient decomposition-based heuristic, which includes two phases - batch formation and batch scheduling, to deal with the large-scale problem. Extended from the idea of the saving method of Clarke and Wright (1964), a new two-dimensional saving function is introduced to quantify the saving space of time and capacity, which is a basis for the batch formation in our proposed heuristic while two priority rules are proposed to address the batch scheduling phase. The paper is structured as follows. Our problem description and the MIP formulation are given in Section 2. A decomposition-based heuristic is developed in Section 3. In Section 4, the computational result for randomly generated instances is reported. Concluding remarks are given in Section 5.

2. PROBLEM DESCRIPTION AND MIP MODEL FORMULATION

2.1. Problem description and assumptions

Our studied problem is motivated by the wafer fabrication procedure in semiconductor manufacturing. In wafer fabrication, multiple diffusion work centers provide similar processing capabilities, and each diffusion work center consists of multiple identical machines. Each diffusion machine can process several lots at the same time, which means that the diffusion machines in wafer fabs are an example of batch-processing machines. Each lot contains a fixed number of wafers and is classified into a specific product family/recipe according to its processing temperature, steps and chemical characteristics required for the diffusion process. The diffusion processes are long and allow batching of lots with the same family/recipe. The batching process is allowed only of lots of the same recipe, and a batch has a capacity limit that is recipe-dependent. According to Mönch et al. (2012), in wafer fabrication, time constraints between consecutive process steps are important restrictions. For instance, there is often a time restriction between operations in the etch work area and oxidation/diffusion work area. The time windows are installed to prevent native oxidation and contamination effects on the wafer surface. To derive time constraints to the scheduling problem, lots are recommended their own time windows to be processed. Lots that cannot be processed during the recommended time windows will be eliminated or scrapped when rework is generally not allowed for the scrapped lots. In this study, diffusion machines are assumed to model as parallel batch processing machines with incompatible job families and time window constraints.

Moreover, according to Mönch et al. (2012), there are several performance measures for the entire wafer fabs, but the most important among them are cycle time, throughput, and on-time delivery performance measures. Increasing throughput or bottleneck utilization leads to smaller cost per wafer, reducing cycle time results in lower financial holding costs and
enhancing on-time delivery performance increases customer satisfaction. In our study, the throughput measure is derived for the studied scheduling problem by considering the objective to minimize makespan. As defined in Pinedo (1995), makespan is equivalent to the completion time of the last job to leave the system. Thus minimizing makespan results in a higher throughput value and a lower wafer production cost which is one of the important targets of the fabrication process. According to Graham et al. (1979), our strongly NP-hard problem can be expressed as Pm|batch, incompatible, s_{i}, time window $\mid C_{m a x}$. In addition, the following assumptions are considered for the problem formulation as follows:

- There are M parallel machines to batch and process N lots. All the data, including lot processing times p_{i}, release time r_{i}, remaining lifetime R_{i} and lot size s_{i} are deterministic and are known in advance.
- All the batch-processing machines are identical in nature.
- The machines are available at the beginning of the scheduling.
- Each machine can only process one batch at a time.
- Preemption and machine breakdown are not allowed.
- Each lot i must be processed within its start time window $\left[r_{i}, r_{i}+R_{i}\right.$]; otherwise, the lot will be scrapped.
- Suppose that lot i is in batch $B_{b}(b=1, \ldots, B)$, the batch B_{b} has its start time window $\left[E S_{b}^{B}, L S_{b}^{B}\right]$ with $E S_{b}^{B}=$ $\max \left\{r_{i} \mid i \in B_{b}\right\}$ and $L S_{b}^{B}=\min \left\{\left(r_{i}+R_{i}\right) \mid i \in B_{b}\right\}$.
- All lots with the same recipe have the same processing time.
- A batch can only consist of lots with the same recipe.
- The size of each lot cannot exceed the capacity of any batch.

2.2. MIP model formulation

In this section, our problem is formulated by a MIP model. The notations used are presented in Appendix A.

$$
\begin{equation*}
\text { Minimize } \quad C_{\max } \tag{1}
\end{equation*}
$$

Subject to

$$
\begin{array}{lc}
\sum_{j=1}^{M} \sum_{b=1}^{B} X_{j, b, i}=1 & \forall i \\
\boldsymbol{L} Y_{j, b, e} \geq \sum_{i=1}^{N} h_{i, e} X_{j, b, i} & \forall j, b, e \\
\sum_{i=1}^{N} h_{i, e} X_{j, b, i} \geq Y_{j, b, e} & \forall j, b, e \\
\sum_{i \in J_{e}} S_{i} X_{j, b, i} \leq U B_{e} Y_{j, b, e} & \forall j, b, e \\
\sum_{e=1}^{E} Y_{j, b, e} \leq 1 & \forall j, b \\
S_{j, b} \geq r_{i} X_{j, b, i} & \forall j, b, i \\
S_{j, b} \leq r_{i}+R_{i}+\boldsymbol{L}\left(1-X_{j, b, i}\right) & \forall j, b, i \\
F_{j, b}-S_{j, b} \geq p_{i} X_{j, b, i} & \forall j, b, i \\
F_{j, b} \leq S_{j, b+1} & \forall j, 1 \leq b \leq B-1 \\
S_{j, b+1} \leq F_{j, b}+\boldsymbol{L} \sum_{i=1}^{N} X_{j, b+1, i} & \forall j, 1 \leq b \leq B-1 \\
F_{j, b} \leq C_{\max } & \forall j, b
\end{array}
$$

Objective (1) is to minimize the makespan. Constraint (2) imposes that each lot can be assigned to only one batch. Constraints (3) and (4) ensure that recipe e is processed by batch b on machine j when lot i using recipe e is assigned to batch b on machine j. Constraint (5) guarantees that total lot sizes in a batch cannot exceed the batch capacity. Constraint (6) ensures that each batch can have at most one recipe. Constraints (7) and (8) ensure that if lot i is assigned to batch b on machine j, then batch b 's start time window must satisfy lot i 's start time window. Constraint (9) indicates that if lot i is assigned to batch b on machine j, then lot i 's processing time is within the range of batch b 's start and finish time. Constraints (10) and (11) ensure that under the same machine, batch b 's finish time cannot be greater than batch ($b+1$)'s start time. Constraint (12) restricts that the objective makespan cannot be less than any batch's finish time on machine j.

3. DECOMPOSITION-BASED HEURISTIC ALGORITHM

Here, our studied problem is decomposed into two sub-problems, which are solved separately. A decomposition-based heuristic (DH) algorithm with two phases is proposed, and each phase addresses one corresponding sub-problem. Phase I is
for batch formation, in which lots are grouped into several batches, and phase II is for batch scheduling, in which the formed batches are scheduled on the parallel batch processing machines. In phase I, lots are grouped into batches in consideration of the lot size, the incompatible families and the start time windows. We propose to form batches by an approach based on the saving value. Clarke and Wright (1964) proposed a one-dimensional saving function to calculate the saved distance from each pair of demand points. Then, starting from the largest saving value, the shipments are consolidated for a vehicle when the consolidation does not violate the constraints such as vehicle capacity and time window. A similar one-dimensional saving function can be found in several researchers, such as Çatay (2010); Pamosoaji et al. (2019); Segerstedt (2014); and Tarhini et al. (2020). However, because our study needs to address not only the capacity but also the time, a new two-dimensional saving function is proposed to calculate the saving value between any two batches in our batch formation phase. The concept of two-dimensional function was also discussed in some studies, such as Chen et al. (2011), Jia and Leung (2014), Zhou et al. (2014), and Jia et al. (2015). Before presenting our saving function, we need the following definitions. The notations used in this section are presented in Appendix B.

Definition 1: A batch with unit size and unit processing time is defined as a 'unit batch'. A batch B_{b} with processing time p_{b}^{B} and size s_{b}^{B} is composed of $p_{b}^{B} s_{b}^{B}$ unit batches. Unit batch is a base for measuring time and capacity area wasted by a batch.

Definition 2: Time and capacity wasted area for a batch is caused by the joint effect of the batch residual capacity and the lot delay time in the batch processing. For any two batches B_{k} and $B_{l}(k, l=1, \ldots, N ; k<l)$, there are two cases for calculating time and capacity wasted area:

Case 1: When batches B_{k} and B_{l} are processed separately, time and capacity wasted area for each batch is only affected by the batch residual capacity (see Figures $1-\mathrm{a}, \mathrm{b}$). Time and capacity wasted area $T C_{k, l}^{\prime}$ is the sum of time and capacity wasted areas for batches B_{k} and B_{l} as follows:

$$
\begin{align*}
T C_{k, l}^{\prime}= & {\left[\left(\text { Capacity of batch } B_{k}-\text { total size of lots in batch } B_{k}\right) \times \text { Processing time of batch } B_{k}\right]+} \\
& {\left[\left(\text { Capacity of batch } B_{l}-\text { total size of lots in batch } B_{l}\right) \times \text { Processing time of batch } B_{l}\right] } \tag{13}\\
= & {\left[\left(U B_{r e_{k}^{B}}-s_{k}^{B}\right) p_{k}^{B}\right]+\left[\left(U B_{r e_{l}^{B}}-s_{l}^{B}\right) p_{l}^{B}\right] . }
\end{align*}
$$

Case 2: When batches B_{k} and B_{l} are merged into batch B_{b}, there are two different situations needed to be considered (see Figures 1-c, d). Each situation results in a different way to calculate time and capacity wasted area $T C_{k, l}^{\prime \prime}$. They are stated as follows:
$T C_{k, l}^{\prime \prime}=\left[\left(\right.\right.$ Capacity of batch $B_{b}-$ total size of lots in batch $\left.B_{b}\right) \times$ Processing time of batch $\left.B_{b}\right]+$ [Difference between the earliest start time of two merged batches \times Size of the batch with smaller earliest start time]

$$
= \begin{cases}\left(U B_{r e_{b}^{B}}-\left(s_{k}^{B}+s_{l}^{B}\right)\right) p_{b}^{B}+\left(E S_{l}^{B}-E S_{k}^{B}\right) s_{k}^{B} & \text { if } E S_{k}^{B} \leq E S_{l}^{B} \tag{14}\\ \left(U B_{r e_{b}^{B}}-\left(s_{k}^{B}+s_{l}^{B}\right)\right) p_{b}^{B}+\left(E S_{k}^{B}-E S_{l}^{B}\right) s_{l}^{B} & \text { if } E S_{k}^{B}>E S_{l}^{B}\end{cases}
$$

Definition 3: Saving space value $S_{k, l}$ is the value of space saved regarding time and capacity wasted area after merging batches B_{k} and $B_{l}(k, l=1, \ldots, N ; k<l)$ together; namely, a saving space value is the difference between $T C_{k, l}^{\prime}$ and $T C_{k, l}^{\prime \prime}$. There is no saving space value for any two batches which cannot be merged together. The two-dimensional saving space value $S_{k, l}$ is calculated as follows:

$$
\begin{align*}
& S_{k, l}=\text { Time and capacity wasted area when batches } B_{k}- \\
& \text { Time and capacity wasted area when batches } B_{k} \\
& \text { and } B_{l} \text { are merged into batch } B_{b} \\
& =T C_{k, l}^{\prime} \quad-\quad T C_{k, l}^{\prime \prime} \\
& =\left\{\begin{array}{l}
{\left[\left(U B_{r e_{k}^{B}}-s_{k}^{B}\right) p_{k}^{B}\right]+\left[\left(U B_{r e_{l}^{B}}-s_{l}^{B}\right) p_{l}^{B}\right]-\left[\left(U B_{r e_{b}^{B}}-\left(s_{k}^{B}+s_{l}^{B}\right)\right) p_{b}^{B}+\left(E S_{l}^{B}-E S_{k}^{B}\right) s_{k}^{B}\right] \text { if } E S_{k}^{B} \leq E S_{l}^{B}, r e_{k}^{B}=r e_{l}^{B} ;} \\
{\left[\left(U B_{r e_{k}^{B}}-s_{k}^{B}\right) p_{k}^{B}\right]+\left[\left(U B_{r e_{l}^{B}}-s_{l}^{B}\right) p_{l}^{B}\right]-\left[\left(U B_{r e_{b}^{B}}-\left(s_{k}^{B}+s_{l}^{B}\right)\right) p_{b}^{B}+\left(E S_{k}^{B}-E S_{l}^{B}\right) s_{l}^{B}\right] \text { if } E S_{k}^{B}>E S_{l}^{B}, r e_{k}^{B}=r e_{l}^{B} ;} \\
0
\end{array}, \text { otherwise. }, ~ l\right. \tag{15}
\end{align*}
$$

Figure 1. Illustration of time and capacity wasted area
Phase I, the batch formation, is summarized as follows. Each lot initially forms its own batch. We then compute the saving space value for each pair of batches based on the saving space value function Equation (15). Two batches, starting with the largest positive saving value, are merged in consideration of constraints such as lot start time windows and batch capacity. After a new batch is formed, the saving value for each pair of batches is then re-calculated. The batching process continues until no positive saving values exist.

Definition 4: Two priority rules are proposed for Phase II of the DH algorithm. Here, ES (resp. LS) stands for the earliest start time (resp. the latest start time).

1. EST (earliest start time) rule: When a machine is freed, the batch with the smallest ES among those not yet processed is put on the machine.
2. LST (latest start time) rule: When a machine is freed, the batch with the smallest LS among those not yet processed is put on the machine.
Phase II, the batch scheduling, consists of two procedures. In the first procedure, the formed batches from phase I are assigned to machines according to the EST rule. This procedure gives non-delay schedules, where a machine is never left idle when a batch is available for processing. The EST rule is applied to assign batches to machines by several literatures,
such as Chung et al. (2009), Damodaran and Vélez-Gallego (2012), and Arroyo and Leung (2017a,b). These papers have in common assigned batches to machines by using the batch earliest start times. As discussed above, our study further considers the batch start time window constraint when assigning batches to machines. Thus, we introduce a feasibility condition for a solution found by the first procedure to ensure that all the batch start time windows are satisfied. The feasibility condition, namely Condition 1, is shown in detail as follows.

For instance, \boldsymbol{I} of our problem, let sequence $\mathcal{L}^{E S T}$ be a sorted sequence according to the non-decreasing order of batch earliest start time for un-assigned batches. Let batch $b_{1}^{E S T}$ be the first batch in sequence $\mathcal{L}^{E S T}$ and $L S_{b_{1}^{E S T}}^{B}$ be the latest start time of batch $b_{1}^{E S T}$. Let $T_{j^{*}}^{E S T}$ be the earliest available time among machines such that $T_{j^{*}}^{E S T}=\min _{j=1, \ldots, M}\left\{T_{j}^{E S T}\right\}$ when assigning batch $b_{1}^{E S T}$.

Condition 1: If the inequality $L S_{b_{1}^{E S T}}^{B} \geq T_{j^{*}}^{E S T}$ holds for every batch in sequence $\mathcal{L}^{E S T}$, then there exists a feasible solution for instance I.

However, the first procedure, which uses only the batch earliest start times for making decisions, may not find a feasible solution but actually there exists one. Consider the 3-batch, 2-machine example with batch information: $E S_{1}^{B}=0, E S_{2}^{B}=2$, $E S_{3}^{B}=1, L S_{1}^{B}=2, L S_{2}^{B}=3, L S_{3}^{B}=4, p_{1}^{B}=6, p_{2}^{B}=1$ and $p_{3}^{B}=4$. According to the EST rule, we have $\mathcal{L}^{E S T}=$ (B_{1}, B_{3}, B_{2}). Then, batch B_{1} is assigned to machine M_{1} and batch B_{3} is assigned to machine M_{2}, leading to later violating the start time window of batch B_{2}. This is because when assigning batch B_{2}, machine M_{2} is the machine with the earliest available time but $T_{2}^{E S T}>L S_{2}^{B}$ (i.e., $5>4$). Thus, as stated in Condition 1, no feasible solution is found by the first procedure (see Figure 2-a). But there does exist a feasible solution for the example, as depicted in Figure 2-b. Figure 2 is used to demonstrate the two situations for the described example. One is for assigning batches to machines according to the EST rule in which no feasible solution is found. Another is for the assignment of batches to machines according to the LST rule, where a feasible solution can be obtained.

Figure 2. Illustrative example for the situation when the EST rule cannot find a feasible solution
When the first procedure cannot find a feasible solution, we will switch to use the second procedure. The second procedure basically applies the LST rule when considering Condition 2 and Condition 3. The LST rule is motivated by a well-known dispatching rule, Earliest Due Date first (EDD), where a batch with an earlier due date has a higher priority.

Let sequence $\mathcal{L}^{L S T}$ be a sorted sequence according to non-decreasing order of batch latest start time for un-assigned batches. Let batch $b_{1}^{L S T}$ be the first batch in sequence $\mathcal{L}^{L S T}$ and $L S_{b_{1}^{L S T}}^{B}$ be the latest start time of batch $b_{1}^{L S T}$. Let $T_{j^{*}}^{L S T}$ be the earliest available time among machines when assigning batch $b_{1}^{L S T}$. At time $T_{j^{*}}^{L S T}$, let batch $b_{2}^{L S T}$ be the critical batch such that $\max \left(E S_{b_{2}^{L S T}}^{B}, T_{j^{*}}^{L S T}\right)+p_{b_{2}^{L S T}}^{B}=\min _{b \text { in } \mathcal{L}^{L S T}, b \neq b_{1}^{L S T}}\left(\max \left(E S_{b}^{B}, T_{j^{*}}^{L S T}\right)+p_{b}^{B}\right)$. Similar to Condition 1, Condition 2 is the feasibility condition for a solution found by the second procedure to ensure that all the batch start time windows are satisfied. Condition 3 is used to determine that at time $T_{j^{*}}^{L S T}$, either the first batch $b_{1}^{L S T}$ or the critical batch $b_{2}^{L S T}$ in the sequence $\mathcal{L}^{L S T}$ should be assigned next.

Condition 2: If the inequality $L S_{b_{1}^{L S T}}^{B} \geq T_{j^{*}}^{L S T}$ holds for every batch in sequence $\mathcal{L}^{L S T}$, then there exists a feasible solution for instance I.

Condition 3: At time $T_{j^{*}}^{L S T}$, batch $b_{1}^{L S T}$ is assigned to machine $M_{j^{*}}$ if $L S_{b_{1}^{L S T}}^{B}<\max \left(E S_{b_{2}^{L S T}}^{B}, T_{j^{*}}^{L S T}\right)+p_{b_{2}^{L S T}}^{B}$; otherwise, batch $b_{2}^{L S T}$ is assigned to machine $M_{j^{*}}$.

The following example is used to illustrate the situation when the pure LST rule cannot find a feasible solution, but there does exist one. Consider the 3-batch, 2-machine example with batch information: $E S_{1}^{B}=0, E S_{2}^{B}=1, E S_{3}^{B}=2, L S_{1}^{B}=$ $3, L S_{2}^{B}=4, L S_{3}^{B}=5, p_{1}^{B}=6, p_{2}^{B}=5$ and $p_{3}^{B}=1$. According to the LST rule, we have $\mathcal{L}^{L S T}=\left(B_{1}, B_{2}, B_{3}\right)$. Then, if batch B_{1} is assigned to machine M_{1} and batch B_{2} is assigned to machine M_{2}, this will lead to no feasible solution because batch B_{3} cannot be scheduled due to the violation of Condition 2 (see Figure 3-a). However, there exists a feasible solution for the example (see Figure 3-b). Figure 3 is used to illustrate the two situations for the above example. The first one is for assigning batches to machines according to the pure LST rule, where no feasible solution is obtained. The second is for the assignment of batches to machines according to the pure LST rule with, further considering Condition 3, where a feasible solution can be found.

Figure 3. Illustrative example for the situation when the pure LST rule cannot find a feasible solution

Next, the pseudo-code of our proposed DH algorithm is presented:

DH algorithm

Input: $r e_{i}^{L}, s_{i}^{L}, p_{i}^{L}, r_{i}^{L}, R_{i}^{L}$ for $i=1, \ldots, N ; U B_{e}$ for $e=1, \ldots, E ; h=N$.
Output: The solution with its makespan.

Phase I:

Assign each lot to a batch separately:
For $b=1, \ldots, N$ do
$B_{b}=\{b\} ; r e_{b}^{B}=r e_{b}^{L}, s_{b}^{B}=s_{b}^{L}, p_{b}^{B}=p_{b}^{L}, E S_{b}^{B}=r_{b}^{L}, L S_{b}^{B}=r_{b}^{L}+R_{b}^{L} ;$
End For
Let $\mathcal{B}=\{1, \ldots, N\}$;
Calculate saving value for every pair of batches in $\boldsymbol{\mathcal { B }}$:
For $k, l \in \mathcal{B} ; k<l$ do
Calculate $S_{k, l}$ by Eq. (15);
End For
Repeat
Let k^{*}, l^{*} be such that $S_{k^{*}, l^{*}}=\max _{k, l \in \mathcal{B} ; k<l}\left\{S_{k, l}\right\}$
If $\left(\max \left(E S_{k^{*}}^{B}, E S_{l^{*}}^{B}\right) \leq \min \left(L S_{k^{*}}^{B}, L S_{l^{*}}^{B}\right)\right)$ and $\left(s_{k^{*}}^{B}+s_{l^{*}}^{B} \leq U B_{r e_{k^{*}}^{B}}\right)$ then
$h=h+1$;
Merge batches $B_{k^{*}}$ and $B_{l^{*}}$ to form a new batch $B_{h}: B_{h}=B_{k^{*}} \cup B_{l^{*}}$;
Remove k^{*}, l^{*} from \mathcal{B}, and add h to $\boldsymbol{\mathcal { B }}$;
Determine batch B_{h} information:
$r e_{h}^{B}=r e_{k^{*}}^{B}, p_{h}^{B}=p_{k^{*}}^{B}, s_{h}^{B}=s_{k^{*}}^{B}+s_{l^{*}}^{B} ;$
$E S_{h}^{B}=\max \left(E S_{k^{*}}^{B}, E S_{l^{*}}^{B}\right), L S_{h}^{B}=\min \left(L S_{k^{*}}^{B}, L S_{l^{*}}^{B}\right)$;
Re-calculate saving value for every pair of batches in \mathcal{B} :
For $k, l \in \mathcal{B} ; k<l$ do
Calculate $S_{k, l}$ by Eq. (15);

A Decomposition-Based Heuristic Parallel Batch Processing Problem

End For

End If

Until all $S_{k, l}=0$ for $k, l \in \mathcal{B} ; k<l$.

Phase II:

Let $\mathcal{L}^{\boldsymbol{E S T}}$ be a sequence of all formed batches in \mathcal{B}, being re-indexed according to the non-decreasing order of batch earliest start time such that $E S_{1}^{B} \leq E S_{2}^{B} \leq \cdots \leq E S_{|\mathcal{B}|}^{B}$;
$T_{j}^{E S T}=0, S_{j}^{E S T}=()$ for $j=1, \ldots, M$, second_run = False;
While $\boldsymbol{L}^{E S T}$ is not empty do:
Let batch $b_{1}^{E S T}$ be the first batch in $\boldsymbol{\mathcal { L }}^{E S T}$;
Let machine j^{*} be the machine such that $T_{j^{*}}^{E S T}=\min _{j=1, \ldots, M}\left(T_{j}^{E S T}\right)$;
If $L S_{b_{1}^{E S T}}^{B} \geq T_{j^{*}}^{E S T}$ then
Assign batch $b_{1}^{E S T}$ to machine j^{*} by appending batch $b_{1}^{E S T}$ to $S_{j^{*}}^{E S T}$; Remove $b_{1}^{E S T}$ from $\mathcal{L}^{E S T}$;
Determine information of batch $b_{1}^{E S T}: B S_{b_{1}^{E S T}}^{j^{*}}=\max \left(E S_{b_{1}^{E S T}}^{B}, T_{j^{*}}^{E S T}\right) ; B C_{b_{1}^{E S T}}^{j^{*}}=B S_{b_{1}^{E S T}}^{j^{*}}+p_{b_{1}^{E S T}}^{B}$;
Update available time of machine $j^{*}: T_{j^{*}}^{E S T}=B C_{b_{1}^{E S T}}^{j^{*}}$;

Else:

second_run $=$ True;
Set $\boldsymbol{\mathcal { L }}^{\boldsymbol{E S T}}$ is empty;

End While

If second_run then

Let $\boldsymbol{\mathcal { L }}^{\boldsymbol{L S T}}$ be a sequence of all formed batches in \mathcal{B}, being re-indexed according to non-decreasing order of batch latest start time; namely, $L S_{1}^{B} \leq L S_{2}^{B} \leq \cdots \leq L S_{|\mathcal{B}|}^{B}$;
$T_{j}^{L S T}=0, S_{j}^{L S T}=()$ for $j=1, \ldots, M$;
While $\boldsymbol{\mathcal { L }}^{L S T}$ is not empty do:
Let batch b_{1}^{LST} be the first batch in $\boldsymbol{\mathcal { L }}^{\boldsymbol{L S T}}$;
Let machine j^{*} be the machine such that $T_{j^{*}}^{L S T}=\min _{j=1, \ldots, M}\left(T_{j}^{L S T}\right)$;

$$
\text { If } L S_{b_{1}^{L S T}}^{B} \geq T_{j^{*}}^{L S T} \text { then }
$$

Let batch $b_{2}^{L S T}$ be the batch such that $\max \left(E S_{b_{2}^{L S T}}^{B}, T_{j^{*}}^{L S T}\right)+p_{b_{2}^{L S T}}^{B}=\min _{b \text { in } \mathcal{L}^{L S T}, b \neq b_{1}^{L S T}}\left(\max \left(E S_{b}^{B}, T_{j^{*}}^{L S T}\right)+p_{b}^{B}\right)$;
If $L S_{b_{1}^{L S T}}^{B}<\max \left(E S_{b_{2}^{L S T}}^{B}, T_{j^{*}}^{L S T}\right)+p_{b_{2}^{L S T}}^{B}$ then
Assign batch $b_{1}^{L S T}$ to machine j^{*} by appending batch $b_{1}^{L S T}$ to $S_{j^{*}}^{L S T}$; Remove $b_{1}^{L S T}$ from $\boldsymbol{\mathcal { L }}^{L S T}$;
Determine information of $b_{1}^{L S T}: B S_{b_{1}^{L S T}}^{j^{*}}=\max \left(E S_{b_{1}^{L S T}}^{B}, T_{j^{*}}^{L S T}\right) ; B C_{b_{1}^{L S T}}^{j^{*}}=B S_{b_{1}^{L S T}}^{j^{*}}+p_{b_{1}^{L S T}}^{B}$;
Update available time of machine $j^{*}: T_{j^{*}}^{L S T}=B C_{b_{1}^{L S T}}^{j^{*}}$;
Else:
Assign batch $b_{2}^{L S T}$ to machine j^{*} by appending batch $b_{2}^{L S T}$ to $S_{j^{*}}^{L S T}$; Remove $b_{2}^{L S T}$ from $\mathcal{L}^{L S T}$;
Determine information of $b_{2}^{L S T}: B S_{b_{2}^{L S T}}^{j^{*}}=\max \left(E S_{b_{2}^{L S T}}^{B}, T_{j^{*}}^{L S T}\right) ; B C_{b_{2}^{L S T}}^{j^{*}}=B S_{b_{2}^{L S T}}^{j^{*}}+p_{b_{2}^{L S T}}^{B}$;
Update available time of machine $j^{*}: T_{j^{*}}^{L S T}=B C_{b_{2}^{L S T}}^{j^{*}}$;

Else:

No feasible solution is found.

End While

End If

The computational complexity of the proposed algorithm can be determined as follows: the time complexity of Phase I is $\mathrm{O}\left(n^{3}\right)$ while the time complexity of Phase II is $\mathrm{O}\left(n^{2}(\log (n))\right.$. Thus, the proposed DH algorithm is then referred to as an $\mathrm{O}\left(n^{3}\right)$ algorithm.

A Decomposition-Based Heuristic Parallel Batch Processing Problem

4. COMPUTATIONAL RESULTS

We conduct experiments to evaluate the effectiveness of our proposed MIP model and DH heuristic. The proposed heuristic is coded in Python and run on an $\operatorname{Intel}(\mathrm{R})$ Core(TM) $\mathbf{i 7}-8550 \mathrm{UCPU}$ at 1.8 GHz with 8 GB of RAM memory. The Gurobi 8.0.1 solver is used for the MIP model. To prevent excessive computation time, the running time limit is set to 3600 seconds (i.e., one hour).

4.1. Experiment design

Two computational tests are designed to evaluate the performance of the proposed algorithm. The first test is to evaluate the solution quality of the proposed algorithm, while the second test is used to show how well our proposed algorithm performs for large-size problems. Because the MIP can solve only small-size instances, this first test is conducted only on small-size problems and has 48 different combinations of factors. For each combination of the 48 combinations, we randomly generate 10 problem instances. The second test is designed to compare our proposed algorithm to the heuristics proposed in Koh et al. (2004) for the problem Pm|batch, incompatible, $s_{i} \mid C_{\max }$ without time window constraints. Koh et al. (2004) proposed three simple heuristics and two GAs for solving the problem and indicated that the simple heuristic LFLT (largest job first fit batching and longest processing time sequencing) outperformed other heuristics and GAs. Therefore, we will only compare our algorithm with the LFLT heuristic. Note that LFLT is the heuristic in which batches are formed by the order of job sizes, and batch sequencing for the machines is based on the order of batch processing times. The testing instances are randomly generated according to the setting used in Koh et al. (2004). For each combination of 36 combinations, we randomly generate 20 problem instances. The factors and the levels for generating instances are shown in Table 1.

Table 1. Experimental factors for small-size and large-size problems

Factor	Small-size instances	Count	Large-size instances (Koh et al., 2004)	Count
Number of machines, M	2,3	2	$10,30,50$	3
Number of lots, N	$10,15,20$	3	$100,200,300$	3
Number of recipes, E	3	1	$5,10,15,20$	4
Processing time, P_{e}	$U[1,10]$	1	$U[10 e, 10 e+10]$	1
Lot size, s_{i}	$U[1,15] \& U[15,50]$	2	$U[1,100] / 100$	1
Batch capacity, $U B_{e}$	$U[50,70]$	1	1	1
Release time, r_{i}	$U[0,30] \& U[0,60]$	2	-	-
Remaining lifetime, R_{i}	$\alpha p_{i}(\alpha=5,10)$	2	-	-
Number of factor combinations		48		36

4.2. Experimental results

4.2.1. Small-size instances

Tables 2, 3, and 4 present the experimental results obtained by the MIP model and the DH heuristic for small-size instances with 10,15 , and 20 lots, respectively. In each table, the results are grouped by the number of machines $(M=2,3)$. Columns 1 and 12 represent the run code for the instance with the combination of lot release times ranges (ri), remaining lifetime (Ri), and lot sizes ranges (si), $i=1,2$. For example, "r1R1s1" represents the instance with release time within U [0,30], remaining lifetime with $\alpha=5$ and lot size within $U[1,15]$. For each combination, ten problem instances are randomly generated. The proposed heuristic's improvement is calculated by $I M P(\%)=\frac{H e u_{s o l}-M i n_{s o l}}{M i n_{s o l}} \times 100$, where $H e u_{\text {sol }}$ is the makespan value obtained by the DH heuristic and Min $_{\text {sol }}$ is the makespan value obtained by the MIP model. For $M=2$, columns 2-3 (1314) report the $C_{\max }$ and run time produced by the MIP model, respectively. Columns 4-6 (15-17) report the $C_{\max }$, run time and improvement obtained by the DH heuristic, respectively. While the corresponding columns 7-11 and 18-22 report the results for $M=3$. Besides, Table 5 displays the performance comparison between the MIP model and the DH algorithm in terms of solution quality (namely, number of problem instances receiving the optimal solutions and the worst IMP) and computation time (namely, average run times).

The results from Tables 2-5 reveal that the proposed DH heuristic performs very efficiently and gets optimal solutions for almost all small-size problems in a very short run time. For a total of 480 instances for small-size problems, the
percentage of achieving optimal solutions by the DH is 94.17%. (452 out of 480). The high percentage indicates that the proposed heuristic is very good in solving small-size problems. Even for the instances where the proposed heuristics cannot obtain optimal solutions, the solution found is still quite close to the optimal solution. By comparing the results of our heuristic with the optimal solutions, we can see that the worst $I M P$ value for the DH is only 9.68%. Concerning computation time, it is shown that the proposed heuristic is significantly faster than the MIP model. The average run time of the MIP model on all the instances is about 326.27 seconds, while the DH heuristic requires only 0.02 seconds on average to solve an instance.

4.2.2. Large-size instances

Table 6 presents the comparative results obtained by the LFLT and the DH heuristic for the large-size instances. The performance of a heuristic is measured by $G A P(\%)=\frac{H e u_{s o l}-L B}{L B} \times 100$, where $H e u_{s o l}$ is the makespan value obtained by the corresponding heuristic (e.g., DH or LFLT) and LB is the lower bound value. LB for each instance is used as the base value for the comparison of the results found by LFLT and DH. The table consists of 36 combinations according to the levels of N, M and E. For each combination, the results of 20 test instances are summarized by two kinds of values, one of which represents the average $G A P$ of the corresponding heuristic, while the other is a standard deviation of the average $G A P$ values. A smaller average $G A P$ value indicates that the solution found by the corresponding heuristic is closer to the lower bound averagely. In Table 6, the average GAP of LFLT varies from 0 to 32.04%, while the average GAP of DH varies from 0 to 22.79%. It indicates that the DH heuristic performs better than the LFLT heuristic. The results clearly show that our proposed heuristic is efficient and produces results that are closer to the lower bound compared to the existing heuristic LFLT. From the perspective of computational effort, the run time to get a solution from LFLT is shorter than one second. While the run time of our proposed DH is longer and depends on the number of lots N. However, the run time of the heuristic is still in a reasonable range in every instance. The average run time of the DH is about 5 seconds when $N=100$, about 70 seconds when $N=200$, and about 350 seconds when $N=300$.

In order to validate the obtained results, we conduct the one-way ANOVA test and use the GAP measure as the response variable. We have a null hypothesis stating that the mean $G A P$ values of the two heuristics are equal. The ANOVA table in Figure 4 shows that the p-value is 0.000 , which is less than the significance level of 0.05 ; we reject the null hypothesis that the two heuristics have the same mean $G A P$ values. We then use Tukey's test to do the pairwise comparisons between the two heuristics. The result of the Tukey test in Figure 4 shows that LFLT is in Group A while DH is in Group B at the 95% confidence level, and there is a statistically significant difference between $G A P$ values of DH and LFLT. This indicates that the mean of DH is significantly lower than the mean of LFLT. (Please see APPENDIX C for the results of all instances).

One-way ANOVA: LFLT, DH

Analysis of Variance					
Source	DF	Adj SS	Adj MS	F-Value	P-Value
Factor	1	10933	10932.6	153.84	0.000
Error	1438	102188	71.1		
Total	1439	113120			

Tukey Pairwise Comparisons

Figure 4. ANOVA table and Tukey test table for LFLT and DH

Table 2. Computational results for small-size problems with 10 lots

Run code	$M=2$					$M=3$					$M=2$						$M=3$				
	MIP		DH			MIP		DH			$\begin{aligned} & \text { Run } \\ & \text { code } \end{aligned}$	MIP		DH			MIP		DH		
	$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP	$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	$I M P$		$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP	$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP
r1R1s1	38	0.49	38	0.005	0	27	10.76	27	0.004	0	r2R1s1	62	1.72	62	0.004	0	65	1.75	65	0.003	0
	38	0.45	38	0.003	0	36	0.45	36	0.009	0		63	0.23	63	0.004	0	60	0.98	60	0.008	0
	48	0.65	48	0.003	0	34	0.67	34	0.008	0		57	0.39	57	0.005	0	65	3.89	65	0.012	0
	35	1.99	35	0.006	0	32	0.19	32	0.007	0		60	2.18	60	0.004	0	60	103.19	60	0.011	0
	34	0.37	34	0.004	0	36	7.98	36	0.009	0		61	0.89	61	0.005	0	61	87.19	61	0.012	0
	31	2.61	31	0.005	0	31	0.32	31	0.005	0		61	5.35	61	0.004	0	41	10.05	41	0.004	0
	34	1.12	34	0.006	0	30	0.98	30	0.007	0		69	9.21	69	0.004	0	64	8.17	64	0.004	0
	32	0.81	32	0.004	0	32	1.87	32	0.005	0		68	2.31	68	0.006	0	44	0.11	44	0.005	0
	38	0.35	38	0.006	0	33	2.09	33	0.004	0		63	0.69	63	0.005	0	62	0.63	62	0.006	0
	33	1.97	33	0.004	0	36	10.02	36	0.015	0		59	0.53	59	0.005	0	50	3.77	50	0.003	0
r1R1s2	30	2.35	30	0.003	0	38	5.22	38	0.006	0	r2R1s2	69	0.65	69	0.003	0	53	5.64	53	0.003	0
	32	2.65	32	0.004	0	37	6.98	37	0.009	0		45	8.33	45	0.004	0	65	9.18	65	0.009	0
	31	2.66	31	0.004	0	36	10.26	36	0.013	0		54	0.89	54	0.007	0	49	56.19	49	0.012	0
	36	1.75	36	0.003	0	35	9.28	35	0.012	0		60	0.65	60	0.005	0	55	9.18	55	0.008	0
	36	0.63	36	0.004	0	38	0.19	38	0.008	0		61	3.89	61	0.005	0	54	29.18	54	0.013	0
	34	4.53	34	0.005	0	38	29.18	38	0.011	0		61	29.78	61	0.005	0	59	1.28	59	0.006	0
	33	0.82	33	0.004	0	35	0.35	35	0.003	0		54	3.14	54	0.006	0	60	102.19	60	0.004	0
	31	35.29	31	0.005	0	35	2.19	35	0.004	0		58	0.87	58	0.005	0	61	0.76	61	0.003	0
	34	43.12	34	0.005	0	36	0.96	36	0.004	0		68	0.58	68	0.004	0	65	0.25	65	0.006	0
	33	2.41	33	0.005	0	34	0.35	34	0.005	0		58	0.98	58	0.003	0	67	9.91	67	0.007	0
r1R2s1	31	1.69	31	0.004	0	40	6.44	40	0.004	0	r2R2s1	60	1.23	60	0.006	0	59	6.94	59	0.004	0
	34	2.87	34	0.005	0	35	7.19	35	0.008	0		61	10.89	61	0.007	0	63	0.67	63	0.013	0
	38	2.06	38	0.005	0	33	9.18	33	0.009	0		64	0.29	64	0.006	0	64	31.98	64	0.012	0
	34	0.67	34	0.004	0	34	69.18	34	0.011	0		60	3.45	60	0.006	0	56	11.18	56	0.008	0
	33	2.97	33	0.005	0	33	0.87	33	0.007	0		61	0.87	61	0.005	0	57	0.67	57	0.015	0
	43	11.21	43	0.004	0	37	3.09	37	0.004	0		56	1.18	56	0.006	0	65	5.89	65	0.011	0
	32	5.36	32	0.008	0	28	1.77	28	0.005	0		64	0.78	64	0.005	0	59	0.72	59	0.005	0
	36	0.52	36	0.006	0	38	0.23	38	0.004	0		55	2.16	55	0.006	0	63	119.01	63	0.004	0
	37	0.66	37	0.004	0	34	1.78	34	0.005	0		60	0.67	60	0.006	0	61	2.66	61	0.004	0
	33	4.08	33	0.005	0	39	0.27	39	0.006	0		62	1.98	62	0.004	0	64	0.18	64	0.004	0
r1R2s2	39	50.01	39	0.004	0	38	1070.12	38	0.015	0	r2R2s2	60	2.96	60	0.004	0	47	3.06	47	0.005	0
	37	107.82	37	0.006	0	30	3.37	30	0.004	0		61	0.28	61	0.004	0	73	5.09	73	0.007	0
	33	0.73	33	0.003	0	44	9.19	44	0.012	0		66	3.23	66	0.005	0	66	0.87	66	0.008	0
	61	15.86	61	0.004	0	34	3.19	34	0.013	0		64	0.82	64	0.005	0	66	11.19	66	0.011	0
	34	1.45	34	0.003	0	37	28.19	37	0.012	0		50	4.56	50	0.005	0	60	38.19	60	0.009	0
	34	2.19	34	0.004	0	38	0.12	38	0.005	0		65	7.12	65	0.007	0	53	111.87	53	0.003	0
	39	0.39	39	0.004	0	35	5.19	35	0.006	0		57	7.19	57	0.005	0	64	0.57	64	0.004	0
	35	3.19	35	0.005	0	39	0.28	39	0.004	0		52	1.09	52	0.003	0	61	7.34	61	0.006	0
	61	2.15	61	0.004	0	33	1.99	33	0.006	0		68	0.78	68	0.005	0	62	19.28	62	0.003	0
	33	3.85	33	0.003	0	39	7.93	39	0.003	0		55	3.11	55	0.004	0	59	0.53	59	0.004	0

Note: "*" represents the best result found within 3600 seconds.
Bold numbers represent the optimal solutions for each run code.

Table 3. Computational results for small-size problems with 15 lots

Run code	$M=2$					$M=3$					Run code	$M=2$					$M=3$				
	MIP		DH			MIP		DH				MIP		DH			MIP		DH		
	$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP	$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP		$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP	$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP
r1R1s1	35	773.67	35	0.011	0	37	14.48	37	0.009	0	r2R1s1	55	4.19	55	0.009	0	67	1.15	67	0.012	0
	39	35.13	39	0.013	0	36	34.19	36	0.016	0		66	389.19	66	0.013	0	65	6.78	65	0.015	0
	39	20.21	39	0.013	0	36	78.18	36	0.017	0		67	98.13	67	0.017	0	67	3.19	67	0.014	0
	38	128.15	38	0.013	0	67	134.19	67	0.015	0		68	250.82	68	0.019	0	67	89.19	67	0.016	0
	40	231.19	40	0.019	0	37	2091.18	37	0.016	0		64	270.89	64	0.016	0	57	51.89	57	0.018	0
	36	0.51	36	0.013	0	34	1523.19	34	0.067	0		75	1091.78	75	0.118	0	64	10.28	64	0.015	0
	36	2.56	36	0.012	0	35	11.67	35	0.076	0		66	231.19	66	0.067	0	68	23.34	68	0.071	0
	34	3.17	34	0.014	0	34	524.18	34	0.075	0		62	129.18	62	0.071	0	64	5.23	64	0.019	0
	38	120.16	38	0.013	0	32	1092.19	32	0.078	0		63	512.76	63	0.052	0	61	2018.19	61	0.025	0
	27	191.28	27	0.011	0	33	18.72	33	0.072	0		69	191.17	69	0.008	0	67	156.37	67	0.027	0
r1R1s2	48	*3600.00	49	0.008	2.08	36	29.81	36	0.008	0	r2R1s2	68	28.59	68	0.011	0	66	9.18	66	0.011	0
	40	576.76	40	0.011	0	34	78.19	35	0.012	2.94		62	35.19	62	0.017	0	53	4.74	53	0.007	0
	53	891.13	54	0.018	1.89	29	53.19	29	0.013	0		65	129.18	65	0.011	0	49	29.19	49	0.012	0
	42	189.13	42	0.018	0	34	150.12	34	0.014	0		68	2130.89	69	0.011	1.47	63	309.19	63	0.014	0
	36	1367.18	36	0.012	0	41	200.18	44	0.013	7.32		54	71.29	54	0.013	0	49	491.19	49	0.019	0
	38	100.27	38	0.011	0	35	532.65	35	0.006	0		73	159.28	73	0.016	0	64	22.66	64	0.024	0
	49	2151.29	49	0.021	0	32	197.76	32	0.005	0		72	367.67	72	0.027	0	63	57.56	63	0.028	0
	43	50.17	43	0.016	0	39	*3600.00	41	0.005	5.13		73	210.16	73	0.031	0	61	19.78	61	0.037	0
	32	23.19	32	0.015	0	35	1201.12	35	0.008	0		56	45.19	56	0.096	0	64	374.78	64	0.025	0
	30	12.87	30	0.012	0	36	91.19	36	0.005	0		57	134.19	57	0.018	0	63	269.74	63	0.038	0
r1R2s1	34	9.04	34	0.017	0	36	12.99	36	0.013	0	r2R2s1	59	2.11	59	0.019	0	65	2.67	65	0.009	0
	37	10.56	37	0.019	0	38	34.19	38	0.012	0		60	318.17	60	0.014	0	65	72.19	65	0.009	0
	40	138.17	40	0.082	0	35	9.28	35	0.019	0		62	78.19	62	0.013	0	70	5.19	70	0.012	0
	32	459.19	32	0.09	0	36	109.18	36	0.021	0		66	134.19	66	0.019	0	62	193.12	62	0.012	0
	35	34.17	35	0.087	0	36	387.92	36	0.017	0		61	349.98	61	0.012	0	68	187.18	68	0.011	0
	35	760.91	35	0.072	0	35	687.34	35	0.038	0		57	15.16	57	0.014	0	52	239.66	52	0.008	0
	36	156.18	36	0.061	0	38	76.16	38	0.026	0		70	117.19	70	0.097	0	67	1291.76	67	0.037	0
	40	37.67	40	0.078	0	35	10.08	35	0.041	0		70	389.65	70	0.059	0	63	16.67	63	0.035	0
	34	21.18	34	0.083	0	36	1001.97	36	0.024	0		65	71.23	65	0.124	0	65	9.23	65	0.048	0
	38	8.19	38	0.085	0	31	32.18	31	0.066	0		64	1119.87	64	0.129	0	65	209.54	65	0.051	0
r1R2s2	31	15.49	34	0.005	9.68	39	7.01	41	0.009	5.13	f2R2s2	77		77	0.014	0	61	17.75	61	0.008	0
	60	1310.13	60	0.011	0	29	21.15	29	0.013	0		65	28.33	65	0.008	0	64	34.18	64	0.012	0
	38	415.69	38	0.009	0	47	6.27	47	0.015	0		57	*3600.00	57	0.086	0	66	43.19	66	0.013	0
	34	345.18	34	0.029	0	37	105.28	38	0.027	2.70		59	98.18	59	0.011	0	65	203.78	65	0.013	0
	71	3108.12	71	0.052	0	38	70.12	40	0.019	5.26		58	211.28	58	0.017	0	60	134.87	60	0.015	0
	61	*3600.00	62	0.012	1.64	33	231.19	33	0.021	0		64	145.83	64	0.018	0	48	1027.56	48	0.008	0
	40	160.89	40	0.029	0	36	334.17	36	0.051	0		65	98.18	65	0.019	0	63	2981.55	64	0.014	1.59
	49	30.11	49	0.019	0	31	*3600.00	31	0.023	0		67	619.23	67	0.012	0	58	19.43	58	0.034	0
	38	134.18	38	0.053	0	35	99.44	35	0.072	0		70	160.29	70	0.086	0	61	88.54	61	0.023	0
	47	47.91	47	0.047	0	39	31.56	39	0.045	0		68	44.19	68	0.052	0	62	23.19	62	0.042	0

Table 4. Computational results for small-size problems with 20 lots

Run code	$M=2$					$M=3$					Run code	$M=2$					$M=3$				
	MIP		DH			MIP		DH				MIP		DH			MIP		DH		
	$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP	$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP		$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP	$C_{\text {max }}$	Run time	$C_{\text {max }}$	Run time	IMP
r1R1s1	41	24.45	41	0.022	0	39	141.26	39	0.021	0	r2R1s1	59	33.61	59	0.018	0	65	42.82	65	0.022	0
	36	108.34	36	0.021	0	37	102.19	37	0.024	0		66	750.49	66	0.022	0	63	55.13	63	0.031	0
	34	87.12	34	0.028	0	38	59.12	38	0.021	0		69	431.13	69	0.023	0	62	9.28	62	0.022	0
	35	290.13	35	0.021	0	36	11.46	36	0.023	0		62	23.14	62	0.021	0	65	90.13	65	0.021	0
	35	10.88	35	0.022	0	35	0.12	35	0.021	0		66	31.14	66	0.022	0	60	109.19	60	0.025	0
	36	6.17	36	0.019	0	37	203.18	37	0.021	0		59	156.13	60	0.021	1.69	68	543.68	68	0.028	0
	41	4.59	41	0.018	0	37	182.17	37	0.017	0		62	29.17	62	0.022	0	65	165.28	65	0.036	0
	33	2.13	33	0.019	0	37	98.78	37	0.023	0		64	317.19	64	0.016	0	69	19.27	69	0.028	0
	37	10.12	37	0.029	0	29	365.19	29	0.019	0		69	209.28	69	0.017	0	65	1113.29	65	0.037	0
	40	2108.17	40	0.017	0	30	711.67	30	0.016	0		60	51.17	60	0.036	0	62	75.37	62	0.036	0
r1R1s2	33	324.23	33	0.014	0	37	*3600.00	38	0.014	2.70	r2R1s2	54	108.27	54	0.013	0	67	*3600.00	67	0.015	0
	37	99.82	37	0.014	0	32	201.19	32	0.027	0		66	36.53	66	0.018	0	66	52.77	66	0.013	0
	60	*3600.00	64	0.051	6.67	49	1802.19	51	0.019	4.08		65	43.45	65	0.019	0	66	109.18	66	0.018	0
	40	201.29	40	0.015	0	37	*3600.00	37	0.022	0		63	1029.76	65	0.015	3.17	70	48.19	70	0.021	0
	30	*3600.00	30	0.031	0	37	132.19	38	0.022	2.70		67	2007.21	68	0.017	1.49	68	23.19	68	0.019	0
	53	1976.11	56	0.017	5.66	38	49.81	38	0.021	0		68	*3600.00	68	0.014	0	67	9.19	67	0.022	0
	45	872.11	46	0.028	2.22	34	78.87	34	0.019	0		59	123.12	59	0.026	0	65	298.37	65	0.031	0
	30	20.17	30	0.016	0	32	761.56	32	0.035	0		65	256.13	65	0.019	0	57	766.39	57	0.019	0
	68	*3600.00	69	0.015	1.47	39	29.91	39	0.031	0		56	23.19	56	0.027	0	66	78.28	66	0.037	0
	42	2187.19	42	0.018	0	35	377.29	35	0.041	0		63	65.18	63	0.018	0	67	31.77	67	0.024	0
r1R2s1	31	43.54	31	0.021	0	39	117.91	39	0.025	0	r 2 R 2 s 1	66	79.34	67	0.031	1.52	59	51.07	59	0.019	0
	37	198.45	37	0.024	0	38	0.78	38	0.024	0		70	32.14	70	0.024	0	63	23.19	63	0.024	0
	33	8.54	33	0.024	0	37	5.19	37	0.018	0		61	43.19	61	0.021	0	59	108.19	59	0.019	0
	33	4.21	33	0.022	0	35	109.18	35	0.021	0		66	234.56	66	0.021	0	64	68.19	64	0.022	0
	35	68.13	35	0.026	0	32	35.19	32	0.023	0		70	431.78	70	0.025	0	62	87.29	62	0.021	0
	33	10.12	33	0.018	0	36	567.31	36	0.028	0		55	201.18	55	0.027	0	51	268.34	51	0.029	0
	35	36.19	35	0.021	0	34	1012.76	34	0.041	0		64	2031.91	64	0.023	0	63	41.65	63	0.018	0
	38	90.17	39	0.018	2.63	32	29.18	32	0.023	0		65	761.09	65	0.021	0	63	712.19	63	0.032	0
	40	3.19	40	0.017	0	39	99.18	39	0.038	0		66	29.18	66	0.018	0	65	35.65	65	0.027	0
	37	5.21	37	0.016	0	38	355.27	38	0.025	0		65	97.92	65	0.016	0	64	1768.25	64	0.031	0
rlR 2 s 2	32	*3600.00	32	0.018	0	40	301.67	40	0.021	0	r 2 R 2 s 2	62	43.82	62	0.032	0	59	48.66	59	0.016	0
	33	313.34	33	0.013	0	37	123.18	37	0.022	0		60	659.18	60	0.017	0	63	198.19	63	0.025	0
	72	3385	73	0.021	1.39	33	8.19	33	0.023	0		59	2191.10	59	0.024	0	67	37.19	67	0.019	0
	34	3344.12	34	0.016	0	40	299.18	40	0.037	0		76	1271.19	76	0.015	0	66	92.19	66	0.032	0
	35	9.89	36	0.021	2.86	35	19.19	35	0.024	0		69	234.12	69	0.019	0	57	239.19	57	0.023	0
	48	103.98	48	0.027	0	39	516.88	40	0.036	2.56		66	367.12	66	0.013	0	70	11.37	70	0.032	0
	31	1219.18	31	0.021	0	34	91.02	34	0.021	0		64	34.89	64	0.015	0	65	753.19	65	0.029	0
	48	2103.12	51	0.021	6.25	32	316.28	32	0.028	0		60	102.15	60	0.044	0	67	55.28	67	0.037	0
	34	60.70	34	0.013	0	30	123.27	30	0.018	0		70	2819.11	70	0.031	0	66	1213.99	66	0.033	0
	48	401.50	48	0.015	0	38	1005.88	38	0.019	0		70	367.12	70	0.018	0	64	2128.44	64	0.018	0

Table 5. Comparison between the MIP model and DH algorithm

Criteria	MIP model	DH algorithm		
Total number of small-size instances	480.00	480.00		
Solution quality	Number of instances receiving the optimal solutions	480.00	452.00	
	Worst IMP (\%)	0.00	9.68	
	Average run times (seconds)		326.27	0.02

Table 6. Performance comparison between our DH heuristic and LFLT heuristic

M	E		$N=100$		$N=200$		$N=300$	
			LFLT	DH	LFLT	DH	LFLT	DH
10	5	Avg. GAP	26.42	19.00	28.27	19.11	28.36	18.40
		SD	3.47	3.32	2.71	2.47	1.51	2.43
	10	Avg. GAP	18.10	13.35	24.38	16.67	26.05	17.21
		SD	3.50	4.07	2.65	2.92	1.73	1.89
	15	Avg. GAP	14.11	9.50	19.88	13.11	23.53	15.82
		SD	3.59	2.88	2.43	2.38	2.10	1.41
	20	Avg. GAP	8.90	6.09	18.42	12.69	21.36	14.18
		SD	4.03	3.70	2.71	2.45	2.10	1.92
30	5	Avg. GAP	22.79	21.10	30.18	21.58	31.17	21.75
		SD	5.36	7.43	4.36	2.88	2.52	2.93
	10	Avg. GAP	23.26	22.32	27.27	21.32	28.16	18.98
		SD	4.22	4.89	2.92	2.56	1.80	3.16
	15	Avg. GAP	19.02	18.63	23.35	17.78	25.67	18.46
		SD	4.81	5.19	3.53	2.59	1.83	1.67
	20	Avg. GAP	16.57	16.83	21.18	16.11	23.25	16.61
		SD	3.76	3.90	2.40	3.16	2.20	1.85
50	5	Avg. GAP	4.79	0.56	28.34	21.47	32.04	22.27
		SD	6.14	2.48	7.22	2.91	5.47	3.00
	10	Avg. GAP	0.05	0	28.50	22.79	29.94	21.42
		SD	0.20	0	4.82	3.96	2.81	2.18
	15	Avg. GAP	0	0.82	26.30	22.29	28.46	21.14
		SD	0	2.35	3.67	2.74	2.68	3.22
	20	Avg. GAP	0	0.05	26.22	21.98	24.92	18.54
		SD	0	0.22	4.10	3.96	2.13	2.90

5. CONCLUSIONS

In this study, the parallel BPM problem with various constraints when minimizing makespan is investigated. This problem is motivated by the wafer fabrication procedure in the semiconductor industry. A MIP model is first proposed to obtain optimal solutions for our problem. To deal with the large-scale problem, a DH algorithm, which includes two phases - batch formation and batch scheduling, is proposed to obtain approximation solutions within a reasonable run time. A new two-dimensional saving function is introduced to quantify the saving space of time and capacity, which is a basis for batch formation in the DH algorithm. A comprehensive set of randomly generated small- and large-size instances are used to evaluate the performance of the proposed algorithm. The computational experiments show that the proposed heuristic performs well for small-size problems and can deal with large-scale problems efficiently within a reasonable computational time. For smallsize problems, the percentage of achieving optimal solutions by the DH is 94.17%. The high percentage indicates that the proposed heuristic is very good in solving small-size problems. The DH heuristic requires only 0.02 seconds on average to solve an instance, while the average run time of the MIP model is about 326.27 seconds. The experiment for the large-scale problems is designed to compare our proposed heuristic to the existing heuristic LFLT proposed by Koh et al. (2004).

Computational results indicate that the average GAP of LFLT varies from 0 to 32.04%, while the average $G A P$ of DH varies from 0 to 22.79%. It shows that the DH heuristic is efficient and outperforms the heuristic LFLT. In future research, further study can be directed to problems in job shop or flow shop environments. Other criteria, such as the total completion time or due date-related performance measures, are also worth studying.

Moreover, in order to illustrate the application of the proposed algorithm as interesting future research, it is worthwhile to further study the solution quality while the studied problem is involved with more practical assumptions, such as machine breakdowns, resource constrains and setup time constraints. Besides, since our proposed algorithm is a deterministic heuristic and only one solution is found for each instance, a local search algorithm can be applied to explore the neighborhood of the solution found by our proposed heuristic and to further improve the solution quality for large-size instances. Namely, it is worthwhile to treat the solution found by our heuristic as an initial solution when applying a local search strategy.

REFERENCES

Almeder, C. and L. Mönch. (2011). Metaheuristics for Scheduling Jobs with Incompatible Families on Parallel Batching Machines. Journal of the Operational Research Society, 62(12): 2083-96.

Arroyo, J. E C. and Leung, J. Y. T. (2017a). An Effective Iterated Greedy Algorithm for Scheduling Unrelated Parallel Batch Machines with Non-Identical Capacities and Unequal Ready Times. Computers and Industrial Engineering, 105: 84-100.

Arroyo, J. E C. and Leung, J. Y. T. (2017b). Scheduling Unrelated Parallel Batch Processing Machines with Non-Identical Job Sizes and Unequal Ready Times. Computers and Operations Research, 78: 117-28.

Balasubramanian, H., Mönch, L., Fowler, J. and Pfund, M. (2004). Genetic Algorithm Based Scheduling of Parallel Batch Machines with Incompatible Job Families to Minimize Total Weighted Tardiness.International Journal of Production Research, 42(8): 1621-38.

Bard, J. F. and Rojanasoonthon, S. (2006). A Branch-and-Price Algorithm for Parallel Machine Scheduling with Time Windows and Job Priorities. Naval Research Logistics, 53(1): 24-44.

Bilyk, A., Mönch, L. and Almeder, C. (2014). Scheduling Jobs with Ready Times and Precedence Constraints on Parallel Batch Machines Using Metaheuristics. Computers and Industrial Engineering, 78: 175-85.

Brucker, P. and Kravchenko, S. A. (2008). Scheduling Jobs with Equal Processing Times and Time Windows on Identical Parallel Machines. Journal of Scheduling, 11(4): 229-37.

Çatay, B. (2010). A New Saving-Based Ant Algorithm for the Vehicle Routing Problem with Simultaneous Pickup and Delivery. Expert Systems with Applications, 37(10): 6809-17.

Chang, P. Y., Damodaran, P. and Melouk, S. (2004). Minimizing Makespan on Parallel Batch Processing Machines. International Journal of Production Research, 42(19): 4211-20.

Chen, H., Du, B. and Huang, G. Q. (2011). Scheduling a Batch Processing Machine with Non-Identical Job Sizes: A Clustering Perspective. International Journal of Production Research, 49(19): 5755-78.

Cheng, B., Cai, J., Yang, S. and Hu, X. (2014). Algorithms for Scheduling Incompatible Job Families on Single Batching Machine with Limited Capacity. Computers and Industrial Engineering, 75(1):116-20.

Chiang, T. C., Cheng, H. C. and Fu, L. C. (2010). A Memetic Algorithm for Minimizing Total Weighted Tardiness on Parallel Batch Machines with Incompatible Job Families and Dynamic Job Arrival. Computers and Operations Research, 37(12): 2257-69.

Chung, S. H., Tai, Y. T. and Pearn, W. L. (2009). Minimising Makespan on Parallel Batch Processing Machines with NonIdentical Ready Time and Arbitrary Job Sizes. International Journal of Production Research, 47(18): 5109-28.

Clarke, G. and Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations

Research, 12(4): 568-81.

Damodaran, P. and Vélez-Gallego, M. C. (2012). A Simulated Annealing Algorithm to Minimize Makespan of Parallel Batch Processing Machines with Unequal Job Ready Times. Expert Systems with Applications, 39(1): 1451-58.

Graham, R. L., Lawler, E. L., Lenstra, J. K. and Kan, A. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete Mathematics, 5: 287-326.

Hashemi, S., Salari, M. and Ranjbar, M. (2020). Multi-Trip Open Vehicle Routing Problem with Time Windows: A Case Study. International Journal of Industrial Engineering : Theory Applications and Practice, 27(1): 37-57.

Hungerländer, P. and Truden, C. (2018). Efficient and Easy-to-Implement Mixed-Integer Linear Programs for the Traveling Salesperson Problem with Time Windows. Transportation Research Procedia, 30: 157-66.

Jia, Z. H. and Leung, J. Y. T. (2014). An Improved Meta-Heuristic for Makespan Minimization of a Single Batch Machine with Non-Identical Job Sizes. Computers and Operations Research, 46: 49-58.

Jia, Z. H., Li, K. and Leung, J. Y. T. (2015). Effective Heuristic for Makespan Minimization in Parallel Batch Machines with Non-Identical Capacities. International Journal of Production Economics, 169: 1-10.

Jia, Z. H., Wang, C. and Leung, J. Y. T. (2016). An ACO Algorithm for Makespan Minimization in Parallel Batch Machines with Non-Identical Job Sizes and Incompatible Job Families. Applied Soft Computing Journal, 38: 395-404.

Kashan, A. H., Karimi, B. and Jenabi, M. (2008). A Hybrid Genetic Heuristic for Scheduling Parallel Batch Processing Machines with Arbitrary Job Sizes. Computers and Operations Research, 35(4): 1084-98.

Koh, S. G., Koo, P. H., Ha, J. W. and Lee, W. S. (2004). Scheduling Parallel Batch Processing Machines with Arbitrary Job Sizes and Incompatible Job Families. International Journal of Production Research, 42(19): 4091-4107.

Lee, J. Y., Kim, Y. D. and Lee, T. E. (2018). Minimizing Total Tardiness On Parallel Machines Subject To Flexible Maintenance. International Journal of Industrial Engineering : Theory Applications and Practice, 25(4): 472-89.

Li, Y., Lim, A. and Rodrigues, B. (2004). Crossdocking - JIT Scheduling with Time Windows. Journal of the Operational Research Society, 55(12): 1342-51.

Malve, S. and Uzsoy, R. (2007). A Genetic Algorithm for Minimizing Maximum Lateness on Parallel Identical Batch Processing Machines with Dynamic Job Arrivals and Incompatible Job Families. Computers and Operations Research, 34(10): 3016-28.

Mathirajan, M. and Sivakumar, A. I. (2006). A Literature Review, Classification and Simple Meta-Analysis on Scheduling of Batch Processors in Semiconductor. International Journal of Advanced Manufacturing Technology, 29: 990-1001.

Mönch, L., Balasubramanian, H., Fowler, J. W. and Pfund, M. E. (2005). Heuristic Scheduling of Jobs on Parallel Batch Machines with Incompatible Job Families and Unequal Ready Times. Computers and Operations Research, 32(11): 273150.

Mönch, L., Fowler, J. W. and Mason, S. J. (2012). Production Planning and Control for Semiconductor Wafer Fabrication Facilities: Modeling, Analysis, and Systems. Vol. 52. Springer Science \& Business Media.

Ozturk, O., Begen, M. A. and Zaric, G. S. (2014). A Branch and Bound Based Heuristic for Makespan Minimization of Washing Operations in Hospital Sterilization Services. European Journal of Operational Research, 239(1): 214-26.

Pamosoaji, A. K., Dewa, P. K. and Krisnanta, J. V. (2019). Proposed Modified Clarke-Wright Saving Algorithm for Capacitated Vehicle Routing Problem. International Journal of Industrial Engineering and Engineering Management, 1(1): 9.

Reichelt, D. and Mönch, L. (2006). Multiobjective Scheduling of Jobs with Incompatible Families on Parallel Batch Machines. In European Conference on Evolutionary Computation in Combinatorial Optimization, 209-21.

Segerstedt, A. (2014). A Simple Heuristic for Vehicle Routing-A Variant of Clarke and Wright's Saving Method. International Journal of Production Economics, 157(1): 74-79.

Shirvani, N., Ruiz, R. and Shadrokh, S. (2014). Cyclic Scheduling of Perishable Products in Parallel Machine with Release Dates, Due Dates and Deadlines. International Journal of Production Economics, 156:1-12.

Tarhini, A., Danach, K. and Harfouche, A. (2020). Swarm Intelligence-Based Hyper-Heuristic for the Vehicle Routing Problem with Prioritized Customers. Annals of Operations Research, 1-22.

Uzsoy, R. (1995). Scheduling Batch Processing Machines with Incompatible Job Families. International Journal of Production Research, 33(10): 2685-2708.

Zhou, S., Chen, H., Xu, R., and Li, X. (2014). Minimising Makespan on a Single Batch Processing Machine with Dynamic Job Arrivals and Non-Identical Job Sizes. International Journal of Production Research, 52(8): 2258-74.

Zhou, S., Xie, J., Du, N. and Pang, Y. (2018). A Random-Keys Genetic Algorithm for Scheduling Unrelated Parallel Batch Processing Machines with Different Capacities and Arbitrary Job Sizes. Applied Mathematics and Computation, 334: 25468.

APPENDIX A - Notations used in MIP model

Indices

$i \quad$ lot index $i=1, \ldots, N$,
$j \quad$ machine index, $j=1, \ldots, M$,
$e \quad$ recipe index, $e=1, \ldots, E$,
$b \quad$ batch index, $b=1, \ldots, B$;
Parameters

p_{i}

r_{i}
R_{i}
$s_{i} \quad$ size of lot i,
$U B_{e} \quad$ batch capacity with recipe e,
$\boldsymbol{L} \quad$ a very large positive number,
$h_{i, e} \quad 1$, if lot i uses recipe $e ; 0$, otherwise;
Decision variables
$X_{j, b, i} \quad 1$, if lot i is assigned to batch b on machine $j ; 0$, otherwise,
$Y_{j, b, e} \quad 1$, if recipe e is processed on batch b on machine $j ; 0$, otherwise,
$S_{j, b} \quad$ start time of batch b on machine j,
$F_{j, b} \quad$ finish time of batch b on machine j,
$E_{j} \quad$ end time of machine j,
$C_{\max }$ makespan.

APPENDIX B - Additional notations used in DH algorithm:

b, l, k, h	batch index,
j, u, v	machine index,
p_{b}^{B}	processing time of batch b,
p_{i}^{L}	processing time of lot i,
$r e_{b}^{B}$	recipe of batch b,
$r e_{i}^{L}$	recipe of lot i,
s_{b}^{B}	size of batch b,

s_{i}^{L}	size of lot i,
r_{i}^{L}	release time of lot i,
R_{i}^{L}	remaining lifetime of lot i,
$E S_{b}^{B}$	earliest start time of batch b,
$L S_{b}^{B}$	latest start time of batch b,
$\mathcal{L}^{\text {EST }}\left(\mathcal{L}^{L S T}\right)$	sorted sequence according to non-decreasing order of batch earliest start time (batch latest start time),
$b_{1}^{E S T}\left(b_{1}^{L S T}\right)$	first batch in sequence $\mathcal{L}^{E S T}\left(\mathcal{L}^{\text {LST }}\right)$,
$T_{j}^{E S T}\left(T_{j}^{L S T}\right)$	available time of machine j when applying EST rule (LST rule),
$S_{j}^{E S T}\left(S_{j}^{L S T}\right)$	batch sequence on machine j when applying EST rule (LST rule),
$B S_{b}^{j}$	start time of batch b on machine j,
$B C_{b}^{j}$	completion time of batch b on machine j,
S_{j}	batch sequence on machine j.

APPENDIX C - Details of the computational results for the large-size instances
Table C. Makespan results of LB, LFLT and DH

M	E		LB	$N=100$		LB	$N=200$		LB	$N=300$	
				LFLT	DH		LFLT	DH		LFLT	DH
10	5	1	178	219	208	341	453	413	490	616	564
		2	188	227	222	369	466	429	544	700	652
		3	163	206	196	384	490	460	555	719	672
		4	190	230	225	345	427	400	508	653	599
		5	186	223	215	362	461	419	586	775	701
		6	179	234	215	345	446	413	539	689	646
		7	179	227	210	332	412	396	506	646	601
		8	184	236	221	385	478	446	555	716	659
		9	190	241	235	369	468	431	540	701	626
		10	215	265	249	350	458	428	494	638	607
		11	170	217	203	332	422	395	550	703	653
		12	174	226	212	353	458	435	520	663	600
		13	192	243	222	303	402	366	551	706	628
		14	170	214	205	399	513	483	526	680	634
		15	198	254	247	384	491	460	558	702	634
		16	187	244	229	376	475	443	509	659	609
		17	171	226	209	373	488	459	517	655	611
		18	198	257	233	342	439	406	499	643	600
		19	192	239	212	418	538	483	505	650	602
		20	175	221	208	339	448	408	557	706	661
10	10	1	336	387	354	630	788	747	976	1243	1173
		2	332	397	394	606	737	701	988	1222	1126
		3	316	371	377	586	743	690	960	1208	1122
		4	317	379	347	677	845	793	948	1207	1130
		5	278	334	317	630	784	740	956	1183	1102
		6	328	399	373	619	780	704	905	1133	1051
		7	314	370	344	668	843	797	899	1112	1063
		8	368	413	403	584	766	729	939	1190	1092
		9	339	422	388	649	779	745	899	1160	1083
		10	286	321	309	638	786	715	874	1102	1006
		11	389	453	440	604	747	711	938	1171	1114
		12	295	354	344	625	780	721	952	1205	1122
		13	322	376	363	634	769	719	929	1179	1080
		14	308	368	346	651	805	761	935	1162	1100
		15	320	368	353	572	721	677	940	1181	1126
		16	346	405	407	659	802	741	944	1184	1087
		17	345	402	407	682	830	790	902	1160	1065
		18	324	382	363	656	841	775	921	1192	1088
		19	309	359	346	680	849	779	947	1177	1093
		20	316	399	380	643	786	767	954	1205	1101
10	15	1	578	633	622	962	1113	1057	1392	1675	1578
		2	539	616	573	970	1173	1132	1330	1644	1546
		3	572	678	633	1011	1221	1165	1325	1640	1533
		4	579	650	618	987	1202	1138	1253	1530	1464
		5	577	670	645	923	1145	1046	1419	1703	1604
						367					

Nguyen and Sheen
A Decomposition-Based Heuristic Parallel Batch Processing Problem

Nguyen and Sheen

