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Abstract

Today’s manufacturing is facing unprecedented challenges to meet the ever-growing customer
expectations for high-quality, fast-delivered, customizable products. But with the emergence of
the Industry 4.0 paradigm, industries now have a powerful ally to face these modern challenges.
In this dissertation, we explore and discuss the current state of the main concepts that comprise the
Industry 4.0 universe. Principally, how they can be used to solve a modern version of the job-shop
scheduling problem, that has been stemming the curiosity of academics since the twentieth century.
With this, we aim to improve factory efficiency by promoting better use of factory resources,
through the advancements on the scheduling strategies while bridging the gap between academics
and industry. In this dissertation, we explore actual and historical strategies researchers used
throughout the years to solve this problem, complemented with our views on what should be a
modern interpretation of the problem. This dissertation also puts forward an agent-based solution
that allows partial or total rescheduling of job shop orders using dispatch rules and a genetic
algorithm. Towards the end, we present and discuss the results obtained, also stating some of the
future work that we believe would complement our project.
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Resumo

Hoje em dia a indústria está a enfrentar desafios sem precedentes para atender às crescentes expec-
tativas dos clientes por produtos personalizáveis de alta qualidade, entregues rapidamente. Mas
com o surgir do paradigma da Indústria 4.0, as indústrias agora têm um poderoso aliado para en-
frentar esses desafios modernos. Nesta dissertação, exploramos e discutimos o estado atual dos
principais conceitos que compõem o universo da Indústria 4.0. Principalmente, como os podemos
utilizar para resolver uma versão moderna do problema de escalonamento de ordens de fabrico,
que tem vindo a despertar a curiosidade dos académicos desde o século XX. Com isso, pretende-
mos melhorar a eficiência das fábricas, promovendo uma melhor utilização dos seus recursos,
através dos avanços nas estratégias de escalonamento, simultaneamente fazendo a ponte entre os
académicos e a indústria. Nesta dissertação, exploramos estratégias actuais e históricas utilizadas
pelos investigadores ao longo dos anos para resolver este problema, complementadas com nossas
visões sobre o que deveria ser uma interpretação moderna do problema. Esta dissertação tam-
bém apresenta uma solução baseada em agentes que permite o reescalonamento parcial ou total
de pedidos de ordens de fabrico utilizando regras de despacho e um algoritmo genético. No final,
apresentamos e discutimos os resultados obtidos, indicando também algum do trabalho futuro que
acreditamos que complementaria o nosso projecto.
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Chapter 1

Introduction

1.1 Context/Background

The ever-growing customer expectations about product delivery quality are increasing the need

for companies to modernize themselves in order to stay ahead in the highly competitive environ-

ment of industrial production. The search for very specific and customized products, with unique

characteristics, is an idea that challenges the traditional mass production concepts. To overcome

this challenge, it is necessary for each order with its unique specifications and requirements to be

represented in the shop-floor, negotiating with the manufacturing execution system so that it can

plan resource allocation in the best possible way [GM16, WYT15, ROL18].

The act of allocating finite resources to activities in a set period of time is called scheduling

and it has a direct impact on the factory’s ability to deliver products with a limited amount of

time and money. Because of the innate dynamic and distributed nature of shop-floor production,

traditional centralized scheduling solutions have some difficulty coping with unpredictable real-

time events such as machine failures, requirements change, and new orders. This happens because

a centralized approach can only solve the problem as a whole, not being able to reschedule portions

of the problem [WYT15].

With the new Industry 4.0 concepts, products are getting smarter, and the factories ever more

digital. Instead of using a centralized methodology, we propose the use of distributed artificial

intelligent agents that can efficiently solve this issue, by having them advocate for their customers,

negotiating their processes, required equipment and quality tolerances, basically their journey

throughout the shop-floor.

In order for this to happen, it is necessary to have well-defined protocols for agents to negotiate

between them and with the manufacturing execution system. Nowadays, there is a big variety

of protocols being used across multiple subjects, some of which are able to provide the needed

decentralized approach to the scheduling problem enabling the possibility to better react to real-

time events and to provide partial solutions [WcXx09].
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1.2 Aim and Goals

The aim of this dissertation is to propose a decentralized, multi-agent based, service-oriented so-

lution to the scheduling problem, achieving a better response time to customer orders and require-

ments by promoting better use of resources in the shop-floor, while providing a better tolerance

to failure and unexpected events and the ability to achieve real-time solutions. Another goal is

to decrease the scheduling algorithm execution time, this is possible due to the state space being

smaller if the problem is broken down into multiple smaller problems solved independently by

different solvers (agents).

By doing so we expect to provide a solution to this problem that can have a real impact on the

industry and the economy, by having better resource management, factories will be able to pro-

vide more product customization delivering a unique experience to his customers while meeting

budgets and deadlines. The lower production cost can also change the market by making prod-

ucts cheaper and give companies more margin to raise salaries and promote skillful employees

[KGG18].

1.3 Document Structure

In Chapter 2 we talk about the context of the dissertation, namely Industry 4.0, schedule opti-

mization and the JADE framework, proving the necessary definitions and exploring some of the

existing literature about these topics, with a strong emphasis on the optimization of schedules

through a decentralized, service based, multi-agent environment. Then in Chapter 3 we describe

the problem being addressed, first the general case and then specifically the Critical Manufacturing

case. In Chapter 4 we talk about the implementation of our solution to the problem, presenting an

early architecture draft, and in Chapter 5 we present the results. Lastly in Chapter 6 we present

the final remarks and discuss possible directions for future work. Appendix A includes a paper to

be submitted to the International Conference on Advanced Information Systems 32nd Engineering

(CAiSE’20),

2



Chapter 2

Literature Review

In this Chapter, we aim to provide the reader with the knowledge needed about the context of

this dissertation, describing important concepts and exploring some of the existent work and tech-

niques in relevant fields. We start in Chapter 2.1 by looking at the current state of the industry,

defining and exploring some of the central technologies of the industry 4.0 paradigm. Then in

Chapter 2.2, we address the Job-Shop Scheduling problem (JSSP), by looking at some of the

most recent techniques used to solve it. While at the same time providing a historical overview of

how researchers addressed this problem throughout the years. Finally, in Chapter 2.3, we briefly

discuss the JADE framework that we used in this dissertation.

2.1 Industry 4.0

In this Section, we talk about industry 4.0, briefly explaining its origins and presenting the factors

that motivated it as well as defining some of the main paradigms that are associated with it, namely

Cyber-Physical Systems (CPS), Internet of Things (IoT), Cloud Computing (CC) and Artificial

Intelligence (AI). In the end, we conclude with a note about Manufacturing Execution Systems

(MES) and the impacts of the revolution.

2.1.1 Origins

The industrial sector has benefited from technological advancements ever since it first appeared.

Nonetheless, it is essential to note that these improvements don’t always happen gradually, some-

times great discoveries or ideas can create the conditions for a rapid positive change to the existing

industrial paradigm in a short time, a phenom called industrial revolution. These revolutions cause

profound social and economic changes, and so, it is of utmost importance that we understand and

document them [LHW17, Sch17, PAG18].

Looking into the past, we can identify three moments in history where these revolutions hap-

pened (as illustrated in figure 2.1). The First Industrial Revolution began in England and quickly

spread to the rest of the world. The main idea behind it was the use of water and steam to power

3
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machines and factories. Then the Second Industrial Revolution was a combination of the discov-

ery of electricity and the subsequent appearance of mass production factories capable of sepa-

rating their work into specific areas. Lastly, the Third Industrial Revolution happened with the

advancements of electronics and information systems that greatly enhanced the ability of factories

to automate their industrial processes [LHW17, Sch17, LM18].

Figure 2.1: The four industrial revolutions. (Source: World Economic Forum)

2.1.2 Definition

Today our industries are facing high pressure to adapt to the principles of a new revolution. Moti-

vated not only by the ever-growing expectations of customers for highly customizable, cheap, fast

delivered and high-quality products but also by the need to improve to stay ahead in the strongly

competitive environment of the industrial sector, the industry is looking to modernize itself, striv-

ing for a more efficient and automated future [LHW17, Sch17, KGG18].

The name commonly given to this fourth revolution is Industry 4.0. The term first appeared in

2011 at the Hanover Fair, proposed by the German government and it is currently a buzzword in

several fields of study from engineering to economics [LM18, LHW17, PAG18, DH14].

It is common to identify the Internet of Things and Cyber-Physical Systems paradigms as pil-

lars of Industry 4.0, which unlike previous revolutions centers itself in the digital world and its

connection to the physical world instead of happening almost exclusively in the physical world

[KGG18, LHW17, Sch17, LM18, BB19, LOCS19, SKK19]. Other concepts that usually appear

intertwined with Industry 4.0 are Cloud Computing [LHW17, KGG18, LM18, PAG18, BB19,

CBCJO19, LOCS19, SKK19] and Artificial Intelligence [PAG18, Sch17, LHW17]. We will ex-

plore each of these concepts in its respective Subsection.

2.1.3 Cyber-Physical Systems

One of the fundamental aspects of Industry 4.0 is the digitalization of physical systems and pro-

cesses. And because this is the goal of Cyber-Physical Systems, the connection between the two
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becomes self-evident. Some authors even go as far as saying the two can be considered synonyms.

While others feel the need to draw a clear distinction between the two, claiming that CPSs are

only part of the Industry 4.0 concept [LHW17, DH14, MZ16].

Following the popularization and advancement of Embedded Systems, Cyber-Physical Sys-

tems are now further enhancing the relationship between the digital and the physical. In a Cyber-

Physical System, a collection of computational objects work together to offer a digital view of a

set of real-world entities and their interactions (as illustrated in figure 2.2). This digital repre-

sentation maintains consistency with the physical world through the rapid and constant exchange

of information, recalculating its output every time the input changes. It is important to note that

Cyber-Physical Systems are more about the interactions between the digital and physical world

than any of them particularly. What makes these systems particularly useful is the fact that they

provide the user with real-time monitoring and control of a system, or in the case of Industry 4.0,

of a factory. A CPS that is specific to industrial use is called a Cyber-Physical Production System

(CPPS) [MKB+16, PZL12].

Figure 2.2: Cyber Physical System. (Source: [IBH+16])

As of today, CPSs continue to be a hot field of study because of its many industrial and nonin-

dustrial applications. In critical situations, the enhanced rate at which we can access information

can make a huge difference. For instance, in the healthcare and autonomous driving fields, it can

be the difference between an accident happening or not. In the context of an industry, real-time in-

formation can be used for condition-based maintenance or shop-floor scheduling (this paper from

2018 [MV18] is an excellent example that tries to use CPS in combination with cloud computing

to achieve both) greatly improving existing systems that are subject to delays [PZL12].

In the Industry 4.0 field, the concepts of CPS and Internet of Things (IoT) are often linked.

The IoT concept is discussed in the following Section.
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2.1.4 Internet of Things

As previously mentioned, the Internet of Things paradigm and its industrial branch Industrial

Internet of Things (IIoT) (illustrated in figure 2.3) are vital parts of the Industry 4.0 concept. Its

main goal is the collection and communication of real-time information between physical objects

and the digital world. What makes this possible is the existence of multiple devices, fixed or

mobile, connected via the internet. In a smart-factory, shop-floor devices (particularly machines)

are all connected using the internet. IoT devices collect data through sensors and then use the

available connectivity to transfer it to the network. This data usually refers to a machine’s internal

state, from internal temperature and rotation speed to power consumption and vibration. Even

though CPS and IoT are related, they meet different needs. While CPSs are more concerned about

the interactions between the physical and digital world, and its representation (as illustrated in

figure 2.4). IoT is mainly concerned about data collection and availability. Similar to CPS, IoT

is a popular field of study. Researchers are still discovering new applications for IoT, with a big

focus on the uses of IoT for maintenance [CAG+18, KYK18].

Figure 2.3: IoT and IIoT. (Source: [mde16])

2.1.5 Cloud Computing

Another important technology that is often associated with Industry 4.0 is Cloud Computing. With

the implementation of the CPS and IoT paradigms, the amount of information that is required to

be stored and managed drastically increases. And so, it is necessary to find a way to save this

newly acquired data, in a centralized way, promoting data availability and consistency. By using

Cloud Computing, it is possible to meet these goals while keeping storage costs to a minimum

(these and other benefits are illustrated in figure 2.5).

CC solutions usually offer pay-as-you-go plans, with easy access to scaling control and across

multiple available platforms. This way, a company only pays for what it needs. Furthermore, CC

solutions can enable robust complex and distributed architectures, as it is the case of Business-to-

Business (B2B) architectures that provide negotiation and cooperation ground for manufacturers
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Figure 2.4: Cyber Physical Systems and Internet of Things. (Source: [Wor15])

and retailers. Moving complex interactions with the customer to the web, increases those processes

efficiency [MV18, Xu12, SPKG18].

One of the branches of Cloud Computing that can also benefit the industry is Cloud Manu-

facturing (CM). By having the data centralized in the cloud, it is possible to coordinate extensive

processes that involve distributed facilities. It is important to note that the main concern regarding

Cloud Computing and Manufacturing is security. Ensuring data confidentiality and security is a

crucial aspect that will impact how industry stakeholders will look at these technologies [Xu12].

Figure 2.5: Benefits of Cloud Computing. (Source: [vis])

More recently, an extension of Cloud Computing called Edge Computing (EC) is gaining the

attention of the Industry. This technology aims to solve existing limitations by moving the com-

putational efforts to the “edge” of the system. In practice, this means that some of the work per-
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formed by the centralized cloud system now gets done by local devices. By doing so, it is possible

to mitigate some security concerns while diminishing bandwidth costs and considerably reduc-

ing latency. Because several industrial processes require real-time responses, edge computing can

serve as a significant enhancement to the existing technological stack [SCAC+19, YLH+18].

Figure 2.6: Edge Computing. (Source: [sol])

2.1.6 Artificial Intelligence

The last industry 4.0 technology that we will talk about is Artificial Intelligence. It is important to

note that although every enunciated technology can impact scheduling, AI is the one that is more

directly related to the problem we will address in Chapter 3.

Artificial Intelligence is the science that studies techniques and algorithms that can give ma-

chines, particularly computers, human-like behaviour and intelligence. This intelligence is defined

as the capability of solve a problem, make a decision, or even learning with some or total auton-

omy. Being able to introduce intelligence in non-humans, AI plays an essential role in any in-

dustrial advancement and as a consequence in Industry 4.0. Because it’s definition is quite broad,

many technologies fall in the boundary of AI (as illustrated in figure 2.7). And due to their clear

benefit to the industry, research in these fields is of utmost importance.

AI can be used in many fields. AI in image and speech recognition can enhance our ability to

provide inputs to the digital world. In the future, it is possible that computers can use AI to un-

derstand our human communication, greatly heightening the quality of our interactions with cyber

systems. Machine learning can also make it possible for machines to perform complex tasks with

a high degree of autonomy, thus increasing work efficiency, and in some cases reducing the danger

to human employees. Due to its ability to process vast amounts of information in a small amount

of time, AI can also help humans make smart decisions. This improved decision making can

reduce manufacturing costs while promoting efficiency and allowing for a more customized expe-

rience of the customers. One of the fields in which AI can help make decisions is the scheduling

of customer orders, which is the major theme of this dissertation [Lu19, QMQ+19, PME19].
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Figure 2.7: AI Technologies. (Source: [Kin19])

2.1.7 Manufacturing Execution System

In this Subsection, we will briefly define what is a Manufacturing Execution System (MES), and

discuss its relationship with the Industry 4.0. Later, in Chapter 4 (Implementation), we will

describe how we have used data from an MES to build our solution.

Critical Manufacturing describes an MES as "...an information system that drives the execu-

tion of manufacturing operations" [Man]. Through the use of an MES, it is possible to store all the

relevant information for monitoring and reporting. This information can then help both decision

makers, via decision support systems, and shop-floor workers, by presenting the necessary infor-

mation for their role. Figure 2.8 illustrates some of the short and long term benefits provided by

the MES. Critical Manufacturing further describes an MES by clarifying the difference between an

MES and a traditional ERP. According to them, an MES is “... the ideal choice for a complex pro-

duction process with multiple variations and a massive number of transactions”. Whereas an ERP

“... is generally designed to support a homogeneous process with business operating information“

(Illustrated in figure 2.9) [Man].

Figure 2.8: Key benefits of MES. (Source: [Man])

2.1.8 Social Impacts

Like any industrial revolution, industry 4.0 has big social impacts, not only for manufacturers

but also to the consumer. With the increased automation level, enhanced monitoring and better

planning, it is possible to reduce the manufacturing times and costs, allowing better margins for

the suppliers and cheaper products for the buyers. Another important benefit is the increased
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Figure 2.9: MES vs ERP. (Source: [Man])

customization of the products, by having a better organization and networking between produc-

tion units, it is possible to provide customers with a more unique experience, an idea that was

traditionally conflicted with mass production [KGG18, LHW17].

2.2 Shop-Floor Optimization

In this Section, we talk specifically about shop-floor optimization. Starting with a small introduc-

tion to shop-floor and optimization under Industry 4.0, and then moving to the Job Shop Schedul-

ing (JSP) problem that this dissertation aims to tackle. We will look at how the current literature

defines this problem and what variants of the simple problem exist. We will then explore existing

techniques to solve different versions of the problem, grouped by their strategy, always accompa-

nied by a description of its advantages, disadvantages, and limitations. Our goal is that by the end

of this Section, the reader can clearly understand the problem at hands as well as the main strate-

gies that can be used to solve it. Providing a solid base of knowledge that will help comprehend

our interpretation and solution for the problem.

2.2.1 Definition

The term Job-Shop refers to the areas in a manufacturing facility where the work occurs. It’s

where factory workers, generally with the aid of machines and other tools, complete jobs that

move materials along their production cycle. This process is what adds value to the factory input,

and it is a core element of any manufacturing facility. However, because there is a finite number of

human and mechanical resources, it is of great importance that the distribution of jobs among these

resources is as efficient as possible. Because of the growing product customization requirements

and due to the massive amount of information made available by the Industry 4.0 technologies,

this task is now more complex than ever [WYT15, KGG18].

To this act of allocating finite resources to a set of tasks, we call scheduling. If we are referring

to jobs in a shop-floor, we call it Job-Shop Scheduling (JSP). Modern smart-factories that operate
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under the Industry 4.0 principles must be able to leverage the available real-time information

to make informed decisions on how to schedule or reschedule factory jobs. Since each factory

is different and has different goals and requirements, the Job-Shop Problem has many different

formulations and solving techniques. In the next Subsections, we explore these techniques by

looking at some of the existing work in this area. Later in Chapters 3 and 4, we will explain our

formulation of the problem and corresponding solution [WYT15, ZDZ+19].

2.2.2 Exact Methods

The first proposed solutions for the job-shop scheduling problem aim to provide globally optimal

solutions through the use of deterministic methods. Although these methods can provide the best

solutions, except for specific versions of the problem, these solutions don’t scale very well rapidly

becoming unfit for a real-world scenario. But as Industry 4.0 makes industrial systems more

distributed, it is possible that these methods can be used once again to solve local sub-problems or

the whole JSP. For this to happen, it is necessary to understand how we can adapt these techniques

to a modern day scenario [ZDZ+19, SM98].

2.2.2.1 Efficient Rule

The first efficient rule method was proposed by Johnson in 1954 [Joh54]. In his paper, Johnson

introduces a set of rules that allowed for an optimal allocation of jobs under certain conditions

(illustrated in table 2.1). These rules can achieve the optimal by minimization of the makespan,

requiring only input of processing times for each job in each machine (illustrated in table 2.2).

We describe this process in algorithm 1. Although being able to get optimal solutions in a reason-

able time, because of the various preconditions it requires, the Johnson rules are unfit for nearly

any real-life scenario. Nonetheless these rules are identified as one of the main driving factors

of research in this domains, being the first paper to identify makespan minimization as a goal

[ZDZ+19, SM98, Joh54].

Johnson Rule Requirements
Non variable processing time
All jobs need to be processed in the same order (first machine A then machine B)
There is no priority hierarchy between jobs

Table 2.1: Johnson Rule Requirements

Job Machine A Machine B
Job 1 5 3
Job 2 1 5
Job 3 2 3

Table 2.2: Johnson Rule Input Example

After Johnson published his work, a series of other researches put forward their own effi-

cient rules [Ake56, Jac56, HA82]. Further research focused on proving that for instances of the
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Algorithm 1: Johnson Rules Algorithm
Result: Optimally Ordered Jobs
MachineCount = 2;
JobCount = input.JobCount;
ProcessingTimes[JobCount][MachineCount] = input.ProcessingTimes;
ProcessingOrder[JobCount] = new Array[];
while ProcessingTimes.HasElements() do

Job job = ProcessingTimes.GetLowestValue();
if job.isMachineA() then

ProcessingOrder.InsertAtStart(job);
else

ProcessingOrder.InsertAtEnd(job);
end
ProcessingTimes.DeleteLine(job);

end

JSP where machines and operations per job are more than two, no efficient rule method can be

found because for these problems the complexity becomes NP-Hard [Bur84, GS78, GLLK79,

KLHGRKB77]. For this reason, these rules cannot be used to solve most JSP problems. And so,

the next exact methods we will look at, focus on eliminating solutions through constraints to be

able to solve larger dimensions of the problem [ZDZ+19, SM98].

2.2.2.2 Mathematical Programming

Shortly after Johnson proposed his efficient rule method, in 1959 Wagner [MW59] discovered that

is was possible to achieve optimal solutions with mathematical programming. Although being op-

timal, similarly to efficient rules, these algorithms don’t scale well. Depending on the formulation,

for large enough problems the solutions were of poor quality or the time necessary to run the algo-

rithm was infeasible. In 1960 Manne [Man60] improved this solution by combining integer and

linear programming with the linear programming for the constraints and the integer programming

for decision variables. Despite being an improvement, this solution shared the same limitations as

the original [ZDZ+19].

2.2.2.3 Branch and Bound

The number of different combinations in a classical job-shop scheduling problem with m machines

and n jobs can be calculated using the expression (n!)m. For this reason (as illustrated in table 2.3)

the number of candidate solutions is rather large, even on small scenarios. And so, researches have

started using branch and bound (BnB) methods to try to reduce this space, by discarding solutions

that were known to not be optimal without the need to test them [ZDZ+19].

In 1965 G.H. Brooks and C.R. White [BW65], Z. A. Lomnicki [Lom65] and Edward Ignall

and Linus Schrage [IS65], followed by G. B. McMahon and P. G. Burton in 1967 [MB67] and

Subhash C. Sarin, Seokyoo Ahn and Albert B. Bishop in 1988 [SAB88], used branch and bound

methods to optimize flow times in 2 and 3 machines. And then in 1994 Peter Brucker, Bernd

Jurisch, and Bernd Sievers [BJS94] tested, BnB for the total completion time of a 10x10 problem.
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Number of Machines Number of Jobs Solutions
1 1 1
1 3 6
1 5 120
2 2 4
2 3 36
2 5 14400
3 5 1728000

Table 2.3: JSP nm dimensionality examples

Other researchers used Branch and Bound methods to try to address the problem of meeting the

jobs due date. First, in 1975 Graham McMahon and Michael Florian [MF75] proposed a solution

to minimize the maximum lateness and then in 1985 Chris N. Potts and Luk Van Wassenhove

[PVW85] for the single machine total weighted tardiness.

Despite being able to find globally optimal solutions in a lower amount of time than other

exact methods, branch and bound techniques still weren’t able to cope with the dimension of most

real-life problems. In the next Subsections, we will look at some of the ways researches sacrificed

the optimal solution in favor of strategies that were able to find good enough results in a more

acceptable time.

2.2.3 Constructive Methods

In this Subsection, we will talk about construction methods. Similarly to exact methods, they

rely on a set of rules to allocate jobs to machines. But as we will see, the main difference in

construction methods is that their less strict rules allow them to create solutions faster by relax-

ing their requirements. Although this relaxation makes them unlikely to find optimal solutions,

the speed at which they can provide a satisfying solution makes them interesting for Industry

4.0. It is important to note that one of the main scheduling features that can benefit from these

methods is rescheduling. When a real-time situation that made the original scheduling unfeasible

occurs, a quick rescheduling using constructive methods can avoid long periods with no schedule

[ZDZ+19].

2.2.3.1 Dispatch Rules

As mentioned before, in every job shop scheduling problem, we have a set of jobs that have to be

completed. Dispatch rules methods, aim to assign a priority to each of these jobs to then create a

schedule around it (as described in 2). There are numerous examples of rules that can be used to

distinguish jobs. Some of the most common are the job delivery date, the shortest processing time

and the least total work remaining. It is worth noting that there isn’t a particular set of rules that is

superior for every case. And so, it is necessary to analyze each specific problem in its context to

get the best results for the desired goals [RH99, ZABA15, PRTS16].

Dispatch rules research is still active and there are several papers that have been inspired by

it. Some industry specific papers are the ones written by Yi-Feng Hung and Ing-Ren Chen in
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Algorithm 2: Dispatch Rules Algorithm
Result: Dispatch Rules Allocation
Machines = input.Machines;
UnorderedJobs = input.UnorderedJobs;
OrderedJobs = new Array[] ;
while UnorderedJobs.HasElements() do

Job job = UnorderedJobs.SelectHighestPriority(criteria); OrderedJobs.push(job);
end
while OrderedJobs.HasElements() do

Job job = OrderedJobs.first(); Machine machine = Machines.GetAvailableEarliest();
machine.queue.push(job); OrderedJob.delete(job);

end

1998 [HC98], and by O. Rose in 2001 [Ros01], who used dispatch rules to optimize flowtime in

semiconductor manufacturing. Some of the most recent work uses multiple optimization criteria,

usually accompanied by artificial intelligence learning techniques to tune the weight of each rule.

Some example are the work of Helga Ingimundardottir and Thomas Philip Runarsson in 2011

[IR11] who combined supervised learning with dispatch rules. The work of M. H. Zahmani, B.

Atmani, A. Bekrar and N. Aissani in 2015 [ZABA15] which combined multiple dispatch rules

with Data Mining to achieve scheduling goal like reduce tardiness and flowtime. The work of

Midhun Paul, R. Sridharan and T. Radha Ramanan in 2016 [PRTS16] that compared several

dispatch rules in a multi-objective testing environment. And more recently the work of Rajan and

Vineet Kumar in 2019 [RK19] that studies the application of different rules to different objectives

and discusses the issue of scheduling under the presence of uncertain factors.

2.2.3.2 Insert Algorithm

Although most of constructive methods use Dispatch Rules, some authors found that insert algo-

rithms can provide a better alternative [WW95, STW99]. In this approach instead of ordering

by priority and then processed in that order, jobs are inserted into an empty or existing sched-

ule, in the place that best fits the scheduling goals. In 1995, Frank Werner and Andreas Winkler

[WW95] combined an insert algorithm with the beam search local algorithm to first construct

an initial scheduling and then continuously improving it by re-inserting existing jobs, generating

potential neighbours for the beam search. Then in 1999, Yuri Sotskov, Thomas Tautenhahn and

Frank Werner [STW99] used an insertion algorithm to solve the problem of batch production,

in which several jobs can be performed at the same time in a batch, with the restriction that the

machine usually has to have a certain number of jobs to start processing the batch. Later in 2014

Yahong Zheng, Lian Lian and Khaled Mesghouni [LM14] published a paper compared various

algorithms, including insert algorithms to factor the scheduling of maintenance operations. And

more recently in 2019, A. Bekkar, G. Belalem and B. Beldjilali [BBB19] published a paper dis-

cussing the usage of a greedy insert algorithm in a setup with transportation time constraints.
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2.2.3.3 Shifting Bottleneck

First described in 1998 by Joseph Adams, Egon Balas, and Daniel Zawack [ABZ88], the last

constructive method type we will look at is the shifting bottleneck. In these methods, the goal

is to reduce the time it takes to solve a multi-machine job-shop problem, by breaking down the

global problem into smaller ones for each machine. The name shifting bottleneck stems from the

main idea behind these methods. They work by picking a machine in each iteration, from the

list of unscheduled machines, identified as the bottleneck machine, and solving the problem for

that machine. This way, these methods are mostly used to provide a heuristic to reduce the total

makespan [ABZ88].

Soon after the initial idea was proposed, other researchers published papers putting forward

their implementations of the shifting bottleneck. In 1993, S. Dauzere-Peres and J.B. Lasserre

[DPL93] proposed a way to use a shifting bottleneck approach to a Job-Shop Scheduling problem

that had to consider delay precedence constraints (DPC), which as the name indicates are delays

between the end of a job, and the start of the next one. In 1995, Egon Balas, Jan Karel Lenstra, and

Alkis Vazacopoulos [BLV95], followed in 1998 by Egon Balas and Alkis Vazacopoulos [BV98],

also proposed a Shifting Bottleneck implementation to deal with CDP, with the difference that the

later combined Shifting Bottleneck with Branch and Bound methods.

More recently, it is common to see Shifting Bottleneck solutions combined with other heuris-

tics to provide hybrid approaches, or with some modifications to serve in specific scenarios. Ex-

amples can be found in a paper published in 2014, by Qiao Zhang, Hervé Manier and Marie-Ange

Manier [ZMM14] who proposed an adapted version of Shifting Bottleneck approach to deal with

transportation constraints. Or in 2016, with two other papers, one published by B. H. Zhou and

T. Peng [ZP16] who modified the Shifting Bottleneck to deal with large-scale instances, and one

published by R. Mellado Silva, C. Cubillos, and D. Cabrera Paniagua [SCP16] that combined

Shifting Bottleneck with Taboo search to achieve a hybrid approach.

2.2.4 Artificial Intelligence Methods

The term Artificial Intelligence first appeared in the summer of 1956 at Dartmouth College, to

describe the study of conferring human-like intelligence to computational units with non-organic

nature [CUB13, Cre95, ZDZ+19].

And so, in this Subsection, we will look at Artificial Intelligence approaches to the Job-Shop

Scheduling problem. Methods that belong to this group rely on the available information about

the system, together with intelligent algorithms, to reach suitable solutions in an acceptable time.

The methods shown are further divided into Subsections of Constraints Satisfaction and Neural

Networks.

2.2.4.1 Constraints Satisfaction

Used not only for the Job-Shop Scheduling problem but for many other domains, constraint sat-

isfaction methods aims to reduce the number of potential solutions by applying a set of rules that

limit the search space that requires exploration [CUB13, SM98].
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In his Ph.D. thesis published in 1983, Mark Fox [FM83] described his constraints satisfac-

tion approach to the job-shop scheduling problem, exploring some of its main challenges, such as

knowledge representation, constraint selection and conflict management between constraints. Fox

also proposed a knowledge system to support his solution, called Intelligent Scheduling and Infor-

mation System (ISIS), which later led to the creation of other knowledge systems for scheduling.

One notable example of a knowledge system that stem of ISIS is the one proposed in 1986 by

Mark Fox himself, together with Stephen Smith and P.S. Ow [SFO86] called the Opportunistic

Intelligent Scheduler (OPIS).

In 1995, Didier Dubois, Hélène Fargier and Henri Prade [DFP95]published their work on how

to use fuzzy logic together with constraint satisfaction through a lookahead algorithm that allowed

for some ability to make decisions in the presence of uncertainty. Then in 1996 the works of

Erwin Pesch and Ulrich A. W. Tetzlaff [PT96] and Norman Sadeh and Mark Fox [SF96] focused

on further exploring the constraint satisfaction algorithms the first by investigating how to better

prune solutions in the search tree and the later by proposing a probabilistic framework to offer a

heuristic for constraint selection. Further reading about constraint programming in general can be

found in [Apt03, RBW06].

2.2.4.2 Neural Networks

The study of Neural Networks (NN) is an AI field that investigates how the neural systems found in

living organisms can be adapted into a digital context to confer learning abilities to computational

entities. Illustrated in figure 2.10) we can see the typical architecture of these networks. In this

Subsection, we will look at how this ability to learn can alone or combined with other methods

help solve the Job-Shop Scheduling problem [RPKKMH19].

In 1988 Yoon-Pin Simon Foo and Yoshiyaau Takejujt put forward two papers on the use of

neural networks for Job-Shop Scheduling, one of them presenting "... an integer linear program-

ming neural network based on a modified Tank and Hopfield neural network model" [FYPT88a]

and the other who further advanced the first [FYPT88b]. Then in 1991 D. N. Zhou, V. Cherkassky,

T. R. Baldwin and D. E. Olson [ZCBO91] also published a work on the use of neural networks

to solve de JSP through Hopfield networks, describing how they overcome what they identified

as a shortcoming of NN at the time, by transforming quadratic energy cost functions into linear

functions. In 1994 T.M. Willems and J.E. Rooda [WR94] and in 1998 A. S. Jain and S. Meeran

[JM98] further described the use of Hopfield and integer programming based solutions for the JSP.

More recently, NN mostly appears in JSP literature together with other techniques in hybrid

solutions. In 2003, Yoon-Pin Simon Foo and Yoshiyasu Takejuji [MY03] used NN solutions

to select dispatch rules. In 2008, Gary R. Weckman, Chandrasekhar V. Ganduri and David A.

Koonce [WGK08] combined NN with Genetic Algorithms. In 2015, A. S. Xanthopoulos and

D. E. Koulouriotis [XK15] used cluster analysis together with NN for the selection of dispatch

rules for dynamic sequencing. In 2017 Donghai Yang and Xiaodan Zhang [YZ17] combined NN

with GA to predict job due dates. And very recently in 2019, N. Rafiee Parsa, T.Keshavarz, B.

Karimi and S. M. Moattar Husseini [RPKKMH19] also used a hybrid neural network approach to

minimize the total makespan on only one machine.

16



Literature Review

Figure 2.10: Neural Network (Source: [Sci])

2.2.5 Local Search Methods

From the idea that it is possible to reach optimal or near-optimal solutions by continuously improv-

ing an existing solution appeared local search methods. Introducing slight changes and reevaluat-

ing the result at each step, these methods believe that a guided search can find relevant solutions.

Exploring only a local portion of the space state, they can provide a quick solution to problems like

the JSP. The main disadvantage of these methods is being susceptible to getting trapped in a local

optimum. In this Subsection, we will discuss some of the most common local search algorithms

used for the JSP and how they cope with their disadvantages.

2.2.5.1 Beam Search

The first local search method we are going to look at is Beam Search (BS). Very similar to the

Branch and Bound, this method only expands the most promising k nodes, whereas BnB expands

all of them. For this reason, BS is faster but less accurate than BnB, making it better for problems

of a decent dimension. A common variant of the BS that is used to solve the JSP is the Filtered

Beam Search (FSP). FSP uses a beam width b and a filter width f. In each iteration, it selects

the best f nodes with a filter function and then selects the most promising b nodes for expansion

(Illustrated in figure 2.11).

In 1988, Peng Si Ow and Thomas E. Morton [OM88] published a paper describing their

use of FBS for the single machine problem with tardiness and earliness and for the weighted

tardiness problem, comparing their results against dispatch heuristics and neighbourhood search.
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Figure 2.11: Filtered Beam Search: [MN17] (Filterwidth = 6 and Beamwidth = 3)

In 1999, I. Sabuncuoglu and M. Bayiz [SB99] also used BS to solve JSP with tardiness and

makespan objectives, comparing it to dispatch rules and other search methods. Wang Shi-jin, Xi

Li-feng, Zhou Bing-hai published two papers, the first in 2007 [SjLfBh07] used FBS for dynamic

rescheduling describing how FBS can help cope with events like machine failure and unexpected

orders and the second in 2008 [WZX08] described how they combined BS with Dispatch Rules.

Later in 2010 Shijin Wang [Wan10] published a paper describing how he used FBS to deal with

a JSP with transport time. More recently, in 2015, E. G. Birgin, J.E.Ferreira and D. P. Ronconi

[BFR15] used BS to solve the JSP with sequence flexibility and in 2016, Mario C. Vélez-Gallego,

Jairo Maya and Jairo R. Montoya-Torres citejspbs5 used BS combined with integer programming

to minimize the makespan with sequence dependent setup times.

2.2.5.2 Simulated Annealing

Put forward by S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi in 1983 [KGV83] Simulated

Annealing (SA) is a local search heuristic that tries to apply the mechanical process of annealing

to solve optimization problems. In SA, a control variable called temperature controls the energy of

the system, this temperature begins high, and gradually moves to zero, with each iteration, when

the temperature hits zero the algorithm execution ends. The algorithm explores the state space,

trying to converge to the best possible answer, high temperature means that the algorithm is more

likely to risk moving to a worse solution to escape local optimums [vLA87].

In the same decade that SA was invented, researchers started using it to try to solve the JSP. In

1989, I.H. Osman and C.N. Potts [OP89] proposed using SA to solve the permutation flow-shop

scheduling in which jobs are processed in the same order in every step of production. Then in

1992, Peter J. M. van Laarhoven, Emile H. L. Aarts and Jan Karel Lenstra [LAL92] compared

their implementation of a SA solution to the JSP, achieve good results for makespan at the cost of

longer running times. In 1994 Takeshi Yamada, Bruce E. Rosen, and Ryohei Nakano [YRN94]

18



Literature Review
put forward a SA implementation using Critical Block Transition Operators. In 1996, Takeshi Ya-

mada and Ryohei Nakano [YN96] achieved positive results by combining SA with Deterministic

Local Search. More recently in 2010 Rui Zhang, Cheng Wu [ZW10] proposed a SA solution

to minimize the total weighted tardiness, by combining it with a bottleneck strategy. In 2011, a

paper published by H. S. Mirsanei, M. Zandieh, M. J. Moayed, and M. R. Khabbazi [MZMK11]

used SA for scheduling with setup times that were sequence-dependent and a paper published by

Hui-Mei Wang, Fuh-Der Chou, and Ful-Chiang Wu [WCW11] used SA with parallel computing

to minimize makespan. Very recently in 2018, Dayan C. Bissoli, Wagner A. S. Altoe, Geraldo

R. Mauri, and Andre R. S. Amaral [BAMA18] used SA for a JSP to combined the objective of

minimizing both makespan and total tardiness.

2.2.5.3 Tabu Search

The last local heuristic for optimization used in JSP that we are going to talk about is Tabu Search

(TS). Similar to BS and SA, TS bases itself in the idea of exploring neighbor solutions. It mainly

distinguishing itself from the others by keeping a memory of the already explored space in a list

called tabu list (see algorithm 3).

Algorithm 3: Tabu Search
Result: Best Solution
Solution bestSolution = input.InitialSolution ;
Solution bestCandidate = bestSolution ;
TabuList = new Array[] ;
TabuList.push(bestSolution); while !stoppingConditionsSatisfied do

Solution[] neighbors = bestCandidate.GetNeighbors(); ;
foreach neighbor in neighbors do

if !TabuList.contain(neighbor) && neighbor.GetFitness() >
bestcandidate.GetFitness() then

bestCandidate = neighbor ;
end

end
if bestCandidate.GetFitness() > bestSolution.GetFitness() then

bestSolution = bestCandidate;
end
TabuList.push(bestCandidate); if TabuList.size > maxSize then

TabuList.PopFirst() ;
end

end
return bestSolution ;

In 1993, Mauro Dell’Amico and Marco Trubian from Politecnico di Milano [DT93], devel-

oped a TS based solution for the JSP, achieving better results than other iterative improvement

heuristics at the time. Soon after in 1994, Johann Hurink, Bernd Jurisch, and Monika Thole

[HJT94] published a paper about their use of a TS heuristic to solve the flexible JSP. In 2000, Fer-

dinando Pezzella, and Emanuela Merelli [PM00] combined TS with Shifting Bottleneck achieve

good results in similar time than other heuristics. In 2007 Mohammad Saidi-Mehrabad, Parviz
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Fattahi [SMF07] implemented their TS based solution for minimizing the makespan in an en-

vironment with alternative operation sequences and sequence-dependant setups. More recently a

paper from 2018, by Tadeu K. Zubaran and Marcus R. P. Ritt [ZR18] addresses the problem of

parallel machines using TS and two papers from 2019, one from Renato de Matta [dM19] which

used a TS heuristic to minimize the waiting time in the JSP and one from SS Dewi, Andriansyah,

and Syahriza [DAS19] which was a case study using TS on the Flow-Shop Scheduling Problem

(FSSP).

2.2.6 Global Search Methods

Contrary to local methods, global optimization based solutions don’t base on an iterative improve-

ment by looking at neighboring solutions. In this Chapter, we will look at two of the most popular

global meta-heuristics that are currently being used in solving the JSP. The main advantage of

these methods is that they are less prone to being stuck on local optimum, with the disadvantage

of possibly not converging to a suitable solution. It is relevant to point out that these methods can

and are often used together with local methods to overcome the shortcomings of both.

2.2.6.1 Genetic Algorithm

Proposed by John Henry Holland [Hol92], Genetic Algorithms (GA) belong to a group of Evo-

lutionary Algorithms (EA) that are inspired by biologic behaviors. The main idea of GA is to

generate a random population of candidate solutions, evaluate each one, and use nature-inspired

processes to build a better generation based on the previous one. GA runs iteratively until a pre-

determined criterion is satisfied or there is no notable improvement. The method of knowledge

transfer between generations is based on the DNA transference from a parent to a child generation,

and it usually has four phases (illustrated in image 2.12). In the evaluation phase, each individual

from the population is assigned a fitness value. Then in the selection phase, some individuals are

selected and other discarded, with a probability related to their fitness value. The actual transfer-

ence of knowledge happens in the crossover phase, where each individual from the new generation

is created by using selected parts of multiple (usually two) parents. In the last phase, mutation, the

newly generated individuals can suffer a random change, to ensure the algorithm doesn’t get stuck

in only a portion of the state space [FF95].

From the first paper to describe the use of genetic algorithms to solve the JSP, published by

Lawrence Davis in 1985 [Dav85], researchers have turned to genetic algorithms to find reliable

and fast solutions for various instances of the JSP. In 1991, a paper published by E. Falkenauer,

and S. Bouffouix [FB91] proposes a GA based solution for the JSP with a strong emphasis on

the encoding part. Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura published two surveys

about the use of genetic algorithms. In the context of JSP, the first one in 1996 [CGT96] focusing

on the representation of the problem, and the second one in 1999 [CGT99] focused on hybrid

strategies. Later in 2010, Artur M. Kuczapski, Mihai V. Micea, Laurentiu A. Maniu, and Vladimir

I. Cretu [KMMC10] proposed a technique that used dispatch rules to generate a near optimal

initial population for the genetic approach to the JSP, this is particularly interesting because it

can drastically reduce the execution time of the algorithm as shown in the paper. In 2015, Amir
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Figure 2.12: Genetic Algorithm Phases: [JAI17]

Jalilvand-Nejad, and Parviz Fattahi [JNF15] combined a GA approach with integer programming,

obtaining better results than with a SA solution that served as benchmark. More recently in 2018,

O. Gholami, Y. N. Sotskov, and F. Werner [GSW18] proposed a GA solution for minimizing the

makespan and the mean flow time with good results comparing to other heuristics, and in 2019,

X. Huang, and L.Yang [HY19] published a paper on the use of GA to solve a multi objective JSP

considering transportation times.

2.2.6.2 Ant Colony Optimization

Proposed by Marco Dorigo in 1991 [CDM91], ant colony optimization (ACO) heuristics are also

inspired by a phenomenon that occurs in nature. In their habitats, ants work together to find the

best route from their colonies to food sources by leaving a trail of pheromones that go from one

place to the other. Because pheromones evaporate, and since ants that choose the shortest path

are going to leave a higher concentration of pheromones, eventually the best route will be the one

with more pheromones (as illustrated in image 2.13. Similar to GA, ACO has the benefit of being

a naturally parallel process, which makes it easier to benefit from more than one computational

units [DMC91].

The creators of ACO hinted in a paper published in 1991 [DMC91] that among other ap-

plications, ACO could be used to solve the JSP, originating various other papers that were often

combined with additional algorithms to create more robust solutions. In 2005, Christian Blum

[Blu05] combined ACO with BS, followed by Kuo-Ling Huang, and Ching-Jong Liao in 2008

[HL08] who combined ACO with TS. Then in 2010, Li-Ning Xing, Ying-Wu Chen, Peng Wang,
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Figure 2.13: Ant Colony Optimization Example: [Das14]

Qing-Song Zhao, and Jian Xiong [XCW+10] combined ACO with a knowledge based system. In

2015, Hongquan Xue, Peng Zhang, and Shengmin Wei [XZW15] used a hybrid immunity algo-

rithm with ACO and Boxuan Zhao, Jianmin Gao, Kun Chen, and Ke Guo [ZGCG15] combined

ACO with two-generation pareto. More recently in 2017, Rong-Hwa Huang, and Tung-Han Yu

[HY17] proposed an improved ACO implementation to deal with dynamic JSP.

2.3 JADE Framework

Because we’ve chosen the Java Agent Development Framework (JADE) platform to build our

application, we’ve included this small Section to provide the user some knowledge about the

platform’s background as well as some of its main features.

2.3.1 Origin

In 1996, was established an organization called Foundation for Intelligent Physical Agents (FIPA).

This nonprofit association, composed of academic and industry members, had the goal to put

forward a series of rules that would standardize and regulate the knowledge about AI agents that

at the time was getting low attention and lacked conformity [BCG07]. These standards, as well

as some additional information about FIPA, can be found on their website [FIP05].

After FIPA put forward their standards, arose the need to validate them. With this goal in

mind, in late 1998, Telecom Italia (previously known as CSELT) developed a software that later

evolved to what JADE is today. Then in 2000 Telecom Italia started distributing JADE as an open

software under the LGPL allowing for developers all over the world to use the software to build

their agent-based applications [BCG07].
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2.3.2 Features

Today JADE is a FIPA compliant, Java framework for developing multi-agent systems. Following

FIPA specifications, JADE includes the following features [BPR]:

• An Agent Management System (AMS), which manages access to the agents in the platform,

any required authentication/authorization rules, as well as the registry of agents.

• A Directory Facilitator (DF) that works as a yellow pages service for the agents.

• An Agent Communication Channel (ACC) which ensures reliability and accuracy in the

communication between agents inside or outside the platform.

• An architecture that allows the multi-agent environment to exist in multiple computational

units with a single instance of the software in each host.

• The thread managing logic to enable each agent to run on its thread without additional effort.

• A GUI that allows for simple management and efficient monitoring of the agents and their

containers.

• A transport abstraction to efficiently exchange messages between agents, automatically se-

lecting the fastest way to deliver a message based on the distance between the two agents

(for instance in the same host messages can be sent as Java objective while in different hosts

they cannot).

• An agent naming system that ensures each agent is identified uniquely in the framework

through agent identifiers (AID).

• A logging system.

Furthermore, the JADE framework also makes available a series of agent behavior templates

to represent common agents’ actions or interactions (illustrated in image 2.14). More information

about JADE and the JADE Framework are available at their website [JAD19a, JAD19b].
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Figure 2.14: Jade Behaviours: [BPR]
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Chapter 3

Problem Description

In this Chapter, we will look at the Job-Shop Scheduling Problem definition. To do so, we have

divided the information into two different Subsections. In the first subsection ( 3.1), we present the

problem and show all the different variables that may come into play. In the second Subsection

( 3.2), we will describe how we formalized the problem that our implementation presented in

Chapter 4 intends to solve.

3.1 Job-Shop Scheduling Problem

When we talk about the Job-Shop Scheduling Problem (JSSP), in reality, we are talking about a

whole myriad of problems with different variables and rules. To fully define this universe, we will

first look at one of the most simplistic JSP, and from there, we will gradually add complexity to

ensure a smooth flow of information.

3.1.1 Single Machine

A simplistic instance of the JSP is when we have only one machine and a set of jobs, and we must

assign the order in which the jobs are going to be processed. In the most simple of cases, we only

know how much time each job takes to process and its due date (illustrated in table 3.1). Because

in this formulation the total makespan is constant, and there are no setup times, usually the goal

is to either minimize the tardiness (which is given by Max(0, CompletionDate- DueDate)), to

minimize the earliness (which is given by Max(0, DueDate-CompletionDate)), or a combination

of both.

Job Processing Time Due Date
A 3 4
B 4 5
C 5 6
Table 3.1: Job Information Example
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But even for such a seemingly simple problem, there isn’t an efficient rule to consistently

solve these problems. Some heuristics, as seen in Chapter 2, are the earliest due date (EDD) and

the remaining amount of work can provide optimal or near-optimal solutions, but the number of

possible states (example illustrated in table 3.2) for this problem is still n! with n being the number

of jobs.

Sequence Total Tardiness Total Earliness Sum
A B C 8 1 9
A C B 9 1 10
B A C 9 1 10
B C A 11 1 12
C A B 11 1 12
C B A 12 1 13

Table 3.2: Possible States

3.1.2 Priorities and Setup Times

Priorities and setup times are two other dimensions that can add complexity to the JSP. In the real

world, machines can require some time between the end of a job and the start of the next one.

This setup time can be the same for every two jobs, but in most real-life scenarios, it is possible

to define a setup-matrix in each machine. Priority is also a crucial aspect of closing the bridge

between theory and the real world. Since not every production order as the same value for the

manufacturing facility, it is a common practice to assign different priorities. After adding these

two new variables to the problem, we also have to rethink what goals we can establish. By adding

the setup times, we may now want to minimize the total time spent on it, because in a factory this

time usually comes with an associated cost. With the institution of a priority system, it may also

be relevant to ask the weighted tardiness and earliness. In table 3.3 we can see an updated version

of how a job information table will look like with these changes. And in table 3.4 we can see an

example of how a setup-matrix table looks like.

Job Processing Time Due Date Setup Time Priority
A 3 4 1 1
B 4 5 2 2
C 5 6 3 3

Table 3.3: Job Information Example Updated With Priority and Setup Times

From/To A B C
A 0 1 2
B 3 0 4
C 5 6 0

Table 3.4: Example of a Setup Matrix
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The solution space of the problem described for the example input is illustrated in table 3.5

with setup times only, and in table 3.6 considering the priority.

Sequence Total Tardiness Total Earliness Sum Total Setup Time
A B C 8 1 9 5
A C B 9 1 10 8
B A C 9 1 10 5
B C A 11 1 12 9
C A B 11 1 12 6
C B A 12 1 13 9

Table 3.5: Possible States After Introducing Setup Times

Sequence Weighted Tardiness Weighted Earliness Weighted Sum Total Setup Time
A B C 11 0.5 11.5 5
A C B 10 0.5 10.5 8
B A C 10.5 1 11.5 5
B C A 8.5 1 9.5 9
C A B 9 1.5 10.5 6
C B A 8 1.5 9.5 9

Table 3.6: Possible States After Introducing Setup Times and Priorities

One of the first things that come to mind, when looking at the updated tables, is that the

solution space size did not increase in comparison to the previous example. Although this is true,

one can observe that sometimes the different goals are conflicting, which is consistent with real-

life objectives that factories may have. This increase in complexity also adds an additional logic

that solving strategies must incorporate to reach desirable solutions.

3.1.3 Maintenance and Non-Working Times

Up until this point we’ve considered that our hypothetical machine is always available to process

our jobs, but in the real-world, machines have a working and non-working period and require

regular maintenance. If we consider that, we can quickly find out that different allocations of

our jobs may result in different completion times of the last job (makespan). As illustrated in

figure 3.1, by changing how we choose to occupy or available time on the machine, we can

have a different amount of time between jobs due to the time the machine is paused (paused

time), resulting in the increased makespan. In some real-life scenarios, paused times can be quite

expensive. A notable example of this is industrial ovens, which due to the high costs of starting

them are rarely turned off, so if these ovens aren’t processing a job the factory is losing money.

And of course, a smaller makespan is desirable since it increases the amount of production the

factory can get done in a certain timeframe.

A common question that may arise is why there is a distinction between maintenance times and

regular non-working times. Besides being conceptually different, non-working times are generally

more static than maintenance operations. A working period usually stays the same, and while some

maintenances are regular, it is not uncommon for a machine to require unscheduled maintenance.
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In Chapter 2 we’ve mentioned a work that used an insertion technique that only after placing the

jobs scheduled maintenance operations. Besides that, jobs and machines can have special ways

to interact with these situations. Some jobs can spread across working time, meaning they can

start on working time then paused and resumed in the next working time. There are also some

machines that typically don’t require supervision that although having to be started in working

time may continue to process and even finish in non-working time.

Figure 3.1: Non-Working Times

3.1.4 Capacity and Quantity

In our previous examples, jobs are a somewhat abstract concept of a task that requires a machine

to complete it. In the real-world these jobs usually are associated with physical materials that have

a shape and volume. And so, another big aspect of manufacturing is machine capacity. Because

different machines have different capacities, there isn’t always a match between the size of the

job and the capacity of the machine. For this reason some jobs may have to be divided into two

smaller jobs if the job doesn’t fit the machine (batch production). On the other hand, it is also

possible that different jobs may be processed by only one machine at the same time, promoting

the utilization of that machine. To manage this, it is not unusual that a job has an associated type

and a quantity that will then map to a capacity unit (illustrated in tables 3.7 and 3.9).

Capacity Type Size Product Type
Small 1 P1
Large 3 P1

Table 3.7: Capacity Table

It is also notable that in these environments, it is also common for processing times to have a

fixed component and a component that varies with the quantity (illustrated in tables 3.8 and 3.9).

Product Type Fixed Processing Time Varying Processing Time
P1 5 1
P2 10 2
P3 10 3

Table 3.8: Processing Times Table

Although this may not seem relevant in a one machine context, in a real-life context with

multiple machines and a great variety of products and capacity classes these two variables can

28



Problem Description
greatly increase the complexity of the problem. It is also not uncommon for manufacturers to

require that some machines are at least a percentage full before starting. In some even more

complex cases, it is even possible to have tables that define which jobs can be combined and the

processing time in the case they do.

Job Capacity Type Product Type Quantity Processing Time Size in Machine A
A Small P1 10 15 30
B Small P1 10 15 30
C Large P2 5 20 15
D Large P2 5 20 15
E Large P3 5 25 15

Table 3.9: Typical job representation regarding capacity and varying processing time

3.1.5 Job Precedence and Products

By moving further down the path of making our problem definition more suitable for a real-life

scenario, we will now talk about job precedence. In a factory, we must complete some jobs before

allocating others. If we think of jobs as steps in the production flow of a product, we can quickly

understand that they are usually in groups representing all the steps from raw material to a finished

product. Having this in mind, real-life representation of the problem would look more like the one

in tables 3.10 and 3.11.

Product Type Due Date Priority Quantity Capacity Type
P1 5 1 10 Big
P2 10 2 20 Small

Table 3.10: Example list of products

Job Product Step Order
J1 P1 Cooking 1
J2 P1 Welding 2
J3 P1 Forging 3
J4 P2 Welding 1
J5 P2 Forging 2

Table 3.11: Example list of jobs belonging to products

But on the other hand, this new information makes us have to rethink our goals and representa-

tion. The first thing we may notice is that the due date, the quantity and the priority now belong to

the product. By having our jobs grouped by a product, we now have to consider for how long will

the material we are working on occupy space in the factory. The amount of time from the start of

the first job and the end of the last job is called makespan and is yet another variable we can mini-

mize (not to mistake with the total makespan of the production schedule). It also notable that now

machines can store the time to process a job by product or by job (and in some cases, the product

group). Furthermore, in some special cases, jobs of different products can have precedence. And
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some jobs within the same product can be performed in parallel, or be divided into two jobs with

smaller quantities to fit a machine at a certain step (batch production).

3.1.6 Multiple Machines

After exploring the concepts of jobs and products, we will finally talk about the existence of

multiple machines. Contrary to the other variables we’ve discussed, the presence of more than one

machine is less about adding complexity and more about increasing the size of the search space.

By having more than one machine, each time we select a job to allocate, we also need to specify

where is the job going to be performed. If we look at table 3.12, we can see that with just two jobs,

by adding a second machine we now have eight options. And if we add one more machine, we get

eighteen options (illustrated in table 3.13). Note that this formula n!∗mn takes into consideration

options that do not use all machines, a way to reduce the space is to discard these scenarios. We

will add an example but by using the formula n!∗mn we quickly realize that even a small scenario

of n = 5 and m = 5 will have 375000 options.

Sequence Machine Selection
AB A1B1
AB A1B2
AB A2B1
AB A2B2
BA B1A1
BA B1A2
BA B2A1
BA B2A2

Table 3.12: Two jobs and Two machines

Luckily for us, in real-life scenarios machines are rarely able to do every job. The instance of

JSP where every machine can do every job is a known relaxation of the problem called Flexible

Job-Shop Scheduling Problem (FJSP). There is also a special case of the JSP where jobs are

grouped into products, each product has one job in every machine, and the product order is always

the same, called Permutation Flow Shop Scheduling Problem (PFJSP). Back to the real-world,

each machine can perform only certain types of jobs. To better represent this reality, it is common

to associate a list of services to each machine and to specify for each job what is the service it

requires. In table 3.14 we can see our product orders, then in table 3.15 we specify the jobs it

requires and in table 3.16 we have an example of a service table.

3.1.7 Multiple Resources

Although we do not address this particular dimension of the JSP in our implementation, we believe

it would still be relevant to include a Subsection about multiple resources. In a factory sometimes

may be relevant to schedule not only to allocate jobs to machines but to other resources such as

tools or employees. Employees have vacations and may not always be available when machines

are. Furthermore, some machines may require a special skill or certification to be operated by an
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Sequence Machine Selection
AB A1B1
AB A1B2
AB A1B3
AB A2B1
AB A2B2
AB A2B3
AB A3B1
AB A3B2
AB A3B3
BA B1A1
BA B1A2
BA B1A3
BA B2A1
BA B2A2
BA B2A3
BA B3A1
BA B3A2
BA B3A3

Table 3.13: Two jobs and Three machines

Product Type Due Date Priority
P1 10 3
P2 15 2
P3 20 1

Table 3.14: Example Product List

Job Product Step ServiceId Order
J1 P1 Cooking 1 1
J2 P1 Welding 2 2
J3 P1 Forging 3 3
J4 P2 Cooking 1 1
J5 P2 Welding 2 2
J6 P2 Forging 3 3
J7 P3 Welding 2 1
J8 P3 Forging 3 2

Table 3.15: Example Job List with Services

Machine Name Service Provided Service Id
M1 Cooking and Welding Machine Cooking 1
- - Welding 2
M2 Cooking and Forging Machine Cooking 1
- - Forging 3

Table 3.16: Example Machines Service List
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employee. On the other hand, tools are more flexible as we only need to track how many tools

exist and how many of those are being used.

Machine Name Service Id Certification Id
M1 Machine 1 1 1
- - 2 2
M2 Machine 2 1 1
- - 3 3

Table 3.17: Example Machines with Required Certification

Employee Name Certification Id Certification Id
E1 Employee 1 1 1
- - 2 2
E2 Employee 2 1 1
- - 3 3

Table 3.18: Example Employees with Certification

Day Employee
20/01/2020 E1
21/01/2020 E1
20/01/2020 E2
21/01/2020 E2

Table 3.19: Example Employees Vacations

Tool Name Quantity
T1 Hammer 50
T2 Mold 50
Table 3.20: Example Tools

Job Service Tool Tool Quantity
A 1 T1 5
B 2 T2 5

Table 3.21: Example Jobs with Tools Requirement

After adding these variables the formulation of the problem may look like something along

the lines of what is illustrated in tables 3.17, 3.18, 3.19, 3.20, and 3.21.

3.2 Addressed Problem

In the next Chapter ( 4), we will explain how we have implemented our solution to JSP. However,

before we start explaining our solution, as there are many ways to interpret the JSP, there is still
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the matter of explaining what exactly is the problem that we are going to solve. And so we have

included this small Section to clarify how much of the presented dimensions we are going to be

addressing.

In our implementation, we will deal with multiple jobs and multiple machines. Jobs are or-

ganized in sequences that represent the flow from an input material to a fully assembled product.

These products have the logic of due dates, priorities, and capacity. Then each job inside the prod-

uct flow has its ordering, required service, and instructions on how to interact with non-working

times. Machines will have a default setup time, a matrix to further detail setups times between

certain services, a table to calculate the processing time of each job, a table for how to handle

capacities, a list of their working-times, and the production type (e.g. batch production). Fea-

tures that are not included, are the differentiation between non-working times and maintenance,

employees, and tools. Finally, the only goals we will be addressing are the total setup type, the

average tardiness, and the makespan.
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Chapter 4

Implementation

In this Chapter, we will describe how we have implemented a solution to the problem described in

the previous Chapter 3.

4.1 Process initiation

When our program starts, the first thing it does is initialize a JADE instance that will manage our

agents, and then sets up and HTTP Server to begin listening for requests.

The process is initiated by an HTTP request. Currently the server will respond with one of the

values specified in table 4.1 to a POST request with the parameters specified in table 4.2.

Response Code Message Meaning
200 Already Running There is another scheduling in progress (The

program currently can only run one instance
at a time).

200 This route only accepts
POST requests

The verb was incorrect.

200 Scheduling started suc-
cessfully

The request was understood and the schedul-
ing process has started.

400 The server could not un-
derstand your request

The server could not understand the request.
This is triggered by a fail in the JSON parsing
of the request.

Table 4.1: Program HTTP responses

If the request is correctly formatted and is understood by the server, the server will then in-

stantiate a request handler that will load all the necessary data from the database, starting the next

phase of the program.
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Parameter Description
IsRescheduling Our program allows not only for a regular rescheduling but also

to reschedule in response to machine failure. If we set this value
to "true" then the machine specified in the parameter ResourceId
will be considered to have failed.

Resource Id This parameter specifies the id of a specific machine. If a valid
resource id is passed to the application and IsRescheduling is set
to "true", it means that the specified machine has suffered from
failure and can no longer be considered for the scheduling prob-
lem. Furthermore, any job scheduled in this machine will need
to be rescheduled. If IsRescheduling is set to "false", this value
will only be used to get the scheduling plan associated to this ma-
chine, which will then allow us to only get other machines and
relevant jobs within that scheduling plan.

Job Lookup Limit In the system we implemented our scheduler, the jobs have al-
ready been created and have suggested starting dates. This value
specifies what is the maximum date at which jobs stop being
considered for the current scheduling round. Furthermore, this
date also defines the lookup limit for immutable jobs. These jobs
are the ones who have already started, and in the case of partial
scheduling they are loaded to calculate machine availability and
transitional setup times.

Scheduling Start This date specifies the earliest date at which jobs may be allo-
cated. This value should be close to the current date but with
some margin to prevent the schedule being obsolete right after
being released.

Scheduling End This date specifies the latest date at which jobs may be allocated.
If a given solution cannot allocate all jobs, it will output a warning
saying that a certain job could not be allocated (resulting in a
schedule with unscheduled jobs).

Reschedule All This variable controls the scope of the scheduling. If we are
scheduling in response to a machine failure, setting this variable
to false will make it only consider jobs from that machine for
scheduling. (Improving running time but reducing the quality of
the scheduling)

Due Date Criteria This variable details the relative weight of the tardiness goal.
Makespan Criteria This variable details the relative weight of the makespan goal.
Setup Time Criteria This variable details the relative weight of the setup time goal.
Mode Our program allows three different modes. These modes can be

"fast", "dispatch", and "genetic". Further in this Chapter we will
detail each of these modes.

Table 4.2: Program parameters passed by HTTP
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4.1.1 Data Loading

The data we use comes from a database attached to an MES instance provided by Critical Man-

ufacturing. To only get the required information from the database, we broke the process of

retrieving data into two phases. In the first phase, we get the master data from our materials (the

name given to the materials that are following the process of becoming a product), and our re-

sources (machines). Then in the second, we already have our scope defined, so we load the related

data (processing times, setup times, etc). This data stays stored in memory during the scheduling

process and it’s released after saving the job allocation back to the MES database.

4.1.2 Master Data Loading

In our master data loading phase, we load our materials and resources according to the scope

defined by our request. The first thing we do is use the "ResourceId" parameter to determine what

is the scheduling plan we are considering. Then, we load the master data from every machine,

that provides a service required, by at least one of the jobs in a material being considered. If we

are dealing with machine failure, we do not consider the specified resource. We then load the

materials that we are going to reschedule. If we are doing full scheduling, we load every material

with jobs up until the job lookup limit. But if we are dealing with machine failure we either load

every material (if reschedule all is true), or we only load the materials with jobs in the specified

machine (if reschedule all is false). Materials that are not being considered for rescheduling but

are in the specified time frame are have only their jobs (not the material data) loaded as immutable

jobs.

4.1.3 Related Data Loading

After we have loaded our materials and resources, we pass them to a generic data loader to get

all the additional required information. This way we can easily extend our scheduler do deal with

additional disruption types if we have to. In the case of the materials, we only have to load its jobs

(remember a material has a set of jobs it has to complete to become a final product). And in the

case of resources, we need to load the list of provided services, the setup matrix, the processing

times, the capacity values, and the working times.

4.1.4 Summary and Structure of the Loaded Data

In this step we have loaded all the necessary data to begin and complete our scheduling problem.

The only moment when we will need to interact with the database again, is when we have to save

our allocated jobs.

To summarize, after loading our data, we now have a list of materials and a list of resources,

and we are ready to move to the next phase. To better help the reader understand what was loaded

we’ve created a series of table that highlight the relevant attributes of each of the business classes

involved. In table 4.3 we have the resource, in table 4.4 we have the material and in table 4.5 the

job. Then in table 4.6 we have the setup matrix transition, in table 4.7 the working interval, in

table 4.8 the processing time and in table 4.9 the capacity.
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Field Description
Resource Id An id that uniquely identifies the resource.
Name The name of the resource.
Default Setup Time The setup time to be used if there is no setup

time specified in the setup matrix. Only ap-
plies if we are transitioning from a service to
a different one.

Schedule Job Type If set to 1 it means this job does not require a
resource.

Can Process in Non Working Time If set to true this resource can process and fin-
ish in Non Working Time. Still has to start on
working time.

Provided Services A list of the service ids provided by this re-
source.

Setup Matrix Transitions A list of setup matrix transitions. The setup
matrix definition is defined in it’s own table.

Processing Times A list of processing times. The processing
time definition is defined in it’s own table.

Capacity Values A list of capacity values. The capacity value
definition is defined in it’s own table.

Working Intervals A list of working intervals managed by the
resource throughout the scheduling process.
The working interval definition is defined in
it’s own table.

Scheduled Jobs A list of scheduled jobs that do not require
scheduling. The job definition is defined in
it’s own table.

Unscheduled Jobs A list of unscheduled jobs that require
scheduling. The job definition is defined in
it’s own table.

Table 4.3: Structure of a Resource

Field Description
Material Id An id that uniquely identifies the material.
Name The name of the material.
Priority The material priority.
Hot A special priority that precedes regular priority.
Due Date The date at which the material must be ready. After this point the

material starts to accumulate tardiness.
ProductName The name of the product that will result from finishing the mate-

rial’s manufacturing process.
Product Group Name The name of the product group. (products with similar properties

may share this value.
Capacity Class The capacity class used to resolve machine capacity tables.
Jobs A list of jobs. The job definition is defined in it’s own table.

Table 4.4: Structure of a Material
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Field Description
Job Id An id that uniquely identifies the job.
Service Id The id of the service required by the job.
Service Name The name of the service required by the job.
Schedule Job Type If set to 1 it means this job does not require a re-

source.
Can Spread Across Working Times If set to "true" it means a job can be interrupted in a

working time and resumed in the next.
Scheduled Quantity The amount of units to be produced.
Flow Path The order in the production flow.
Planned Quantity To be determined by the scheduler. The amount of

units this jobs will process (if we are in batch pro-
duction this value may be a portion of the Scheduled
Quantity).

Planned Process Time To be determined by the scheduler. The amount of
time it will take for the job to be processed.

Planned Start Date To be determined by the scheduler. The date the job
is planned to start.

Planned End Date To be determined by the scheduler. The date the job
is planned to end.

Setup Time To be determined by the scheduler. The amount of
setup time the job will require.

Table 4.5: Structure of a Job

Field Description
From Service Id Service Id from the service that it is transitioning from.
To Service Id Service Id from the service that it is transitioning to.
Value Time value for the specified transition.

Table 4.6: Structure of a Setup Matrix Transition

Field Description
Starting Date Start date of the Working Interval.
Ending Date End date of the Working Interval.

Table 4.7: Structure of a Working Interval

Field Description
Key Type Specifies what is the value of the material/job to compare to the key

value. "A" for Product name, "G" for Product Group, "S" for Service,
"D" for Default, in that priority if there are multiple entrances.

Key Value Value of the specified key. Used for lookup.
Fixed Time Value Fixed Time for the specified entry.
Variable Time Value Variable time for the specified entry. Depends on the quantity.

Table 4.8: Structure of a Processing Time Entry
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Field Description
Capacity Class Capacity Class Key.
Value Value representing how many units of that capacity class that re-

source can processed at the same time.
Table 4.9: Capacity Class Entry

4.2 Scheduling Manager

The scheduling manager is the entity that receives the data from the data loader and continues the

process triggered by the initial request. It is responsible for agent management, the evaluation,

and tracking of solutions, and the generation of scheduling priorities between materials.

Our implementation defines two different agents. The first type of agent is called Material

Agent. After receiving the data from the data loader, the manager immediately instantiates one

Material Agent per material. Later in this Chapter, we will explore how these agents work, but

at this point, after being instantiated, they will idle waiting to receive a message. The other type

of agent is called Solution Agent. A Solution Agent receives a Scenario (list of materials and

resources), the starting time and an ordered list of material IDs that specify in which order he

should schedule the materials in the scenario. In this Section, we will focus on the three strategies

that the manager may use to determine the number of Solution Agents it will instantiate, and how

it decides what material order to pass.

4.2.1 Fast and Dispatch Scheduling

Because the Fast and Dispatch configurations are simple, we have grouped them in this Subsection.

If the manager received one of these two options, the first thing it does is order the materials, first

by priority, then by the due date. If the option is Fast, a single Solution Agent is instantiated and

receives this material order. If the option is Dispatch, then it instantiates some Solution Agents

corresponding to the number of materials, in a way that each material is the first one exactly once

(illustrated in table 4.10 for five jobs).

Combination Material Sequence
Original A B C D E
1 A B C D E
2 B A C D E
3 C A B D E
4 D A B C E
5 E A B C D

Table 4.10: Dispatch Ordering example with 5 Jobs

4.2.2 Genetic Scheduling

The genetic configuration is further complex than the other two. When the manager is first instan-

tiated, it generates a population of 30 initial orderings. These initial orderings are generated using
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a strategy that combines randomness and a heuristic that launches them in a desirable direction.

For each ordering that we generate the process is the following:

• The first step is to shuffle the materials that come from the database with random number

generation.

• Then we pick the first element in the resulting shuffled list.

• From here we pick the closest material to the selected material, recursively until there are

no materials left.

Note that because the first material is randomly selected, and because our distance function

can frequently cause ties, the orderings will be different from each other.

This distance is based on the estimated setup time of having each material in front of the

selected material. If the estimated setup time is the same, the untie is made by looking at the

due time, and priority of the next material. To estimate this setup time, what we do is look at

the definition of the products they are representing, and sum the average transition time for each

two services they require and can be performed by the same machine. To speed up this process,

if the mode is genetic the database loader will have pre-calculated, in the loading phase, a table

representing these transitions, as illustrated in table 4.11.

From/To A B C
A 0 1 2
B 3 0 4
C 5 6 0

Table 4.11: Table of estimated setup time on product transition

This process is only used to generate the first generation of sequences. Currently our program,

under the genetic configuration, runs five generations. With each generation besides the first being

obtained using a standard genetic algorithm implementation.

Each individual ordering that is generated and passed to a Solution Agent will result in a

solution (in a processed we will later explore). That generated solution will have it’s own value

for tardiness, makespan and setup, which we will use to assign a fitness to that ordering.

To calculate the fitness of each individual we first calculate the maximum tardiness, makespan,

and setup time. From there the fitness is given by the formula 1/(Tardiness/MaxTardiness ∗
TardinessFactor+Makespan/MaxMakespan∗MakespanFactor+SetupTime/MaxSetupTime∗
SetupTimeFactor) (since this may cause division by zero if the makespan factor is 0, in this case

it returns 1000). This process results in a table that will be used for the selection phase (illustrated

in table 4.12 with only 8 entries to make it smaller).

The values in the fitness table will then be combined with random number generation to select

28 materials orderings for crossover. An individual with higher fitness has a higher chance of

being selected. The two top material ordering automatically occupy two slots, so the crossover

phase will only generate 28 new individuals (elitism).
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The crossover uses 2 randomly picked crossover points and applies shifting crossover to obtain

two child orderings from the two parents (illustrated in image 4.1). After the crossover we apply

a shifting mutation with a chance of 1 in 200 (illustrated in image 4.2)

Material Ordering Fitness Minimum Bound Maximum Bound
CADBE 3 0 3
DACEB 5 3 8
ACDBE 8 8 16
ABCDE 2 16 22
EDCBA 6 22 28
ADCBA 8 28 32
BCDAE 2 32 34
DAEDB 10 34 44

Table 4.12: Example Fitness Table

Figure 4.1: Shifting Crossover

Figure 4.2: Shifting Mutation

4.2.3 Launching and Collecting solutions

After determining the desired set of orderings it wants to test, the manager will instantiate a So-

lution Agent for each ordering. From here the manager job is to wait for the Solution Agents to

communicate their solutions. The genetic mode as mentioned ends after 5 generations while the

others wait as soon as every AgentSolution has communicated its solution. The manager keeps

track of the best solution, and when the scheduling is completed it terminates every agent, saves

the best solution and changes the listener mode back to accepting requests (illustated in figure 4.3.
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Figure 4.3: Program Flow

4.3 Agent Behaviour

In this Section we will explain the behaviour of our agents, as well as the interaction between

them.

4.3.1 Solution Agent

The solution agent is initialized with a clean Scenario (a list of machines and materials without

any allocations) and the material scheduling priority order that was assigned to it by the Manager

in the previous step.

This agent is responsible for three things:

• Contact the first Material Agent in the list, and provide it with the scenario and the ordering

so it can schedule its jobs and pass it to the next agent in the list.

• Receive the scenario with all the allocated jobs from the last Material Agent in the list, and

communicate it to the Manager. For this effect, this agent signs its messages with its AID in

the reply-to field of the FIPA compliant messages.

• Count the time from the moment it sends the starting message to when it receives the com-

pleted scenario, to provide the necessary control over the process.

This process in illustrated in figure 4.4.
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Figure 4.4: Three Solution Agents with three Material Agents
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4.3.2 Material Agent

The Material Agent starts working when it receives a message either from a solution agent or

another material agent. This agent’s goal is to allocate its jobs in the provided scenario and relay it

together with that scenario together with the ordering it received. The agent that will receive this

message should be the next Material Agent in the ordering or to the Solution Agent that started the

process if there is no next Agent Material. Note that it is in these agents that the actual scheduling

process will occur.

The jobs in a Material Agent are scheduling from the first in the sequence to the last (forward

scheduling), this method aims to reduce tardiness (while backward scheduling aims to reduce the

earliness). This recursive call to allocate a job in the material receives the Scenario modified by

the previous material (or the original scenario received by the Agent if it’s the first job) and the

job definition. To ensure that no job starts before the previous in the sequence finished, a variable

in the material called Earliest Possible Date is maintained.

The first step is to determine if the current job requires a machine or not. To do this we check

if the Job variable "Schedule Job Type" is set to one. If the job does not require a machine we

simply have to update the Earliest Possible Date and move to the next job (or finish).

If our job does require a machine (this is the most common), we have to decide when and

to which machine we will allocate it. We start by deciding what is the best machine to do the

allocation. We do so by generating a proposal from each machine in the scenario. This results

in a list of proposals, which specifies the machine and the starting time. Furthermore, this list is

ordered by the starting date, using the last performed job date as a tiebreaker to ensure the jobs are

well distributed between machines. Each job will only test the first proposal, except in cases the

allocation to that proposal proves to be unfeasible.

After knowing the machine and the starting time proposed, we now need to perform the actual

allocation. First, we check if the job correctly fits the machine (because in our environment jobs

are already created with this in mind, this is more of a sanity check). We then try to check if we

can insert our job together with any existing jobs in the machine.

If we cannot append our job to an existing allocation, we need to create a new one. The first

thing we do is determine what will be the Processing Time and the Setup Time in this machine

with this starting date. The Processing Time can be found by resolving the Processing Time table

in the machine by providing the Product Group, Product and service. The Setup Time can be

found by finding what will be the previous job if we start at the proposed starting time, and we

then resolve the setup matrix (or use the default if there is no setup matrix entry for that pair). The

sum of these values gives us the TotalProcessingTime (ProcessingTime + Setup).

After calculating the TotalProcessingTime, the final step is to determine what will be the

planned end date for this job. Because there are three different ways a job can interact with the

machine, we have three different strategies:

• The Resource can Process in Non Working Time. In this situation we simply add the Total

Processing Time to the Start Date.
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• The Job can Spread Across Working Times. If a job can spread across working times, we

check if the working time where the starting time belongs is enough to allocate the job. If

it is, we simply allocate it. If not, we occupy that working time completely and recursively

try to allocate the remaining time to the next Working Time.

• None of the above. We try to allocate the job to the Working Time where the starting time

belongs. If we fail the allocation fails and we move to the next proposal.

After determining the end time, we still need to determine if the allocation is viable by per-

forming two checks:

• If the job we’ve placed isn’t the last one in the machine, we may be affecting the setup time

of a job that is scheduled for later. If this happens we need to adjust it to the new parameters.

• After doing this adjustment, and also because of the Process on Non Working time function-

ality, we have to check for collision with other jobs. If a collision happens, the allocation

fails.

When we arrive to the last job, this function ends and the material is ready to transmit a

message to the next agent. Note that if at any time a job fails to be allocated to any proposal, the

material allocation fails. In this case the process continues with the jobs until the one that failed.
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Chapter 5

Experiments and Results Analysis

In this Chapter we will describe the scenario that was used to evaluate our implementation, and

present and discuss the results obtained.

5.1 Scenario Description

To test our solution, we’ve built a scenario that provided enough complexity while being fast

enough to make the testing and evaluation possible. In table 5.1, we can see the details of this

scenario, and then in each Subsection of the results, we can see more specific characteristics of

each case.

Feature Details
Materials 50

Machines 21

Jobs 350

Products 4

Steps Each material requires 7 steps. Each step has 3 machines capable

of performing it.

Setup Time In step 3, one of the products has a 1 hour setup time moving to a

different product and a 3 hour setup time moving from a different

product.

Scheduling Start 2019-06-27 at 00:00

Due Date 2019-06-27 at 00:00 for every material

Processing Times Processing time varies between steps but no between materials.

Working Time Jobs can be spread across Working Times and resources can’t pro-

cess in Non Working Time.

Breaks The scenario features one lunch break of two hours.
Table 5.1: Test Scenario
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5.2 Results Analysis

In the following subsections, we will describe what are we testing, and show scenarios with dif-

ferent parameters to illustrate our results.

In every scenario we specify a coefficient for the total tardiness, total makespan (sum of the

makespan of each job), and for the total setup time.

We also show the results using the modes fast, and dispatch, as well as the results in each of

the five iterations of the genetic mode.

In each scenario we show the total tardiness, makespan and setup time, as well as the time it

took for the first and last Solution Agents to complete.

5.2.1 Total Scheduling

In total scheduling we schedule all our jobs while considering that every machine is working

properly.

The minimum total setup time in this case is 3 hours, which corresponds to each machine of

step 3 of the materials, making a single transition in the best direction. A setup lower than 3 would

require stacking all the products in one machine, but because we are doing forward scheduling

that is not possible as it would create an imbalance in the job distribution.

Figure 5.1 illustrates one output from Total Scheduling.

Figure 5.1: Full Schedule

5.2.1.1 Scenario 1

In the first scenario we set the setup coefficient to the maximum and the others to zero, so that we

can evaluate the program’s capacity to minimize the setup time with no interference.

In table 5.2 we can see the parameters.
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Parameter Value
Tardiness 0

Makespan 0

Setup Time 1
Table 5.2: Test Scenario 1 Parameters

In table 5.3 we can see the results.

Instance Tardiness Makespan Setup
Time

First
Response

Last
Response

Fast 2197 hours, 44

hours/material

600 hours, 12

hours/material

9 hours <1 sec <1 sec

Dispatch 2197 hours, 44

hours/material

600 hours, 12

hours/material

9 hours 5 secs 11 secs

Genetic 1st

Generation

2166 hours,

43.3 hours/ma-

terial

569 hours, 11.4

hours/material

3 hours 6 secs 7 secs

Genetic 2nd

Generation

2166 hours,

43.3 hours/ma-

terial

569 hours, 11.4

hours/material

3 hours 4 secs 7 secs

Genetic 3rd

Generation

2166 hours,

43.3 hours/ma-

terial

569 hours, 11.4

hours/material

3 hours 4 secs 7 secs

Genetic 4th

Generation

2166 hours,

43.3 hours/ma-

terial

569 hours, 11.4

hours/material

3 hours 4 secs 7 secs

Genetic 5th

Generation

2166 hours,

43.3 hours/ma-

terial

569 hours, 11.4

hours/material

3 hours 4 secs 7 secs

Table 5.3: Test Scenario 1 Results

We can see that the best solution for both the target KPI and the other KPIs was attained using

the Genetic Mode, with the Dispatch Mode and Fast Mode solutions getting the same results.

The Fast mode was the fastest, followed by the Dispatch Mode and then the Genetic Mode.

Noting that the execution time of each generation of the Genetic algorithm was lower than the

Dispatch mode.

Because the result from the first generation was already optimal there were no improvements

over time for the Genetic Mode.
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5.2.1.2 Scenario 2

In the second scenario we set the makespan coefficient to the maximum and the others to zero, so

that we can evaluate the program’s capacity to minimize the total makespan of materials with no

interference.

In table 5.4 we can see the parameters.

Parameter Value
Tardiness 0

Makespan 1

Setup Time 0
Table 5.4: Test Scenario 2 Parameters

In table 5.5 we can see the results.

Instance Tardiness Makespan Setup
Time

First Re-
sponse
Time

Last Re-
sponse
Time

Fast 2197 hours, 44

hours/material

600 hours, 12

hours/material

9 hours <1 sec <1 sec

Dispatch 2165 hours,

43.3 hours/ma-

terial

567 hours /

11.35 hours/-

material

10 hours 9 secs 14 secs

Genetic 1st

Generation

2152 hours, 43

hours/material

555 hours / 11.1

hours/material

3 hours 5 secs 8 secs

Genetic 2nd

Generation

2140 hours /

42.8 hours/ma-

terial

543 hours / 10.9

hours/material

14 hours 6 secs 8 secs

Genetic 3rd

Generation

2127 hours /

42.5 hours/

material

530 hours / 10.6

hours/material

21 hours 4 secs 7 secs

Genetic 4th

Generation

2127 hours /

42.5 hours/

material

530 hours / 10.6

hours/material

21 hours 5 secs 7 secs

Genetic 5th

Generation

2127 hours /

42.5 hours/

material

530 hours / 10.6

hours/material

21 hours 5 secs 8 secs

Table 5.5: Test Scenario 2 Results

We can see that the best solution for both the target KPI and the other KPIs was attained using

the Genetic Mode, with the Dispatch Mode getting better results than the Fast Mode.
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The Fast mode was the fastest, followed by the Dispatch Mode and then the Genetic Mode.Noting

that the execution time of each generation of the Genetic algorithm was lower than the Dispatch

mode.

The Genetic Mode saw improvements over the first three generation, but no improvements in

the last two.

5.2.1.3 Scenario 3

In the third scenario we set the tardiness coefficient to the maximum and the others to zero, so

that we can evaluate the program’s capacity to minimize the total tardiness of materials with no

interference.

In table 5.6 we can see the parameters.

Parameter Value
Tardiness 1
Makespan 0
Setup Time 0

Table 5.6: Test Scenario 3 Parameters

In table 5.7 we can see the results.

Instance Tardiness Makespan Setup
Time

First Re-
sponse
Time

Last Re-
sponse
Time

Fast 2197 hours, 44

hours/material

600 hours, 12

hours/material

9 hours <1 sec <1 sec

Dispatch 2165 hours,

43.3 hours/ma-

terial

567 hours /

11.35 hours/-

material

10 hours 9 secs 14 secs

Genetic 1st

Generation

2148 hours, 43

hours/material

551 hours, 11

hours/material

3 hours 5 secs 7 secs

Genetic 2nd

Generation

2148 hours, 43

hours/material

551 hours, 11

hours/material

3 hours 4 secs 6 secs

Genetic 3rd

Generation

2114 hours,

42.3 hours/ma-

terial

517 hours, 10.3

hours/material

15 hours 4 secs 6 secs

Genetic 4th

Generation

2114 hours,

42.3 hours/ma-

terial

517 hours, 10.3

hours/material

15 hours 4 secs 6

Genetic 5th

Generation

2112 hours,

42.2 hours/ma-

terial

515 hours, 10.3

hours/material

14 hours 4 secs 6 secs

Table 5.7: Test Scenario 3 Results
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We can see that the best solution for both the target KPI and the other KPIs was attained using

the Genetic Mode, with the Dispatch Mode getting better results than the Fast Mode.

The Fast mode was the fastest, followed by the Dispatch Mode and then the Genetic Mode.

Noting that the execution time of each generation of the Genetic algorithm was lower than the

Dispatch mode.

The Genetic Mode saw improvements from the second to the third generation and from the

fourth to the fifth.

It is also of note, that this particular execution found better makespan solutions than the one in

the last scenario. This happens because the KPIs are not independent from each other and due to

the stochastic nature of the genetic algorithm.

5.2.1.4 Scenario 4

In the fourth scenario we gave equal weight to every objective, so that we can evaluate the pro-

gram’s capacity to schedule under a multi-objective goal.

In table 5.8 we can see the parameters.

Parameter Value
Tardiness 0.34
Makespan 0.33
Setup Time 0.33

Table 5.8: Test Scenario 4 Parameters

In table 5.9 we can see the results.

Instance Tardiness Makespan Setup
Time

First Re-
sponse
Time

Last Re-
sponse
Time

Fast 2197 hours, 44
hours/material

600 hours, 12
hours/material

9 hours <1 sec <1 sec

Dispatch 2197 hours, 44
hours/material

600 hours, 12
hours/material

9 hours 9 secs 15 secs

Genetic 1st
Generation

2150 hours, 43
hours/material

553 hours, 11
hours/material

3 hours 6 secs 7 secs

Genetic 2nd
Generation

2150 hours, 43
hours/material

553 hours, 11
hours/material

3 hours 6 secs 7 secs

Genetic 3rd
Generation

2146 hours,
42.9 hours/ma-
terial

549 hours, 11
hours/material

3 hours 5 secs 6 secs

Genetic 4th
Generation

2146 hours,
42.9 hours/ma-
terial

549 hours, 11
hours/material

3 hours 5 secs 7 secs

Genetic 5th
Generation

2146 hours,
42.9 hours/ma-
terial

549 hours, 11
hours/material

3 hours 5 secs 6 secs

Table 5.9: Test Scenario 4 Results
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We can see that the best solution for both the target KPI and the other KPIs was attained using

the Genetic Mode, with the Dispatch Mode and Fast Mode solutions getting the same results.

The Fast mode was the fastest, followed by the Dispatch Mode and then the Genetic Mode.

Noting that the execution time of each generation of the Genetic algorithm was lower than the

Dispatch mode.

The Genetic Mode saw improvements from the second to the third generation.

It is also of note, that due the setup time ended up being the dominant objective due to having

larger percentage variations.

5.2.2 Machine Failure and Total Scheduling

In total scheduling under machine failure, we schedule all our jobs but we do not consider the

failed machine. We can see that our KPIs are much worse in this case.

Figure 5.2 illustrates one output from Total Scheduling. We can see that Laser Trimming

Machine - 01 is gone and that the other two have more load.

Figure 5.2: Full Schedule under Machine Failure

5.2.2.1 Scenario 5

In the fifth scenario we set the setup coefficient to the maximum and the others to zero, so that we

can evaluate the program’s capacity to minimize the setup time with no interference.

In table 5.10 we can see the parameters.

Parameter Value
Tardiness 0

Makespan 0

Setup Time 1
Table 5.10: Test Scenario 5 Parameters

In table 5.11 we can see the results.

53



Experiments and Results Analysis
Instance Tardiness Makespan Setup

Time
First Re-
sponse
Time

Last Re-
sponse
Time

Fast 2206 hours,

44.1 hours/ma-

terial

609 hours, 12.2

hours/material

6 hours <1 sec <1 sec

Dispatch 2206 hours,

44.1 hours/ma-

terial

609 hours, 12.2

hours/material

6 hours 8 secs 15 secs

Genetic 1st

Generation

2159 hours,

43.2 hours/ma-

terial

562 hours, 11.2

hours/material

2 hours 6 secs 7 secs

Genetic 2nd

Generation

2159 hours,

43.2 hours/ma-

terial

562 hours, 11.2

hours/material

2 hours 5 secs 7 secs

Genetic 3rd

Generation

2159 hours,

43.2 hours/ma-

terial

562 hours, 11.2

hours/material

2 hours 4 secs 6 secs

Genetic 4th

Generation

2159 hours,

43.2 hours/ma-

terial

562 hours, 11.2

hours/material

2 hours 4 secs 6 secs

Genetic 5th

Generation

2159 hours,

43.2 hours/ma-

terial

562 hours, 11.2

hours/material

2 hours 4 secs 7 secs

Table 5.11: Test Scenario 5 Results

We can see that the best solution for both the target KPI and the other KPIs was attained using

the Genetic Mode, with the Dispatch Mode and Fast Mode solutions getting the same results.

The Fast mode was the fastest, followed by the Dispatch Mode and then the Genetic Mode.

Noting that the execution time of each generation of the Genetic algorithm was lower than the

Dispatch mode.

Because the result from the first generation was already optimal there were no improvements

over time for the Genetic Mode.

5.2.2.2 Scenario 6

In the sixth scenario we set the makespan coefficient to the maximum and the others to zero, so

that we can evaluate the program’s capacity to minimize the total makespan of materials with no

interference.

In table 5.12 we can see the parameters.
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Parameter Value
Tardiness 0

Makespan 1

Setup Time 0
Table 5.12: Test Scenario 6 Parameters

In table 5.13 we can see the results.

Instance Tardiness Makespan Setup
Time

First Re-
sponse
Time

Last Re-
sponse
Time

Fast 2206 hours,

44.1 hours/ma-

terial

609 hours, 12.2

hours/material

6 hours <1 sec <1 sec

Dispatch 2182 hours,

43.7 hours/ma-

terial

585 hours, 11.7

hours/material

7 hours 6 secs 10 secs

Genetic 1st

Generation

2151 hours, 43

hours/material

554 hours, 11

hours/material

2 hours 5 secs 6 secs

Genetic 2nd

Generation

2127 hours,

42.5 hours/ma-

terial

530 hours, 10.6

hours/material

10 hours 4 secs 6 secs

Genetic 3rd

Generation

2127 hours,

42.5 hours/ma-

terial

530 hours, 10.6

hours/material

10 hours 4 secs 6 secs

Genetic 4th

Generation

2127 hours,

42.5 hours/ma-

terial

530 hours, 10.6

hours/material

10 hours 4 secs 6 secs

Genetic 5th

Generation

2127 hours,

42.5 hours/ma-

terial

530 hours, 10.6

hours/material

10 hours 5 secs 6 secs

Table 5.13: Test Scenario 6 Results

We can see that the best solution for both the target KPI and the other KPIs was attained using

the Genetic Mode, with the Dispatch Mode getting better results than the Fast Mode.

The Fast mode was the fastest, followed by the Dispatch Mode and then the Genetic Mode.Noting

that the execution time of each generation of the Genetic algorithm was lower than the Dispatch

mode.

The Genetic Mode saw improvements from the second to the third generation.
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5.2.2.3 Scenario 7

In the seventh scenario we set the tardiness coefficient to the maximum and the others to zero, so

that we can evaluate the program’s capacity to minimize the total tardiness of materials with no

interference.

In table 5.14 we can see the parameters.

Parameter Value
Tardiness 1

Makespan 0

Setup Time 0
Table 5.14: Test Scenario 7 Parameters

In table 5.15 we can see the results.

Instance Tardiness Makespan Setup
Time

First Re-
sponse
Time

Last Re-
sponse
Time

Fast 2206 hours,

44.1 hours/ma-

terial

609 hours, 12.2

hours/material

6 hours <1 sec <1 sec

Dispatch 2182 hours,

43.7 hours/ma-

terial

585 hours, 11.7

hours/material

7 hours 6 secs 10 secs

Genetic 1st

Generation

2153 hours, 43

hours/material

556 hours, 11.1

hours/material

2 hours 4 secs 6 secs

Genetic 2nd

Generation

2146 hours, 43

hours/material

549 hours, 11

hours/material

10 hours 4 secs 6 secs

Genetic 3rd

Generation

2118 hours,

42.4 hours/ma-

terial

521 hours, 10.4

hours/material

8 hours 4 secs 6 secs

Genetic 4th

Generation

2118 hours,

42.4 hours/ma-

terial

521 hours, 10.4

hours/material

8 hours 5 secs 6 secs

Genetic 5th

Generation

2118 hours,

42.4 hours/ma-

terial

521 hours, 10.4

hours/material

8 hours 5 secs 6 secs

Table 5.15: Test Scenario 7 Results

We can see that the best solution for both the target KPI and the other KPIs was attained using

the Genetic Mode, with the Dispatch Mode getting better results than the Fast Mode.
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The Fast mode was the fastest, followed by the Dispatch Mode and then the Genetic Mode.

Noting that the execution time of each generation of the Genetic algorithm was lower than the

Dispatch mode.

The Genetic Mode saw improvements over the first three generation, but no improvements in

the last two.

It is also of note, that this particular execution found better makespan solutions than the one in

the last scenario. This happens because the KPIs are not independent from each other and due to

the stochastic nature of the genetic algorithm.

5.2.2.4 Scenario 8

In the eight scenario we gave equal weight to every objective, so that we can evaluate the program’s

capacity to schedule under a multi-objective goal.

In table 5.16 we can see the parameters.

Parameter Value
Tardiness 0.34
Makespan 0.33
Setup Time 0.33

Table 5.16: Test Scenario 8 Parameters

In table 5.17 we can see the results.

Instance Tardiness Makespan Setup
Time

First Re-
sponse
Time

Last Re-
sponse
Time

Fast 2206 hours,
44.1 hours/ma-
terial

609 hours, 12.2
hours/material

6 hours <1 sec <1 sec

Dispatch 2206 hours,
44.1 hours/ma-
terial

609 hours, 12.2
hours/material

6 hours 6 secs 11 secs

Genetic 1st
Generation

2149 hours, 43
hours/material

552 hours, 11
hours/material

2 hours 5 secs 6 secs

Genetic 2nd
Generation

2149 hours, 43
hours/material

552 hours, 11
hours/material

2 hours 4 secs 6 secs

Genetic 3rd
Generation

2149 hours, 43
hours/material

552 hours, 11
hours/material

2 hours 4 secs 6 secs

Genetic 4th
Generation

2145 hours,
42.9 hours/ma-
terial

548 hours,
10.96 hours/-
material

2 hours 5 secs 6 secs

Genetic 5th
Generation

2145 hours,
42.9 hours/ma-
terial

548 hours,
10.96 hours/-
material

2 hours 5 secs 6 secs

Table 5.17: Test Scenario 8 Results
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We can see that the best solution for both the target KPI and the other KPIs was attained using

the Genetic Mode, with the Dispatch Mode and Fast Mode solutions getting the same results.

The Fast mode was the fastest, followed by the Dispatch Mode and then the Genetic Mode.

Noting that the execution time of each generation of the Genetic algorithm was lower than the

Dispatch mode.

The Genetic Mode saw improvements from the third to the fourth generation.

It is also of note, that due the setup time ended up being the dominant objective due to having

larger percentage variations.

5.2.3 Machine Failure and Partial Scheduling

In machines failure and partial scheduling we are only scheduling materials affected by the ma-

chine failure, without moving the others. To ensure consistency our base scenario was always

scenario 4. We reschedule 16 materials, which as expected correspond to about one third of the

total, and the KPI values are only for these 16 materials.

5.2.3.1 Scenario 9

In the ninth scenario we gave equal weight to every objective, so that we can evaluate the program’s

capacity to schedule under a multi-objective goal.

In table 5.18 we can see the parameters.

Parameter Value
Tardiness 0.34
Makespan 0.33
Setup Time 0.33

Table 5.18: Test Scenario 9 Parameters

In table 5.19 we can see the results.

We can see that the best solution for both the target KPI and the other KPIs was attained using

the Genetic Mode, with the Dispatch Mode getting better results than the Fast Mode.

The Fast mode was the fastest, followed by the Dispatch Mode and then the Genetic Mode.

Noting that the execution time of each generation of the Genetic algorithm was lower than the

Dispatch mode.

The Genetic Mode saw improvements from the third to the fourth generation.

It is also of note, that due the setup time ended up being the dominant objective due to having

larger percentage variations.

5.3 Conclusions

Our results show that, as expected, the fast scheduling mode performs the fastest while providing

inferior results. Based on that, we conclude that the fast mode should only be used in a situation

where getting a decent schedule fast is crucial. The dispatch mode proved not to be the best
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Instance Tardiness Makespan Setup

Time
First Re-
sponse
Time

Last Re-
sponse
Time

Fast 818 hours, 51.2
hours/material

313 hours, 19.6
hours/material

0 hours <1 sec <1 sec

Dispatch 817 hours, 51.1
hours/material

312 hours, 19.5
hours/material

0 hours <1 sec <1 sec

Genetic 1st
Generation

811 hours, 51
hours/material

306 hours, 19
hours/material

0 hours <1 sec <1 sec

Genetic 2nd
Generation

811 hours, 51
hours/material

306 hours, 19
hours/material

0 hours <1 sec <1 sec

Genetic 3rd
Generation

811 hours, 51
hours/material

306 hours, 19
hours/material

0 hours <1 sec <1 sec

Genetic 4th
Generation

808 hours, 50.5
hours/material

303 hours, 19
hours/material

0 hours <1 sec <1 sec

Genetic 5th
Generation

808 hours, 50.5
hours/material

303 hours, 19
hours/material

0 hours <1 sec <1 sec

Table 5.19: Test Scenario 9 Results

solution for nearly any case because it was both slower and provided worse results than the first

generation of the genetic algorithm in every scenario. Because the dispatch mode size depends

on the number of materials, we conclude that the only use for dispatch mode must be for some

low load scenarios. And lastly, we were able to conclude that the best solutions among all three

modes were found using the genetic algorithm. One thing that is important to note is that we’ve

run every agent on a single computer, have we ran each of the 30 possible material orderings in

parallel the time could be comparable to the fast mode. It is also of note, that besides having a

satisfactory first solution, the genetic mode also saw clear improvements between generations, in

most scenarios. About the scenarios, we can see that the scheduler was able to provide a solution

for total and partial rescheduling, with or without specifying a failed machine. One thing that was

the results also made clear, is that when an objective is subject to higher percentage variations (in

this case the setup time), if we give the same factors to every goal, that goal is going to have a

heavier weight.
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Chapter 6

Conclusions and Future Work

In this chapter, we will present the final remarks and briefly discuss further work.

6.1 Main Contributions

The study of the JSP has caught for many years the attention of various researches, and although

there were clear advancements and innovative ideas, it is noticeable that there is a lack of a defini-

tive solution that covers every situation. With this dissertation, we have:

• Helped to bridge the gap between the scientific and industrial community by demonstrating

how we’ve applied the concepts from our Literature Review to our solution implementation.

• Provided an inspiring agent-based implementation of the genetic algorithm for JSP that

others can extend or use to complete their solutions.

• Helped describe the problem as a multi-objective, multi-dimension environment.

• Provided scientific content about the complex domain of rescheduling.

• This dissertation also originated a paper which is a summary of the contents found in this

dissertation.

6.2 Future Work

Although our implementation tried to be the as whole as possible, we believe there is still room

for improvement. Some of the future work we would like to see in this field is:

• The integration of resources besides machines, namely employees and tools, in our model,

or a similar one.

• Data about how having different scheduling strategies in each Agent Material (or equivalent)

would affect the results.
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• How custommer preferences can affect the scheduling strategy at the Agent Material level

(as opposed to having a universal strategy for every resource).

• How other popular heuristics used in artificial intelligence field, such as Ant Colony Opti-

mization would compare to the Genetic Algorithm.

• What would be the viability of improving individuals at the end of each generation with a

local search strategy such as Beam Search or Tabu Search. And how would that affect the

results.
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