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1. Introduction

The batch processing machines (BPMs) have the ability to process more than one job together
(called a batch). So the scheduling problem of the BPMs concerns not only the priorities of the
jobs obtaining the processing service of a BPM, but the number of the jobs processed together
on them. According to diverse classified criteria (such as the number of the BPMs and the
job families), the scheduling problem of the BPMs can be further divided into several styles,
e.g., a single BPM scheduling problem (SBPM), identical parallel BPMs scheduling problem
(PBPM) , non-identical PBPM, the BPMs scheduling problem with compatible job families and
the BPMs scheduling problem with incompatible job families.
In this paper, we address the BPMs scheduling problem in a semiconductor wafer fabrication
facility (fab), in where there are many BPMs, such as diffusion machines, oxidation machines
and dry strip machines. The jobs processed on those machines cannot be batched together
unless they use the same recipe of those BPMs. As a result, the scheduling problem of those
BPMs is abstracted as identical PBPM with incompatible job families. In a fab, because most
of upstream and downstream machines of the BPMs are non-BPMs, jobs must be batched
or split regularly during their fabrication processes. Therefore, a good scheduling solution
of those BPMs is essential to efficiently utilize their capacity and satisfy the requirements of
their downstream machines to balance the fab-wide workload and achieve better fab-wide
operational performance.
In recent years, there have been many studies of the BPMs scheduling problem. Mathirajan
and Sivakumar (Mathirajan & Sivakumar, 2006) have reviewed 98 articles published between
1986 and 2004 on this topic, and the research has considerably evolved since 2004. For ex-
ample, to minimize the makespan or average flow time of the jobs, Chien and Chen (Chien
& Chen, 2007) developed a genetic algorithm (GA) for batch sequencing combined with a
novel timetabling algorithm to handle waiting time constraints, frequency-based setups, lim-
ited machine availability and a rolling horizon-based scheduling mechanism for scheduling
of furnaces for semiconductor fabrication. Chou et al. (Chou et al., 2006) presented a hybrid
GA for SBPM with arbitrary job release times. To meet due date requirements from customers,
Gupta and Sivakumar (Gupta & Sivakumar, 2007) presented a dynamic scheduling method
for SBPM with a look-ahead batching strategy to control the delivery performance between
earliness and tardiness measures. Erramilli and Mason (Erramilli & Mason, 2006) proposed a
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mixed integer program and a simulated annealing (SA)-based heuristic method to solve SBPM
to minimize the total weighted tardiness (TWT). To be applicable to a real production envi-
ronment, some research work has also considered upcoming jobs. Solomon et al.(Solomon et
al., 2002) presented a dispatching policy for the BPMs that incorporated knowledge of future
arrivals, the status of critical machines in subsequent processing, and setup times into batch
processing scheduling. Mönch et al. (Mönch et al., 2006) proposed a simple heuristic method
based on the Apparent Tardiness Cost (ATC) Dispatching Rule to minimize the TWT on PBPM
with incompatible job families and unequal job ready times, in which inductive decision trees
and neural networks from machine learning were used to estimate the look-ahead parameter.
Liu et al. (Liu et al., 2007) proved that SBPM of minimizing the total tardiness was NP-hard
even if the machine capacity was only two jobs. Accordingly, most studies have used heuris-
tic rules (e.g.,(Gupta & Sivakumar, 2007; Solomon et al., 2002; Mönch et al., 2006)) or meta-
heuristic searching methods (e.g., (Chien & Chen, 2007; Chou et al., 2006; Erramilli & Mason,
2006)). Although heuristic rules can reach a solution quickly, they are myopic algorithms that
pursue local optimization without considering global optimization. Consequently, the meta-
heuristic searching methods (such as GA and SA) have been gradually adopted to obtain
global optima.
Ant Colony Optimization (ACO), inspired by the foraging behavior of real ant colonies, is a
population-based approach developed by Dorigo in 1992 (Dorigo M, 1992). ACO has been
successfully applied to several NP-hard combinatorial optimization problems, such as the
Traveling Salesman Problem (TSP), Quadratic Assignment Problem (QAP), Vehicle Routing
Problem (VRP), Job-Shop Scheduling Problem (JSP), Flow-Shop Scheduling Problem (FSP),
etc.(Dorigo M. & Stützle T., 2004). However, few researchers have applied ACO to solve
the BPMs scheduling problem. Only Srinivasa Raghavan and Venkataramana (Srinivasa &
Venkataramana, 2006) used an ACO algorithm to solve a static scheduling problem of mini-
mizing the TWT of PBPM with incompatible job families.
In this paper, firstly, we build an identical PBPM model concerned the practical considerations
of incompatible jobs, dynamic job arrivals, sequence-dependent setup times and the qual-run
requirements of advanced process control (APC). Then, we propose an ACO-based solution
to simultaneously minimize the TWT and makespan of the jobs. Finally, the effectiveness of
the proposed method is demonstrated by a variety of simulation experiments. The simulation
results show that the proposed method produces smaller TWT and makespan than the com-
mon Apparent Tardiness Cost-Batched Apparent Tardiness Cost (ATC-BATC) rule, Max Batch
Size rule (MBS), a GA and an Ant System algorithm (AS).
The rest of this paper is organized in four sections. In Section 2, we present the problem
description and assumptions. Then we outline the ACO-based solution in Section 3. In section
4, we show computational experiments and results. Finally, we give conclusions and future
research topics in section 5.

2. Problem Description and Assumptions

2.1 Problem description

With the 3-field notation, the PBPM scheduling problem in this paper can be denoted as

M|Aij, Qi, Batch, incompatible| min(∑
i

∑
j

wijTij + maxi,j(Fij)) (1)
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where M is the number of the BPMs in PBPM; Aij is the arrival time of job j of family i ; Qi

is the qual-run time of family i ; wij and Tij are the weight, the tardiness and the completion
time of job j of family i , respectively.
There are two way to solve a PBPM scheduling problem. One is to distribute the jobs to PBPM
first, then batch the jobs and determine the priorities of the batches on each BPM. The other is
to batch the jobs first, then distribute the batches to PBPM and sequence the batches on each
BPM. Balasubramanian et al.(Balasubramanian et al., 2004) have shown by extensive simula-
tions that the second way achieved better solutions with less computation time. Therefore, we
have adopted the second style.
There are two main constraints when forming the batches. First, only jobs belonging to the
same family can be processed together. Second, the number of the jobs in a batch cannot
exceed the capacity of the PBPM (i.e., maximum batch size constraint). Another important
consideration is the trade-off between the waiting time for forming a full batch and the waste
of the PBPM capacity.
Distributing and sequencing the batches are the same as in other problems of scheduling par-
allel machines. The issues to consider are the hot lots, workload balance and the utilization of
the PBPM. It is also worthwhile to consider the trade-off between the setup times of schedul-
ing and the qual-run requirements of APC. In real semiconductor manufacturing environ-
ments, APC could achieve the best quality result by frequent changeovers between jobs from
different families, possibly avoiding the need for qual-runs. However, frequent changeovers
cost setup time and cause capacity loss. Instead of achieving the best quality, APC determines
a parameter range which represents acceptable quality for every job family. Based on this
range, APC provides a threshold value ni for each job family i . If a machine has been pro-
cessing no less than ni jobs (or batches for BPMs) from family j(j �= i) ,then before the next
time it processes jobs from family i ,a qual-run is required on that machine. In a qual-run, no
real job is processed. A blank wafer is processed to obtain the status of the machine so that
the operator can properly set the machine parameters to achieve high quality results. Before
the result of the qual-run is available, jobs cannot be processed on that machine. Therefore,
a trade-off between the time lost for setups and the time lost due to qual-runs is required.
However, most related research has not considered the qual-run requirements of APC. We
have found only the studies of Cai et al. (Cai et al., 2007) and Patel (Patel N-S, 2004) that
incorporated the constraint of process control into scheduling decisions.

2.2 Problem assumptions

The assumptions involved in the PBPM scheduling problem include:
(i) The machines in the PBPM are identical;
(ii) The PBPM scheduling problem is considered with a schedule horizon (e.g., one shift, one
day or several days), within which the scheduling plan of the jobs from multiple families is
decided;
(iii) The processing time of a batch on one machine is independent of the number of the jobs
in the batch;
(iv) Once processing begins on a batch, no job can be removed from or added to the machine
until it finishes.
(v) There are sequence-dependent random setup times for changeovers between jobs from
different families, and no setup times between jobs from the same family.
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3. ACO-Based Solution

3.1 Build a search space

Before we use an ACO algorithm to find a solution, the first task is to build a search space for
the ACO algorithm. In this paper, the search space is composed of nodes which are combina-
tions of the batches and the BPMs in the PBPM.
For Ni jobs, there are C1

Ni
+ C2

Ni
+ ...+ CB

Ni
( C is the combination operator) batching styles,

subject to the constraint of maximum batch size. In the case of many jobs (especially with a
number of dynamic arrival jobs), this kind of batching style will result in lower computation
efficiency. In this paper, we form the batches using the time window concept (denoted by ∆t )
proposed by Mönch et al. (Mönch et al., 2005).

∆t = dt × Avg(Pij) (2)

where Pij is the processing time of job j of family i ; Avg(Pij) is the average processing time
of the jobs; dt is a distribution parameter of ∆t .
At each batching decision point t ( t is set as the earliest ready time of the jobs to be batched),
the jobs of family i with arrival (ready) time less than the upper boundary of the time window
interval t + ∆t is denoted as M(j, t, ∆t) = {ij|Aij ≤ t + ∆t } .Then, we batch the jobs in
M(j, t, ∆t) subject to the maximum batch size constraint. We repeat the above process until all
jobs have been assigned to a batch. The ready time of each batch equals the latest arrival time
of the jobs in the batch. Finally, the search space (denoted as S )is built with nodes composed
of the batches and the BPMs in the PBPM.
Table 1 shows a simple example of building a search space. We assume that there are 2
machines in the PBPM and their batch size is 2 jobs. There are 2 families of jobs whose
processing times are set to 10 min and 15 min, respectively. For each family, there are
3 jobs to be scheduled. Here dt is set to 1. Then the time window ∆t can be com-
puted as ∆t = 1 × (10 + 10 + 10 + 10 + 15 + 15 + 15)/6 = 12.5 min .The batches
formed are shown in Table 2. These batches and machines constitute the search space S =
{(l11, m1), (l12, m1), ((l11, l12), m1), (l13, m1), (l21, m1), (l22, m1), (l23, m1), ((l22, l23), m1), (l11, m2),
(l12, m2), ((l11, l12), m2), (l13, m2), (l21, m2), (l22, m2), (l23, m2), ((l22, l23), m2)} ,whose size is 16
nodes.

Job(lij) l11 l12 l13 l21 l22 l23

Aij(min) 0 5 15 8 13 18

Table 1. An example of building a search space

Batches l11 l12 (l11, l12) l13 l21 l22 l23 (l22, l23)
ABatch(min) 0 5 5 15 8 13 18 18

Table 2. The formed batches for the simple example

3.2 Find a solution with an ACO algorithm

The parameters used in the ACO algorithm to find a solution are defined in Table 3.
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Parameter Meaning

m The index of the BPMs in PBPM

B The capacity of the BPMs in PBPM

ij The index of the jobs, which means job j of family i

∆t The time window for job batching

dt The distribution parameter of time window ∆t

K The number of the ants in the artificial ant colony

k The index of the artificial ants

tmax The maximum number of iterations

t1 The iteration index

δ The minimum change of the minimum objective values
in two consecutive iterations

Lk
tabu The tabu-list of ant k

Lk
task The task-list of ant k

τ0 The initial pheromone on each arc

WTATC−BATC The TWT of the scheduling results obtained by ATC-BATC rule

FATC−BATC The makespan of the scheduling results obtained by ATC-BATC rule

l The task-list of ant k

c A candidate node in Lk
task

τc0 l The pheromone on the arc (c0, l)
c0 The last node selected by artificial ant k using the same machine as c

q A probability parameter (0 ≤ q ≤ 1)
α A parameter denoting the relative importance of

the pheromone density and the heuristic factor

ηc0c The heuristic factor if c is selected as the successor task of c0

Pc The processing time of c

Uc0c The setup time for the changeover between c0 and c

xc The qual-run parameter of c

Ac The arrival time of c

Qc The qual-run time of c

Fc0 The processing finish time of c0

Bc The batch size of c

Wc The workload of the machine processing c0 if c
is selected as the successor task of c0

Wm The workload of machine m

γ A parameter to regulate the workload among the BPMs in PBPM

minm(Ft1−1) The earliest finish time of the BPMs in PBPM in iteration t1 − 1

maxm(Ft1−1) The latest finish time of the BPMs in PBPM in iteration t1 − 1

ξ A parameter to reduce the pheromone trail on an arc used
by an ant to make it less attractive to the following ants

OVt1 The minimum objective value of the solutions in iteration t1

OVt1−1 The minimum objective value of the solutions in iteration t1 − 1

x, y Two different nodes in the search space
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τxy(t1) The pheromone on arc (x, y) in iteration t1

τxy(t1 + 1) The pheromone on arc (x, y) in iteration t1 + 1

∆τbs
xy The new pheromone deposition related to the best-so-far solution

ρ The pheromone evaporation parameter

Tbs The best-so-far solution during the search process

Table 3. The list of parameters used in the ACO algorithm

The detailed flowchart of the ACO algorithm is shown in Figure 1.

Fig. 1. The flowchart of the ACO algorithm
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Step 1: Initialization. There are four main tasks in the initialization stage: to determine the
number of the ants in the artificial ant colony, to set the termination conditions for the search,
to initialize each artificial ant, and to set the initial pheromones on the arcs.
a) The number of ants in the artificial ant colony
Here we set the number of ants in the artificial ant colony to the number of nodes in the search
space. For example, the number of artificial ants for solving the problem in Table 1 can be set
to 16.
b) The termination conditions
Here we set two kinds of termination conditions. One is the maximum number of iterations
(denoted by tmax ). The other is the minimum change of the minimum objective values in
two consecutive iterations (denoted by δ ).
c) Initialization of each artificial ant
First, we build a tabu-list and a task-list for each artificial ant (indexed with k ), denoted by
Lk

tabu and Lk
task , whose initial values are set to φ and S ,respectively. Then, we distribute

the start points (i.e., the nodes in the search space) randomly to each artificial ant. The node
distributed to ant k is added to Lk

tabu , and deleted from Lk
task . To guarantee that each

job is processed only once, the nodes with the same job as the distributed node are also
deleted from Lk

task .Take the problem in Table 1 as an example, and assume that the node
(l11, m1) is assigned to ant 1 .Then the tabu-list and task-list of ant 1 become {(l11, m1)} and
{(l12, m1), (l13, m1), (l21, m1), (l22, m1), (l23, m1), ((l22, l23), m1), (l12, m2), (l13, m2), (l21, m2), (l23,
m2), ((l22, l23), m2)} ,respectively.
d) Initialization of the pheromone on each arc
The initial pheromone on each arc is set with the scheduling results obtained by the ATC-
BATC rule, which also guarantees that the scheduling results achieved by the proposed ACO
algorithm are no worse than those of the ATC-BATC rule.

τ0 = 1 / (K × (WTATC−BATC + FATC−BATC)) (3)

Step 2: Each artificial ant searches for its solution. Artificial ant k selects its next node l from
its task-list Lk

task according to the so-called pseudorandom proportional rule, given by

l =







arg maxc∈Lk
task

{
ατc0c + (1−α)ηc0c

Σcατc0c + (1−α)ηc0c
}, q ≤ q0

maxc(rand(0, 1)×
ατc0c + (1−α)ηc0c

Σcατc0c + (1−α)ηc0c
, otherwise

(4)

ηc0c = (1 −
Pc+Uc0c+xcQc+max((Ac−Fc0

),0)

maxc(Pc)+maxc(Uc0c)+maxc(Qc)+max((maxc(Ac)−Fc0
),0)

) + Bc
B + γ∆Wc

∆Wc =

{

Wc

maxm(Wm)
, Wc ≤ maxm(Wm)

Wc

maxm(Wm)
− 1, Wc > maxm(Wm)

γ =
ΣiΣj Pij/M−minm(Ft1−1)

maxm(Ft1−1)−ΣiΣj Pij/M

xc =







1, if no less than nibatches from familyj(j �= c)have been processed
−1, if(ni − 1)batches from familyj(j �= c)have been processed
0, otherwise
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Obviously, ant k selects the node with the highest attractiveness indicated by the learned
pheromone trails and the heuristic information with probability q0 , while with probability
1 − q0 it performs a biased exploration of the arcs. The heuristic factor ηc0c simultaneously
takes into consideration on c ’s occupation time (including possible qual-run time, processing
time, setup time and waiting time), the capacity utilization rate and the relative workload of
the machine.
The selected node is added to Lk

tabu and deleted from Lk
task .Meanwhile, the nodes with the

same job as the selected node are also deleted from Lk
task .Then, the local pheromone trail is

updated

τc0 l = (1 − ξ)τc0 l + ξτ0 (5)

The parameter ξ allows artificial ants to increase their exploration of new arcs, and in practice
avoids a stagnation behavior (i.e., the ants do not converge on a common path).
The process is repeated until Lk

task is empty. Obviously, the tabu-list Lk
tabu is the solution

obtained by ant k ’s search process.
Step 3: Determine whether the termination conditions are satisfied. First, we compute the
objective values of the solutions obtained by the artificial ants. Then we select the minimum
to compare with that of the last iteration. If the difference between these two consecutive
minimum objective values is no more than a small positive value (denoted by δ ), we stop
the search process. The tabu-list with the minimum objective value is taken as the solution.
Otherwise, we determine whether tmax has been reached. If the answer is yes, we select the
tabu-list with the minimum objective value as the solution. Otherwise, we go to step 4.
Step 4: Pheromone updating. We update the pheromone values on the arcs with the best-so-
far solution according to equation (6), and then repeat steps 2 and 3.

τxy(t1 + 1) = (1 − ρ)τxy(t1) + ρ∆τbs
xy, ∀(x, y) ∈ Tbs (6)

∆τbs
xy = 1/mink(ΣiΣjwijTij + maxi,j(Fij)), 0 < ρ < 1

The pheromone trail update, both evaporation and new pheromone deposition, only applies
to the arcs of the best-so-far solution, not to all the arcs. In this way, the computational com-
plexity of the pheromone update at each iteration is reduced from O(K2) to O(K) .The
deposited pheromone is discounted by a factor ρ , which results in the new pheromone
trail being a weighted average between the old pheromone value and the newly deposited
pheromone.

4. Computational experiments and results

4.1 The scheduling methods to be compared

We compared the performances of the proposed ACO algorithm with those of ATC-BATC,
MBS, a GA (refer to (Balasubramanian et al., 2004)) and an Ant System algorithm (refer to
(Li et al., 2008) ). As a common BPM scheduling rule, ATC-BATC has good performance on
static BPM scheduling problems. To adapt it to dynamic jobs arrival, we made some small
modifications to the rule. The decision flow of the modified ATC-BATC rule is as follows.
First, at each batching decision point t , compute the index of job j of family i which belongs
to M(j, t, ∆t) .

Iij(t0) =
wij

Pij
exp( −

(dij − Pij − t0 + (Aij − t0)
+)+

k1P
) (7)
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where wij , Pij , dij and Aij are the weight, the processing time, the due date and the
arrival time of job j of family i ,respectively; t0 is the scheduling decision point; k1 is the
look-ahead parameter, which usually ranges from 0.1 to 5; and P is the average processing
time of the jobs. Then form batches by selecting jobs in a non-increasing order of Iij ,subject to
the maximum batch size constraint. Repeat the above process until the batching is complete.
Second, make a batch sequence in non-increasing order of Ibi according to equation (8) and
distribute the batches to BPMs of the PBPM in turn

Ibi(t0) = Σj=1nbi Iij(t0)× min(
nbi

B
, 1) (8)

where nbi is the number of the jobs in a batch of family i .

4.2 The problem cases for the simulations

We used the dry strip operations in a real wafer fab to demonstrate the proposed ACO
algorithm. There are 3 identical machines for the dry strip operations in this wafer fab.
Each machine has a capacity of 3 jobs and can process 4 different recipes. The thresh-
old value for the qual-run requirements of each recipe is 3 jobs. The processing times
for recipe1 , recipe2 , recipe3 and recipe4 are random variables from the uniform
distributions Uni f orm(90, 100), Uni f orm(90, 100), Uni f orm(70, 80)andUni f orm(90, 100) , re-
spectively. The setup times are from the distribution Uni f orm(10, 20) .The qual-run
times for recipe1 , recipe2 , recipe3 and recipe4 conform to the distributions
Uni f orm(30, 40), Uni f orm(30, 40), Uni f orm(20, 30) , and Uni f orm(30, 40) , respectively. The
time unit is minutes.

4.3 Determining the distribution parameter dt for time window ∆t
Although Mönch et al.(Mönch et al., 2005) presented the concept of the time window, they did
not specify how to determine its value. We ran a number of simulations on random problem
cases (shown in Table 4) to determine the best value for the distribution parameter dt of the
time window ∆t . ATC-BATC was used for the simulations, with its look-ahead parameter
k1 set to 0.5 (according to extensive simulations). Values of dt in the range from 0 to 2.0 at
intervals of 0.25 were tested. The simulation results are shown in Table 5 and Figure 2. From
the simulation results, we can reach the following conclusions.

Problemparameter Valueused Numbero f values

Numbero f jobs 20 1

Arrivaltimeso f jobs Uni f orm(−rΣiΣjPij/(BM), rΣiΣjPij/(BM)) 8

r = 0.25, 0.50, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0

Duedateso f jobs Aij + Pij + Uni f orm(0, Avg(Pij)) 1

Timewindow∆t dt · Avg(Pij) 9

dt = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0

Weightperjob Uni f orm(0, 1) 1

Totalparametercombinations 72

Numbero f problemspercombination 5

Totalproblems 360

Table 4. Problem cases for determining the time window ∆t
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r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5 r = 1.75 r = 2.0

dt = 0.25 169.40 242.45 239.39 335.41 257.45 253.24 312.09 345.01

dt = 0.50 168.44 226.08 182.97 250.39 257.18 253.24 262.68 345.01

dt = 0.75 168.44 178.25 182.97 250.39 250.27 251.35 277.44 342.01

dt = 1.00 168.44 178.25 182.97 230.49 205.27 233.97 257.13 330.12

dt = 1.25 168.44 178.25 182.34 230.49 206.65 233.97 257.13 330.12

dt = 1.50 168.44 178.25 182.34 230.49 206.65 233.97 261.68 332.98

dt = 1.75 168.44 178.25 182.34 230.20 218.49 233.97 261.68 333.52

dt = 2.00 168.44 178.25 182.34 230.20 218.49 233.97 262.90 333.52

Table 5. The average objective values with variables dt and r

Fig. 2. The objective values with variables dt and r

i) The parameter dt interacts strongly with the arrival time distribution parameter r ; the
best choice is dt = 1 for most cases. ii) Larger dt is not better than smaller dt when r is
large. For example, when r was set to 1.25, 1.75 or 2.0, the objective values with dt = 1.5 ,
dt = 1.75 or dt = 2.0 were more than with dt = 1 .
In addition, we simulated the same problem cases with the proposed ACO algorithm. The
parameters q0 , α , ρ , δ , ξ and tmax were set to 0.5, 0.5, 0.1, 0.001, 0.1 and 100,
respectively. The average improvements of ACO with different values of r compared with
ATC-BATC are shown in Figure 3. The improvement increased with r , with an inflection in
the curve at r = 1 . When r was from 0.25 to 1 or from 1.25 to 2, the larger was r , the better
were the improvements by ACO. Furthermore, the improvements for r above 1 were better
than those for r from 0.25 to 1. In the following simulations, we only consider r values from
0.25 to 1.

4.4 Determining the values of the parameters in the ACO algorithm

a) Determine the probability parameter q0 Tuning the parameter q0 allows adjusting the
degree of exploration and the choice of whether to concentrate the search around the best-so-
far solution or to explore other solutions. We determined the probability parameter q0 of
the proposed ACO algorithm with the same problem cases shown in Table 4 with the time
window ∆t ’s distribution parameter dt set to 1. The parameters α , ρ , δ , ξ and tmax

were set to 0.5, 0.1, 0.001, 0.1 and 100, respectively. The simulation results are shown in Figure
4. From these results, we can conclude that q0 = 0.2 is the best selection for most cases.
b) Determine the pheromone importance parameter α We determined the pheromone impor-
tance parameter α with the same problem cases shown in Table 4 with dt = 1 and q0 = 0.2 .
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The parameters , ρ , δ , ξ and tmax were set to 0.1, 0.001, 0.1 and 100, respectively. The
simulation results are shown in Figure 5. In all cases, α = 0.7 was the best choice.

Fig. 3. Analysis of r ’s impacts on the ACO algorithm’s performance

Fig. 4. The simulation results for determining the probability parameter q0

Fig. 5. The simulation results for determining the probability parameter α

4.5 Comparison between ACO, ATC-BATC, MBS, GA and AS

With the above simulation results, the parameters of the ACO algorithm were set as Table 6.
The parameters of the GA and the AS were set according to (Balasubramanian et al., 2004) and
(Li et al., 2008), respectively.
The problem cases for comparing between ACO, ATC-BATC, MBS, GA and AS are shown in
Table 7. In the simulations, we considered the impacts of the number and the arrival time
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Parameter Value

α 0.7

q0 0.2

ρ 0.1

δ 0.001

ξ 0.1

tmax 100

Table 6. The parameters of the ACO algorithm

distribution of the jobs on the ACO algorithm’s performance. The number of jobs was grad-
ually increased by multiplying the number of machines and the number of recipes on each
machine. The average improvements on the TWT and makespan of ACO are shown in Figure
6. From the simulation results, we can make the following conclusions.

Problemparameter Valueused Numbero f values

Numbero f jobs 20,32,44,56,68,80 6

Arrivaltimeso f jobs Uni f orm(−rΣiΣjPij/(BM), rΣiΣjPij/(BM)) 4

r = 0.25, 0.50, 0.75, 1.0

Duedateso f jobs Aij + Pij + Uni f orm(0, Avg(Pij)) 1

Timewindow∆t dt · Avg(Pij), dt = 1 1

dt = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0

Weightperjob Uni f orm(0, 1) 1

Totalparametercombinations 24

Numbero f problemspercombination 10

Totalproblems 240

Table 7. The problem cases for comparing ACO and ATC-BATC

i) The value of the arrival time distribution parameter r had an important impact on the
ACO algorithm’s average improvements on the TWT and makespan. Larger r , i.e., the job
arrivals were spread over a larger time range, resulted in better improvements on the TWT
and makespan. In addition, the performance of MBS increasingly deteriorated with larger r
(shown in Figure 6(a)).
ii) Comparing to the heuristic rules (ATC-BATC and MBS), the number of jobs affected the
ACO algorithm’s average improvements on the average of the TWT and makespan. The more
jobs, the better the average improvements, independent on r ’s value. However, comparing
to the GA and AS, the impact of change in the number of jobs on the improvements of ACO
on the average of the TWT and makespan fluctuated (shown in Figure 6(b)).
To further discuss the impacts of the batch size and the number of the recipes on the BPMs,
and the number of the BPMs on the performance of the proposed method, it is assumed that
the range of the number of the machines is from 3 to 5, the range of the batch size of a BPM
is from 3 to 5, and the range of the number of the recipes of a BPM is from 4 to 6. Other
conditions are the same as Table 7. The simulation results are shown in Figure 7. Obviously,
the number and the capacity of the machines and the number of the recipes play an important
role on the average improvements on the TWT and makespan of the ACO algorithm. Less
machines, the bigger capacity and more recipes, the more average improvements on the TWT
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and makespan are. In addition, the performance of MBS increasingly improved with more
recipes and bigger capacity.

(a) The improvements by ACO with variable arrival time distri-
bution of jobs ∗ Imp_avg_ATC_BATC the average improvements
on the TWT and makespan of ACO compared to ATC-BATC;
the Imp_avg_GA : the average improvements on the TWT and
makespan of ACO compared to GA; Imp_avg_AS : the average
improvements on the TWT and makespan of ACO compared to
AS

(b) The improvements by ACO with variable number of the jobs

Fig. 6. Simulation results for comparison between ACO and ATC-BATC, MBS, GA and AS

5. Conclusions

Batch processing machines play important roles in semiconductor wafer fabrication facili-
ties. In this paper, we modeled the batch processing operations in a real wafer fab as an
identical PBPM problem considering the practical complications of incompatible job families,
dynamic job arrivals, sequence-dependent setup times and qual-run requirements of APC,
and proposed an ACO algorithm to solve the problem with smaller TWT and makespan than
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ATC-BATC, MBS, GA and AS. The main contributions of the paper are to create a method
applicable in a production environment, to propose a better value for the time window ∆t
from simulations, and to apply the ACO algorithm to obtain the solutions. Our next step is to
integrate the ACO algorithm with the advanced planning and scheduling software of the real
wafer fab.

(a) The improvements by ACO with variable capac-
ity of a BPM

(b) The improvements by ACO with variable num-
ber of the BPMs

(c) The improvements by ACO with variable num-
ber of the recipes of a BPM

Fig. 7. The impacts of the batch size, the number of the recipes on the BPMs and the number
of the BPMs
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