400 research outputs found

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management

    Get PDF
    Global information on the spatio-temporal variation of parameters driving the Earth’s terrestrial water and energy cycles, such as evapotranspiration (ET) rates and surface soil moisture (SSM), is of key significance. The water and energy cycles underpin global food and water security and need to be fully understood as the climate changes. In the last few decades, Earth Observation (EO) technology has played an increasingly important role in determining both ET and SSM. This paper reviews the state of the art in the use specifically of operational EO of both ET and SSM estimates. We discuss the key technical and operational considerations to derive accurate estimates of those parameters from space. The review suggests significant progress has been made in the recent years in retrieving ET and SSM operationally; yet, further work is required to optimize parameter accuracy and to improve the operational capability of services developed using EO data. Emerging applications on which ET/SSM operational products may be included in the context specifically in relation to agriculture are also highlighted; the operational use of those operational products in such applications remains to be seen

    A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data

    Get PDF
    An overview of the commonly applied evapotranspiration (ET) models using remotely sensed data is given to provide insight into the estimation of ET on a regional scale from satellite data. Generally, these models vary greatly in inputs, main assumptions and accuracy of results, etc. Besides the generally used remotely sensed multi-spectral data from visible to thermal infrared bands, most remotely sensed ET models, from simplified equations models to the more complex physically based two-source energy balance models, must rely to a certain degree on ground-based auxiliary measurements in order to derive the turbulent heat fluxes on a regional scale. We discuss the main inputs, assumptions, theories, advantages and drawbacks of each model. Moreover, approaches to the extrapolation of instantaneous ET to the daily values are also briefly presented. In the final part, both associated problems and future trends regarding these remotely sensed ET models were analyzed to objectively show the limitations and promising aspects of the estimation of regional ET based on remotely sensed data and ground-based measurements

    Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data

    Get PDF

    Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products

    Get PDF
    This study assesses the accuracy of estimating daily grass reference evapotranspiration (PM-ETo) using daily shortwave radiation (Rs) and reference evapotranspiration (ETREF) products provided by the Meteosat Second Generation (MSG) geostationary satellite delivered by the Satellite Applications Facility on Land Surface Analysis (LSA-SAF) framework. The accuracy of using reanalysis ERA5 shortwave radiation data (Rs ERA5) provided by the European Center for Medium-Range Weather Forecasts (ECMWF) is also evaluated. The assessments were performed using observed weather variables at 37 weather stations distributed across continental Portugal, where climate conditions range from semi-arid to humid, and 12 weather stations located in Azores islands, characterized by humid, windy and often cloudy conditions. This study’s use of data from a variety of climate conditions contributed to a unique and innovative assessment of the usability of LSA-SAF and ERA5 products for ETo estimation. The first assessment focused on comparing LSA-SAF estimates of Rs (Rs LSA-SAF) against ground stations (Rs ground). The results showed a good matching between the two Rs data sets for continental Portugal but a tendency for Rs LSA-SAF to under-estimate Rs ground in the cloudy islands of Azores. ETo values computed using Rs LSA-SAF data and observed temperature, humidity and wind speed (ETo LSA-SAF) were then compared with PMETo estimates with ground-based data, which were used as benchmark; input data of temperature and humidity needed for PM-ETo were quality checked for surface aridity effects. It was observed that ETo LSA-SAF is strongly correlated with PM-ETo (R2 > 0.97) for most locations in continental Portugal, with regression coefficient of a linear regression forced to the origin ranging between 0.95 and 1.05, mean root mean square error (RMSE) of 0.13 mm d 1, and Nash and Sutcliff efficiency of modeling (EF) above 0.95. For most Azores locations, ETo LSA-SAF over-estimated PM-ETo. This is likely a consequence of the high spatio-temporal heterogeneity of weather conditions that occur in these oceanic islands together with the different footprints of satellite (averaged over the pixel) and station observations. Reanalysis ERA5 shortwave radiation data presented similar behavior to the LSA-SAF products, however with slightly lower accuracy. The daily LSA-SAF ETREF product (ETREF LSA-SAF) was assessed and results have shown a good accuracy of this product, with acceptable RMSE and high EF values, for continental Portugal but a low accuracy for the Azores islands. A simplified bias correction approach was shown to improve both ETo derived from the LSA-SAF products, namely for Azores stations, which seem to be representative of smaller areas. The use of the FAO-PM temperature approach (PMT) was also assessed using the Rs LSA-SAF and Rs ERA5 data, which showed a superiority of the LSA-SAF product for ETo estimations (ETo PMT LSA-SAF). No significant differences (p < 0.05) were observed in terms of the median value of the RMSE when adopting ETo PMT and ETREF LSA-SAF. Differently, results showed that using the Rs LSA-SAF in the PMT approach (ETo PMT LSA-SAF) produces significantly better RMSE results than ETo PMT and ETREF LSA-SAF. Overall, the performed assessment allows concluding that the use of Rs LSA-SAF, and to a lesser extent the use of the Rs ERA5, highly improves the accuracy of computation of ETo when Rs observations are not available, including when only temperature data are accessible. The use of the ETREF LSA-SAF product is a good alternative when observed weather data are not availableinfo:eu-repo/semantics/publishedVersio

    Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites

    Get PDF
    Estimation of land surface heat fluxes is important for energy and water cycle studies, especially on the Tibetan Plateau (TP), where the topography is unique and the land–atmosphere interactions are strong. The land surface heating conditions also directly influence the movement of atmospheric circulation. However, high-temporal-resolution information on the plateau-scale land surface heat fluxes has been lacking for a long time, which significantly limits the understanding of diurnal variations in land–atmosphere interactions. Based on geostationary and polar-orbiting satellite data, the surface energy balance system (SEBS) was used in this paper to derive hourly land surface heat fluxes at a spatial resolution of 10&thinsp;km. Six stations scattered throughout the TP and equipped for flux tower measurements were used to perform a cross-validation. The results showed good agreement between the derived fluxes and in situ measurements through 3738 validation samples. The root-mean-square errors (RMSEs) for net radiation flux, sensible heat flux, latent heat flux and soil heat flux were 76.63, 60.29, 71.03 and 37.5&thinsp;W&thinsp;m−2, respectively; the derived results were also found to be superior to the Global Land Data Assimilation System (GLDAS) flux products (with RMSEs for the surface energy balance components of 114.32, 67.77, 75.6 and 40.05&thinsp;W&thinsp;m−2, respectively). The diurnal and seasonal cycles of the land surface energy balance components were clearly identified, and their spatial distribution was found to be consistent with the heterogeneous land surface conditions and the general hydrometeorological conditions of the TP.</p

    Estimation of evapotranspiration using satellite TOA radiances

    No full text
    • 

    corecore