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Summary 

Soil Moisture (SM) is a key variable in global climate change, hydrology and water resources, 

digital agriculture and other relevant domains. Many factors affect the spatial variability of SM, 

such as topography, soil characteristics, vegetation and climate. These factors place obstacles 

in the estimation of continuous spatial and temporal SM at regional and global scales. Though 

the traditional methods based on in-situ observations/networks provide the most accurate SM, 

they are expensive, time consuming, labor intensive, as well as inferior in spatial extent. These 

features make the in-situ measurements more suitable to validate SM data derived from satellite 

retrievals instead of direct applications in various investigations. The last few decades witness 

the advent of satellite-based remote sensing creating profound progression of determining 

spatially explicit maps of SM from space. 

SM at coarse spatial resolution with long time coverage and high temporal resolution would 

benefit the continental or global applications. SM at high spatial resolution (i.e. <=5 km) is 

commonly required in applications, particularly on regional and local scales. 

Due to the characteristics of optical/thermal infrared data, many high spatial resolution SM 

retrieval approaches have been proposed. Most optical/thermal infrared-based SM retrieval 

methods are based on a SM-related index or proxy of SM (e.g. the Temperature Vegetation 

Dryness Index (TVDI) and the Apparent Thermal Inertia (ATI)). Generally, numerous in-situ 

SM measurements for the empirical/statistical relationships or soil field capacity/wilting point 

are required to retrieve SM in regional scale. These methods are naturally empirical with many 

limitations, including necessity of underlying soil texture or in-situ SM measurements, lack of 

transferability to other regions, weakness of describing physical processes, inapplicability 

under cloudy conditions. In this cumulative thesis, a new SM retrieval method has been 

proposed, which overcomes the drawbacks of traditional optical/thermal infrared-based 

approaches mentioned above. This SM retrieval method can directly estimate the quantitative 

volumetric soil water content without soil texture or empirical relationships between ground-

based SM measurements and satellite-derived proxies of SM. The method developed in this 

thesis relies on the synergistic use of the diurnal cycles of Land Surface Temperature (LST) 

and Net Surface Shortwave Radiation (NSSR) from geostationary satellite allowing to provide 

land surface parameters at much higher frequencies (48-96 times per day). First, LST was 
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derived based on a generalized split-window algorithm using the two thermal infrared channels 

data from geostationary satellite (FY-2E). The validation proved its applicability to SM 

estimation by the fact that the LST retrieval show great consistent with in-situ measurements 

and Moderate-resolution Imaging Spectroradiometer (MODIS) LST product. Second, based on 

the simulated data from the Common Land Model (CoLM), including diurnal LST and NSSR 

cycles as well as synergistic SM variation, a simple stepwise linear regression was performed 

to acquire the ellipse parameters derived from the elliptical relationship between diurnal LST 

and NSSR cycles, thereby developing the daily average SM retrieval model. A good 

concordance with the ellipse model-based SM retrievals was discovered, with a correlation 

coefficient (R) of 0.845, a RMSE of 0.064 m3/m3 and a bias of 0.017 m3/m3 when comparing 

with the in-situ measurements.  

The combination of high spatial resolution remote sensing data with low spatial resolution SM 

products has recently caught significant scientific attention in the context of improving the 

assessment of the spatial variability of SM. However, most optical/thermal infrared-based 

disaggregation methods are only available for cloud-free days. In this thesis, a new downscaling 

approach has been developed to disaggregate a low spatial resolution microwave SM product 

with optical/thermal infrared data from geostationary satellite. This method not only 

successfully downscales microwave SM data by using temporal information, but also avoids 

the failure of traditional instantaneous observations-based downscaling procedure obstructed 

by clouds. Until now, only two blended microwave SM products, namely the Climate Change 

Initiative (CCI) from the European Space Agency (ESA) and the Soil Moisture Operational 

Product System (SMOPS) from the National Oceanic and Atmospheric Administration 

(NOAA), are available with either better temporal or spatial coverage than that of other 

microwave SM products derived from a single sensor. However, a proper assessment and, in 

particular, a synchronous comparison of these two products is still lacking. Since these two 

blended products show big discrepancy in temporal intervals, spatial coverages, data sources 

and merging methods, three important conclusions have been drawn: 1) CCI has better errors 

statistics than SMOPS over most areas worldwide; 2) SMOPS can provide SM with acceptable 

accuracy over the gaps remaining by CCI; 3) Two SM products can complement each other for 

applications. Therefore, the new downscaling method has been developed to disaggregate the 

25 km CCI SM product to 3 km spatial resolution. Similar to the ellipse method, it is based on 

the temporal variation of geostationary satellite-derived LST and NSSR over the mid-morning 

period, which is expected to enhance the temporal coverage of land surface parameters related 

to SM in the downscaling procedure. As a result, the multi-observations from the geostationary 
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satellites can potentially avoid cases in which the traditional instantaneous observation from 

the polar-orbit satellite is not available. Specifically, the downscaling method is based on the 

fact that the rate of change of LST with respect to NSSR over the mid-morning period is more 

sensitive to SM as shown in several previous studies. Last, the results in this thesis indicated 

that the downscaled SM agreed well with in-situ measurements and had comparable accuracy 

to the original microwave CCI SM product.  

In summary, the two proposed methods in this thesis overcome some limitations of the 

traditional methods. They not only successfully obtained high spatial resolution SM by using 

temporal information, but also avoid the failure of traditional instantaneous observations-based 

downscaling procedure obstructed by clouds. Neither numerous in-situ SM measurements nor 

soil information is required. Additionally, the ellipse model can directly estimate SM without 

the necessity of establishing empirical relationships between in-situ SM measurements and 

remotely sensed parameters, which overcomes the drawbacks of traditional optical/thermal 

infrared-based approaches. 
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Zusammenfassung 

Bodenfeuchte (soil moisture, SM) ist eine Schlüsselvariable für den globalen Klimawandel, die 

Hydrologie und die Wasserressourcen, die Landwirtschaft und andere relevante Bereiche. Viele 

Faktoren beeinflussen die räumliche Variabilität von SM, wie z. B. Topographie, Bodentypen, 

Vegetationsbedeckung und Klima. Diese Faktoren erschweren die räumlich und zeitlich 

kontinuierliche Schätzung von SM auf regionaler und globaler Ebene. Obwohl die 

traditionellen Methoden, die auf In-situ-Beobachtungen basieren, die genaueste Abschätzung 

von SM erlauben, sind sie teuer, zeitaufwändig, arbeitsintensiv und räumlich begrenzt. Daher 

eignen sich in-situ-Messungen vor allem zur Validierung der aus Satellitendaten gewonnenen 

SM Daten a, die eine immer höher aufgelöste flächenhafte Abdeckung ermöglichen. In den 

letzten Jahrzehnten hat die satellitenbasierte Fernerkundung für die räumlich explizite 

Kartierung der Bodenfeuchte zunehmend an Bedeutung gewonnen und sich methodisch 

etabliert.  

Bei der Bodenfeuchtemessung aus Satellitendaten kann man unterschiedliche Skalen 

differenzieren: für Anwendungen auf globaler bis kontinentaler Ebene sind SM-Daten mit 

grober räumlicher Auflösung, hoher zeitlicher Auflösung und langer Zeitabdeckung nützlich; 

auf regionaler und lokaler Ebene wird üblicherweise auch eine hohe räumliche Auflösung (d.h. 

<= 5 km) erforderlich. 

Basierend auf den Eigenschaften von sichtbarem Licht und thermischem Infrarot sind viele SM-

Ableitungsverfahren mit hoher räumlicher Auflösung entstanden. Die meisten auf optischen 

Daten und thermischen Infrarotdaten basierenden SM-Ableitungen basieren auf einem SM-

bezogenen Index oder Proxy v (z.B. dem temperature vegetation dryness index (TVDI) oder 

der apparent thermal inertia (ATI)). Im Allgemeinen sind zahlreiche In-situ-SM-Messungen für 

die empirischen / statistischen Beziehungen oder die Bodenfeldkapazität / den Welkepunkt 

erforderlich, um SM auf regionaler Ebene bestimmen zu können. Diese empirischen Methoden 

unterliegen naturgemäß zahlreichen Einschränkungen, wie beispielsweise der mangelnden 

Information zur Bodentextur oder der In-situ-SM-Messungen, einer nicht gesicherten 

Übertragbarkeit auf andere Regionen, die Schwäche bei der Beschreibung physikalischer 

Prozesse oder die Limitierung auf wolkenfreie Bedingungen.  
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In dieser kumulativen Dissertation wird ein neues SM-Abrufverfahren vorgeschlagen, das die 

oben erwähnten Nachteile der traditionellen, auf optischen Daten/thermischen Infrarotdaten 

basierenden Ansätze überwindet. Diese SM-Ableitung kann den volumetrischen 

Bodenwassergehalt direkt abschätzen, ohne die Bodentextur oder empirische Beziehungen 

zwischen bodengestützten SM-Messungen und satellitengestützten Proxys von SM zu 

berücksichtigen. Die in dieser Arbeit entwickelte Methode basiert auf der synergistischen 

Nutzung der Tageszyklen von Landoberflächentemperatur (land surface temperature LST) und 

kurzwelligen Strahlungsbilanz an der Landoberfläche (net surface short-wave radiation NSSR) 

von geostationären Satelliten, die es ermöglichen, Landoberflächenparameter in deutlich 

höherer Frequenz (48-96 Mal pro Tag) bereitzustellen. Zunächst wurde LST basierend auf eines 

verallgemeinerten Split-Window-Algorithmus unter Verwendung von Daten der beiden 

thermischen Infrarotkanäle des geostationären Satelliten (FY-2E) ermittelt. Die Validierung 

bewies ihre Anwendbarkeit auf die SM-Schätzung durch die Tatsache, dass der LST-Abruf in 

hohem Maße mit In-situ-Messungen und dem LST-Produkt des Moderate Resolution Imaging 

Spectroradiometer (MODIS) übereinstimmt. Zweitens wurde basierend auf den simulierten 

Daten aus dem Common Land Model (CoLM), einschließlich der täglichen LST- und NSSR-

Zyklen sowie der synergistischen SM-Variation, eine einfache schrittweise lineare Regression 

durchgeführt. Somit werden die Parameter erfasst, die sich aus der elliptischen Beziehung 

zwischen den täglichen LST und NSSR-Zyklen ergeben; auf dieser Grundlage wird schließlich 

das SM-Modell in täglicher Auflösung entwickelt. Die auf Ellipsenmodellen basierenden SM-

Ableitungen zeigen einen hohen Grad an Übereinstimmung mit den In-situ-Messungen, mit 

einem Korrelationskoeffizienten (R) von 0,845, einem RMSE von 0,064 m3/m3 und einem Bias 

von 0,017 m3/m3. 

Die Kombination von Fernerkundungsdaten mit hoher räumlicher Auflösung und SM-

Produkten mit niedriger räumlicher Auflösung hat kürzlich erhebliche wissenschaftliche 

Aufmerksamkeit im Zusammenhang mit der Verbesserung der Bewertung der räumlichen 

Variabilität von SM erregt. Die meisten auf optischen Daten/thermischen Infrarotdaten 

basierenden Disaggregationsmethoden sind jedoch nur für wolkenfreie Tage verfügbar. In 

dieser Arbeit wurde ein neuer Downscaling-Ansatz entwickelt, um Mikrowellen-SM-Produkte 

mit niedriger räumlicher Auflösung unter Verwendung von optischen Daten/thermischen 

Infrarotdaten von geostationären Satelliten zu disaggregieren. Diese Methode ist nicht nur 

erfolgreich beim Downscaling der Mikrowellen-SM-Daten mithilfe zeitlicher Information, 

sondern vermeidet auch das Bewölkungsproblem der traditionellen, auf Sofortbeobachtungen 

basierenden Downscaling-Verfahren. Bisher sind nur zwei synergistische Mikrowellen-SM-
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Produkte erhältlich, nämlich die Climate Change Initiative (CCI) der Europäischen 

Weltraumorganisation (ESA) und das Bodenfeuchteprodukt Soil Moisture Operational 

Products System (SMOPS) der National Oceanic and Atmospheric Administration (NOAA). 

Beide können eine bessere zeitliche oder räumliche Abdeckung anbietenals Mikrowellen-SM-

Produkte, die von einem einzelnen Sensor abgeleitet werden. Eine ordnungsgemäße Bewertung 

und insbesondere eine direkte Gegenüberstellung dieser beiden Produkte fehlen jedoch noch. 

Da diese beiden Mischprodukte große Unterschiede in der zeitlichen Auflösung, der räumlichen 

Abdeckung, der grundlegenden Datenquellen und der Methodik der Zusammenführung von 

Bilddaten aufweisen, werden drei wichtige Schlussfolgerungen gezogen: 1) CCI weist in den 

meisten Gebieten weltweit eine bessere Fehlerstatistik als SMOPS auf; 2) SMOPS kann jedoch 

für die verbleibenden Lücken von CCI SM-Produkte mit akzeptabler Genauigkeit liefern; 3) 

die Kombination der beiden SM-Produkte kann sich für mehrere Anwendungen gut ergänzen. 

Daher wurde die neue Downscaling-Methode entwickelt, um das 25 km CCI SM-Produkt auf 

eine räumliche Auflösung von 3 km zu disaggregieren. Ähnlich wie bei der Ellipsenmethode 

basiert diese Methode auf der zeitlichen Variation von geostationären satellitengestützten LST 

und NSSR über den Vormittag. Die zeitliche Abdeckung von Landoberflächenparametern, die 

mit der SM in Verbindung stehen, soll in der Downscaling-Methode verbessert werden. 

Infolgedessen können Fälle, in denen die herkömmliche Sofortbeobachtung von Satelliten mit 

polarer Umlaufbahn nicht verfügbar ist, durch die Mehrfachbeobachtungen von den 

geostationären Satelliten vermieden werden. Insbesondere basiert die Downscaling-Methode 

auf der Tatsache, dass die Änderungsrate von LST in Bezug auf NSSR vormittags 

empfindlicher auf SM reagiert, wie in mehreren früheren Studien gezeigt werden konnte. 

Schließlich zeigen die Ergebnisse dieser Arbeit, dass die verbesserten SM-Daten gut mit In-

situ-Messungen übereinstimmen und eine vergleichbare Genauigkeit wie das originale 

Mikrowellen-CCI-SM-Produkt aufweist. 

Zusammenfassend überwinden die beiden in dieser Arbeit vorgeschlagenen Methoden etliche 

Einschränkungen der traditionellen Verfahren. So erzieltder neue Ansatz nicht nur erfolgreich 

SM-Daten mit hoher räumlicher Auflösung durch Verwendung zeitlicher Informationen, 

sondern umgeht auch das Bewölkungsproblem der herkömmlichen, auf Sofortbeobachtungen 

basierenden Downscaling-Verfahren. Die Methodik wird dadurch besser einsetzbar, da auf 

zahlreiche In-situ-SM-Messungen oder die Bereitstellung von Bodeninformationen verzichtet 

werden kann. Darüber hinaus kann das Ellipsenmodell die SM direkt abschätzen; empirische 

Beziehungen zwischen In-situ-SM-Messungen und fernerkundeten Parametern müssen somit 
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nicht aufwendig hergestellt werden. Dadurch werden wesentliche Nachteile herkömmlicher 

VIS- und TIR-Verfahren überwunden.  
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1. Introduction of soil moisture 

Soil Moisture (SM) is an essential variable in various scientific fields. It plays an important role 

in climate research and numerical weather prediction. SM is an integrator of climatic conditions 

and a driver of local weather and climate, which has been defined an essential climate variable 

by the global climate observing system (Wagner et al., 2012). SM is required to improve 

understanding the of land-atmosphere processes for climate researches. SM-atmosphere 

coupling is a vital process underlying climate variability and change over land (Berg and 

Sheffield, 2018). It regulates the partitioning of mass and energy fluxes between land and 

atmosphere and thus plays a key role in the assessment of the different components of the water 

and energy balance. SM is a source of water for the atmosphere through processes leading to 

evapotranspiration from land, mainly including soil evaporation and plant transpiration. 

Evapotranspiration is a key ingredient of the continental water cycle, as it returns up to 60% of 

all land precipitation back to the atmosphere (Oki and Kanae, 2006; Seneviratne et al., 2010). 

SM has been used in some weather prediction models to improve forecasts. For instance, the 

assimilation of Soil Moisture and Ocean Salinity (SMOS) SM into the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Hydrology revised-Tiled ECMWF Scheme for 

Surface Exchanges over Land (H-TESSEL) model improved the forecast (Rodríguez-

Fernández et al., 2019). Besides, the drought code from SM has been used in the detection of 

climate change influence on wildfire risk and for forecasting wildfire risks (Girardin and 

Wotton, 2009). 

SM is also required in hydrology due to its substantial impacts on many processes, such as 

flooding, runoff, infiltration and ground water recharge (Brocca et al., 2017). Specifically, SM 

is the key variable for the partitioning of rainfall into runoff and infiltration, which plays a 

fundamental role in runoff modeling and flood forecasting (Brocca et al., 2010). For instance, 

SM is used for hydrological model calibrations, flood model initialization and flood simulation 

via data assimilation methods (Chen et al., 2011; Massari et al., 2014; Tramblay et al., 2010). 

Except for floods, SM is also important for many other natural hazards, such as landslide and 

erosion prediction. For example, some researchers analyzed the linkage between landslide 

occurrence and SM (Godt et al., 2006; Ponziani et al., 2012). Therefore, due to its effect on 

runoff and soil erosion in cropping systems, droughts or exposure to flood threats, changes in 

SM have substantial impacts on the socio-economic field (Wei et al., 2007). 
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For its vital role of water supply for plants, the knowledge of SM is required to optimize 

irrigation management and agricultural practices. Accurate high resolution SM is a requisite for 

precision farming applications to provide information for plant photosynthesis, agricultural 

irrigation, water management and crop yield forecasting (Engman, 1991). Besides, SM has been 

beneficial to assess and monitor of the epidemic risk. For example, based on an eco-

hydrological model, Montosi et al. (2012) identified the factors affecting malaria dynamics and 

spotlighted the importance of SM. 

As shown in Figure 1, SM is usually defined as the water contained in the unsaturated soil zone, 

expressed as either a dimensionless ratio of two masses or two volumes in %, or given as 

volumetric water content (m3/m3) adopting by most research communities (Petropoulos et al., 

2015). 

Volumetric SM 𝜃(m3/m3) in the soil volume V is defined as follows: 

                                               𝜃 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒  𝑖𝑛 𝑉
𝑉

                                                                (1) 

 

Figure 1. The saturated and unsaturated soil zones (adapted from Petropoulos et al. 2015) 

Peng et al. (2020) summarized the requirements of SM depths across disciplines. In agriculture 

and ecosystem, only root zone SM is required for precision agriculture, erosion modelling, 

ecosystem monitoring and ecological modelling. While in numerical weather prediction, 

climate and hydrology fields, surface SM is needed. In particular, surface SM at high temporal 

resolution (i.e. daily or sub-daily) benefit for hydrological modelling, estimation of water cycle 

components, and assimilation in numerical weather prediction system. Except for P-band 

Synthetic Aperture Radar (SAR), remote sensing can only show its potential to provide spatially 
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explicit maps of the surface SM (i.e. 0-5 cm). Though P-band SAR has a deeper penetration 

depth than others, the increased antenna-length requirements and the influences of Radio 

Frequency Interference (RFI) make the construction of space-borne P-band SAR systems 

difficult (Peng et al., 2020).  

This thesis focuses on the surface SM based on remote sensing methods. According to the 

spectrum, remote sensing SM are divided into four categories, including optical-, thermal 

infrared-, microwave-based methods, synergistic methods. The microwave-based methods 

consist of active and passive microwave-based methods according to the interaction between 

the surface of the Earth and the sensor. A comprehensive introduction of the commonly used 

methodologies for soil moisture estimation, including their physical principles, advantages and 

constraints is presented in chapter 2. 
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2. State of the art in remote sensing SM  

2.1. Optical remote sensing of surface SM 

The optical spectrum is generally defined to encompass electromagnetic radiation with 

frequencies in the range from 300 GHz to 3000 THz, or wavelengths in the range from 102 to 

106 nm. The spectral reflectance varies by different SM in the reflectance for a range of soil 

types has been studied extensively over the years. In 1925, it was firstly found that the spectral 

reflectance decreased as SM increased using laboratory measurements (Ångström, 1925). 

Bowers and Hanks (1971) showed that the reflectance decreased and absorptance increased as 

moisture content increased. The plot of SM against reflectance indicated the possibility of using 

reflectance data to estimate SM. Idso et. al (1975) denoted that albedo and SM at depth of 2 cm 

had a linear function in drying bare soil, independent of season. It indicated that albedo could 

be used to estimate the SM of the very surface of the soil. The finding from Bowers and Hanks 

(1971) was proved by Liu et al. (2002) at low SM levels (Liu et al., 2002). Conversely, after a 

critical point related to soil hydrodynamic properties, reflectance increased with SM. Besides, 

some studies found some non-linear relationships between SM and reflectance, such as an 

exponential function (Lobell and Asner, 2002) and an inverted Gaussian function (Whiting et 

al., 2004).  

Most above listed studies are based on laboratory measurements or model applications in bare 

soil. Gao et al. (2013) developed an empirical exponential model to estimate SM using visible 

(RED) and near-infrared (NIR) spectral band reflectance through removing the effect of 

vegetation. It was achieved through the linear decomposition of the mixed pixels in the RED-

NIR spectral feature space approximately presented as a triangular shape (Figure 2), which has 

been applied to the regions in Beijing using satellite imagery from Landsat TM and ground-

based measurements. 



 5 

 

Figure 2. Red and Near infrared spectral feature space (adapted from Gao et al., 2013) 

Except for SM estimation directly with empirical relationships from RED and NIR band 

spectral reflectance, many RED-NIR related indices have been proposed. As the most 

commonly used vegetation index in SM retrieval, Normalized Difference Vegetation Index 

(NDVI) can be calculated as (Carlson and Ripley, 1997; Myneni and Williams, 1994): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 −  𝑅𝐸𝐷
𝑁𝐼𝑅 +  𝑅𝐸𝐷                                                                              (2) 

NDVI was applied to drought monitoring (Peters et al., 2002; Wigneron et al., 2007) and 

exploration of the relationship between NDVI and SM over the U.S. Corn Belt (Adegoke and 

Carleton, 2002) or the Texas Gulf Coast region (Wang et al., 2007). The relationship between 

NDVI and SM is limited by many factors, such as vegetation types, soil types, climate 

conditions, topography and land cover.  

Though many optical sensors are currently in orbit, fairly limited literature exists on the 

exploitation of quantitative SM estimation based on hyperspectral, shortwave infrared (SWIR), 

NIR or visible data. Some methods are based on laboratory measurements and are only 

applicable to bare soil. Most optical vegetation indices or drought monitoring indices are only 

able to present the drought status, but do not allow for quantitative SM estimates. Reflectance 

measurements are highly affected by cloud, incidence angle, vegetation and some inherent 

physical soil properties, including roughness, texture and organic matter content, which makes 

the exploitation of such techniques more difficult.  
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2.2. Thermal infrared sensing of surface SM 

The Land Surface Temperature (LST) as a key variable in determining the land surface heat 

and water balance is affected by the fluxes of outgoing longwave, sensible, and ground heat 

which decide the latent heat flux, namely evapotranspiration by the energy balance principle 

(Lakshmi et al., 2003). The variation of LST influences SM and vice versa. Based on the 

relationship of energy and water, the SM retrieval methods using thermal infrared data are 

mainly partitioned into two group, Thermal Infrared (TI) methods and temperature index 

methods. 

2.2.1. Thermal infrared methods 

TI is a property of the soil that is defined by the volumetric heat capacity and thermal 

conductivity, both properties positive correlate with SM. For a given heat transfer, a high TI 

indicates small changes in temperature, while the opposite is true for a low TI. TI can be 

expressed: 

                                                      𝑃 = 𝑘𝜌𝑐                                                            (3) 

Where 𝑃 is TI (J·m-2·s-1/2·K-1); 𝜌 is density (kg·m-3); 𝑘 is thermal conductivity (J·m-1·s-1·K-1); 

𝑐 is specific heat (J·kg-1·K-1) of the material.  

Many initially developed TI models are based on diurnal/daily variation temperature. In 1973, 

Watson firstly developed a thermal model for exploring the diurnal temperature behavior which 

was originally created by Jaeger (1953) using an one-dimensional periodic heating model to 

simulate temperature variations of the lunar surface. With the advent of satellite technology, 

researchers started to focus on TI mapping using satellites data (Pohn et al., 1974; Price, 1977; 

Watson, 1982). A well-known TI approach was proposed by Price (1977). However, the method 

required various parameters, including diurnal temperature difference, surface albedo, solar 

constant, atmospheric transmittance in the visible spectrum and some meteorological data. 

Consequently, Xue and Cracknell (1995) proposed a simple and operational TI model by using 

the phase angle information of the diurnal temperature change, requiring the time of maximum 

temperature in the daytime for the calculation of real TI. Based on this model, Sobrino et al. 

(1998) developed a TI method only from remote sensing data, using three surface temperatures 

from National Oceanic and Atmospheric Administration (NOAA) satellite at different hours on 

the same day. From a different perspective, Verhoef (2004) developed a TI approach from 
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remote measurements of night-time net radiation and variation of surface temperatures between 

sunset and sunrise. However, this approach only works for bare soil and windless nights.  

With the great development of TI, researchers have concentrated on the SM studies via TI 

approaches from 1970 onward. Based on laboratory measurements, some studies were 

conducted to analyze thermal parameters with variable SM (Idso et al., 1975; Reginato et al., 

1976). Several researchers focused on the possibility of SM estimation by TI methods based on 

nature of the land surface. Pratt and Ellyett (1979) illustrated the influence of soil type and soil 

porosity on SM estimation. Using a simulation method, they analyzed the ability of the TI 

approach to estimate remotely both SM and soil type. But the limitations and complexity make 

TI methods difficult to derive SM. Consequently, a more easily calculated index, namely 

Apparent Thermal Inertia (ATI), has been initially proposed by Short and Stuart (1982). ATI is 

an approximation to the actual TI value which can be obtained by surface albedo and diurnal 

temperature as follows (Price, 1985): 

𝐴𝑇𝐼 = 𝑁 ×
(1 − 𝐴)𝐶

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
                                                                          (4) 

𝑁 = 1000𝜋                                                                                         (5) 

𝐶 =
1
𝜋 × 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽 1 − 𝑡𝑎𝑛2𝛼 𝑡𝑎𝑛2𝛽 + 𝑐𝑜𝑠−1(−𝑡𝑎𝑛𝛼 𝑡𝑎𝑛𝛽) × 𝑐𝑜𝑠𝛼 𝑐𝑜𝑠β                      (6) 

where 𝐴 is surface albedo; N is a scaling factor; C is a constant to normalize for solar flux 

variations with the solar declination (α) and latitude (β);  𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the maximum and 

minimum surface temperatures during the diurnal cycle.  

ATI as a related factor to the actual TI, it can be generated directly from remote sensing data. 

ATI correlates positive to SM. Because of its simple formulation, it has been widely used to 

map SM in the 21st century (Liu and Zhao, 2006; Scheidt et al., 2010; Van doninck et al., 2011; 

Verstraeten et al., 2006). Verstraeten et al. (2006) proposed a Soil Moisture Saturation Index 

(SMSI) from ATI series, including maximal ATI and minimal ATI, and estimated SM in the 

arid to semi-arid regions of north-western China using MODIS data (Veroustraete et al., 2012).  

TI/ATI models are based on soil properties with great physical significance. However, TI/ATI 

can be converted to SM only if the soil properties are known (Minacapilli et al., 2009). If the 

soil texture changes or when the model is transferred to another study area, the fitting model 

parameters have to change accordingly. Another limitation of estimation SM based on TI/ATI 
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is that the accuracy diminishes over dense vegetation (Sohrabinia et al., 2014; Van Doninck et 

al., 2011). The precision of TI/ATI retrieval is affected by the sky conditions, especially clouds. 

In summary, TI/ATI methods for SM estimation are more effective in arid and semi-arid regions 

under clear-sky condition. 

2.2.2. Temperature index methods 

LST is a good indicator of the energy balance in the Earth's surface processes on a regional and 

global scale, which is one of the biophysical factors sensitive to surface water stress. From 1981, 

Crop Water Stress Index (CWSI) based on the canopy-air temperature difference has been 

widely used to detect plant water demand using multi-source thermal imagery including the 

hand-held radiometers, the Landsat Thematic Mapper (TM) and the Advanced Very High 

Resolution Radiometer (AVHRR) (Cohen et al., 2005; Jackson et al., 1981). Colaizzi et al. 

(2003) investigated the relationship between the CWSI and SM under low frequency surface 

irrigation. However, it is difficult to differentiate the surface soil temperature and canopy 

temperature. To overcome it, a Water Deficiency Index (WDI) was proposed by Moran et al. 

(1994), which works under two assumptions: 1) the LST difference varies linearly with the 

vegetation fraction; 2) the canopy temperature difference and the surface soil temperature have 

linear relations with the transpiration rate of the vegetation and the evaporation rate of the soil 

(Gao et al., 2013). Additionally, Kogan (1995) developed the Temperature Condition Index 

(TCI) based on time series data from the AVHRR daytime LST. This method is quite simple, 

since only daytime thermal remote sensing data is needed. But it is difficult to normalize the 

variation of daily meteorological conditions (McVicar and Jupp, 1998). TCI showed its 

potential to monitor drought (Tsiros et al., 2004). Though many temperature indices have been 

proposed, fairly limited literature exists on the exploitation of quantitative SM. Due to lack of 

soil and vegetation information, the quantitative relationships between most temperature 

indices and SM are difficult to be determined. 

2.3. Passive microwave sensing of surface SM    

Passive microwave remote sensing of SM spans over almost 40 years of history. In 1978, the 

Scanning Multichannel Microwave Radiometer (SMMR), which was launched onboard the 

National Aeronautics and Space Administration (NASA) Nimbus-7 satellite, was the first 

passive microwave satellite sensor that had the capability to estimate SM (Gloersen et al., 1984). 

The Special Sensor Microwave/Imager (SSM/I), a linearly polarized passive microwave 
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radiometer system with seven channels and four frequencies, was on board the satellites of the 

United States air force defense meteorological satellite program in 1987. Although it was not 

designed for SM sensing, a number of SM estimation studies have been conducted (Jackson, 

1997). In December 1997, the Tropical Rainfall Measuring Mission (TRMM) Microwave 

Imager (TMI) began acquiring data with a nine-channel radiometer largely based on SSM/I 

technology. TMI is a dual polarization passive microwave conical scanning radiometer 

operating at 10.65, 19.4, 21.3, 37.0 and 85.5 GHz. The TMI observation at 10.65 GHz was used 

for deriving the surface wetness state. It has a spatial resolution of about 50 km and a wide 

swath that can provide data between ± 38° latitude (Bindlish et al., 2003). In December 2002, 

Advanced Microwave Scanning Radiometer (AMSR-E) of the Earth observing system was 

developed by the national space development agency of Japan and provided to the U.S. NASA 

for launch on its Aqua satellite. The AMSR-E provides daily SM measurements on a global 

scale with the exception of regions of snow, ice or frozen soil and dense vegetation from June 

2002 to October 2011. In November 2009, the Soil Moisture and Ocean Salinity (SMOS) 

mission was launched to provide global SM and sea surface salinity observations from 

microwave L-band. As a successor instrument of AMSR-E on NASA's Aqua satellite, 

Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched in 2012. It provides the 

SM product from July 2012 to present at 10 km resolution (Imaoka et al., 2010). In January 

2015, Soil Moisture Active Passive (SMAP) mission was launched to provide SM every two to 

three days using an L-band radiometer and an L-band radar (active) (Chan et al., 2016; 

Entekhabi et al., 2010).    

Passive sensors, in other words the so-called microwave radiometer, use very sensitive 

detectors to measure the naturally emitted intensity of the microwave emission from the Earth's 

surface at wavelengths of 1 to 30 cm, expressed as brightness temperature (TB). Similar to TIR 

remote sensing sensors, the emitted energy recorded by passive microwave radiometers 

contains the contributions from the land surface, atmosphere and reflected sky radiation. In 

contrast to TIR wavelengths, atmospheric effects, namely atmospheric transmission and 

upwelling radiation, can be ignored at frequencies below about 6 GHz. TB of the surface is 

related to its physical temperature, emissivity and contributions from the intervening 

atmosphere. TB observed by a radiometer at a height H above the ground can be expressed as 

(Jackson and Schmugge, 1989; Schmugge et al., 1986): 

 𝑇𝐵 = 𝜏(𝐻) × (1 − 𝑒𝑣)𝑇𝑠𝑘 + 𝑒𝑉𝑇𝑠𝑢 𝑓 + 𝑇𝑎𝑡𝑚                                      (7) 
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𝑒𝑣 = 1 + 𝑒𝑠𝑢 𝑓 − 1  exp(𝑏𝑊)                                              (8) 

𝑒𝑠𝑢 𝑓 = 1 + (𝑒𝑠𝑜𝑖𝑙 − 1) exp(ℎ)                                               (9) 

𝑒𝑠𝑜𝑖𝑙 = 1 − √𝑘−1
√𝑘+1

2
                                                     (10) 

where 𝑇𝐵 is the TB; 𝜏(𝐻) is the atmospheric transmissivity; 𝑇𝑠𝑘  is the reflected sky brightness 

temperature; 𝑇𝑠𝑢 𝑓  and 𝑇𝑎𝑡𝑚  are the thermal temperature of surface and direct atmospheric 

contribution separately; and 𝑒𝑉 , 𝑒𝑠𝑢 𝑓  and 𝑒𝑠𝑜𝑖𝑙  are the vegetation, rough surface and soil 

emissivity respectively; b is vegetation attenuation parameter; W is vegetation water content; h 

means surface roughness parameter and k is complex dielectric constant of the soil. 

In general, passive microwave sensing of surface SM has two phases: 1) relating TB and soil 

dielectric constant via a Radiative Transfer Model (RTM), 2) linking soil dielectric constant 

with SM through ‘dielectric mixing’ models.  

Among the numerous retrieval algorithms, the first category is developed based on mono-

configuration sensors, namely single polarization/frequency channel and view angle (Wang et 

al., 1990). These algorithms determine the SM only with the purpose of minimizing the error 

between observed and modeled TBs in the horizontal or vertical polarization. Parameters such 

as surface temperature, Vegetation Optical Depth (VOD) and roughness are either obtained 

from additional data/empirical sources or assumed to be constant (Karthikeyan et al., 2017). 

The Single Channel Algorithm (SCA) is an example using mono-configuration observations as 

the baseline retrieval algorithm for the SMAP mission and the Land Surface Microwave 

Emission Model (LSMEM) (Gao et al., 2004; Jackson and Schmugge, 1989). 

Due to the capability of measuring multi frequency/angular dual polarization TB from the 

passive microwave satellite sensors, more “extra” observations are available to estimate 

additional parameters along with SM simultaneously, including vegetation water content 

through the VOD, surface roughness conditions and LST (Calvet et al., 1995; Njoku and Li, 

1999; Parrens et al., 2017). The second category of passive retrieval algorithms are based on 

two-parameter retrieval (SM and VOD) or multi-parameter retrieval. Paloscia et al. (2001) 

proposed an SM retrieval algorithm using two dual polarized frequency measurements, 

including vegetation effects correction using X-band emission, from SMMR and SSM/I 

Satellites. SM retrieval methods from TMI observations are normally based on a physical model 

of microwave emission from a layered soil–vegetation–atmosphere medium using dual 
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polarization observations at 10.65 GHz (Bindlish et al., 2003; Wen et al., 2003). The baseline 

algorithm of AMSR-E SM product is based on three primary parameters, including SM, LST 

and vegetation water, from observations at four channels (Njoku and Li, 1999). As the most 

important variable in the retrieval process, VOD can be estimated via the 2-Parameter L-band 

microwave emission of the biosphere model (Wigneron et al., 2007, 2000), the Dual Channel 

Algorithm (DCA) (Owe et al., 2001), the Land Parameter Retrieval Model (LPRM) (Owe et al., 

2008), or the revised Land Surface Microwave Emission Model (LSMEM) (Pan et al., 2014). 

Numerous studies have reported good accuracy and relatively low error distribution of the 

two/multi-parameter retrieval approaches validated with in-situ measurements (de Jeu et al., 

2014; Li and Rodell, 2013; Mladenova et al., 2014). 

In summary, the passive microwave SM estimation techniques have several important 

advantages and disadvantages. A particular advantage is that SM is the dominant parameter that 

influences the received signal over poorly vegetated land (Njoku and Entekhabi, 1996). In 

addition, the passive microwave techniques allowing day or night observation are not limited 

by the presence of clouds and weather. Passive microwave instruments are typically 

characterized by a wide spatial coverage and high temporal resolution, but also by coarse spatial 

resolutions normally over ~25 km. Therefore, passive microwave SM estimation is more 

suitable for global scale studies rather than watershed-scale applications (Moran et al., 2004). 

SM retrieval from TB is not straightforward as it is also affected by many factors such as 

vegetation cover, surface roughness and soil texture (Srivastava, 2017). Moreover, the 

operation of these instruments at low frequencies is limited by the effect of RFI, which 

influences the TB quality. 

2.4. Active microwave sensing of surface SM  

Due to the limitation by the coarse spatial resolution of the passive radiometer signal and the 

development of active sensors, some studies have focused on the radar signal, which is 

characterized by a higher spatial resolution and a longer revisit time. Active microwave sensors 

can be classified into imaging and non-imaging sensors. The most common imaging sensor is 

radio detection and ranging (radar), which has been used for SM retrieval since the 1970s 

(Jackson et al., 1981; Macdonald and Waite, 1971). As an advanced form of sensor, SAR has 

been designed for remote sensing purposes, such as onboard RADARSAT-1 from the Canadian 

Space Agency (CSA), Envisat and Sentinel-1 operated by the European Space Agency (ESA), 

TerraSAR-X by the German Aerospace Center (DLR) and European Aeronautic Defence and 
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Space Company (EADS), and SMAP developed by NASA. The non-imaging sensors include 

altimeters and scatterometers. Jason-1/2, Cryosat-2 and TOPEX/Poseidon are a few examples 

of satellites on board the altimeter. QuikSCAT, Remote Sensing Satellite (ERS) Scatterometer, 

NASA scatterometer and MetOp A/B Advanced Scatterometer (ASCAT) are some of the 

important scatterometers.  

Active sensors send radiation pulses towards the Earth surface and then detect the reflected and 

scattered signals as backscatter coefficients. The backscatter coefficient is a function of physical 

and electrical properties of the soil surface and the radar characteristics including wavelength, 

polarization and incidence angle. It depends on the amount of radiation reflected from land 

surface. Generally, the models for the SM estimation using active sensors are divided into four 

groups: physical-based, semi-empirical, empirical and change detection models. 

2.4.1. Physical-based models 

The physical-based models are used to simulate backscatter coefficients according to soil 

dielectric constant, surface roughness and sensor properties. In principle, these physical-based 

models work similar to RTM of passive microwave SM estimation. Some widely used physical-

based models include Small Perturbation Model (SPM) (Rice, 1951; Ulaby et al., 1986), 

Kirchhoff Approximation (KA) model (Ulaby, 1982), Small Slope Approximation (SSA) 

model (Voronovich, 1985), Michigan Microwave Canopy Scattering (MIMICS) model (Ulaby 

et al., 1990) and Integral Equation Model (IEM). IEM was developed by Fung et al. (1992). As 

one of the most widely used model, IEM calculates the backscatter coefficient given the surface 

characteristics of dielectric constant and surface roughness. Backscatter coefficient (𝜎 ) is 

generally described by root-mean-square height (s), radar properties including frequency(f) and 

polarization, and local incidence angle (𝜗): 

𝜎 = 𝑘2

2
𝑒−2𝑘2𝑠2 ∑ 𝑠2𝑖 𝐼𝑖 2 𝑊(𝑖)(−2𝑘 ,0)

𝑖!𝑖=1                                                   (11) 

where pq means the co-polarization (HH or VV) or cross-polarization (HV or VH); 𝑘 is the 

radar wavenumber (2𝜋𝑓); 𝑘  and  𝑘𝑥 are determined by k and 𝜗 (𝑘 = 𝑘 cos 𝜗 , 𝑘𝑥 = 𝑘 sin 𝜗); 

𝑊(𝑖)(𝑢, 𝑣)  is the Fourier transform of ith power of autocorrelation function 𝜌  (which is a 

function of correlation length L) given by 

𝑊(𝑖)(𝑢, 𝑣) = 1
2𝜋 ∬ 𝜌𝑖(𝑙, 𝑚)𝑒(− 𝑢𝑙− 𝑣𝑚)𝑑𝑙𝑙𝑑𝑚                                              (12) 
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𝐼𝑖 = (2𝑘 )𝑖𝑤 𝑒−𝑘2𝑠2 + 𝑘𝑖

2
[𝐹 (−𝑘𝑥, 0) + 𝐹 (𝑘𝑥, 0)]                                    (13) 

𝑤𝐻𝐻 = −2𝑅𝐻/ cos 𝜗                                                                  (14) 

𝑤𝑉𝑉 = −2𝑅𝑉/ cos 𝜗                                                                  (15) 

𝐹𝐻𝐻(−𝑘𝑥, 0) + 𝐹𝐻𝐻(𝑘𝑥, 0) = − 2 sin2 𝜗 1+𝑅𝐻 2

cos 𝜗
[ 1 − 1

𝜇
+ 𝜇 𝑘 −sin2 𝜗−𝜇 cos2 𝜗

𝜇 cos2 𝜗
]                 (16) 

𝐹𝑉𝑉(−𝑘𝑥, 0) + 𝐹𝑉𝑉(𝑘𝑥, 0) = − 2 sin2 𝜗 1+𝑅𝑉 2

cos 𝜗
[ 1 − 1

𝑘
+ 𝜇 𝑘 −sin2 𝜗−𝑘 cos2 𝜗

𝑘 cos2 𝜗
]                 (17) 

where 𝑅𝐻 and 𝑅𝑉 are the reflectivities of smooth soil in horizontal and vertical polarization 

separately; 𝑘  is the dielectric constant of the soil; 𝜇  is the relative permittivity. 

Based on fitting IEM numerical simulations, several models have been developed for a wide 

range of roughness and SM conditions, including neural networks (Satalino et al., 2002), the 

method of least squares (Baghdadi et al., 2002), the Bayesian approach (Paloscia et al., 2005) 

and look up tables (Rahman et al., 2007).  

Overall, physical-based models can describe physical processes well, but they have several 

important disadvantages. These models are only applicable under specifically known roughness 

conditions. For instance, SPM only works for slightly rough surface. Zribi et al. (1997) and 

Baghdadi et al. (2011) found the IEM performed well over smooth surface. However, the result 

is bad when the IEM is applied to a real world simulation. The series of IEM models (including 

the Advanced IEM) are difficult to be used especially from a specific location to a large region 

(Bindlish and Barros, 2000). The main difficulty of using them on natural surfaces is related to 

the sensitivity of the models to surface roughness parameters and the difficulty associated with 

their correct measurement (Zribi and Dechambre, 2002). Additionally, IEM neglects scattering 

from the sub-surface soil volume, which may be important for dry soil conditions and long 

wavelengths (Schanda, 1987). Due to the drawbacks of the physical-based models, the semi-

empirical models have been developed. 

2.4.2. Semi-empirical models 

Based on the conceptual background of physical models, semi-empirical models simplify the 

theoretical backscattering models with simulation or experiments. Therefore, the semi-

empirical model is a good compromise between the complexity of the theoretical model and 
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the simplicity of the empirical model. The main advantages of semi-empirical models are that 

they are not site dependent and can also be used when the surface roughness cannot be measured. 

The most widely used semi-empirical models are the Oh model (Oh et al., 1992), Dubois model 

(Dubois et al., 1995) and Water Cloud Model (WCM) (Attema and Ulaby, 1978).  

Based on truck-mounted network-analyzer-based scatterometer measurements, the Oh model 

relates the ratios of co-polarized and cross-polarized backscatter coefficients in separate 

polarizations to SM and surface roughness (Oh et al., 1992). The two main advantages of the 

Oh model are, first, only one surface parameter of surface roughness height is required; second, 

both surface roughness and dielectric constant can be obtained without the need for field 

measurements, if multi-polarized data are available. The drawbacks of the Oh model are, first, 

not considering multiple or secondary scattering processes, second, only applicable to the 

surfaces of the same type as in the experiment. Based on the original Oh model, Oh et al. (2002) 

further improved to take the full range of surface roughness into account for natural conditions. 

In contrast, Dubois model was only based on co-polarized backscatter coefficients and radar 

configuration parameters (namely wavenumber, wavelength, surface roughness height and 

incidence angle) using truck-mounted scatterometer experiments (Dubois et al., 1995). 

Subsequently, several evaluations of the two semi-empirical models were conducted. Zribi et 

al. (1997) and Baghdadi et al. (2011) indicated that Oh model simulated backscatter coefficients 

accurately over rough soil. Panciera et al. (2013) found that the Oh and Dubois models had 

comparable accuracies under HH polarization whereas the Oh model was superior in the case 

of VV polarization over Australia. Baghdadi and Zribi (2006) concluded that these models 

either overestimate or underestimate the backscatter coefficients when evaluated with C-band 

SAR data. 

These aforementioned models are only applicable to bare soil. In the case of vegetated soil 

surface, the dielectric properties of vegetation (i.e., the water content of the leaves, branches, 

and trunk), as well as the physical structure of the vegetation, are two main determinants. Thus, 

to understand how vegetative structure affects microwave backscattering and to remove the 

impact from vegetation, the WCM as a semi-empirical model has been proposed to address this 

issue (Attema and Ulaby, 1978). The theoretical basis is that the co-polarized backscatter 

coefficient measured at the incidence angle can be expressed as the sum of the backscatter 

contributions from soil, vegetation, and the interaction of the radar radiation between vegetation 

and soil layers. Although WCM is a simple and widely used method, it is unsuitable for 
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vegetation with a certain height (e.g., sorghum and corn) because it ignores the multiple 

scattering process between the vegetation and the land surface (Song et al., 2014).  

2.4.3. Empirical models 

Except for the physical and semi-empirical models, various researches have been focused on 

the explicit relationships between the backscatter coefficients and SM. Many studies have 

shown a linear relationship between the backscattering coefficient and SM assuming under 

conditions with bare soil or constant vegetation and roughness (Kelly et al., 2003; Lakshmi, 

2013; Shoshany et al., 2000; Ulaby et al., 1978). The coefficients of the linear relationship vary 

strongly from site to site that the model cannot be transferred from one region to other regions 

(Verhoest et al., 2008). Besides, some studies presented non-linear relationships between SM 

and the backscatter coefficient (Narayanan et al., 1999; Narvekar et al., 2015; Tomer et al., 

2015; Ulaby et al., 1986). Overall, empirical models have two main drawbacks. 1) They are 

limited to the studies at the local level due to the lack of a physical basis. 2) The calibration of 

empirical models requires accurate numerous in-situ SM observation and roughness parameters. 

To expand the applicability of empirical models, the models must therefore contain data relating 

to different conditions of surface roughness and the seasons, collected over different spatial 

areas (Baghdadi et al., 2008). 

2.4.4. Change detection approaches 

While the physical, semi-empirical and empirical models are based on the backscatter 

coefficient obtained in a single period, it has been found that the active microwave data from 

multi-temporal passes in one location can be used to get the relative change in SM (Engman, 

1994). Change detection approaches rely on the assumption that the temporal variability of 

vegetation biomass and surface roughness has a much longer time scale than that of SM. The 

change in the radar backscatter between repeat passes is caused by the change in SM. Therefore, 

multi-temporal radar data can minimize the effect of vegetation biomass and surface roughness 

and maximize the sensitivity of the backscatter to changes in the SM. 

Several change detection approaches are widely used to estimate relative SM levels using active 

microwave data, including delta index approach (Thoma et al., 2004), alpha approximation 

method (Balenzano et al., 2011; He et al., 2017). Additionally, a Normalized radar Backscatter 

soil Moisture Index (NBMI) has been proposed by the backscatter measurements at two times 

(t1 and t2) over one location. By normalizing the effects of surface roughness, soil type, and 
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topography on the SAR backscatter, such ratio technique (𝑁𝐵𝑀𝐼 = 𝜎 1+𝜎 2
𝜎 1−𝜎 2

) provides a relative 

SM index ranging between 0 and 1, based to distributed SM variations. Similarly, Wagner and 

Scipal (2000) estimated the relative SM by normalization of variations in backscatter 

coefficient with dry and wet soil surface conditions using six years of data. This methodology 

has been used in the soil water retrieval package algorithm to estimate SM using the data from 

the advanced scatterometer sensors onboard the MetOp-A and MetOp-B satellites (Lindell and 

Long, 2016; Wagner et al., 2013).  

In summary, the active microwave SM retrieval method is fundamentally based on the large 

difference between the dielectric constants of water and the soil particles. The active microwave 

remote sensing over other spectral regions has three advantages. First, the atmosphere is 

effectively transparent and offers complete weather coverage in the decimeter range of 

wavelengths. Second, the measurement is independent of solar illumination and can be obtained 

in the day or at night. Third, it has much higher spatial resolution than passive data. However, 

active microwave instruments are typically characterized by a narrow spatial coverage and 

coarse temporal resolution. Both passive and active remote sensing SM retrievals are influenced 

by surface roughness and vegetation cover.  

2.5. Synergistic methods  

2.5.1. Synergistic methods of optical with thermal infrared observations   

Given that the special features and limitations of each optical and thermal infrared observations, 

a significant number of investigations have been focused on exploring the potential for surface 

SM estimation from the synergistic use of optical and thermal infrared observations. Generally, 

most methods are based on a triangular or trapezoidal domain, namely a two-dimensional 

scatterplot (Figure 3) with satellite-derived surface temperature (Ts) and Vegetation Index (VI) 

(Petropoulos et al., 2009). Figure 3 shows the physical properties encapsulated in the Ts/VI 

feature space. The triangular or trapezoid domain is based on the fact that high sensitivity of Ts 

to SM variations over bare soil, but its reduced sensitivity over vegetated regions. The ‘dry 

edge’ as the border of the triangle or trapezoid is defined by the locus of highest temperature 

with varying from full vegetation covered land to bare soil, which represents the conditions of 

limited SM. Similarly, the ‘wet edge’ corresponds to the pixels of lowest temperature with 

maximum SM which contain differing amounts of vegetation and bare soil.  
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Figure 3. Summary of the key descriptors and physical interpretations of the Ts/VI feature space 

‘‘scatterplot’’ (adapted from Petropoulos et al., 2009)  

The investigations about Ts/VI feature space started from 1981. Carlson et al. (1981) were the 

first to underline the potential relationship between latent fluxes, Fractional Vegetation Cover 

(FVC) and SM. Goward et al. (1985) showed the potential of using the scatterplot derived rate 

of change of Ts with vegetation amount to determine the surface resistance to moisture fluxes 

based on the one-dimensional boundary layer model. Carlson and Buffum (1989) explored the 

Ts/VI feature space properties and found that changes in SM could be described as isopleths of 

SM which was plotted as a function of Ts and FVC. A triangular domain of the Ts/VI scatterplot 

appears as a result of the smaller sensitivity of Ts to SM over vegetated regions than over bare 

soil that has been confirmed by Carlson et al. (1990; 1995). Subsequently, some investigations 

have been focused on the boundaries of the triangular/trapezoidal shape which might be utilized 

by different spatial data to infer the physical restrictions for the surface SM availability (M0) in 

Figure 3 (Carlson et al., 1995; Gillies et al., 1997; Gillies and Carlson, 1995; Moran et al., 1996, 

1994). Moran et al. (1994) described a similar feature as a trapezoid that was further developed 

by some researchers (Carlson et al., 1995; Moran et al., 1997). Based on the resampled airborne 

remote sensing data, Carlson et al. (1995) found the Ts/VI feature space concept could be 

extended to regional scales with remote sensing satellites data. 
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Based on the Ts/VI feature space, Sandholt et al. (2002) proposed the Temperature Vegetation 

Dryness Index (TVDI) by linking the Ts/NDVI scatterplot to estimate SM in Figure 4. It is 

based on two assumptions that, first, SM is the main source of variation for Ts, second, TVDI 

is correlated with surface SM owning to the changes in TI and evaporative control. A dryness 

index has the value of 1 (TVDI=1) at the ‘dry edge’ with limited water availability. TVDI is 0 

at the ‘wet edge’ with maximum evaporation and SM. TVDI can be defined (Sandholt et al., 

2002): 

            𝑇𝑉𝐷𝐼 =  T −T 𝑚𝑖𝑛
𝑎+𝑏𝑁𝐷𝑉𝐼−T 𝑚𝑖𝑛

                                                           (18) 

where 𝑇𝑠𝑚𝑖𝑛 is the minimum surface temperature in the triangle as defining the wet edge 

(TVDI=0); 𝑇𝑠  is the observed surface temperature at a given pixel; NDVI is the observed 

normalized difference vegetation index; a and b are the parameters for the dry edge as a linear 

regression  (𝑇𝑠𝑚𝑎𝑥 = 𝑎 + 𝑏𝑁𝐷𝑉𝐼 ); 𝑇𝑠𝑚𝑎𝑥  is the maximum surface temperature for a given 

NDVI. 

 

Figure 4. Computation of the Temperature Vegetation Dryness Index (TVDI) for each pixel within the NDVI/Ts 

feature space domain (adapted from Sandholt et al., 2002) 

From a different perspective, Wan et al. (2004) proposed Vegetation Temperature Condition 

Index (VTCI) based on the Ts/NDVI scatterplot as shown in Figure 5. VTCI is defined as the 
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ratio of Ts differences among pixels with a specific NDVI value over a sufficiently large study 

area (Wan et al., 2004): 

            𝑉𝑇𝐶𝐼 =  T 𝑚𝑎 −T
T 𝑚𝑎 −T 𝑚𝑖𝑛

                                                               (19) 

where T𝑠𝑚𝑖𝑛 is the minimum surface temperature. 

𝑇𝑠𝑚𝑖𝑛 = 𝑎′ + 𝑏′𝑁𝐷𝑉𝐼                                                           (20) 

where a’ and b’ are the parameters for the wet edge. 

Subsequently, some investigations focused on the ability of VTCI to detect drought stress 

(Parida, 2006; Patel et al., 2012) and downscaling the satellite coarse SM product (Peng et al., 

2015a, 2015b).  

 

Figure 5. Illustration of the physical principles of the Vegetation Temperature Condition Index (VTCI) for each 

pixel within the NDVI/Ts feature space domain (adapted from Wan et al., 2004) 

Additionally, except for SM retrieval from Ts/VI individually, several investigations have been 

focused on coupling of the Ts/VI feature space with the Soil Vegetation Atmosphere Transfer 

(SVAT) model. The SVAT model is a time-dependent initial value boundary layer scheme 

which incorporates feedback between atmosphere, plant and soil. In Figure 6, A Ts/VI feature 

space can be yielded based on the input (namely a full range of surface SM (𝜃) and FVC values) 

and output (e.g. latent heat flux and Ts). Slanting and nearly straight lines represent the 𝜃 at 
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intervals of 0.1, increasing from 0 to the right side (namely dry edge). The solution for 𝜃 can 

be given by a third order polynomial as (Carlson, 2007; Gillies et al., 1997; Gillies and Carlson, 

1995): 

𝜃 = 𝑓𝜃(T𝑠, FVC)                                                   (21) 

where 𝑓𝜃is a polynomial fit for 𝜃. 

 

Figure 6. Soil Vegetation Atmosphere Transfer (SVAT) Model simulated triangle showing Fractional Vegetation 

Cover (FVC; %) versus scaled radiant surface temperature (adapted from Carlson et al., 2007) 

Capehart and Carlson (1997) validated the results from this method with AVHRR data for the 

Mahantango region in the USA compared to SM retrieved from the soil hydrology model 

(Capehart and Carlson, 1994). This approach has also been widely used for other applications, 

including surface runoff, stormwater runoff and urbanization (Arthur-Hartranft et al., 2003; 

Carlson and Arthur, 2000). 

Though the optical/thermal infrared methods based on Ts/VI feature space are widely used with 

satisfied results at finer spatial resolution, they have six limitations. First, the study area is 

required to be large enough to represent the entire range of SM, from dry to wet, and from bare 

soil to fully vegetated land surface. Second, SM is assumed to be the main source of variation 

for Ts which is derived from the changes in TI and evaporative control rather than changes in 

atmospheric conditions. Third, a large amount of ground-based SM measurements are normally 

required in the calibration process. Fourth, it is subjective in identifying the dense vegetation, 
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bare soil extremes and the warm edge. Fifth, they cannot be applied to cloudy days and night 

time. Last, when coupling with the SVAT model, a certain familiarity with the physics as well 

as their initialization and functioning on the part of the user is required, especially in regions 

where the knowledge of the soil and vegetation properties is patchy. 

2.5.2. Active and passive microwave data fusion 

Both active and passive microwave sensors have shown the potential for SM estimation for the 

past years. However, each sensor is more sensitive to different surface properties. A 

combination of passive and active sensors can provide enhanced accuracy in the retrieval of 

geophysical parameters (Njoku et al., 2000). Besides, the active sensor has a higher spatial 

resolution, while the passive one has a better temporal resolution. Therefore, some studies have 

been focused on the potential synergy between active and passive data for SM retrieval.  

Saatchi et al. (1994) examined the synergism of radar and radiometer measurements for bare or 

low vegetated surface based on the SPM model. Njoku et al. (2002) estimated SM using 

radiometer and radar measurements from the passive and active L- and S-band airborne sensor 

with a RMSD accuracy of 2.3% in Oklahoma over terrain with low but variable vegetation 

cover. Lee and Anagnostou (2004) proposed a method synergistically using the 10.7 GHz TMI 

channel and 13.8 GHz precipitation radar channel observations to estimate near-surface SM 

and vegetation properties based on two models (i.e. the geometric optics model for bare soil 

and the semi-empirical WCM for vegetation). Liu et al. (2012) proposed an approach to merge 

SM estimates from four passive microwave products and two active microwave products into 

a single dataset in three steps. First, passive microwave SM retrievals from the SMMR, the 

SSM/I, and the TMI observations were rescaled to the AMSR-E SM product and then merged 

into a single passive microwave product. Second, the European Remote Sensing satellites 

(ERS-1/2) SCAT SM and ASCAT SM were rescaled and merged. Finally, the two 

passive/active merged products were rescaled against GLDAS-1Noah using the Cumulative 

Density Function (CDF) matching technique. Additionally, a blended microwave active and 

passive SM products Climate Change Initiative (CCI) SM products, including active, passive 

and combined active/passive SM products, have been developed by ESA (Hollmann et al., 

2013). CCI combines advantages from various satellites, including AMSR-E, AMSR2, ASCAT, 

SMOS, SMMR, the Active Microwave Instrument Wind Scatterometer (AMI-WS) onboard the 

ERS-1/2, SSM/I, the TMI and the WindSat Spaceborne Polarimetric Microwave Radiometer. 

From the active product based on the change detection method and the passive product by the 
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LPRM, the combined SM has been merged and rescaled with a fixed spatial resolution of 0.25° 

on a daily basis. CCI SM product can be obtained from 1978 to 2019 (Dorigo et al., 2015; 

Gruber et al., 2019). Subsequently, with the launch of SMAP which carries both radiometer 

and radar instruments, several different SM products have been released using active and 

passive microwave data. Based on a disaggregation approach, the SMAP high-resolution radar 

backscatter gridded at 3 km and the radiometer brightness temperature data gridded at 36 km 

have been combined into a SM product at 9 km (Das et al., 2014; Entekhabi et al., 2014). 

Additionally, using Sentinel-1A/B C-band SAR backscatter measurements, the 

SMAP/Sentinel-1 L2 SM product at 3 km has been derived from the SMAP L-band brightness 

temperature measurements at 9 km (Das, 2019a; Das et al., 2019b). Kim et al. (2020) validated 

the 9 km and 3 km SMAP SM products using triple collocation analysis and CDF, which the 9 

km SM product showed slightly better than the 3 km SM product. Besides, SMAP product and 

some other active and passive microwave SM products have been merged into a new blended 

microwave SM product, namely Soil Moisture Operational Product System (SMOPS). It is 

available from March 2017 to the present at the same spatial resolution of 0.25° as that of CCI. 

Compared to CCI, SMOPS has better spatial coverage at both daily and 6-hourly temporal 

resolutions. Overall, SMOPS and CCI combine advantages from various satellites that have 

finite lifetimes and different instrument characteristics with different spatial and temporal 

resolutions, temporal coverage and polarization. 

2.5.3. Synergistic methods of microwave and optical/thermal infrared 

observations  

Microwave and optical/thermal infrared sensors react differently to the geophysical and 

biophysical parameters of the land surface. Synergistic methods of microwave and 

optical/thermal infrared data may determine more accurate SM. Key advantage of the 

optical/thermal infrared data is their fine spatio-temporal resolution, which are suitable for 

watershed applications. The optical/thermal infrared based methods have shown promising 

potential in SM estimation over partially vegetated surface. Microwave data is not limited by 

clouds or daytime conditions. Some investigations have been focused on the contribution of 

microwave and optical/thermal infrared data to determine more accurate SM. However, data 

scaling at identical resolution and the different SM measurement depths between the 

instruments should be carefully taking into account when using such synergies.  
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A pixel-based image fusion technique was proposed by Kurucu et al. (2009) based on the 

Radarsat-1 fine beam mode image and Satellite Pour l'Observation de la Terre (SPOT)‐2 image. 

It was concluded that the fusion method was useful for a partially vegetated region. Temimi et 

al. (2010) proposed a new Topography-based Wetness Index (TWI) based on the synergistic 

use of passive microwave AMSR-E 37 GHz data, MODIS Leaf Area Index (LAI) product and 

Digital Elevation Model (DEM) data. The results were validated over the Peace Athabasca 

Delta in Canada with an R near 0.7. Furthermore, some researchers used change detection 

approach to derived SM from microwave and optical/thermal infrared data. Gao et al. (2017) 

firstly tried to estimate SM from the synergetic interpretation of Sentinel-1 and Sentinel-2 data 

using change detection method. Foucras et al. (2020) combined numerous Sentinel-1, Sentinel-

2 and MODIS data based on the change detection technique to retrieve the 500 m resolution 

SM at a temporal resolution of at least 6 days.  

Alternative methods to high resolution SM mapping are downscaling the coarse resolution SM 

products using proxy observations from optical/thermal infrared data, such as LST, NDVI, FVC 

and surface albedo (Peng et al., 2017). Chauhan et al. (2003) proposed an approach using a 

Conical Scanning Microwave Imager/Sounder (CMIS) and Visible/Infrared Imager Radiometer 

Sensor Suite (VIIRS) data. The SM at low resolution (~ 25 km) was firstly estimated via a 

simplified radiative transfer model from dual-polarized microwave brightness temperature. The 

optical/thermal infrared parameters, including NDVI, surface albedo and LST were aggregated 

to the microwave resolution for building a linking model that was then used to disaggregate 

microwave SM into high resolution SM (Fang et al., 2013; Peng et al., 2017, 2015b). Due to 

the successful launch of the first L-band satellite SMOS for global measurement of the Earth’s 

near-surface SM, some researchers focused on using optical/thermal infrared data to enhance 

the original SMOS spatio-temporal resolution which has a spatial resolution of 40 km and a 3-

day revisit. With SMOS SM product, NDVI and LST products from MODIS, Piles et al. (2014) 

developed a downscaling algorithm based on a regression formula to disaggregate the SM at 1 

km resolution. This approach was evaluated and proved to enhance the spatial resolution of 

SMOS observations over semi-arid regions (Portal et al., 2020, 2018). The model was further 

improved based on the LST and FVC scatterplot domain using SMOS and Meteosat Second 

Generation (MSG) geostationary satellite data instead of MODIS (Piles et al., 2016). Another 

important optical/thermal and microwave fusion method which is called Disaggregation based 

on Physical And Theoretical scale CHange (DISPATCH) is originally developed by Merlin et 

al. (2008) where the soil evaporative efficiency has been taken as SM proxy and can be 

estimated from the LST and FVC feature space at high resolution (Molero et al., 2016). Similar 
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to the DISPATCH method, a simpler downscaling method (UCLA) was proposed by Kim and 

Hogue (2012). It is based on a linear relationship between soil wetness index derived from the 

trapezoidal feature space and SM. In contrast, UCLA method and DISPATCH approach 

perform better than the polynomial fitting method from Chauhan et al. (2003) (Peng et al., 2017). 

These simple microwave and optical/thermal fusion methods show the potential to provide fine 

spatio-temporal resolution SM for watershed applications. Some of them are physical and 

theoretical based and do not require in-situ measurements. But they are only applicable under 

clear-sky condition, over partially covered vegetation areas and depend on the accuracy of SM 

retrieved from passive microwave data. Additionally, data scaling at identical resolution, the 

different SM measurement depths between the instruments and different sensitivities of sensors 

to different surface properties should be carefully taking into account. 

The above subsections describe the details of different categories of remote sensing SM 

retrieval methods. A brief summary of them in terms of the typical methods, advantages, and 

disadvantages is shown in Table 1. 
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Table 1. Summary of the remote sensing-based methods employed in SM retrieval 

Category Typical 
approaches 

Advantages Disadvantages Example 
researches 

Optical Reflectance-based 
methods 

Good spatial resolution, 
multiple satellites 
available, hyperspectral 
sensors promising, based 
on mature technology 

Inapplicability in cloudy 
conditions and at night time, 
under the influence of angle of 
incidence and some inherent 
physical soil properties, for the 
drought status not for the 
quantitative SM 

Idso et al. (1975), 
Peters et al. 
(2002), Gu et al. 
(2008), Gao et al. 
(2013). 

 

Thermal 
infrared 

TI/ATI models/ 
Temperature index 
methods 

Good spatial resolution, 
multiple satellites 
available, physical basis, 
better accuracy by TI/ATI 
models over arid and semi-
arid regions 

Weak relationship to SM under 
vegetated cover, inapplicability 
in cloudy conditions and at night 
time, lack of transferability to 
other regions 

Minacapilli et al. 
(2009), 
Sohrabinia et al. 
(2014), Van 
doninck et al. 
(2011). 

Microwave 
passive 

Various methods Use not limited by clouds 
and/or daytime conditions, 
high temporal resolution 
and wide spatial coverage 

Coarse spatial resolution, under 
the influence of vegetation cover, 
soil texture, surface roughness 
and RFI 

Njoku and 
Entekhabi 
(1996), Moran et 
al., (2004) 

Microwave 
active 

Physically-based, 
Semi-empirical, 
Empirical, and 
Change detection 
approaches 

Use not limited by clouds 
and/or daytime conditions, 
fine spatial resolution 

Narrow spatial coverage, coarse 
temporal resolution, under the 
influence of surface roughness, 
vegetation cover, and water 
content on the backscattering 
coefficients 

Schanda (1987), 
Attema and 
Ulaby (1978), 
Baghdadi et al. 
(2008). 

Synergistic 
methods 

Optical and thermal 
infrared 

Good spatial resolution, 
multiple satellites 
available, have great 
physical significance, 
simple & straightforward 
implementation 

High requirements of the study 
area, transferability difficult, 
requirement for numerous in-situ 
measurements, some limitations 
of the models basis, limited to 
cloud-free and daytime 
conditions 

Carlson and 
Buffum (1989), 
Carlson et al., 
(1995), 
Petropoulos et al. 
(2009) 

Microwave active 
and passive 

Improved spatio-temporal 
resolution and SM retrieval 

Difficulties in data scaling at 
identical resolution, the different 
SM measurement depths between 
the instruments and different 
sensitivities of sensors to 
different surface properties 

Saatchi et al. 
(1994) 

Microwave and 
optical/thermal 
infrared 

Minimized influence of 
vegetation and surface 
roughness, fine spatio-
temporal resolution, 
physical and theoretical 
based, not requiring in-situ 
measurements 

Difficulties in data scaling at 
identical resolution, the different 
SM measurement depths between 
the instruments and different 
sensitivities of sensors to 
different surface properties, 
inapplicability in cloudy 
conditions and at night time 

Kurucu et al. 
(2009) 
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3. Aims and structure of this thesis 

3.1. Aims and goals 

SM at coarse spatial resolution with long time coverage and high temporal resolution would 

benefit the continental or global applications. However, this spatial resolution is often too 

coarse for regional and local applications, including hydrology, agriculture and numerical 

weather prediction, which normally require a spatial resolution of 1 to 10 km (Peng et. al., 2020; 

Brocca et al., 2017). For instance, SMAP and optical/thermal-based SM products are used to 

develop irrigation physics in land surface models and improve forecasts (Lawston et al., 2017). 

Most optical/thermal infrared-based methods for higher resolution SM retrievals are based on 

the SM-related indices or proxies of SM. Either numerous in-situ SM measurements for the 

empirical/statistical relationships or soil field capacity and wilting point are generally required 

for retrieving SM at regional scales. These empirical methods naturally have many limitations, 

including the requirement for knowing the underlying soil texture or in-situ SM measurements, 

lack of transferability to other regions, low efficacy of describing physical processes or 

inapplicability in cloudy weather. In this thesis, a new SM retrieval model aims to overcome 

the drawbacks of traditional optical/thermal infrared-based approaches mentioned above. 

Additionally, the combination of high spatial resolution remote sensing data with low spatial 

resolution SM products has recently caught significant scientific attention in the context of 

improving the understanding of the spatial variability of SM. However, most optical/thermal 

infrared-based disaggregation methods can only be carried out in cloud-free days. Thus, the 

second purpose of the thesis is to develop a downscaling method based on temporal information. 

Not only can this method successfully downscale microwave SM data to avoid the failure of 

traditional instantaneous observations-based downscaling procedure obstructed by clouds, but 

it is also simpler than the first proposed method. 

In the following, the relevant underlying research questions (RQ) of this thesis are presented. 

Additionally, the corresponding hypotheses (HY) are formulated: 

Q1: Is it possible to propose an optical/thermal infrared-based SM retrieval method (or 

downscaling method) which can be applied to cloudy days? 
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HY1: High spatial resolution optical/thermal infrared data have a limited surface penetration 

depth and high perturbation of the signal by clouds. Since most optical/thermal infrared-based 

SM retrieval methods and optical/thermal infrared-based disaggregation methods rely on 

instantaneous optical/thermal land surface parameters, they are inapplicable in cloudy days. 

Geostationary satellites are capable of providing land surface parameters at much higher 

frequencies (48-96 times per day) than polar-orbit satellites. Therefore, the multi-observations 

provided by geostationary satellite data may potentially overcome the shortage that the 

traditional instantaneous observation from the polar-orbit satellite is not available.  

Q2: Can the drawbacks of traditional optical/thermal infrared-based SM retrieval 

methods to estimate SM directly instead of SM-related indices be overcome by a novel 

retrieval approach? 

HY2: Most optical/thermal infrared-based SM retrieval methods are based on a SM-related 

index or proxy of SM (e.g. the Temperature Vegetation Dryness Index (TVDI) and the 

Apparent Thermal Inertia (ATI)). However, these methods are only applicable over some 

specific regions. For instance, ATI method can be only applied in arid and semi-arid regions if 

the soil properties are known (Minacapilli et al., 2009). For the TVDI method, large research 

area is required so as to represent the entire range of SM, from dry to wet, and from bare soil 

to fully vegetated land surface. In addition, a large number of in-situ measurements are often 

necessary in these methods to establish the empirical relationships between ground-based SSM 

measurements and satellite-derived proxies of SM. 

Most optical/thermal infrared-based SM retrieval studies focus on only a single daily, mid-

morning or maximum measurement (Minacapilli et al., 2009; Verstraeten et al., 2006; Wetzel 

and Woodward, 1987; Zhao and Li, 2013). Previous studies demonstrated that TI and the 

diurnal change of the LST are strongly related with SM (Schmugge et al., 1978). Based on the 

Noah Land Surface Model (LSM) and the Gaussian emulation machine for sensitivity analysis, 

LST and NSSR are found to be the most sensitive parameters to SM (Zhao and Li, 2013). 

Diurnal cycles of LST and NSSR that provide additional information about the land surface 

thus have potential to improve SM retrieval. In terms of the relationship between the diurnal 

cycles of LST and NSSR, SM may be directly estimated instead of SM-related indices.  

Q3: Among all remote sensing SM products, blended CCI and SMOPS global SM 

products have either better temporal or better spatial coverage than those derived from 
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a single sensor. Which one is more suitable for application? Can these two blended SM 

products synergize with each other in the application? 

HY3: Although blended SMOPS and CCI SM products from most of the mainstream 

microwave sensors, they use different data sources, merging methods and temporal intervals to 

develop the final products, thus harboring different characteristics. Specifically, the SMOPS 

product has the same spatial resolution of 0.25° as that of CCI; however, both daily and 6 hourly 

temporal interval datasets are just available from SMOPS that might provide more alternatives 

than CCI in potential applications, such as drought/flood monitoring and land surface 

assimilation systems where frequent SM measurements are required. Additionally, due to more 

incorporated sensors, SMOPS should have better spatial coverage than CCI. However, as the 

enhanced quality control of the microwave SM retrievals for CCI products, CCI may have better 

accuracy than SMOPS. For instance, the stricter triple collocation analysis based error 

characterization has been used in the CCI retrievals, which has guaranteed the quality of the 

combined SM product (Gruber et al., 2019). The assessments will be conducted by using 

reanalysis SM product and in-situ measurements to indicate when and where the CCI or 

SMOPS has better errors statistics. Furthermore, since SMOPS has better spatial coverage, it 

would have potential to be an alternative when CCI is not available, which may provide SM 

with acceptable accuracy over the gaps remaining by CCI as well.  

Q4: Currently most microwave SM products are at coarse spatial resolution of tens of 

kilometers. How to improve their spatial resolution to meet the criteria of the applications 

at the regional or local scale? 

HY4: Downscaling techniques with coarse microwave SM products and some variables related 

to SM from optical/thermal infrared data can improve the original SM spatial resolution. 

Furthermore, based on temporal information rather than instantaneous optical/thermal land 

surface parameters, the new downscaling method may optimize downscaling process in cloudy 

days. 
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3.2. Thesis outline and scientific publications 

The cumulative thesis comprises four peer-reviewed scientific publications. Three of them were 

published, one is currently under review. Figure 7 illustrates the connection and contribution of 

each paper to this thesis as well as to the scientific areas.  

The thesis encompasses two different methods for obtaining high resolution SM based on 

geostationary satellite data. The first method is elliptical SM retrieval model, including paper I 

and paper II. Paper I introduced the theory and evaluation of the generalized split-window LST 

retrieval method. Based on the LST estimates from paper I, the elliptical SM retrieval model 

was developed in paper II. The potential of geostationary satellite data was further explored to 

overcome drawbacks of elliptical retrieval model. Therefore, the downscaling method was 

proposed in paper III and paper IV. Based on the evaluation of CCI and SMOPS SM products 

in paper III, a new downscaling approach using CCI was developed in paper IV.  

Figure 7. Position of the papers and topics they are covering within this PhD thesis 
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Paper I: Publication in the journal IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing 

Citation: Song, X., Wang, Y., Tang, B., Leng, P., Chuan, S., Peng, J., & Löw, A. (2017). 

Estimation of land surface temperature using FengYun-2E (FY-2E) data: A case study of the 

source area of the Yellow River. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 10(8), 3744-3751. 

Impact Factor: 3.827 

Status: published 

Research outline: This study addresses the theory of LST retrieval from data acquired by a 

geostationary satellite (FY-2E) in two thermal infrared channels (IR1: 10.29–11.45 μm and 

IR2: 11.59–12.79 μm) using a generalized split-window algorithm. Specifically, land surface 

emissivity (LSE) in the two thermal infrared channels is estimated from the LSE in channels 

31 and 32 of a polar-orbit satellite (MODIS) product. Results indicate that the LST retrieval 

agrees well with in-situ measurements and MODIS LST product. Therefore, the generalized 

split-window algorithm was demonstrated its applicability on geostationary satellite data to 

estimate LST and further for SM estimation in paper II. 

Authors’ contributions: Xiaoning Song: Conceptualization, writing - review & editing, funding 

acquisition, supervision. Yawei Wang: Conceptualization, methodology, analysis, 

interpretation, writing - original draft, review & editing. Bohui Tang: Methodology. Pei Leng: 

Writing - review & editing, resources. Chuan Sun: Writing - review & editing, resources. Jian 

Peng: Writing - review & editing, resources. Alexandar Löw: Methodology, writing - review 

& editing, supervision. 

Paper II: Publication in the journal IEEE Transactions on Geoscience and Remote Sensing  

Citation: Wang, Y., Peng, J., Song, X., Leng, P., Ludwig, R., & Loew, A. (2018). Surface soil 

moisture retrieval using optical / thermal infrared remote sensing data. IEEE Transactions on 

Geoscience and Remote Sensing, 56 (9), 5433-5442. 

Impact Factor: 5.855 

Status: published 
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Research outline: Based on the diurnal cycles of LST retrieval from paper I and Net Surface 

Shortwave Radiation (NSSR), an elliptical-new SM retrieval model has been developed. This 

retrieval model directly estimates the quantitative volumetric soil water content without 

establishing empirical relationships between ground-based SM measurements and satellite-

derived proxies of SM. By considering the influence of vegetation, the model has been 

optimized using Fractional Vegetation Cover (FVC) data. A correlation coefficient (R) of 

0.845, a RMSE of 0.064 m3/m3, and a bias of 0.017 m3/m3 have been obtained when comparing 

with the in-situ measurements. It is revealed that the elliptical-new SM retrieval model can 

obtain good SM estimates using geostationary satellite data. The article investigates the 

following research questions: 

Q1: Is it possible to propose an optical/thermal infrared-based SM retrieval method (or 

downscaling method) which can be applied to cloudy days? 

Q2: Can the drawbacks of traditional optical/thermal infrared-based SM retrieval methods to 

estimate SM directly instead of SM-related indices be overcome by a novel retrieval approach? 

Authors’ contributions: Yawei Wang: Conceptualization, methodology, analysis, visualization, 

writing - original draft, review & editing. Jian Peng: Conceptualization, writing - review & 

editing. Xiaoning Song: Writing - review & editing. Pei Leng: Writing - review & editing. Ralf 

Ludwig: Writing - review & editing, supervision, funding acquisition. Alexandar Löw: 

Conceptualization, methodology, writing - review & editing, supervision. 

Paper III: Publication in the journal International Journal of Applied Earth Observation and 

Geoinformation  

Citation: Wang, Y., Leng, P., Peng, J., Marzahn, P., Ludwig, R., (2021). Global assessments of 

two blended microwave soil moisture products CCI and SMOPS with in-situ measurements 

and reanalysis data. International Journal of Applied Earth Observation and Geoinformation 

94, 102234. https://doi.org/10.1016/j.jag.2020.102234 

Impact Factor: 4.650 

Status: published 

Research outline: Currently, only two blended microwave SM products, namely the CCI from 

the ESA and the SMOPS from the National Oceanic and Atmospheric Administration, are 

available with either better temporal or better spatial coverage than those of other SM products 
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derived from a single sensor. However, an assessment and especially a synchronous comparison 

of these two products are still lacking, making it difficult to determine a better alternative in 

actual applications. In the present study, a comprehensive assessment of the two blended 

products was conducted with reanalysis SM data from the ECMWF and in-situ measurements 

from the International Soil Moisture Network. The results indicated that CCI reveals overall 

better accuracy than that of SMOPS with both in-situ measurements and reanalysis data under 

different climate patterns. Further investigation also confirmed that SMOPS could be a potential 

alternative over the regions where CCI is not available, since SMOPS has better spatial 

coverage than CCI. This work provides the foundation for downscaling method development 

in paper IV. The article investigates the following research questions: 

Q3: Among all remote sensing SM products, blended CCI and SMOPS global SM products 

have either better temporal or better spatial coverage than those derived from a single sensor. 

Which one is more suitable for application? Can these two blended SM products synergize with 

each other in the application? 

Authors’ contributions: Yawei Wang: Conceptualization, methodology, analysis, visualization, 

writing - original draft, review & editing. Pei Leng: Conceptualization, writing - review & 

editing, funding acquisition. Jian Peng: Writing - review & editing. Marzahn Philip: Writing - 

review & editing. Ralf Ludwig: Conceptualization, writing - review & editing, supervision, 

funding acquisition.   

Paper IV: Submitted to the journal IEEE Geoscience and Remote Sensing Letters  

Citation: Wang, Y., Leng, P., Ma, J., and Peng, J. A method for downscaling satellite soil 

moisture based on land surface temperature and net surface shortwave radiation. IEEE 

Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2021.3062453. 

Impact Factor: 3.833 

Status: published 

Research outline: Most optical/thermal-based downscaling methods normally rely on 

instantaneous optical/thermal land surface parameters, which are only applicable in clear days. 

The purpose of this study is to develop a new downscaling method based on the temporal 

variation of geostationary satellite derived LST, NSSR and blended microwave CCI SM 

product aforementioned in paper III. The proposed method is expected to improve data 
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availability in cloudy days, because geostationary satellites are capable of providing land 

surface parameters at high temporal resolution. Results indicate that the downscaled SM agrees 

well with in-situ measurements and has comparable accuracy with the original microwave CCI 

SM product. The overall RMSE with the in-situ measurements for the original microwave SM 

and the downscaled SM are 0.054 m3/m3 and 0.057 m3/m3, respectively. This method is not 

only a successful attempt to downscale microwave SM data using temporal information, but 

also has the potential to avoid the failure of traditional instantaneous observations-based 

downscaling procedure due to clouds. The paper addresses the following research questions: 

Q4: Currently most microwave SM products are at coarse spatial resolution of tens of 

kilometers. How to improve their spatial resolution to meet the criteria of the applications at 

the regional or local scale? 

Authors’ contributions: Yawei Wang: Conceptualization, methodology, analysis, visualization, 

writing - original draft, review & editing. Pei Leng: Conceptualization, writing - review & 

editing, funding acquisition. Jianwei Ma: Writing - review & editing. Jian Peng: 

Conceptualization, writing - review & editing, supervision.   
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Estimation of Land Surface Temperature Using
FengYun-2E (FY-2E) Data: A Case Study of the

Source Area of the Yellow River
Xiaoning Song, Member, IEEE, Yawei Wang, Bohui Tang, Pei Leng, Sun Chuan, Jian Peng,

and Alexander Loew, Member, IEEE

Abstract—Land surface temperature (LST) is a key variable
used for studies of water cycles and energy budgets of land–
atmosphere interfaces. This study addresses the theory of LST
retrieval from data acquired by the Chinese operational geosta-
tionary meteorological satellite FengYun-2E (FY-2E) in two ther-
mal infrared channels (IR1: 10.29–11.45 µm and IR2: 11.59–
12.79 µm) using a generalized split-window algorithm. Specifi-
cally, land surface emissivity (LSE) in the two thermal infrared
channels is estimated from the LSE in channels 31 and 32 of the
moderate-resolution imaging spectroradiometer (MODIS) prod-
uct. In addition, an eight-day composition MODIS LSE product
(MOD11A2) and the daily MODIS LSE product (MOD11A1) are
used in the algorithm to estimate FY-2E emissivities. The results in-
dicate that the LST derived from MOD11A1 is more accurate and,
therefore, more appropriate for daily cloud-free LST estimation.
Finally, the estimated LST was validated using the MODIS LST
product for the heterogeneous source area of the Yellow River. The
results show a significant correlation between the two datasets, with
a correlation coefficient (R) varying from 0.60 to 0.94 and a root
mean square error ranging from 1.89 to 3.71 K. Moreover, the es-
timated LST agrees well with ground-measured soil temperatures,
with an R of 0.98.

Index Terms—FengYun-2E (FY-2E), land surface temperature
(LST), moderate-resolution imaging spectroradiometer (MODIS),
split-window algorithm.
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I. INTRODUCTION

LAND surface temperature (LST) is an essential parameter
used in studies of climate, hydrology, ecology, vegetation

monitoring, urban climate, and environmental issues and plays
a significant role in the understanding of the water and energy
balance of the Earth’s surface [1]–[9]. With the rapid develop-
ment of the remote sensing technologies, a series of methods
and algorithms has been developed to retrieve LST from satellite
data [10]–[18]. Algorithms can roughly be grouped into three
categories: single-channel methods [19]–[23], split-window al-
gorithms, and multiangle methods [24], [25].

McMillin [26] initially proposed a split-window algorithm to
express LST as a simple linear combination of the two brightness
temperatures measured in the two thermal infrared (TIR) chan-
nels. A variety of split-window algorithms were subsequently
developed and modified to successfully estimate sea surface
temperatures [27]–[29]. Because of the homogeneous nature of
sea surfaces, emissivity under these conditions can usually be
regarded as stable and close to one. A split-window algorithm
was shown to be suitable for sea surface temperature retrieval in
a study by Niclòs et al. [30], with an error as low as 0.3 K. Due
to the success of sea surface temperature retrieval, split-window
algorithms were also used to estimate LST [31]. However, be-
cause natural land surfaces are more complicated than sea sur-
faces, the aforementioned split-window technique may not be
suitable for land applications. As a result, numerous researchers
have developed different split-window techniques to estimate
LSTs for different land surface conditions [32]–[34]. Becker
[35] evaluated the effects of reflectance difference between the
two thermal infrared channels of advanced very high-resolution
radiometer data on LST retrieval and showed that using a split-
window algorithm for estimating LST was practical in theory.
Vidal [36] subsequently demonstrated that LST could be esti-
mated from National Oceanic and Atmospheric Administration
data with an error of 3 K. Similar to the equation developed by
Becker and Li [32], Wan and Dozier [33] proposed a general-
ized split-window (GSW) algorithm to estimate LST from the
moderate resolution imaging spectroradiometer (MODIS) TIR
channels 31 and 32. The MODIS LST product has been widely
verified and used in various applications all over the world.

Compared with commonly used polar-orbit satellites, geosta-
tionary satellites are capable of providing 48–96 images per day

1939-1404 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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with a fixed observation angle for a given pixel, which is ben-
eficial for understanding energy budgets. In recent years, LST
estimation based on European or Chinese geostationary meteo-
rological satellite data have drawn widespread attention. Based
on the Meteosat Second Generation (MSG) data in Europe, Qian
et al. [37] shows the MSG LST products are consistent with
MODIS LST products and have the same trend over the two
study areas during both the daytime and the night-time. Atitar
and Sobrino [38] also derived LST from MSG data, and found
root mean square errors (RMSE) of 1.9 K and 1.5 K relative to
measured data and MODIS products, respectively. In a recent
study, Gao et al. [39] addressed three significant improvements
to the algorithm based on day/night temperature-independent
spectral indices (TISIs) for estimating Land Surface Emissiv-
ity (LSE) from MSG data. The results demonstrated that more
than 70% of the differences are within 2.5 K and that the LST
differences tend to be lower at night than in the day.

Several researchers in China have studied LST retrieval us-
ing China’s geostationary data. Tang [34] initially estimated
LST from China’s FengYun-2C (FY-2C) geostationary satellite
data using the GSW algorithm originally proposed by Wan and
Dozier [33]. The simulated results indicated that the GSW al-
gorithm could be successfully applied to LST retrievals using
FY-2C data. However, persuasive validation was lacking dur-
ing a further study of FY-2C observations. Zhang and Wang
[40] subsequently obtained LST from FY-2D based on a split-
window algorithm and a diurnal evolution cycle of LST, prelim-
inarily assessing the accuracy for a single cloud-free day over a
small area. As a result, a correlation coefficient (R) of 0.5 and
an RMSE of 4.4 K were found between the retrieval and the
MODIS product. Quan [41] estimated LST with a diurnal linear
hybrid model and used FY-2C data to evaluate the model. The
mean absolute differences for October 7 and March 28, 2005
in Beijing were 1.64 K and 2.48 K, respectively. In summary,
although LST estimation using FY data has been proven feasi-
ble, actual applications and validations are relatively deficient,
particularly over heterogeneous regions. The primary objective
of this study is to derive LST data from one of the newly op-
erational geostationary meteorological satellites, FengYun-2E
(FY-2E). For the heterogeneous source area of the Yellow River,
FY-2E-derived LST is verified with the MODIS LST product
and compared with the ground-measured soil temperature.

II. STUDY AREA AND DATA

A. Description of the Study Area

The source region of the Yellow River (SAYR,
95°50′E–103°30′E and 32°20′N–36°10′N) covers an area of
121 972 km2 on the northeastern Qinghai-Tibet Plateau (see
Fig. 1). The elevation of the area ranges from 2500 to 6200 m
above sea level and exhibits heterogeneous features with various
landscapes, including alpine meadows, steppes, lakes, and even
permafrost. According to a previous study, the mean annual air
temperature in the study area varies between −4 °C and +2 °C
from the northwest to the southeast and the mean annual precip-
itation is approximately 530 mm [42]. The south and southeast
regions of the study area are characterized by cold and semihu-

Fig. 1. Digital elevation model of the source area of the Yellow River (SAYR).

Fig. 2. DEM of the 20 soil temperature sites.

mid climate, while the northern and western regions present a
cold and arid to semiarid climate pattern. Moreover, the Cold
and Arid Regions Environmental and Engineering Research In-
stitute (CARRERI) and the Faculty of Geo-Information Science
and Earth Observation of the University of Twente (ITC) have
installed an extensive soil temperature monitoring network in
the eastern part of the SAYR, as shown in Fig. 1. The network
consists of 20 stations that monitor the soil temperature at a
depth of 5 cm every 15 min and can serve as a surface tempera-
ture proxy for the evaluation of estimated LST.

B. FY-2E Data

China announced the FY-2 series project in 2001, which
includes five geostationary meteorological satellites, namely,
FY-2C/2D/2E/2F/2G. In particular, FY-2E was launched at
the end of 2008 to replace FY-2C. Satellite data collected by
FY-2E can better meet the validation requirements of ground
soil temperature measurements than FY-2C [43]. Thus, FY-
2E observations were selected to estimate LST in the study
area. The optical imaging radiometer onboard the FY-2E satel-
lite is a stretched-visible and infrared spin-scan radiometer
(S-VISSR) that includes one visible channel and four in-
frared thermal channels. Instrument characteristics are shown in
Table I. The FY-2E can obtain one full disc image cover-
ing the Earth’s surface from 60 °N to 60 °S latitude and
from 45 °E to 165 °E longitude every 90 min. The adjust-
ments of FY-2E spectral response functions can increase the
brightness temperature differences between FY-2E’s two split-
window channels within all dynamic ranges relative to that of the
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TABLE I
MAIN TECHNICAL SPECIFICATIONS OF THE RADIOMETER

Channel Spectral range (µm) Spatial resolution (km) NE∆T3 0 0 K

VIS 0.510–0.905 1.25 –
IR1 10.29–11.45 5 0.19 K
IR2 11.59–12.79 5 0.26 K
IR3 3.59–4.09 5 0.30 K
IR4 6.32–7.55 5 0.19 K

∗NE∆T is the noise equivalent temperature difference.

FY-2C [43]. This improves the inversion ability of FY-2E’s split-
window channels. In this study, the FY-2E data are obtained
from the National Satellite Meteorological Center (NSMC)
(http://www.nsmc.cma.gov.cn/NSMC/Home/Index.html) and are
used as the data sources to estimate LST in the study area.

C. MODIS Data

MODIS is an instrument aboard the Terra and Aqua satel-
lites. It covers the globe every one to two days, providing data
at moderate spatial resolution (250 m at nadir) with a large
spectral range (36 channels). The MOD11B1, MOD11A1, and
MOD11A2 products are used in this study to estimate and ver-
ify the derived LST. Product MOD11B1, which provides LST
at 6-km spatial resolution, is obtained using the day/night LST
algorithm [44] and GSW algorithm [33] in seven MODIS bands
(bands 20, 22, 23, 29, 31, 32, and 33). The MOD11A1 prod-
uct has a tile of daily LSE at 1-km spatial resolution with
emissivities of bands 31 and 32, which are retrieved by a
classification-based emissivity method according to land-cover
types [45]. The MOD11A2 product at 1-km spatial resolution
is an eight-day composition LST dataset that is derived by aver-
aging MOD11A1 data. The LAADS provides the MODIS data
(http://ladsweb.nascom.nasa.gov/data/search.html).

D. Ground Soil Temperature Measurements

The soil temperature monitoring network operated by CAR-
RERI and ITC in fig. 2 from report “Continuous in situ soil mois-
ture measurements at Maqu site” in CEOP-AEGIS by L.Dente,
Z. Vekerdy, Z. Su and J. Wen provided is located in the south of
Maqu City, in SAYR. The soil temperature monitoring network
operated by CARRERI and ITC is located in the south of Maqu
City, in SAYR. The in situ soil temperature measurements indi-
cate soil temperature at about 5-cm depth, which is most closely
related to LST [47]. Soil temperature measurements from the 20
soil temperature sites are used as the surface temperature proxy
for evaluation of the FY-2E derived LST.

III. METHODOLOGY

A. GSW Algorithm for LST Estimation

Based on the GSW algorithm proposed by Wan and Dozier
[33], the LST can be expressed as

TS = a0 +
(

a1 + a2
1 − ε

ε
+ a3

δε

ε2

)
TIR1 + TIR2

2

+
(

a4 + a5
1 − ε

ε
+ a6

δε

ε2

)
TIR1 − TIR2

2
(1)

where TIR1 and TIR2 are the TOA brightness temperatures
measured in channels IR1 and IR2, ε is the averaged emissivity
of channels IR1 and IR2, δε is the emissivity difference between
the two thermal infrared channels IR1 and IR2, and a0 − a6 are
unknown coefficients that can be derived from simulated data
through statistical regression methods for each viewing zenith
angle (VZA) and each subrange.

Because FY-2E replaces FY-2C, the setting of each param-
eter depends on the simulation of FY-2C data [34]. In the
MODTRAN simulation, six different VZAs (0°, 33.56°, 44.42°,
51.32°, 56.25°, 60°) are used. Six subranges of water vapor con-
tent (WVC) (0, 1.5), (1.0, 2.5), (2.0, 3.5), (3.0, 4.5), (4.0, 5.5),
and (5.0, 6.5) g cm−2 are also used in the model. The LSTs are di-
vided into five subranges: Ts ≤ 280 K, 275 K ≤ Ts ≤ 295 K,
290 K ≤ Ts ≤ 310 K, 305 K ≤ Ts ≤ 325 K, and Ts ≥ 320 K.
The averaged emissivity ε varies from 0.90 to 1.0 with a step
of 0.02 and the emissivity difference δε ranges from −0.025 to
0.015 with a step of 0.005. According to the study by Tang et
al. (2008), the accuracy of LST retrieval can decrease by 3%
for NE∆T = +0.1 K, by 16% for NE∆T = 0.2 K, and by
81% for NE∆T = 0.5 K. Using coefficients corresponding to
the two subranges WVC ! [0, 1.5] and WVC ! [1.0, 2.5], the
RMSEs for LST are 0.18 K and 0.43 K, respectively. As FY-2E
service better compared to FY-2C, the sensitivity to instrumental
noise will be acceptable.

In the GSW algorithm for LST estimation, WVC and LSE are
two key input parameters; therefore, the determination of these
two parameters is further described in the following sections.

B. Determination of Atmospheric WVC

According to Li et al. [52] and Tang et al. [46], atmospheric
WVC can be derived from the transmittance ratio of the split-
window channels. The relationship between the transmittance
ratio and WVC is determined by synthetic regression on the
simulated data:

WVC = C1 + C2 ×
τIR2

τIR1
(2)

where C1 and C2 are unknown coefficients that can be derived
by the MODTRAN simulation, and τIR1 and τIR2 are the atmo-
spheric transmittances in the split-window channels. The ratio
of τIR1 to τIR2 can be calculated as follows:

τIR2

τIR1
=

εIR1

εIR2
R (3)

where εIR1 and εIR2 are the emissivities of the two thermal
infrared channels IR1 and IR2 and R is an unknown coefficient
that can be calculated as follows:

R =
∑N

K =1 (TIR1,k − T IR1)(TIR2,k − T IR2)
∑N

K =1 (TIR1,k − T IR1)
2 (4)

where the subscript k denotes pixel k, TIR1,k and TIR2,k are the
TOA brightness temperatures measured in channels IR1 and IR2
of the k pixel, and T IR1 and T IR2 are the TOA mean channel
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Fig. 3. Spectral response functions of IR1 and IR2 channels of FY-2E and
those of channels 31 and 32 in MODIS.

brightness temperatures of the N neighboring pixels of channels
IR1 and IR2, respectively.

C. Determination of LSEs

The LSEs in channels IR1 and IR2 of FY-2E can be estimated
from the LSEs in channels 31 and 32 of MODIS provided
by the MODIS LST product MOD11A1. The relationships of
spectral response functions between IR1 of FY-2E and channel
31 of MODIS, IR2 of FY-2E and channel 32 of MODIS can be
determinate. Therefore, the emissivities in the two split-window
channels of MODIS and FY-2E can be calculated using the
integrals of the spectral emissivity with the channel response
functions, as shown in Fig. 3, over the spectral range of the chan-
nels. The emissivities of MODIS provided by MOD11A1 are
applied to estimate the LSEs in channels IR1 and IR2 of FY-2E.
The University of California Santa Barbara spectral database
(http://www.icess.ucsb.edu/modis/EMIS/html/em.html) was
used to determine the emissivity relationship between the
S-VISSR channels and the MODIS 31 and 32 channels.
Considering the particular situation of the study area, the
emissivities of all categories of materials were included, except
for manmade materials. The statistical relationships of (5)
and (6) between MODIS channels and FY-2E channels are
established by a linear regression analysis as shown in Fig. 4

εIR1 = 1.1113ε31 − 0.1099 (5)

εIR2 = 0.9412ε32 + 0.0406. (6)

IV. RESULTS AND DISCUSSION

A. LST Retrieval using FY-2E Data

Based on the method described earlier, Fig. 5 presents an ex-
ample of LST derived from FY-2E measurements on 14 Septem-
ber 2010 at 11:00 Beijing time over SAYR. Symbol A in Fig. 5
represents the areas of Lake Zhaling and Lake Eling, whereas
symbol B refers to a sand area. It is evident from Fig. 5 that the

Fig. 4. Statistical relationship of the emissivities between the FY-2E channels
IR1 and IR2 and the MODIS channels 31 (a) and 32 (b), respectively.

Fig. 5. LST retrieval at 11:00 Beijing time for September 14, 2010.

lakes exhibit relatively low temperatures, while high tempera-
ture occurs throughout the sand area, which is in accordance
with the actual situation on the ground.

B. Validation with MODIS Products

The soil temperature measurements in SAYR operated by
CARRERI and ITC are only available for August, September,
and October 2010. Four days were randomly selected within
this period (August 28, September 14, September 15, and
October 8, 2010), from which data provided more than 2000
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Fig. 6. Comparison of MODIS LST product and FY-2E-derived LST with
LSE obtained from (a) MOD11A1 and (b) MOD11A2 over SAYR.

valid pixels. The MODIS product (MOD11B1) was chosen to
verify the LST derived from MOD11A1 and MOD11A2 in
the study area during those four cloud-free days. MOD11A2
was selected because the corresponding LSE product was first
derived by Tang et al. [46] to estimate the LST calculated from
FY-2C satellite data. However, MOD11A1, being a daily LSE
product, is probably more suitable than an eight-day compo-
sition product for deriving LST for a given cloud-free day.
In Fig. 6, eight scatter diagrams illustrate the relationship be-
tween the MODIS product and LST retrieval in SAYR, except
for permafrost/frozen areas, which were plotted separately for
MOD11A1 and MOD11A2. MOD11A1 shows a better corre-
lation between the MODIS LST products and FY-2E-derived
LST when compared with that of MOD11A2. Specifically, the
correlation coefficients for MOD11A1 range from 0.62 to 0.94,
while those for MOD11A2 range from 0.59 to 0.93 within se-
lected cloud-free days. Moreover, the RMSEs range from 1.89
to 3.71 K (MOD11A1) and 2.51 to 4.19 K (MOD11A2), re-
spectively, which further indicates that the FY-2E-derived LST
of the daily LSE product is more suitable for daily cloud-free
LST estimation.

Fig. 7. Differences between FY-2E-derived LST and MODIS LST product
for SAYR.

Fig. 8. Land use and land cover in the study area.

Using the MODIS LST product as the reference dataset,
the differences between FY-2E-derived LST and MODIS LST
for the entire study area are shown in Fig. 7. The errors have
been grouped into six classes based on the differences between
FY-2E-derived LST and MODIS LST product and are shown in
different colors from blue to brown: more than −10 K, −5 K to
−10 K, −5 K to 0 K, 0 K to 5 K, 5 K to 10 K, and over 10 K.

Different types of surface features are present within the
study area such as woodlands, predominately grasslands, water,
sand, permafrost, and 24 other surface characteristics, which are
shown in Fig. 8. The eastern part of the study area is homoge-
neous grassland at an altitude of about 3500 m. The retrieval
is therefore accurate in the east. In contrast, in the central part
of the study area, near 99.5 °E and 35 °N, a large elevation
difference and the presence of permanent snow cover result in
an error, which partly explains why the absolute error between
FY-2E-derived LST and MODIS LST product is higher than
10 K in this area (see Fig. 7). Additionally, errors are more
likely to occur in the heterogeneous areas. For instance, a num-
ber of outliers occur near the white areas in the western part
of SAYR on September 15 and August 28, 2010. For the entire
SAYR, LST estimation in the eastern part of SAYR is generally
more accurate than LST retrieval in the western region, which
is due to the large surface heterogeneity in the western area
compared to the eastern part of the region.
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Fig. 9. Relationship between ground-measured soil temperature and FY-2E-
derived LST.

C. Relationship Between FY-2E-Derived LST and
Ground-Measured Soil Temperature

In this study, ground-truthing temperature data were collected
at 5 cm below the land surface, whereas LST retrieval shows the
ground surface temperature. Due to the lack of actual ground
surface temperature measurements, the correlation coefficient
(R) is used as a measure of comparison between LST retrieval
and in situ measurements in previous studies. For example,
Hachem [49] compared LST and soil temperature measurements
(3–5 cm) from 2000 to 2008 at herbaceous and shrub tundra
sites located in Canada, demonstrating an R ranging from 0.84
to 0.97. Wen [50] noted that the estimated LST corresponded
well (R = 0.80) with measured soil temperature (0.04–2.0 m) at
GAME/Tibet field campaign sites. Therefore, in this study, the
ground soil temperature at 5 cm was used as a proxy of LST for
comparison to the FY-2E-derived LST. Fig. 9 shows a scatter
plot for FY-2E-derived LST and soil temperature measurements
from the soil temperature monitoring network. The high R-value
of 0.98 implies that the estimated LST agrees well with mea-
sured soil temperature. The general trend of LST overestimation
using FY-2E-derived temperatures might be due to lower soil
temperatures at a depth of 5 cm compared to the surface temper-
ature. A more comprehensive validation of FY-2E-derived LSTs
will be carried out using ground-measured LSTs for different
surface conditions in future studies.

D. Discussion and Analysis

In general, the proposed method can be use to retrieve LST
and achieve better accuracy compared to previous studies [40],
[48], [51]. In this section, possible reasons for the observed
discrepancies between FY-2E-derived LST and MODIS LST
products are analyzed. First, heterogeneous surfaces may lead to
the errors as discussed in Section IV-B. Altitudes in the western
part of the study area are more than 6200 m, while the altitude
in the eastern part is as low as 2500 m; even in some of the
5 km × 5 km pixels, the difference between the highest and
lowest altitude is over 2000 m. Furthermore, the presence of
more than two types of surface features in each 5 km × 5 km
pixel may also result in errors. In addition, when using MODIS
LST data as counterpart to FY-2E-derived LST, an observation
time of 11:00 is assumed for both, although some pixels of the

MODIS LST product were in fact observed from 10:00 to 11:30.
These different observation times could be another error source.
Finally, the low signal-to-noise ratio of the FY-2E data could
also cause significant discrepancies between FY-2E-derived and
MODIS LSTs.

V. SUMMARY AND CONCLUSION

This study investigated LST retrieval from two thermal in-
frared channels of the Chinese operational geostationary mete-
orological satellite FY-2E using a GSW algorithm. Atmospheric
WVC was derived using the transmittance ratio of IR1 and IR2
according to Li [46]. The LSEs in channels IR1 and IR2 of
FY-2E were estimated from the LSEs in channels 31 and 32
of MODIS provided by the MODIS product. The MOD11A1
product is generally more accurate than MOD11A2 in obtaining
the LSE of FY-2E for LST estimation for individual cloud-free
days.

To confirm the feasibility of this method, comparison with
MODIS products was conducted for the study area. The results
reveal a significant correlation between LST retrieval and the
MODIS product, with R ranging from 0.60 to 0.94 and RMSE
ranging from 1.89 to 3.71 K. The high R-value of 0.98 between
retrieved LST and ground-measured soil temperature further
proves the feasibility of using FY-2E to retrieve LST. Neverthe-
less, future studies will conduct a comprehensive validation of
the proposed method using ground-measured LSTs for various
surface and climate conditions.
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Surface Soil Moisture Retrieval Using
Optical/Thermal Infrared Remote Sensing Data

Yawei Wang , Jian Peng, Member, IEEE, Xiaoning Song, Member, IEEE, Pei Leng,
Ralf Ludwig, and Alexander Loew, Member, IEEE

Abstract— Surface soil moisture (SSM) plays significant roles
in various scientific fields, including agriculture, hydrology,
meteorology, and ecology. However, the spatial resolutions of
microwave SSM products are too coarse for regional applications.
Most current optical/thermal infrared SSM retrieval models
cannot directly estimate the quantitative volumetric soil water
content without establishing empirical relationships between
ground-based SSM measurements and satellite-derived proxies
of SSM. Therefore, in this paper, SSM is estimated directly from
5-km-resolution Chinese Geostationary Meteorological Satellite
FY-2E data based on an elliptical-new SSM retrieval model
developed from the synergistic use of diurnal cycles of land
surface temperature (LST) and net surface shortwave radiation
(NSSR). The elliptical-original model was constructed for bare
soil and did not consider the impacts of different fractional
vegetation cover (FVC) conditions. To optimize the elliptical-
original model for regional-scale SSM estimates, it is improved
in this paper by considering the influence of FVC, which is based
on a dimidiate pixel model and a Moderate Resolution Imaging
Spectroradiometer normalized difference vegetation index prod-
uct. A preliminary validation of the model is conducted based
on ground measurements from the counties of Maqu, Luqu, and
Ruoergai in the source area of the Yellow River. A correlation
coefficient (R) of 0.620, a root-mean-square error (RMSE) of
0.146 m3/m3, and a bias of 0.038 m3/m3 were obtained when
comparing the in situ measurements with the FY-2E-derived
SSM using the elliptical-original model. In contrast, the FY-2E-
derived SSM using the elliptical-new model exhibited greater
consistency with the ground measurements, as evidenced by an
R of 0.845, an RMSE of 0.064 m3/m3, and a bias of 0.017 m3/m3.
To provide accurate SSM estimates, high-accuracy FVC, LST,
and NSSR data are required. To complement the point-scale
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validation conducted here, cross-comparisons with other existing
SSM products will be conducted in the future studies.

Index Terms— Ellipse model, land surface temperature (LST),
net surface shortwave radiation (NSSR), optical/thermal infrared
data, surface soil moisture (SSM).

I. INTRODUCTION

SURFACE soil moisture (SSM), which is represented by
water that is retained in the top few centimeters (approx-

imately 0 to 5 cm) of the soil, represents an important con-
nection between the land surface and the atmosphere [1]–[6].
Real-time, accurate SSM monitoring plays critical roles in
guiding agricultural irrigation and production forecasts for
agricultural applications [7]. As a significant component of
the hydrological cycle, SSM effectively regulates the parti-
tioning of rainfall into infiltration and runoff. Furthermore,
soil moisture was listed as an essential climate variable by the
World Meteorological Organization in 2010 due to its impacts
on climate change over a temporal range of hours to years.
In addition, SSM is closely associated with various fundamen-
tal areas of research and many scientific disciplines [8]–[12].

Both regional- and global-scale quantitative estimates of
SSM are essential. However, due to the combined effects of
weather and surface conditions, SSM displays broad hetero-
geneity at both temporal and spatial scales [13], [14]. There-
fore, it is particularly difficult to acquire quantitative estimates
of SSM at the regional scale. Numerous investigations have
focused on obtaining regional-scale SSM estimates [15]–[20].
Although microwave remote sensing of SSM has various
deficiencies including a lack of soil roughness information and
problems arising from sun-glint contamination at the L-band,
microwave band has all-day observation capability [21]. Some
SSM products have been produced based on the Advanced
Microwave Scanning Radiometer—Earth Observing System
instrument, the Soil Moisture Ocean Salinity mission, the cli-
mate change initiative, and the Soil Moisture Active Pas-
sive [22]–[28]. However, the spatial resolutions of microwave
SSM products are overly coarse (approximately 25–50 km)
for regional applications. Optical/thermal infrared data have
the advantage of a high spatial resolution, and thus, the esti-
mation of SSM from optical/thermal infrared data has been
attempted in several studies [29]–[31]. However, most exist-
ing methods cannot quantitatively estimate the volumetric
soil water content directly without establishing empirical
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relationships between SSM measurements and satellite-derived
proxies of SSM.

The increasing number of geostationary satellites is facili-
tating the development of more practical SSM retrieval meth-
ods with higher spatial and temporal resolutions [31]–[36].
Geostationary satellites have a higher frequency of observa-
tions than do polar orbiting satellites and can produce 48 to
96 images per day with a fixed observation angle for a given
pixel, substantially enriching our understanding of terrestrial
water and energy budgets. A novel SSM retrieval model
was proposed by Leng et al. [32], [33] to directly estimate
SSM without ground soil moisture data for calibration. This
model is based on the synergistic use of diurnal cycles of
land surface temperature (LST) and net surface shortwave
radiation (NSSR) data obtained from geostationary satellite
data. This innovative ellipse model exhibits some advantages
over other methods that utilize optical/thermal infrared data.
First, the ellipse model is capable of directly estimating SSM
without establishing empirical relationships between field-
scale soil moisture measurements and remotely sensed para-
meters. Field-scale soil moisture measurements are essential
for many SSM retrieval models but are difficult to obtain.
Consequently, the ellipse model is less labor intensive and
more convenient. Second, the ellipse model can estimate SSM
via a great number of approaches than can other methods.
Polar orbiting satellites can only observe one target once
every 12 h. If it is cloudy during the satellite pass, the retrieval
method will provide no information. However, the ellipse
model requires only five of 48/96 images, offering a greater
probability of estimating the SSM. Following the approaches
of previous investigations, this paper aims to analyze the
effects of fractional vegetation cover (FVC) and to optimize
the elliptical-original model over different vegetation cover
types. A preliminary validation of the model is conducted
using ground measurements for the counties of Maqu, Luqu,
and Ruoergai.

II. STUDY AREA AND DATA

A. Description of the Study Area

The study area, which includes the counties of Maqu, Luqu,
and Ruoergai (33.05° N–34.81° N, 100.76° E–103.61° E),
is located to the east of the source area of the Yellow
River (SAYR), the catchment of which lies above the Tang-
nag Hydrological Station in the Northeastern Qinghai–Tibet
Plateau [37]. The area encompasses a large river valley and
surrounding hills, wetlands, grassland, and bare areas. The
climate is wet and cold with dry winters and rainy summers
due to the monsoon season. The mass and energy fluxes
between the land surface and the atmosphere in the Qinghai–
Tibet Plateau have substantial effects on regional and global
climates. Thus, studying the SSM over the study area in the
Qinghai–Tibet Plateau is of great significance.

B. FY-2E Data

The FY-2 series of satellites, which were launched by
China beginning in 2001, consists of five geostationary mete-
orological satellites FY-2C/2D/2E/2F/2G. The FY-2E satellite

TABLE I

MAIN TECHNICAL SPECIFICATIONS OF THE RADIOMETER

Fig. 1. Map of the study area, which includes the counties of Maqu, Luqu,
and Ruoergai.

was launched at the end of 2008 to replace FY-2C. The
optical imaging radiometer onboard the FY-2E satellite is a
stretched-visible and infrared spin-scan radiometer (S-VISSR)
that includes one visible channel and four infrared thermal
channels (Table I) [38]. FY-2E can obtain one full disc image
per hour or every 30 min that covers the earth’s surface
over latitudes from 60° N to 60° S and longitudes from
45° E to 165° E during the flooding season. FY-2E data are
obtained from the National Satellite Meteorological Center
(http://www.nsmc.cma.gov.cn/NSMC/Home/Index.html).

C. Ground Soil Temperature Measurements

The soil moisture monitoring network used in this paper
was installed by the Cold and Arid Regions Environmental
and Engineering Research Institute and the Faculty of Geo-
Information Science and Earth Observation of the Univer-
sity of Twente, Enschede, The Netherlands; the stations are
shown in Fig. 1. Table II displays information on the soil
moisture monitoring stations, which was derived from the
coordinated Asia–European long-term observing system of
Qinghai–Tibet Plateau hydrometeorological processes and the
Asian-monsoon system with ground satellite image data and
numerical simulations report “continuous in situ soil mois-
ture measurements at Maqu site” by L. Dente, Z. Vekerdy,
Z. Su, and J. Wen. The ground measurements represent the
soil moisture at a depth of approximately 5 cm, which is most
closely related to the SSM estimates retrieved from satellite
data in this paper.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: SSM RETRIEVAL USING OPTICAL/THERMAL INFRARED REMOTE SENSING DATA 3

TABLE II

NETWORK STATION INFORMATION

D. Simulated Data

Simulated data from the common land model (CoLM)
are used to improve the elliptical-original SSM retrieval
model [39]. Various studies show that the CoLM provides
reasonable simulations of the land surface state in Northwest-
ern China and the Tibetan Plateau, including at Maqu station,
which is located in the current study area [40]. The CoLM can
adequately represent basic features of the land surface energy
balance at daily time scales in China [41].

The CoLM primarily represents physical, hydrological, and
biological processes and exhibits high accuracy in the sim-
ulation of multiple parameters, including snow cover, soil
moisture, sensible heat flux, and latent heat flux. Atmospheric
forcing data that are employed for driving the CoLM primarily
encompass the downward solar radiation, downward longwave
radiation, wind speed, wind direction, precipitation, air temper-
ature at a reference height, atmospheric pressure at the surface,
and relative humidity at a reference height.

III. METHODOLOGY

A. Elliptical-Original SSM Retrieval Model

The diurnal LST cycle can be described as a sine or cosine
function. The daytime part of the diurnal temperature cycle
model can be expressed as follows [42]:

Tday(t) = T0 + Ta cos[β(t − tm)] (1)

where Tday(t) is the LST (K ) at time t (hours), T0 is the resid-
ual temperature at sunrise, Ta is the temperature amplitude, β
is the width of the half-period of the cosine term, and tm is
the time at which the temperature reaches its maximum.

A similar cosine function can be used to express the diurnal
NSSR cycle

Sday(t) = S0 + Sa cos[α(t − tr )] (2)

where Sday(t) is the NSSR (W/m2) at time t (hours), S0 is the
residual NSSR at sunrise, Sa is the NSSR amplitude, α is the

width of the half-period of the cosine term, and tr is the time
(hours) of the maximum NSSR.

To facilitate investigating the relationship between the diur-
nal cycles of LST and NSSR and simplify the expression, LST
and NSSR can be made dimensionless as follows:

x = Tday(t) − s
r − s

= p1 cos[β(t − tm)] + q1 (3)

y = Sday(t) − j
k − j

= p2 cos[α(t − tr )] + q2 (4)

where x and y are the dimensionless LST and NSSR, respec-
tively, r and s are set as 325 and 275 K, respectively, and k
and j are set as 1200 and 0 W/m2, respectively. p1, q1, p2,
and q2 are parameters of the diurnal LST and NSSR cycles.

For a day of clear skies, it is assumed that β in (1) is equal
to α in (2). The difference between maximum LST time tm
and maximum NSSR time tr is calculated as follows:

#t = tm − tr . (5)

An elliptical relationship exists between LST and NSSR
during the daytime on fully cloud-free days, which can be
expressed as follows [33]:
p2

2(x −q1)
2−2 p1 p2[cos(β · #t)](x −q1)(y−q2)+ p2

1(y−q2)
2

= [p1 p2 sin(β · #t)]2. (6)

For a given atmospheric condition, p1, q1, p2, q2, β, and
#t are constants for a particular soil type and soil moisture
content. The ellipse parameters, including the center horizontal
coordinate (x0), the center vertical coordinate (y0), the semi-
major axis (a), the semiminor axis (b), and the rotation
angle (θ), can be calculated as follows:






x0 = q1
y0 = q2

θ = 1
2

cot−1
[

p2
1 − p2

2

2 p1 p2 cos(β · #t)

]

a = p1 sin(β · #t)
b = p2 sin(β · #t).

(7)
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Fig. 2. Diagram of the elliptical relationship between the diurnal cycles
of the LST and NSSR. x0, y0, a, and θ represent the horizontal and
vertical coordinates of the ellipse center, the semimajor axis, and the rota-
tion angle, respectively. (x j , y j ) represent the LST and NSSR at time j
( j = 1, 2, 3, 4, 5).

The elliptical relationship varies with different soil types and
soil moisture contents under a given atmospheric condition.
Furthermore, there is an elliptical relationship between the
diurnal LST and NSSR cycles, as shown in Fig. 2. A stepwise
regression method is used to determine the parameters for
SSM retrieval. With the simulated data, it is found that the four
ellipse parameters (x0, y0, a, and θ) are the most significant
for the estimation of SSM. However, the center horizontal
coordinate x0 and the rotation angle θ have a strong linear
relationship [38].

Therefore, the newly developed SSM retrieval model can be
written as follows [33], [38]:

SSM = n1 × y0 + n2 × a + n3 × lnθ + n0 (8)

where SSM is the daily-averaged SSM (m3/m3), y0, a, and θ ,
which, respectively, represent the vertical coordinates of the
ellipse center, the semimajor axis and the rotation angle, are
the ellipse parameters for the elliptical relationship between
the diurnal LST and NSSR cycles, and ni (i = 0, 1, 2, 3)
is the model coefficients (m3/m3) that can be simulated
from the CoLM. It should be noticed that elliptical para-
meters and model coefficients will change with different
days.

B. Determination of LST

The diurnal cycles of LST and NSSR are prerequisite infor-
mation for the elliptical SSM retrieval model. As determined
in [43] and [44], LST can be expressed as follows based on
the split-window algorithm [45]:

Ts = a0 +
(

a1 + a2
1 − ε

ε
+ a3

δε

ε2

)
TIR1 + TIR2

2

+
(

a4 + a5
1 − ε

ε
a6

δε

ε2

)
TIR1TIR2

2
(9)

where TIR1 and TIR2 are the top-of-atmosphere (TOA)
brightness temperatures (K ) measured in channels IR1 and
IR2; ε is the averaged emissivity from channels IR1 and
IR2 of FY-2E which can be estimated from the LSEs
in channels 31 and 32 of Moderate Resolution Imaging
Spectroradiometer (MODIS) provided by the MODIS LST
product MOD11A1; δε is the emissivity difference between
the two thermal infrared channels IR1 and IR2; and
a0–a6 are unknown coefficients that can be derived from
the simulated data through statistical regression methods for

each viewing zenith angle and subrange. The University of
California Santa Barbara, Santa Barbara, CA, USA, spectral
database was used to determine the emissivity relationship
between the S-VISSR channels and the MODIS 31 and
32 channels [44].

C. Determination of NSSR

NSSR is mainly calculated using downward
surface shortwave radiation (DSSR), upward surface
shortwave radiation (USSR), and land surface albedo as
follows [46], [47]:

Sn = R↓
s − R↑

s = (1 − r)R↓
s (10)

R↓
s = G × cos (SZA) × dr × τ (11)

dr = 1.00011 + 0.034221 cos(α) + 0.00128 sin(α)

+0.000719 cos(2α) + 0.000077 sin(2α). (12)

According to Tang et al.[43] and Li et al.[48],
the atmospheric water vapor content (WVC) can be derived
from the transmittance ratio of the split-window channels.
The relationship between the transmittance ratio and WVC
is determined by synthetic regression on the simulated data
from MODTRAN with aerosol model (VIS = 23 km, rural
model)

WVC = C1 + C2 × τIR2

τIR1
(13)

τIR2

τIR1
= εIR1

εIR2
×

∑N
k=1 (TIR1,k − TIR1)(TIR2,k − TIR2)

∑N
k=1 (TIR1,k − TIR1)

2 (14)

C1 = 28.104 − 14.996
cos(VZA)

+ 3.211
cos2 (VZA)

(15)

C2 = −28.056 + 14.954
cos(VZA)

− 3.206
cos2 (VZA)

(16)

α = 2π(DOY − 1)

365
(17)

where Sn is the NSSR (W/m2); R↓
S and R↑

S represent the
DSSR (W/m2) and USSR (W/m2), respectively; r is the land
surface albedo; G is the solar constant (1367 W/m2); SZA
is the solar zenith angle; dr is the earth–sun distance factor;
τ is the atmospheric transmissivity; DOY denotes the day of
year; WVC is the water vapor content (g/cm2); τIR1 and τIR2
are the atmospheric transmittances in channels IR1 and IR2;
εIR1 and εIR2 are the emissivities in channels IR1 and IR2;
and T IR1 and T IR2 are the TOA mean channel brightness
temperatures (K ) of the N neighboring pixels in channels
IR1 and IR2, respectively.

D. Elliptical-New SSM Retrieval Model

1) Improvement With FVC: The elliptical-original model
was constructed for bare soil conditions with coefficients that
do not reflect conditions with varying FVC. The coefficients
for bare soil are used for SSM estimates under conditions
where the FVC is less than 0.7. However, the FVC is tem-
porally variable, and thus, using the same set of coefficients
to derive the SSM under different vegetation conditions can
produce errors. Accordingly, it is necessary to account for FVC
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Fig. 3. Flowchart of the development of the daily-averaged SSM retrieval
model.

to optimize the elliptical-original model for use at temporal
and spatial scales.

The FVC can be derived from a widely used dimidiate
pixel model, a linear pixel unmixing model, and a MODIS
normalized difference vegetation index (NDVI) product
(16-day MOD13Q1) [49], [50]. This derivation assumes that
each pixel can be decomposed into a linear combination of
bare soil (NDVIsoil) and full vegetation (NDVIveg) as follows:

FVC = (NDVI − NDVIsoil)/(NDVIveg − NDVIsoil) (18)

where FVC is the fractional vegetation cover, NDVI is the
normalized difference vegetation index, NDVIsoil is the NDVI
of the bare soil, and NDVIveg is the NDVI of the vegetation.
Due to inevitable noise, cumulative probabilities of 0.5%
and 99.5% are taken for NDVIsoil and NDVIveg, respectively,
in this paper.

2) Experimental Procedure: Fig. 3 depicts the process of
using the elliptical-new SSM retrieval model with geostation-
ary satellite data in detail. The data for CoLM simulation are
similar to those used in [22] and [51]. The initializations of
soil textures about the soil texture classification scheme of
the Food and Agriculture Organization are computed from
Bonan [52]. Besides, the land cover is initialized according
to the United States Geological Survey vegetation categories
and FVC, which is set at 0–0.7 for the study area. Atmospheric
forcing data are used to drive the CoLM, as mentioned earlier
in the reference to the simulated data. As indicated in the
flowchart, FVC is input into the CoLM along with atmospheric
forcing data to directly produce simulated data, including the
diurnal cycle of LST, the diurnal cycle of NSSR, and the
daily-averaged SSM, to construct the database. The model

Fig. 4. Measured wind speed and five sets of simulated wind speeds.

TABLE III

VALIDATION SSM RETRIEVALS WITH DIFFERENT WIND SPEEDS

coefficients are then calculated from the simulated daily-
averaged SSM and diurnal cycles of LST and NSSR. Similarly,
based on the geostationary satellite data, elliptical relation-
ships are built with the ellipse parameters. The SSM can be
successfully produced with the model coefficients and ellipse
parameters.

IV. RESULTS AND ANALYSIS

A. Effect of Atmospheric Forcing Data on the
Elliptical-New SSM Model

The model coefficients simulated from the CoLM are based
on atmospheric forcing data. However, atmospheric forcing
varies temporally and spatially. Therefore, atmospheric forcing
data will affect SSM retrieval. Wind speed, air temperature,
and relative humidity are the atmospheric forcing variables,
most likely to affect the accuracy of the elliptical-new SSM
retrieval model. In this paper, the model errors from wind
speed, air temperature, and relative humidity are analyzed.

1) Effect of Wind Speed on the Elliptical-New SSM Retrieval
Model: Wind speed has a strong diurnal cycle, with a peak in
the afternoon (2 PM) over most land areas [53], [54]. While
controlling other atmospheric forcing variables, diurnal LST,
diurnal NSSR, and daily SSM are simulated under different
wind speeds based on the CoLM. Taking the atmospheric
forcing data on DOY 217 in 2010 as an example, different
diurnal wind speeds are set based on measured wind speed,
as shown in Fig. 4.

After calculating the model coefficients with different wind
speeds, the SSM retrievals are validated with in situ mea-
surements, as shown in Table III. The accuracy of the wind
speed data affects SSM retrieval. If the uncertainty of wind
speed is less than 1 m/s, the accuracy of the result might
not be significantly affected. As the uncertainty of wind
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Fig. 5. Measured air temperature and five sets of simulated air temperature.

TABLE IV

VALIDATION SSM RETRIEVALS WITH DIFFERENT AIR TEMPERATURES

speed increases, the SSM retrievals will become increasingly
inaccurate, with large uncertainties at wind speed uncertainties
in excess of 3 m/s.

2) Effect of Air Temperature on the Elliptical-New SSM
Retrieval Model: Air temperature has a strong diurnal cycle,
with a peak in the afternoon over most land areas. Taking
the DOY 217 in 2010 as an example, simulated data are
produced based on the CoLM with different diurnal air tem-
peratures, as shown in Fig. 5. The SSM retrievals are validated
with in situ measurements, as shown in Table IV. As the
uncertainty of air temperature increases, the retrievals display
larger errors. As the uncertainty of air temperature reaches
a threshold, the error of SSM retrieval tends to be stable
within 0.02 m3/m3. Therefore, the retrievals are less sensitive
to uncertainties in air temperature than they are to those in
wind speed.

3) Effect of Relative Humidity on the Elliptical-New SSM
Retrieval Model: As with wind speed and air temperature,
relative humidity has a strong diurnal cycle, but with mini-
mum value in the afternoon. Setting relative humidity III as
the simulated series that is closest to the measured relative
humidity, the relative humidity I and V series are the series
with the greatest error in this paper, as shown in Fig. 6.
The greater the uncertainty of relative humidity, the larger is
the error of the SSM retrievals. As the uncertainty exceeds
20%, the accuracy of the elliptical-new SSM retrieval model is
minimized. However, a relative humidity value that is higher
than the true value will cause more error than one that is
lower than the true value. Thus, the SSM retrievals obtained
from relative humidity I are less accurate than those obtained
from relative humidity V. From relative humidities I to III,
the error of SSM retrieval increases by 0.018 m3/m3 as shown
in Table V. Overall, the retrievals are less sensitive to error

Fig. 6. Measured relative humidity and five sets of simulated relative
humidity.

TABLE V

VALIDATION SSM RETRIEVALS WITH DIFFERENT RELATIVE HUMIDITIES

in relative humidity than to error in air temperature or wind
speed.

B. Analysis of Model Sensitivity to LST and NSSR

To evaluate the impacts of uncertainties in LST and NSSR
on SSM retrieval, a sensitivity analysis of LST and NSSR is
performed in this paper. Gaussian randomly distributed errors
of 1, 2, and 3 K [errorLST ∼ N(0, 12), errorLST ∼ N(0, 22),
and errorLST ∼ N(0, 32)] are systematically added to the LST.
Then, SSM is estimated by using the elliptical-new SSM
retrieval model with the noised LST data. Compared with the
actual SSM, the root-mean-square error (RMSE) is 0.03 m3/m3

for errorLST ∼ N(0, 12), 0.04 m3/m3 for errorLST ∼
N(0, 22), and 0.06 m3/m3 for errorLST ∼ N(0, 32).
As shown in Fig. 7(a), the correlation coefficient (R) is
0.91 for errorLST ∼ N(0, 12), 0.81 for errorLST ∼ N(0, 22),
and 0.60 for errorLST ∼ N(0, 32). Similarly, we add Gaussian
randomly distributed errors of 10, 20, and 30 W/m2 to the
NSSR [errorNSSR ∼ N(0, 102), errorNSSR ∼ N(0, 202), and
errorNSSR ∼ N(0, 302)]. Fig. 7(b) reveals that the RMSE is
0.02 m3/m3 and that the R value is 0.92 for errorNSSR ∼
N(0, 102). For errorNSSR ∼ N(0, 202), the RMSE is
0.03 m3/m3 and R is 0.81. For errorNSSR ∼ N(0, 302),
the RMSE is 0.05 m3/m3 and R is 0.67. Errors from a
Gaussian random distribution are added to the diurnal LST
and NSSR for all vegetation conditions and land cover types,
and therefore, the results will display the largest possible
sensitivity.

C. Validation and Analysis With In Situ Measurements

To compare the elliptical-original model and the
elliptical-new model and validate their feasibilities,
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Fig. 7. Validation of the estimated SSM after adding Gaussian randomly
distributed error. (a) Added error to the LST. (b) Added error to the NSSR.

in situ daily-averaged SSM measurements are regarded as
references for an evaluation of cloud-free days between
July and October in 2010. In this model, SSM is estimated
from the elliptical relationship between the diurnal cycle of
LST and NSSR. For the elliptical relationship between diurnal
LST and NSSR cycles, there should be one diurnal LST-NSSR
ellipse for each given location for a cloud-free day. When the
weather changes (e.g., clouds occur or last for a while or even
rains) during the daytime, LST-NSSR and SSM can also be
affected. In this case, the LST-NSSR relationship may not
be elliptical, probably leading to the inapplicability of the
proposed model. Otherwise, if the LST-NSSR relationship
is still ellipse with weather variation, the ellipse model
would be applicable. In this case, the model is based on
fully cloud-free days to avoid intermittent cloudy or rainy
conditions. However, more in depth investigation should be
conducted to further explore the effects of clouds or rain
events on the estimation of SSM with the proposed model.
In addition, under situation of one diurnal LST-NSSR ellipse
for each given location for a cloud-free day, the SSM retrieval
should be daily averaged. In situ daily-averaged SSM can
reflect to some extent the diurnal variation of soil moisture
content. Hence, it is feasible to evaluate the model outputted
SSM with daily-averaged in situ measurements.

When comparing the SSM retrieval from the elliptical-
original model with the in situ measurements, an R value
of 0.528, an RMSE of 0.178 m3/m3, and a bias of 0.031 m3/m3

are obtained. The elliptical-new model possesses better

Fig. 8. Validation data for the elliptical-original (triangle) and elliptical-new
(rectangle) models with in situ measurements.

TABLE VI

RETRIEVAL RESULTS AND GROUND MEASUREMENT AT NST_15

accuracy, with an R value of 0.655, an RMSE of 0.109 m3/m3,
and a bias of 0.006 (m3/m3). The results in Fig. 8 reveal a good
correlation between the retrieved and ground measurements.
The satellite SSM retrievals in July are higher than the ground
measurements, potentially due to atmospheric data affecting
the model when SSM is high. The atmospheric forcing data,
including wind speed, used to drive the CoLM might affect
the model coefficients causing the SSM retrievals to be higher
than the ground measurements.

1) Analysis of the Error: Station NST_04 is situated in
marshland. Station NST_13 is located in high vegetation-
cover conditions. The FVC at NST_13 can sometimes exceed
70%, which is too high to obtain an accurate SSM retrieval
result [51].

Station NST_15 is situated along a hill slope with a
large elevation difference. Heterogeneous surfaces might cause
errors in the estimation of LST and NSSR. The elliptical
SSM retrieval model is based on the synergistic use of diurnal
cycles of LST and NSSR, and thus, errors in the LST and
NSSR estimates will influence the SSM estimation. Table VI
reveals that the SSM estimation will contain larger error as the
LST estimate becomes less accurate. For example, the SSM
estimate is more accurate on 20 July than on any other day
because of the high accuracy of the LST retrieval on this day.
Furthermore, if the LST retrieval is higher than the true value,
the smaller ellipse rotation angle will reduce the SSM retrieval
value relative to the in situ measurement, as is evidenced
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Fig. 9. Validation using the in situ measurements.

Fig. 10. SSM trends in comparison with in situ measurements.

in Table VI. Thus, the ellipse-new model is not suitable for
station NST_15.

Due to the high uncertainties from LST, the ellipse-new
model is not suitable for stations NST_04, NST_13, and
NST_15. Therefore, a subset of ground-based stations will be
used for validation.

2) Validation With Subset of Ground-Based Stations:
Excluding the stations NST_04, NST_13, and NST_15, the
in situ measurements are used for the validation process.
As shown in Fig. 9, the results are much more effective when
considering FVC, as evidenced by an R of 0.845, an RMSE
of 0.064 m3/m3, and a bias of 0.017 m3/m3. These results
demonstrate that using the elliptical-original model to derive
the SSM with the same set of coefficients for bare soil will
enlarge the error and generate an R of 0.620, an RMSE
of 0.146 m3/m3, and a bias of 0.038 m3/m3. From Fig. 9,
it can be seen that the discrepancies between original model
and in situ measurements get smaller when the FVC is
accounted in the new retrieval model. In particular, we label
the samples that has large bias with original model, while has
better agreement with in situ measurements when the FVC is
accounted in the new retrieval model. To further compare the
elliptical-original and elliptical-new models, the SSM trends
and the field-scaled SSM measurements are shown in Fig. 10.
Regardless of whether SSM is derived from the original- or
elliptical-new model, it exhibits the same trend as the ground
SSM measurements. In addition, it is evident that the SSM
retrievals using the elliptical-new model (red line) are much
more similar to the field-scaled SSM measurements (blue line)
than are the retrievals based on the original model. Therefore,
to precisely derive SSM, different vegetation conditions must

be considered to optimize the applicability of the model at
temporal and spatial scales.

V. SUMMARY AND CONCLUSION

SSM, which plays important roles in agricultural appli-
cations, environmental and climate systems, and weather
forecasting and carbon/nitrogen cycling, is a key land sur-
face variable in the earth system. Due to the capability
of geostationary satellites to acquire observations more fre-
quently relative to polar orbiting satellites, methods of greater
practicality and precision can be developed. In this paper,
we generate an improved and novel SSM retrieval model based
on the synergistic use of diurnal cycles of LST and NSSR.
Previous investigations have demonstrated the feasibility of
the elliptical-original SSM retrieval model for bare soils in
sparsely vegetated areas where the FVC varies from 0 to 0.7.
However, the coefficients of the elliptical-original model are
incapable of distinguishing different vegetation conditions.
In this paper, the elliptical-new model is optimized by account-
ing for the influences of different FVC values. First, the diurnal
cycles of LST, which are estimated using the generalized split-
window algorithm [43]–[45], and of NSSR [46] are calculated.
Second, FVC is calculated based on a dimidiate pixel model
and a MODIS NDVI product to optimize the model for the
estimation of SSM at the regional scale. Subsequently, SSM
retrieval is estimated using the elliptical-new model while
considering the impacts of different FVC values. Finally,
a preliminary validation is conducted by employing in situ
ground measurements for the counties of Maqu, Luqu, and
Ruoergai, which are located to the east of the SAYR. When
comparing the original- and elliptical-new model, stronger
relationship between the ground measurements and the
FY-2E-derived SSM using the elliptical-new model is reported,
with an R of 0.845, an RMSE of 0.064 m3/m3, and a bias of
0.017 m3/m3. The SSM retrieval results using the elliptical-
new model are more similar to the field-scaled SSM measure-
ments than are those obtained using the original model. The
FY-2E-derived SSM based on the elliptical-new model exhibits
less error than does the SSM estimated from the elliptical-
original model. Therefore, the preliminary validation using
in situ measurements confirms that it is necessary to consider
the impacts of FVC for improved SSM retrieval.

The sensitivity of the model to atmospheric forcing is
investigated. The retrievals have larger biases when the wind
speed, air temperature, or humidity has large uncertainties. The
ellipse model is most sensitive to wind speed, which indicates
a requirement for high-accuracy wind speed measurements to
estimate soil moisture with the proposed model.

In the future studies, we will obtain LST and NSSR by
employing high-quality geostationary satellite data. Further-
more, due to the observation of several errors observed during
FVC estimation, including errors in the determination of the
angle and some bidirectional reflectance distribution function
effects from ±55° of the MODIS threshold, the accuracy of
FVC retrieval will be improved and validated. Along with a
point-scale validation, cross-comparisons with other existing
SSM products will be conducted in the future studies.
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A B S T R A C T   

Multiple soil moisture (SM) products have been produced based on observations from microwave satellite sensors 
nowadays, allowing for the acquisition of global SM dynamics in a timely manner. Currently, only two blended 
microwave SM products, namely the Climate Change Initiative (CCI) from the European Space Agency and the 
Soil Moisture Operational Product System (SMOPS) from the National Oceanic and Atmospheric Administration, 
are available with either better temporal or better spatial coverage than those of other SM products derived from 
a single sensor. However, an assessment and especially a synchronous comparison of these two products are still 
lacking, making it difficult to determine a better alternative in actual applications. In the present study, a 
comprehensive assessment of the two blended products was conducted with reanalysis SM data from the Eu-
ropean Centre for Medium-Range Weather Forecasts and in-situ measurements from the International Soil 
Moisture Network. The scaling strategy of cumulative distribution function matching was used to remove the 
systematic differences in spatial mismatch between the satellite pixels and ground in-situ observations. The 
results indicated that CCI reveals overall better accuracy than that of SMOPS with both in-situ measurements and 
reanalysis data under different climate patterns. Specifically, the overall root mean square error (RMSE) with the 
in-situ measurements were 0.042 m3/m3 and 0.046 m3/m3 for CCI and SMOPS, respectively. Further investi-
gation also confirmed that SMOPS could be a potential alternative over the regions where CCI is not available, 
since SMOPS has better spatial coverage than CCI.   

1. Introduction 

Soil moisture (SM) is an essential variable in global climate change 
studies, hydrology and water resources, digital agriculture and other 
relevant domains (Hawley et al., 1983; Legates et al., 2011; Roberts, 
1983; Seneviratne et al., 2010). Currently, a number of approaches, 
including in-situ observations/networks, land surface/hydrological 
modeling and assimilation, and satellite retrievals, are frequently used 
to obtain SM and its dynamics with varying spatial and temporal reso-
lutions. Among these methods, in-situ measurements can provide the 
most accurate SM; however, in-situ measurements are expensive, time 
consuming, labor intensive and limited in terms of spatial extent (Dorigo 
et al., 2011), making it more suitable to validate SM data derived from 
satellite retrievals or modeling/assimilation systems, rather than direct 
applications in various investigations. Based on land 

surface/hydrological modeling and assimilation, several global SM 
products with continuous spatial coverages and temporal intervals have 
been produced through operational forecast systems. Some typical SM 
products include the Global Land Data Assimilation System (GLDAS), 
the Global Land Evaporation Amsterdam Model (GLEAM), the 
Modern-Era Retrospective analysis for Research and Applications 
(MERRA) and the fifth generation of the European Centre for 
Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) 
(Albergel et al., 2018; Martens et al., 2017; Rodell et al., 2004). In recent 
decades, with the development of remote sensing technologies, a num-
ber of regional/global SM products have been released primarily based 
on microwave observations. These most widely used SM products 
include the Advanced Microwave Scanning Radiometer-Earth Observing 
System (AMSR-E) and successive AMSR2, the Advanced SCATterometer 
(ASCAT), the Soil Moisture and Ocean Salinity Mission (SMOS) and the 
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Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010; Kerr et al., 
2012; Njoku et al., 2003; Wagner et al., 2013). Specifically, a variety of 
validation or intercomparision activities have been conducted to 
compare the performance of satellite-derived SM products with that of 
in-situ measurements, reanalysis data and land surface/hydrological 
modeling and data assimilation systems (Colliander et al., 2017; Leng 
et al., 2016; Wang et al., 2018; Zhang et al., 2019; Zhao et al., 2020). 
Moreover, nearly all previous investigations have confirmed that 
satellite-derived SM products can generally capture SM dynamics well 
across most regions under different climate patterns and landscapes all 
over the world, and satellite SM products generally reveal higher ac-
curacy than those derived from land surface/hydrological modeling and 
assimilation systems following previous studies (Wen et al., 2014; 
Stillman et al., 2016). As a result, to date, satellite-derived SM products 
have been widely used in a series of applications, such as weather 
forecasting, drought monitoring and water cycling (Entekhabi et al., 
2009; Kawanishi et al., 2003; Martínez-Fernández et al., 2016; Zhang 
et al., 2015). 

Except for the aforementioned single-sensor-based SM products, 
blended SM products acquired from multi-sensor observations have 
received considerable attention in a recent decade. A number of studies 
have highlighted that blended SM products not only reveal improved 
accuracy compared with that of products derived from a single micro-
wave sensor, but also have better performances for the simulation of 
land surface processes (Cheng et al., 2019; Dorigo et al., 2015; Nair and 
Indu, 2016; Yin et al., 2019). Currently, two globally blended micro-
wave SM products, namely the Climate Change Initiative (CCI) from the 
European Space Agency (ESA) and the Soil Moisture Operational Prod-
uct System (SMOPS) from the National Oceanic and Atmospheric 
Administration (NOAA), are available for various applications. As 
blended SM products, SMOPS and CCI are produced from most of the 
mainstream microwave sensors available but with different data sour-
ces, merging methods and temporal intervals to develop the final 
products. Specifically, CCI combines advantages from various satellites 
that have finite lifetimes and different instrument characteristics with 
different spatial and temporal resolutions, temporal coverage and po-
larization to form SM products with a fixed spatial resolution of 0.25◦ on 
a daily basis (Dorigo et al., 2015, 2017; Gruber et al., 2019). These 
satellite sensors not only include most of the aforementioned ones, such 
as AMSR-E, AMSR2, ASCAT and SMOS, but also contain other micro-
wave missions, such as the Scanning Multichannel Microwave Radi-
ometer (SMMR), the Active Microwave Instrument Wind Scatterometer 
(AMI-WS) onboard the European Remote-Sensing Satellite (ERS), the 
Special Sensor Microwave/Imager (SSM/I), the Tropical Rainfall 
Monitoring Mission (TRMM) Microwave Imager (TMI), and the WindSat 
Spaceborne Polarimetric Microwave Radiometer. The latest version of 
the CCI v4.5 dataset covers a period of over 40 years from 1978 to 2018, 
making it the longest record of satellite SM as so far. As a consequence, 
the CCI product has been widely used by over 6000 users worldwide to 
date (Dorigo et al., 2017; Gruber et al., 2019). Compared to CCI, SMOPS 
have received less attention. SMOPS has been operationally running at 
NOAA since 2012, aiming at increasing spatial and temporal coverage of 
the satellite SM observations and providing blended analysis from all the 
individual satellite microwave SM products for operational use (Leng 
et al., 2019). Specifically, SMOPS imports SM retrievals from satellite 
sensors and merges them with the output from the single channel (SC) 
algorithm using GLDAS modeled data (Jackson, 1993). Several main-
stream satellite sensors, including SMAP, ASCAT, SMOS, AMSR2, 
WindSat, and the Microwave Imager onboard the Global Precipitation 
Measurement (GPM) satellite, have been used to produce the SMOPS 
products. It notes that the latest version of SMOPS SM v3.0 covering the 
period from March 2017 to the present is currently available to be ob-
tained from the NOAA Comprehensive Large Array-data Stewardship 
System website. Specifically, the SMOPS product has the same spatial 
resolution of 0.25◦ as that of CCI; however, both daily and 6 -hly tem-
poral interval datasets are available for SMOPS, which might provide 

more alternatives than CCI in potential applications such as drought/-
flood monitoring and land surface assimilation systems where frequent 
SM measurements are required (Liu et al., 2016; Nair and Indu, 2016; 
Yin et al., 2014, 2019). 

Although blended microwave SM products (especially CCI) have 
been extensively evaluated and applied in a recent decade, no further 
investigation has been dedicated to synchronously assessing the two 
blended SM products. Hence, the present study is motivated by two main 
points: (1) compared to the intensive evaluations and applications of 
CCI, SMOPS has received much less attention. Hence, it is necessary to 
evaluate SMOPS across the world and especially to synchronously assess 
the two SM products to provide useful recommendations for practical 
applications, given that the two blended products reveal significant 
differences in data sources, merging methods, temporal intervals and 
spatial coverages. (2) A main advantage of SMOPS over CCI is that the 
former has nearly full spatial coverage, which can fill almost all the gaps 
remaining by CCI; therefore, it is of great importance to investigate the 
accuracy of SMOPS under different climate patterns and especially over 
the regions where CCI is not available. In the present study, except for 
the available in-situ SM measurements, a frequently used SM dataset 
with the same spatial resolution of 0.25◦ as that of CCI and SMOPS, 
namely, the reanalysis product of ERA5, is also implemented to assess 
the two blended SM products. The present study is organized as follows: 
Section 2 presents the materials and methods. The results and discussion 
are presented in Section 3 and Section 4, respectively. Section 5 presents 
the conclusions. 

2. Materials and methods 

2.1. Satellite SM product 

2.1.1. SMOPS 
SMOPS was developed to make effective use of all available 

microwave-based observations to obtain a blended SM product with 
increased spatial and temporal coverage. SMOPS has been operational 
running since 2012, which can not only provide global SM data products 
from individual sensors, but also provides a blended analysis from all SM 
product produced by the individual sensors. The basic retrieval strategy 
of SMOPS is first to obtain SM from a baseline satellite sensor and then to 
potentially extend the spatial and temporal coverage using SM retrievals 
from other satellite sensors. Specifically, the retrievals from multiple 
sensors are finally regridded to a spatial resolution of 0.25◦ with the 
cumulative distribution function (CDF) matching method in daily and 6 
-hly intervals (Liu et al., 2016; Yin et al., 2019; Zheng et al., 2018). It 
notes that the previous version 1.0 and 2.0 of SMOPS take the WindSat 
and AMSR2 as baseline satellite sensor, respectively. Currently, the 
latest version 3.0 of the SMOPS uses the more reliable SMAP as baseline 
emission, and is capable of providing a seamless SM product over global 
land with both daily and 6 -hly intervals from March 2017 to present. In 
this study, SMOPS v3.0 daily SM data stored as the NetCDF file format 
during the study period from August 2017 to December 2018 is obtained 
from the NOAA website (https://www.avl.class.noaa.gov/saa/products 
/welcome). It notes that a significant advantage of SMOPS v3.0 is that 
the data have almost full land coverage, which can well fill the gaps 
remaining by most of the currently available satellite SM products. 
However, the overall full coverage is probably not realistic in SMOPS 
potentially highlighting SM retrieval over likely frozen ground/ice and 
over regions with dense vegetation. 

2.1.2. CCI 
The CCI products were developed under the framework of the ESA 

Soil Moisture Climate Change Initiative and Water Cycle Multi-Mission 
Observation Strategy (Hollmann et al., 2013). The CCI SM has a spatial 
resolution of 0.25◦ and a daily time stamp. Moreover, for each version of 
CCI, three products including active, passive and combined active/-
passive, are available at the official website (https://www.esa- 
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soilmoisture-cci.org/node/145). Specifically, the active product was 
derived based on the change detection method, whereas the passive 
product was generated following the land parameter retrieval method 
(LPRM). Moreover, the CDF matching method was used to rescale all the 
active and passive microwave datasets to the climatology of GLDAS 
output, which is similar to that in the procedure of producing the SMOPS 
product. Finally, the combined product was generated by merging the 
rescaled active and passive datasets (Gruber et al., 2017, 2019; Liu et al., 
2012; Wagner et al., 2012). It notes that errors in the individual active 
and passive products are characterized by means of a stricter triple 
collocation (TC) analysis to reduce possible uncertainties in the latest 
version (v4.5) of CCI. These errors are used both for estimating the 
merging parameters and for characterizing the errors of the merged 
product, which is different from previous versions of CCI products. 
Because the latest version (v4.5) of CCI extends the three global SM 
products covering a long period from 1978 to 2018, the combined 
product stored as NetCDF classic format during the study period is ob-
tained for further investigation. 

2.2. SM reanalysis data 

ERA5 is the fifth global reanalysis produced by the European Centre 
for Medium-Range Weather Forecasts (ECMWF). As the successive 
dataset for the widely used ERA-Interim reanalysis that stopped at the 
end of August 2019, ERA5 inherits the framework of model physics, data 
assimilation and core dynamics from the previous version and combines 
vast amounts of historical observations into global estimates using 
advanced modeling and data assimilation systems, which generally re-
veals better accuracy than that of its previous version (Dee et al., 2011; 
Albergel et al., 2018). The SM product of ERA5 includes data from four 
different depths at 0.25◦×0.25◦ (the original SM data is with a spatial 
resolution of 0.28◦×0.28◦, however has been processed with current 
form in the official website for users) with hourly temporal resolution. 
Currently, EAR5 data stored as GRIB and NetCDF formats are available 
from 1979 to present (https://cds.climate.copernicus.eu/cdsapp#!/da-
taset/reanalysis-era5-single-levels?tab = overview). In this study, 
hourly SM data in the first layer (0−7 cm) with the classic NetCDF 
format are obtained from the website and are subsequently averaged to 
daily values for the study period from August 2017 to December 2018. It 
notes that ERA5 combines vast amounts of historical observations into 
global estimates using advanced modelling and data assimilation sys-
tems. Specifically, the number of observations assimilated in ERA5 has 
increased from approximately 0.75 million per day on average in 1979 
to around 21 million per day by July 2018 (Hersbach et al., 2018). In 
general, the observations primarily include satellite data and in-situ 
data. For an example, the satellite data contains a variety of sensors 
for observing the atmospheric motions vectors, radiances, radio occu-
lation, scatterometer, ozone and SM. Specifically, as for satellite SM, 
only ASCAT based SM is directly assimilated into ERA5. Moreover, the 
in-situ data assimilated in ERA5 primarily contains the essential mete-
orological elements (e.g. surface pressure, air temperature, wind and 
humidity) and snow parameters (e.g. snow depth and snow cover) 
collected from land stations and radiosondes. Except for these, ERA5 SM 
data are corrected by 2-m analysis increments of air temperature and 
relative humidity following an empirical approach (Drusch et al., 2009; 
Li et al., 2020). 

2.3. In-situ SM networks 

For the assessment of the two blended microwave SM products, in- 
situ measurements are obtained from the International Soil Moisture 
Network (ISMN; https://ismn.geo.tuwien.ac.at/en/) (Dorigo et al., 
2011, 2013). The ISMN is a data-hosting center where globally available 
in-situ SM measurements are collected, harmonized and made available 
to users. For the study period from August 2017 to December 2018, 
in-situ SM measurements with a depth of 5 cm are acquired from 12 

available networks, including REMEDHUS, TERENO, SMOSMANIA, 
FMI, OZNET, RSMN, SCAN, SNOTEL, iRON, PBO_H2O, FR_Aqui and 
USCRN. Fig. 1 shows the geographic distribution of the 12 SM networks 
across the world. Specifically, SM measurements beyond the physically 
possible range or under frozen conditions were excluded in advance. 
Finally, a total of 449 stations over the 12 networks, including 20 sta-
tions in REMEDHUS, two stations in TERENO, three stations in FR_Aqui, 
22 stations in SMOSMANIA, 16 stations in FMI, 15 stations in OZNET, 17 
stations in RSMN, 113 stations in SCAN, 164 stations in SNOTEL, 65 
stations in USCRN, 9 stations in iRON and three stations in PBO_H2O, 
are used for the present investigation. Details for the 12 networks are 
described in the following subsections. 

2.3.1. REMEDHUS (Spain) 
REMEDHUS is located in the semi-arid parts of the Duero Basin in 

Spain, which mainly covers shrublands and croplands of a 35 km × 35 
km flat area (41.1–41.5 ◦N, 5.1−5.7 ◦W) with elevations ranging from 
700 to 900 m (Martínez-Fernández, 2003). The climate for the 
REMEDHUS region is semiarid continental Mediterranean, with dry and 
warm summers and cool to mild and wet winters. The average annual 
temperature is 12 ◦C, and the mean annual rainfall is 385 mm. In the 
present study, SM data collected at 20 stations over the REMEDHUS 
network are obtained from the ISMN. The REMEDHUS network was 
operated from March 2005 and has been widely used for various ap-
plications, such as calibration and validation of microwave SM products 
(Peng et al., 2015a). 

2.3.2. TERENO (Germany) 
The TERENO network is located in western Germany near Köln and 

Aachen. The elevation of the terrain over the entire Rur catchment 
generally rises from 30 to 680 m from north to south. The land cover 
types of the region are arable land (37 %), coniferous and deciduous 
forests (34 %), pastures (22 %), settlements (5%) and open-cast lignite 
mines (2%) (Bogena et al., 2018). For TERENO, in-situ SM measure-
ments at depths of 5, 20 and 50 cm are available from December 2009. In 
the present study, SM measurements at 5 cm at two stations are acquired 
for the investigation (Zacharias et al., 2011). 

2.3.3. FR_Aqui and SMOSMANIA (France) 
The FR_Aqui network was set up by the National Institute of Agri-

cultural Research in southwestern France. Trees and vineyards are the 
dominant vegetation types over this area (Wigneron et al., 2018). In-situ 
SM measurements at 0−5 cm are available from January 2012 in this 
network. The SMOSMANIA network is based on the automatic weather 
station network of Météo-France (RADOME), which observes humidity, 
wind speed, air temperature and precipitation in southwestern France 
(Albergel et al., 2008). The stations for SM monitoring are in relatively 
flat areas (mountainous areas are avoided as much as possible), and the 
station with the highest altitude is Mouthoumet at 538 m (Calvet et al., 
2007). SM probes were installed at depths of 5, 10, 20 and 30 cm hor-
izontally for each station for monitoring from January 2007. 

2.3.4. FMI (Finland) 
The FMI network is located in northern Finland and is characterized 

by a mosaic of sparse conifer-dominated forests, small lakes and open 
and forested bogs. SM probes were installed at depths of 2, 5, 10, 20, 40, 
60 and 80 cm horizontally for each station. Ground-based observations 
are available from January 2007 to the present. 

2.3.5. OZNET (Australia) 
OZNET in southern New South Wales, Australia, gradually trans-

forms from semiarid regions in the west to temperate regions in the east. 
With latitude ranging from 34.628 to 35.393 ◦S and longitude varying 
from 145.848 to 147.566 ◦E, the OZNET region is mainly covered by 
grazing and crops. Specifically, the elevation over the OZNET network 
varies from 113 to 327 m with little slope. Over the OZNET region, 
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annual precipitation ranges from 406 to 783 mm (Young et al., 2008). 
The SM stations are evenly distributed throughout the experimental 
catchment for monitoring SM at depths of 0−5 cm, 0−8 cm, 0−30 cm, 
30−60 cm and 60−90 cm from September 2001 (Smith et al., 2012). 

2.3.6. RSMN (Romania) 
The stations of the RSMN network are mainly located along the 

borders of Romania, with latitudes ranging from 43.9–48.2 ◦N and 
longitudes varying from 20.6–28.3 ◦E, and elevations varying from 
nearly 300–500 m. In general, the dominant land use types over the 
RSMN network are minimal forest, water and localities and a small 
amount of argil soil. The stations have been monitoring SM at 0−5 cm 
depth since April 2014. 

2.3.7. SCAN, SNOTEL, USCRN and iRON (USA) 
The SCAN network across the conterminous USA, Alaska, and Hawaii 

provides a number of parameter observations, including precipitation, 
air temperature, wind speed and direction, solar radiation, snow depth, 
SM and soil temperature. The stations monitor various depths of SM 
from January 1996 to the present. The SNOTEL network is located in the 
western USA and Alaska (Schaefer and Paetzold, 2001). Most stations in 
the SNOTEL network provide multiple observations per day, including 
snow water content, precipitation, snow depth, SM and others, with 
approximately 30 % providing hourly data. Ground-based observations 
at different depths varying from 0 to 100 cm can be obtained from 
October 1980 to the present. The USCRN is a systematic and sustained 
network with sites throughout the conterminous U.S. The USCRN 
network offers monthly, daily, and hourly SM observations at depths of 
5, 10, 20, 50, and 100 cm from November 2000 to the present (Bell et al., 
2013). The interactive Roaring Fork Observation Network (iRON), 
which is hosted by the Aspen Global Change Institute, is a series of 
in-situ soil and meteorological monitoring stations (Osenga et al., 2019). 
Each station is equipped with one dielectric sensor at depths of 5, 20, 50 
and 100 cm for SM from August 2012 to January 2019. In this study, 
in-situ SM measurements in these three networks at 5 cm depth are 
employed from August 2017 to December 2018. 

2.3.8. PBO_H2O (South Africa) 
The PBO_H2O network primarily contains SM stations in USA and 

South Africa. Because a number of stations in SCAN, SNOTEL, USCRN 
and iRON networks have been used in this study, three stations of the 

PBO_H2O network located in South Africa are selected for the present 
investigation (Larson et al., 2008). 

2.4. Scaling strategy 

The CDF matching method has been widely used to remove sys-
tematic differences between satellite imagery and site-specific obser-
vations for SM assessments (Brocca et al., 2011; Drusch et al., 2005). 
Based on the CDF matching procedure, the time series satellite images 
can be rescaled to make them better match the synchronous in-situ 
measurements. In this study, the CDF matching method is imple-
mented for the assessments of SMOPS and CCI SM products with in-situ 
SM measurements collected at the 12 available networks across the 
world. Specifically, nearly 75 % of the 449 stations at the 12 networks 
are sparsely distributed where one given pixel of the blended microwave 
SM data contains only one station. In present study, after the procedure 
of CDF matching, the in-situ SM measurements are first averaged if more 
than a single station occur within a CCI or SMOPS pixel. Furthermore, 
the averaged SM that represent the pixel mean are used to assess the 
satellite SM data. It notes that the blended SM products are with a daily 
basis, whereas in-situ SM data are commonly with much more frequent 
observations (hourly). Considering the temporal variation of SM, to 
better match the in-situ and satellite SM in temporal dimension, the 
in-situ SM records are first averaged to daily values, and are subse-
quently used to assess the blended SM products on a daily basis. 

3. Results 

3.1. Spatial coverages and temporal intervals of CCI and SMOPS 

Because both the daily CCI and SMOPS reveal the same spatial res-
olution of 0.25◦, a direct comparison is first presented to investigate the 
spatial coverage for the two blended SM products. Take the SM data on 
the 15th day for the typical months of January, April, July and October 
2018 as an example. Fig. 2 shows the two blended SM products for the 
four selected days. It is evident that SMOPS reveals much better spatial 
coverage than CCI on all the selected days. Specifically, SMOPS has 
almost full coverage over the land worldwide regardless of the season, 
whereas significant gaps can be found for CCI on each scenery of the 
selected days, especially in winter and over the regions with high lati-
tude. This is because the dielectric properties of the water changes 

Fig. 1. Locations of the 12 soil moisture networks used in the present study.  
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dramatically under frozen snow/frozen ground, which can lead to 
invalid SM retrievals with microwave observations. Hence, all pixels 
where the land use type is frozen land/snow cover and the surface 
temperature is observed to be at or below 0 ◦C, are assigned with an 
appropriate data flag in the CCI products. Moreover, distinct gaps can 
also be found around the tropical forest regions along the equator, 
including regions in Africa, Southeast Asia and South America on nearly 
all the selected days. Because vegetation can affect the microwave 
emission, and under a sufficiently dense canopy the emitted soil radia-
tion will become completely masked by the overlaying vegetation, the 
vegetation optical depth (VOD) data derived from microwave observa-
tions has been used to detect regions with excessive vegetation. As a 
consequence, the data for high VOD has been flagged in the CCI prod-
ucts. Except for the minimum spatial coverage in winter, the spatial 
coverage of CCI reveals significant seasonal variation where the 
maximum coverage occurs in summer (July) and medium coverage can 
be found in spring and autumn (April and October). 

In general, the different spatial coverages of CCI and SMOPS data can 
be attributed to several reasons including different methods, sensors and 
quality controls for developing the two blended microwave SM prod-
ucts. To better assess the two datasets synchronously, the quality flags of 
CCI product are used to remove unreliable pixels (e.g. pixels with frozen 
land, snow cover, temperatures below 0 ◦C and dense vegetation) of 

SMOPS data. Fig. 3 shows the available number of days for each pixel of 
the two blended SM products at monthly interval. It is obvious that 
except for the masked areas, SMOPS has significantly more observations 
for each pixel than that of CCI in each of the selected typical month. 
Following the statistics, average observation days for the valid pixels of 
CCI are 20, 20, 25 and 21 in January, April, July and October, respec-
tively, whereas these numbers for SMOPS are 24, 24, 30 and 25, 
respectively. All these results indicate that SMOPS has significantly 
higher observation frequency than CCI at monthly interval. More spe-
cifically, Table 1 shows the percentages of pixels with different obser-
vation frequencies at monthly interval for the two blended SM products. 
It is evident that for all the pixels with valid SM in monthly interval, over 
20 % of the monthly CCI SM are averaged with less than 15 available 
daily CCI data, and approximately one third of those pixels have valid 
CCI observations over 26 days in the months of January, April and 
October. As for July, although more observation frequencies can be 
found compared to that for the other three months, less than two thirds 
of the pixels of monthly CCI have more than 26 daily observations. 
Compared to CCI, it is clear that the vast majority (over two thirds) of 
valid monthly SMOPS SM are obtained by more than 26 daily obser-
vations. All these results reveal that SMOPS has significantly more 
frequent observations for most of the pixels across the world at monthly 
interval. 

Fig. 2. Global soil moisture distribution of CCI (left column) and SMOPS (right) on the 15th day of the four typical months of January, April, July and October 2018.  

Y. Wang et al.                                                                                                                                                                                                                                   



,QWHUQDWLRQDO -RXUQDO RI $SSOLHG (DUWK 2EVHUYDWLRQV DQG *HRLQIRUPDWLRQ �� ������ ������

�

3.2. Assessments of the blended SM products with in-situ measurements 

This section assesses blended microwave SM products with in-situ 
measurements collected from 12 available SM networks across the 
world. Because scale mismatches commonly exist between satellite pixel 
footprints and ground in-situ observations, to better match satellite SM 
products and site-specific measurements in time series, the CDF 
matching method is used to remove the systematic errors caused by the 
scale mismatch between the blended SM products and in-situ measure-
ments. Fig. 4 shows an example for the comparison between blended SM 
products with CDF matching and in-situ measurements collected at the 
Zamarron station of the REMEDHUS network in Spain. It is obvious that 
the two blended SM products can generally capture well the overall SM 
dynamic in the temporal dimension over the study period from August 
2017 to December 2018. Following this result, almost all the sub-period 
of SM increases (e.g. from early to middle August 2017), decreases (e.g. 
from January to late February 2018) and fluctuation changes (e.g. from 
November 2017 to early January 2018) can be precisely obtained from 
the two blended SM products. Specifically, a rain event on March 1st, 
2018 is also detected by both of the blended SM data, in which SM revels 

Fig. 3. Available number of days for each pixel of the CCI (left column) and SMOPS (right) in the four typical months of January, April, July and October 2018.  

Table 1 
Percentages of pixels with different observation frequencies at monthly interval 
for CCI and SMOPS in the four typical months of January, April, July and 
October 2018.  

Percentage 
Month 

Observation frequencies (days) for pixels with monthly CCI  

1−5 6−10 11−15 16−20 21−25 ≥26 

January 10 % 6% 6% 20 % 23 % 35 % 
April 10 % 6% 7% 19 % 26 % 32 % 
July 3% 2% 3% 11 % 18 % 63 % 
October 9% 6% 8% 17 % 23 % 37 % 
Percentage 

Month 
Observation frequencies (days) for pixels with monthly SMOPS  

1−5 6−10 11−15 16−20 21−25 ≥26 
January 14 % 4% 3% 3% 5% 71 % 
April 8% 5% 4% 5% 7% 71 % 
July 0% 0% 0% 1% 2% 97 % 
October 7% 6% 5% 7% 8% 67 %  
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a dramatic increase from both the satellite SM and in-situ measure-
ments. With the in-situ SM measurements, a considerable accuracy with 
a correlation coefficient (R) of 0.92 and root mean square error (RMSE) 
of 0.018 m3/m3 can be obtained for the CCI data, which is slightly better 
than that of the SMOPS data with an R of 0.88 and RMSE of 0.021 m3/ 
m3. Nevertheless, the results of the Zamarron station indicate a rela-
tively high and comparable accuracy of the two blended microwave SM 
products. 

To better investigate the accuracy of SMOPS and CCI, further as-
sessments are implemented for other in-situ SM measurements at all 12 
networks. Fig. 5 shows the accuracy of the two blended SM products 
compared to in-situ measurements for the 12 networks in detail. The 
RMSEs for most of the networks are within 0.050 m3/m3, with FR_Aqui, 
OZNET, PBO, REMEDHUS and RSMN having RMSEs close to 0.040 m3/ 
m3. Specifically, the RMSE between SMOPS and the in-situ measure-
ments varies from 0.035 to 0.066 m3/m3, whereas a comparable RMSE 
range of 0.031 to 0.060 m3/m3 can be obtained between CCI and the in- 
situ SM measurements. The correlation coefficient between SMOPS and 
the in-situ measurements varies from 0.144 to 0.764, whereas CCI shows 
similar correlation coefficient with a range of 0.227 to 0.792. According 
to the statistical results, both CCI and SMOPS perform the best in 
FR_Aqui and worse in FMI and iRON. Moreover, averaged RMSEs are 
0.046 m3/m3 and 0.042 m3/m3 for SMOPS and CCI, respectively, 

indicating that both blended microwave SM data are well correlated to 
the in-situ measurements. These results preliminarily indicate that both 
blended SM products exhibit significant accuracy close to the target 
accuracy of 0.040 m3/m3 for microwave SM data dedicated by existing 
satellite missions. Nevertheless, the results also indicate that CCI has 
slightly better accuracy than that of SMOPS, with an improved RMSE 
from 0.001 to 0.008 m3/m3 for the 12 networks. 

3.3. Assessments of the blended SM products under different climate 
classifications 

To investigate the accuracy of two blended SM products under 
different hydrologic and vegetation conditions, comparisons of satellite 
SM products with referenced SM data were commonly grouped to 
multiple climate patterns (Cho et al., 2017; Wagner et al., 2003; Zohaib 
et al., 2017). Because the reanalysis SM data have the same spatial 
resolution of 0.25◦ as the blended SM products, no CDF matching is 
required to assess the blended SM products with reanalysis data. In this 
section, the Köppen-Geiger climate classification is used to divide the 
global land across the world into five main climate groups, with each 
group being divided based on seasonal precipitation and temperature 
patterns (Kottek et al., 2006; Rubel and Kottek, 2010). Fig. 6 shows a 
widely used global Köppen-Geiger climate classifications in detail. 

Fig. 4. Comparison between blended SM products and in-situ measurements through CDF matching at the Zamarron station of REMEDHUS.  

Fig. 5. RMSE and correlation coefficient (R) of the blended SM products and in-situ measurements for the 12 networks.  
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Except for the Polar Regions, it is clear that each of the Köppen-Geiger 
climate pattern is constituted by a letter from each of the main climate, 
precipitation and temperature, respectively. 

To make it consistency when comparing the two blended products 
with the referenced ERA5 SM data synchronously, the regions where 
SMOPS is available while CCI has no valid values are first removed from 
the SMOPS. Fig. 7 shows the bias between the two blended microwave 
SM products and ERA5 across the world. It is evident that both SMOPS 
and CCI have similar bias distributions when comparing to ERA5 over 
the study period. Specifically, both SMOPS and CCI overestimate SM in 
arid climate such as BWk, BWh and BSk (labeled as yellow in Fig. 6), 
whereas underestimate SM in equatorial climate such as Am, As and Aw 
(labeled as red in Fig. 6). 

In addition to the bias, the global distributions of the unbiased RMSE 
(ubRMSE) are obtained between the two blended microwave SM prod-
ucts and ERA5 data (Fig. 8). It is clear that an ubRMSE within 0.08 m3/ 
m3 can be obtained for the two blended SM data over most areas, and the 
pixels with larger uncertainties are most likely to occur over high lati-
tude regions, especially for CCI. Fig. 9 depicts the ubRMSE for each of 

the Köppen-Geiger climate classifications in detail. It is evident that CCI 
reveals significantly high accuracy in equatorial climate (Af, Am, As and 
Aw) and the continental climate of Dsb. For the arid climate (BSh and 
BWh), the major warm temperate climate (Cfa, Csa, Csb, Cwa, Cwb and 
Cwc) and several continental climate (Dfa and Dsa), CCI also shows 
slightly better accuracy than SMOPS. However, the two blended mi-
crowave SM products exhibit comparable accuracy under a few warm 
temperate climate (Cfc and Csc), several continental climate (Dfc, Dwa 
and Dwb) and polar climate (ET). Except for these, SMOPS is slightly 
better than CCI in several continental climate (Dfd, Dwc and Dwd). All 
these accuracy statistics indicate that CCI show overall significantly 
better or comparable accuracy than SMOPS in most of the regions 
worldwide. 

3.4. Performances of SMOPS over the regions where CCI is unavailable 

Following the previous section, it is evident that CCI reveals better or 
comparable accuracy than SMOPS across most regions worldwide. 
Nevertheless, it is essential to investigate the accuracy of SMOPS over 

Fig. 6. Global Köppen-Geiger climate classifications (adapted from Rubel and Kottek, 2010). 
(a) SMOPS (b) CCI 

Fig. 7. Bias between SMOPS and ERA5 (a), and between CCI and ERA5 (b). 
(a) SMOPS (b) CCI 
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the regions where CCI is unavailable, given that the former has better 
spatial coverage. From this perspective, SMOPS is most likely to be a 
potential alternative for the gaps of CCI, only if SMOPS can provide SM 
estimates with acceptable accuracy. Taking the year 2018 as an 
example, Fig. 10 depicts the available number of days for valid CCI and 
available number of days for valid SMOPS while CCI is unavailable, 
respectively. Following the results, an average of 212 valid daily SM 
observations for each pixel can be obtained from the CCI in 2018. 
However, SMOPS can provide an average of 81 more daily SM obser-
vations for each pixel to supplement CCI in the same period, making it 
almost available to acquire SM measurements with a daily basis for each 
pixel. 

Fig. 11 depicts the ubRMSE when comparing SMOPS with ERA5 for 
each pixel where CCI is not available in the year 2018. It is obvious that 
most of the ubRMSE is within 0.080 m3/m3. Following the statistics, the 
percentages of pixels for ubRMSE within 0.050 m3/m3 and 0.080 m3/m3 

are 43 % and 84 %, respectively. Moreover, an averaged ubRMSE of 
0.058 m3/m3 can be obtained for all the pixels. These results reveal that 
SMOPS can provide SM estimates with comparable accuracy over the 
gaps. Hence, it is promising that SMOPS could be a potential alternative 
over the regions where CCI is unavailable. 

4. Discussion 

4.1. On the differences between the two blended products 

The two blended SM products are different in many aspects primarily 
including data sources, merging methods and quality controls. All these 
differences can probably result in different performances with respect to 
temporal intervals, spatial coverages and retrieval accuracy of the SM 
products. Specifically, during the study period (from August 2017 to 
December 2018), CCI merged data from ASCAT, SMOS and AMSR2 
sensors, while SMOPS merged all available sensors including SMAP, 
ASCAT, SMOS, AMSR2 and GPM Microwave Imager. This would explain 
the reason for the worse temporal interval and spatial coverage of CCI 
than SMOPS, given that CCI takes fewer microwave satellite observa-
tions to produce the blended SM product, whereas SMOPS has much 
more chances to obtain SM estimates with added observations. 

Following the results in previous sections, it is obvious that CCI re-
veals significantly better or comparable accuracy than SMOPS across 
most of the regions worldwide. A primary reason to the higher accuracy 
of CCI can be attributed to the enhanced quality control of the micro-
wave SM retrievals for CCI products. For instance, the stricter TC 

Fig. 8. Unbiased RMSE between SMOPS and ERA5 (a), and between CCI and ERA5 (b).  

Fig. 9. Unbiased RMSE for each of the Köppen-Geiger climate classifications.  

Fig. 10. Available number of days for CCI (a), SMOPS while CCI is unavailable (b) in the year 2018.  
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analysis based error characterization is used in the latest version of the 
CCI retrievals, which has guaranteed the quality of the combined SM 
product. Additionally, CCI SM retrievals under specific conditions (e.g. 
frozen land, snow covered land, temperatures below 0 ◦C and dense 
vegetation) are directly masked out in the procedure of CCI SM products. 
However, it should be noted that with the development of microwave 
satellite observations, SMOPS has been taking more reliable baseline 
satellite sensor in the SC algorithm for producing blended SM product 
since its initial version. Currently, the SMAP is used as the baseline 
satellite sensor to produce the latest version (v3.0) of SMOPS product, 
indicating that the increasing accuracy of SMOPS data can be provided 
at present or near future. 

4.2. Recommendations for actual applications with the two blended 
products 

Following the results from both in-situ SM measurements and rean-
alysis SM data, it is obvious that CCI has better errors statistics compared 
to SMOPS. Specifically, CCI shows better accuracy than SMOPS for all 12 
SM networks, and a number of previous studies have also indicated that 
CCI data can outperform other products and agree well with the spatial 
and temporal patterns from in-situ SM observations (Dorigo et al., 2017; 
Peng et al., 2015b). 

In general, we would encourage the use of CCI for actual applications 
if both CCI and SMOPS are available, given that CCI generally reveals 
better or comparable accuracy than that of SMOPS across most of the 
regions worldwide. Specifically, CCI should be the first choice in all 
equatorial climate, several arid climate (BSh and Bwh), most of the 
warm temperate climate (Cfa, Csa, Csb, Cwa, Cwb and Cwc), and several 
continental climate regions (Dfa and Dsa). In contrast, SMOPS only 
performs better under several continental climate regions (Dfd, Dwc and 
Dwd). Nevertheless, a significant advantage of SMOPS over CCI is that 
the former has better spatial coverage. Following the results in previous 
sections, it was found that SMOPS can provide an average of 81 more 
daily SM observations with a reliable averaged ubRMSE of 0.058 m3/m3 

for each pixel in 2018, which is an effective supplement for CCI where 
only an average of 212 daily SM observations is available for each pixel 
by CCI in the same period. Except for these, compared to the daily CCI 
data, SMOPS can provide both daily and 6 -hly interval data. Hence, 
SMOPS might meet some special needs with higher temporal resolution. 
However, because the SC algorithm used in SMOPS is sensitive to 
vegetation, the existence of vegetation would decrease the accuracy of 
SMOPS SM retrievals. As a consequence, SMOPS would not be suggested 
to be used in actual applications over the regions where the VOD is high, 
although it probably can provide SM estimates in these areas. 

4.3. Follow-up assessments of the two blended products 

In the present study, both in-situ SM measurements and reanalysis 
SM data are used to assess blended microwave SM products. Despite the 
performances of accuracy under the Köppen-Geiger climate patterns 
with ERA5 data across the world, it should be noted that the results 
based on in-situ measurements are mostly constrained in Europe, USA 
and Australia, due to the limited data availability for both in-situ mea-
surements and synchronous blended SM products. Hence, assessments 
with ground station measurements are still lacking for a majority of the 
Köppen-Geiger climate classifications, especially in the continents of 
Asia, South America and Africa. 

In present study, a total number of 449 stations are used to evaluate 
the two blended microwave SM products. However, most of these sta-
tions (~75 %) are sparsely distributed where one given CCI or SMOPS 
pixel contains only single station. As a result, the CDF method is used to 
eliminate the effects of scale mismatch on SM assessments. Additionally, 
the CDF-matched SM observations from single ground station have been 
widely used to represent SM associated with a satellite pixel (Brocca 
et al., 2011; Lacava et al., 2012). Furthermore, if several stations occur 
within a pixel of the blended SM data, the in-situ SM measurements are 
primarily CDF-matched for each station. Then, the CDF-matched SM 
from the stations contained in the given pixel are averaged to represent 
the reference pixel mean. Although the CDF matching method has been 
implemented to eliminate the systematic differences created by scale 
mismatch for the time series of satellite SM and in-situ measurements, 
uncertainties probably still exist to lead to unreliable assessment results, 
given that even the averaged SM after CDF matching within a grid cell is 
only a reference pixel SM rather than the truth itself, and no actual SM at 
pixel scale is currently available. In a recent study, Chen et al. (2019) 
investigated the uncertainty of reference pixel SM averages sampled at 
SMAP core validation sites, which has highlighted a new direction to 
assess coarse spatial resolution satellite SM in the cases where several 
stations contained within a satellite footprint scale. To this end, future 
assessments can focus more on the SM networks with intensive stations 
and enhanced spatial sampling methods to improve the upscaling 
functions for the better obtaining of pixel SM mean. 

Furthermore, as complementary assessments, the results from the 
ERA5 data have been used to investigate the two blended SM products 
under different Köppen-Geiger climate patterns. It is noteworthy that 
SM derived from ASCAT and other passive microwave observations 
assimilated into ERA5, have also been used to produce the blended 
microwave SM products, which seems to make it somewhat lack of in-
dependence in the assessments. However, these observations are only a 
small part in the determination of the ERA5 SM data and blended SM 
products. Specifically, as for the ERA5, the complicated assimilation 
system contains a large number of inputs from satellite and in-situ 

Fig. 11. Unbiased RMSE between SMOPS and ERA5 for each pixel with the data records where SMOPS is valid while CCI is unavailable in 2018.  
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observations. Similarly, the blended SM products are obtained from 
several available active/passive sensors, in which ASCAT is only one of 
the many inputs for the blended microwave SM products. From this 
perspective, these commonly used observations will not play dominant 
role in the determination of ERA5 and blended SM estimates. Never-
theless, other SM datasets that completed independent of CCI and 
SMOPS are also expected to assess the two blended SM products in 
future investigation. 

5. Conclusions 

The present study has investigated the accuracy of two blended mi-
crowave SM products using both ground in-situ measurements and 
reanalysis data. With the available in-situ measurements collected at 12 
networks across the world and the CDF procedure to eliminate scale 
issues, it was found that the two blended microwave SM products can 
provide good agreements when compared to in-situ measurements, with 
overall RMSEs of 0.042 m3/m3 and 0.046 m3/m3 for CCI and SMOPS, 
respectively. Further investigation with ERA5 also confirmed that CCI 
can obtain better or comparable accuracy than SMOPS across most of 
the regions worldwide. However, due to the significant better spatial 
coverage of SMOPS, it can be a potential alternative to provide SM es-
timates with comparable accuracy of 0.058 m3/m3 over the gaps 
remaining by CCI. Hence, it is promising that the two blended SM 
products might have the potential to complement each other in actual 
applications. 
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by world maps of the Köppen-Geiger climate classifications. Meteorol. Z. 19, 
135–141. https://doi.org/10.1127/0941-2948/2010/0430. 

Schaefer, G., Paetzold, R., 2001. SNOTEL (SNOwpack TELemetry) and SCAN (soil 
climate analysis network). In: Proceeding of the Int. Workshop on Auto. Weather 
Stations for Applications in Agriculture and Water Resources Management. High 
Plains Climate Center, Uni. of Nebraska-Lincoln, USA and the World Meteorol. Org. 
(WMO), AGM-3 WMO/TD No. 1074. 

Seneviratne, S., Corti, T., Davin, E., Hirschi, M., Jaeger, E., Lehner, I., Orlowsky, B., 
Teuling, A., 2010. Investigating soil moisture-climate interactions in a changing 
climate: a review. Earth-Sci. Rev. 99, 125–161. https://doi.org/10.1016/j. 
earscirev.2010.02.004. 

Smith, A., Walker, J., Western, A., Young, R., Ellett, K., Pipunic, R., Grayson, R., 
Siriwardena, L., Chiew, F., Richter, H., 2012. The Murrumbidgee soil moisture 
monitoring network data set. Water Resour. Res. 48, 1–6. https://doi.org/10.1029/ 
2012WR011976. 

Stillman, S., Zeng, X., Bosilovich, M., 2016. Evaluation of 22 precipitation and 23 soil 
moisture products over a semiarid area in southeastern Arizona. J. Hydrometeorol. 
17, 211–230. https://doi.org/10.1175/JHM-D-15-0007.1. 

Wagner, W., Scipal, K., Pathe, C., 2003. Evaluation of the aggreement between the first 
global remotely sensed soil moisture data with model and precipitation data. 
J. Geophys. Res. 108, 4611. https://doi.org/10.1029/2003JD003663. 

Wagner, W., Dorigo, W., de Jeu, R., Fernandez, D., Benveniste, J., Haas, E., Ertl, M., 
2012. Fusion of active and passive microwave observations to create an essential 
climate variable data record on soil moisture. ISPRS Annals 7, 315–321. https://doi. 
org/10.5194/isprsannals-I-7-315-2012. 

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldaña, J., de 
Rosnay, P., Jann, A., Schneider, S., 2013. The ASCAT soil moisture product: a review 
of its specifications, validation results, and emerging applications. Meteorol. Z. 22, 
5–33. https://doi.org/10.1127/0941-2948/2013/0399. 

Wang, Y., Peng, J., Song, X., Leng, P., Ludwig, R., Loew, A., 2018. Surface soil moisture 
retrieval using optical/thermal infrared remote sensing data. IEEE Trans. Geosci. 
Remote Sens. 56, 5433–5442. https://doi.org/10.1109/TGRS.2018.2817370. 

Wen, X., Lu, H., Li, C., Koike, T., Kaihotsu, I., 2014. Inter-comparison of soil moisture 
products from SMOS, AMSR-E, ECWMF and GLDAS over the Mongolia plateau. 
Proceedings of SPIE 9260. https://doi.org/10.1117/12.2068952. 

Wigneron, J., Dayan, S., Kruszewski, A., Aluome, C., Yaari, M., Fan, L., Guven, S., 
Chipeaux, C., Moisy, C., Guyon, D., Loustau, D., 2018. The aqui network: soil 
moisture sites in the “Les landes” forest and graves vineyards (Bordeaux aquitaine 
region, France). 2018 IEEE International Geoscience and Remote Sensing 
Symposium(IGARSS) 3739–3742. https://doi.org/10.1109/IGARSS.2018.8517392. 

Yin, J., Zhan, X., Zheng, Y., Liu, J., Hain, C., Fang, L., 2014. Impact of quality control of 
satellite soil moisture data on their assimilation into land surface model. Geophys. 
Res. Lett. 41, 7159–7166. https://doi.org/10.1002/2014GL060659. 

Yin, J., Zhan, X., Liu, J., Schull, M., 2019. An intercomparison of Noah model skills with 
benefits of assimilating SMOPS blended and individual soil moisture retrievals. 
Water Resour. Res. 55, 2572–2592. https://doi.org/10.1029/2018WR024326. 

Young, R., Walker, J., Yeoh, N., Smith, A., Ellett, K., Merlin, O., Western, A., 2008. Soil 
Moisture and Meteorological Observations from the Murrumbidgee Catchment. 
Department of Civil and Environmental Engineering, The University of Melbourne. 

Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz, T., Frenzel, M., 
Schwank, M., Baessler, C., Butterbach-Bahl, K., 2011. A network of terrestrial 
environmental observatories in Germany. Vadose Zone J. 10, 955–973. https://doi. 
org/10.2136/vzj2010.0139. 

Zhang, J., Becker-Reshef, I., Justice, C., 2015. Evaluation of the ASCAT surface soil 
moisture product for agricultural drought monitoring in USA. 2018 IEEE 
International Geoscience and Remote Sensing Symposium (IGARSS) 669–672. 
https://doi.org/10.1109/IGARSS.2015.7325852. 

Zhang, R., Kim, S., Sharma, A., 2019. A comprehensive validation of the SMAP enhanced 
Level-3 soil moisture product using ground measurements over varied climates and 
landscapes. Remote Sens. Enviorn 223, 82–94. https://doi.org/10.1016/j. 
rse.2019.01.015. 

Zhao, T., Shi, J., Lv, L., Xu, H., Chen, D., Cui, Q., Jackson, T., Yan, G., Jia, L., Chen, L., 
Zhao, K., Zheng, X., Zhao, L., Zheng, C., Ji, D., Xiong, C., Wang, T., Li, R., Pan, J., 
Wen, J., Yu, C., Zheng, Y., Jing, L., Chia, L., Lu, H., Yao, P., Ma, J., Lv, H., Wu, J., 
Zhao, W., Yan, G.N., Guo, P., Li, Y., Hu, L., Geng, D., Zhang, Z., 2020. Soil moisture 

Y. Wang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1109/TGRS.2017.2734070
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.1016/0022-1694(83)90102-6
https://doi.org/10.1016/0022-1694(83)90102-6
https://www.ecmwf.int/node/18765
https://www.ecmwf.int/node/18765
https://doi.org/10.1175/BAMS-D-11-00254.1
https://doi.org/10.1002/hyp.3360070205
https://doi.org/10.1109/TGRS.2002.808331
https://doi.org/10.1109/TGRS.2012.2184548
https://doi.org/10.1109/TGRS.2012.2184548
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1109/TGRS.2012.2186819
https://doi.org/10.1029/2008GL036013
https://doi.org/10.1177/0309133310386514
https://doi.org/10.1080/01431161.2016.1253896
https://doi.org/10.1016/j.jhydrol.2019.124167
https://doi.org/10.1002/joc.6549
https://doi.org/10.1016/j.rse.2012.03.014
https://doi.org/10.1016/j.rse.2012.03.014
https://doi.org/10.1109/IGARSS.2016.7729899
https://doi.org/10.1109/IGARSS.2016.7729899
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.2136/sssaj2003.1647
https://doi.org/10.2136/sssaj2003.1647
https://doi.org/10.1016/j.rse.2016.02.064
https://doi.org/10.3390/rs8120976
https://doi.org/10.1109/TGRS.2002.808243
https://doi.org/10.1109/TGRS.2002.808243
https://doi.org/10.1029/2018WR023653
https://doi.org/10.1029/2018WR023653
https://doi.org/10.5194/hess-19-4765-2015
https://doi.org/10.3390/rs71115729
https://doi.org/10.3390/rs71115729
https://doi.org/10.1016/0022-1694(83)90181-6
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1127/0941-2948/2010/0430
http://refhub.elsevier.com/S0303-2434(20)30877-1/sbref0240
http://refhub.elsevier.com/S0303-2434(20)30877-1/sbref0240
http://refhub.elsevier.com/S0303-2434(20)30877-1/sbref0240
http://refhub.elsevier.com/S0303-2434(20)30877-1/sbref0240
http://refhub.elsevier.com/S0303-2434(20)30877-1/sbref0240
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1029/2012WR011976
https://doi.org/10.1029/2012WR011976
https://doi.org/10.1175/JHM-D-15-0007.1
https://doi.org/10.1029/2003JD003663
https://doi.org/10.5194/isprsannals-I-7-315-2012
https://doi.org/10.5194/isprsannals-I-7-315-2012
https://doi.org/10.1127/0941-2948/2013/0399
https://doi.org/10.1109/TGRS.2018.2817370
https://doi.org/10.1117/12.2068952
https://doi.org/10.1109/IGARSS.2018.8517392
https://doi.org/10.1002/2014GL060659
https://doi.org/10.1029/2018WR024326
http://refhub.elsevier.com/S0303-2434(20)30877-1/sbref0300
http://refhub.elsevier.com/S0303-2434(20)30877-1/sbref0300
http://refhub.elsevier.com/S0303-2434(20)30877-1/sbref0300
https://doi.org/10.2136/vzj2010.0139
https://doi.org/10.2136/vzj2010.0139
https://doi.org/10.1109/IGARSS.2015.7325852
https://doi.org/10.1016/j.rse.2019.01.015
https://doi.org/10.1016/j.rse.2019.01.015


,QWHUQDWLRQDO -RXUQDO RI $SSOLHG (DUWK 2EVHUYDWLRQV DQG *HRLQIRUPDWLRQ �� ������ ������

��

experiment in the Luan River supporting new satellite mission opportunities. Remote 
Sens. Enviorn 240, 111680. https://doi.org/10.1016/j.rse.2020.111680. 

Zheng, W., Zhan, X., Liu, J., Ek, M., 2018. A preliminary assessment of the impact of 
assimilating satellite soil moisture data products on NCEP global forecast system. 
Adv. Meteorol. https://doi.org/10.1155/2018/7363194. 

Zohaib, M., Kim, H., Choi, M., 2017. Evaluating the patterns of spatiotemproal trends of 
root zone soil moisture in major climate regions in East Asia. J. Geophys. Res-Atmos. 
122, 7705–7722. https://doi.org/10.1002/2016JD026379. 

Y. Wang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.rse.2020.111680
https://doi.org/10.1155/2018/7363194
https://doi.org/10.1002/2016JD026379


4.4 Paper IV: IEEE GRSL - A method for downscaling satellite soil 

moisture based on land surface temperature and net surface 

shortwave radiation 

 

 

 

 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1

A Method for Downscaling Satellite Soil Moisture
Based on Land Surface Temperature and Net

Surface Shortwave Radiation
Yawei Wang , Pei Leng , Member, IEEE, Jianwei Ma, and Jian Peng

Abstract— Due to the coarse spatial resolution of currently
available microwave (mostly passive) soil moisture (SM) products,
it is difficult to apply these SM data in watersheds or at local
scales. To this end, a number of downscaling approaches have
been developed to improve the spatial resolution of microwave
SM products. Specifically, the optical-/thermal-based downscaling
methods are most widely used in recent decades. However, such
methods normally rely on instantaneous optical/thermal land
surface parameters, which are commonly inapplicable under
cloudy conditions. The purpose of this study is to develop a
new downscaling method based on the temporal variation in
geostationary satellite-derived land surface temperature and net
surface shortwave radiation. The proposed method has a certain
potential to improve data availability under cloudy conditions,
because geostationary satellites are capable of providing land
surface parameters at high temporal resolution. The proposed
method was tested over the REMEDHUS network in Spain.
The scaling strategy of cumulative distribution function matching
was used to remove systematic differences in spatial mismatch
between satellite pixels and in situ SM measurements. Results
indicate that the downscaled SM agrees well with in situ
measurements and has comparable accuracy with the original
microwave SM product. The overall root mean square errors
with the in situ measurements for the original microwave SM and
the downscaled SM are 0.054 and 0.057 m3/m3, respectively. This
method not only has a successful attempt to downscale microwave
SM data using temporal information but also has the potential to
avoid the failure of traditional instantaneous observations-based
downscaling procedure due to clouds.

Index Terms— Downscaling, geostationary satellites, land sur-
face temperature (LST), microwave soil moisture (SM), net
surface shortwave radiation (NSSR), temporal information.
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I. INTRODUCTION

SOIL moisture (SM) plays a significant role in hydrology,
agriculture, and global climate change [1], [2]. A num-

ber of methods have been developed to determine SM and
its dynamics with varying spatial and temporal resolutions,
including in situ observations/networks and satellite retrieval
[3], [4]. The remote sensing technology makes it possible to
obtain SM at scales ranging from regional to global. Cur-
rently, although a number of algorithms have been developed
to estimate SM with satellite observations, only microwave
sensors can provide operational SM products at coarse spa-
tial resolution of tens of kilometers. However, SM data at
the finer spatial resolution of approximately 1–10 km are
commonly required in applications at the watershed or local
scale [5]–[7]. To this end, various downscaling methods have
been proposed to enhance the spatial resolution of currently
available microwave SM products [3], [4], [8]. Specifically,
the key issue for developing these downscaling methods is
to find a statistical correlation or a physically based model
between the higher resolution auxiliary variables and coarse-
scale SM.

In general, most of the currently available remote sens-
ing downscaling methods can be divided into three major
categories. The first category of methods is based on the
combination of active and passive microwave data, such as
using high spatial resolution backscatter data from an active
sensor to downscale the coarse SM product from a passive
sensor, or using brightness temperature from a passive sensor
in combination with backscatter data. For this category, low
temporal coverage of radar imagery and high sensitivity to
vegetation cover and surface roughness of microwave obser-
vations are the two main drawbacks. The second category
is based on optical/thermal remote sensing data, which can
provide land surface parameters at higher spatial resolution
as auxiliary variables. For this category, several methods
such as the polynomial fitting downscaling method, tempera-
ture/vegetation index triangular feature space method [9], sim-
pler downscaling method (UCLA) [10], and the disaggregation
based on physical and theoretical scale change (DISPATCH)
method have been widely used with various optical/thermal
observations. However, for this category, nonavailability of
optical/thermal observations under cloudy sky, impacts of
vegetation cover on the optical/thermal observations, and
indirect relationship of optical/thermal observations to SM
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Fig. 1. Location of the REMEDHUS observation network and distribution
of SM stations.

variations are the three main shortages. The third category
is based on machine/deep learning, which can capture the
abstract features of the satellite imageries and learn the
potential associations between different observations. Among
the various machine/deep learning approaches, artificial neural
network, random forests, and support vector machine are
the most widely used approaches [4], [11], [12]. Because
a large number of data and computation are required for
training, machine/deep learning-based downscaling methods
are commonly complicated to apply.

The purpose of this study is to develop a new down-
scaling method based on the temporal variation of geosta-
tionary satellite-derived land surface temperature (LST) and
net surface shortwave radiation (NSSR) over the midmorning
period, which is expected to enhance the temporal coverage
of land surface parameters related to SM in the downscaling
procedure, since geostationary satellites are capable of pro-
viding land surface parameters at much higher frequencies
(48–96 times per day). As a result, the multiobservations
provided by the geostationary satellites can potentially avoid
cases where the traditional instantaneous observation from
the polar-orbit satellite is not available. Specifically, this
study was motivated by the fact that the rate of change of
LST with respect to NSSR over the midmorning period is
considered highly sensitive to SM following several previous
studies [13], [14].

II. STUDY AREA AND DATA

A. Study Area

The REMEDHUS network (41–41.5◦N and 5.0–5.7◦W) was
selected as the study area (Fig. 1). REMEDHUS is located in
the semiarid parts of the Duero Basin in Spain, which is mainly
covered by croplands and shrublands with relatively flat ele-
vation ranging from 700 to 900 m. The climate pattern for the
REMEDHUS region is semiarid continental Mediterranean,
with dry and warm summers, which cool to mild and wet
winters. The average annual temperature is 12 ◦C, and mean
annual rainfall is 385 mm. The REMEDHUS network has been
in operation since March 2005 and has been widely used for
various applications [9]. In the present study, SM measure-
ments in the top soil layer (0–5 cm) collected at 17 stations
during the growing season from April to October 2018 were
obtained from the International Soil Moisture Network.

B. MSG Data

In the present study, three land surface parameters derived
from Meteosat Second Generation (MSG) data were used to
downscale the coarse microwave SM products. Three para-
meters, namely, LST, land surface albedo, and down-welling
surface shortwave radiative flux (DSSF), were obtained from
the Land Surface Analysis Satellite Applications Facility. The
MSG products used in this study have a spatial resolution
of 3 km. Specifically, NSSR was derived from DSSF and
land surface albedo and was subsequently used to develop the
downscaling method in combination with LST.

C. Microwave SM Product

The climate change initiative (CCI) SM product developed
by the European Space Agency, which has a daily time stamp
with a spatial resolution of 0.25◦, was used in this study.
Specifically, the combined active/passive SM product with the
latest version (v4.5) from April to October 2018 was used for
downscaling [15].

III. METHODOLOGY

A. Theoretical Basis of the Proposed Downscaling Method

In an earlier study, based on simulated data from a 1-D
boundary layer surface soil model, it was found that the rate
of change of LST with respect to absorbed solar radiation
over the midmorning period is more highly sensitive to SM
than the other physical parameters retrieved from the Geo-
stationary Operational Environmental Satellite [14]. In this
study, the effects of SM produced 90% of the total variation
in the morning slope of the temperature curve. Later, based
on the Noah land surface model and the Gaussian emulation
machine for sensitivity analysis, it was found that LST follows
a linear relationship to NSSR during the midmorning period.
Moreover, the LST rising rate (calculated as the difference
in the NSSR during the midmorning period) was the most
sensitive parameter to SM, contributing 80.72% to the total
SM variance [13]. Following these previous investigations,
a downscaling method was developed according to the linear
relationship of LST and NSSR in the midmorning period, as
follows:

LST = k × NSSR + b (1)

where k and b are the slope and intercept of the linear rela-
tionship between LST and NSSR, respectively. Specifically,
LST and NSSR data sets from 8:30 A.M. to 11:00 A.M. were
selected for analysis.

To simplify the expression and to facilitate the determination
of the linear relationship between temporal LST and NSSR,
LST and NSSR were primarily nondimensionalized as follows:

LSTnew = LST − LSTmin

LSTmax − LSTmin
(2)

NSSRnew = NSSR − NSSRmin

NSSRmax − NSSRmin
(3)

where LSTnew and NSSRnew are the dimensionless LST and
NSSR, LSTmax and LSTmin are the maximum and minimum
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Fig. 2. Illustration of the derivative of slope (1/k) of the linear relationship
for three sites (with varying SM conditions) between MSG-derived LST and
NSSR in the midmorning period from 8:30 A.M. to 11.00 A.M. on July 8,
2018.

LST that can be set as 325 and 275 K, respectively, NSSRmax

and NSSRmin are the maximum and minimum NSSR that can
be set as 1200 and 0 W/m2, respectively.

Specifically, NSSR was obtained from MSG-derived DSSF
and land surface albedo (α) as follows [16]:

NSSR = (1 − α) × DSSF. (4)

Fig. 2 depicts an example of the derivative of slope (1/k)
derived from MSG data in the midmorning period on July 8,
2018. It is obvious that LST is well correlated with NSSR
with a linear form in this period under clear sky conditions.
It also demonstrates that the derivative of the slope (1/k) of the
linear relationship increases with increasing SM. This may be
explained by the fact that under the same radiation absorbed
by the land surface, due to the effects of soil thermal inertia,
a slower increase in LST can be commonly observed when
SM content is higher.

To downscale the coarse CCI product, the spatially averaged
1/k of MSG pixels within the same CCI pixel (1/k) is first
obtained as follows:

1/k = 1
n

n∑

i=1

(1/k)i (5)

where n is the number of MSG pixels within a CCI pixel.
For each MSG pixel within a given CCI pixel, the SM at

the MSG pixel can be estimated as follows:

θMSG = (1/k) × θCCI

1/k
(6)

where θMSG is the downscaled SM at the MSG pixel and θCCI

is CCI SM.

B. Simulation Analysis Based on Physically Based Model

Simulated data from the widely used common land model
(CoLM) were used to investigate the effects of underlying
surfaces on the derivative of slope (1/k) and SM [17]. With
the required meteorological observations and initialization of
underlying surface conditions, the CoLM can produce LST,
NSSR, and SM time series following each scenario under

Fig. 3. Relationship between the derivative of slope (1/k) and SM for
12 different soil textures with CoLM-simulated data.

Fig. 4. Correlation coefficient (R) between SM and 1/k for all soil textures
with different FVC.

a given atmospheric condition. Specifically, 12 soil textures
following the classification system of Food and Agriculture
Organization and different fraction vegetation cover (FVC)
(varying from 0 to 1 with an interval of 0.1) were implemented
in the simulation. For each scenario, a unique combination
of soil texture, FVC, and SM status was used to represent a
possible underlying surface condition. It is noted that for each
soil type, the variation in SM is from wilting point to field
capacity.

Fig. 3 depicts cases over bare soils. It is obvious that SM
correlates well with 1/k for each soil texture. Moreover, it is
also reasonable that mixed bare soils can probably decrease
the overall linear relationships between SM and 1/k. Fig. 4
further depicts the effects of mixed pixels on the relationship
between SM and 1/k. As can be seen from this result, when
considering all the soil textures, it is evident that the overall
correlation coefficient between SM and 1/k generally decreases
with the increase in FVC. Specifically, when FVC exceeds
0.6, the correlation coefficient between SM and 1/k reveals
a dramatical decrease. All these results indicate that the
relationship between SM and 1/k is generally stable over the
regions with relatively low heterogeneity.

IV. RESULTS

A. Spatial Patterns of SM

On the basis of the proposed method, the CCI SM was
downscaled to the higher spatial resolution of 3 km during the
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Fig. 5. Distribution of (a) derivative of slope (1/k), (b) downscaled SM, and
(c) CCI SM, on July 8, 2018.

study period (i.e., from April to October 2018). Fig. 5 depicts
the spatial distributions of 1/k, downscaled SM, and original
CCI SM on July 8, 2018. It is obvious that the downscaled
SM reveals similar spatial patterns as the original CCI SM.
For both the original SM product and the downscaled result,
SM in the north shows higher values than in the south. The
highest and lowest SM values occur in the northwest and
southeast, respectively. These results indicate that the proposed
downscaling method can well capture the spatial pattern of the
original CCI SM.

B. Validation With in Situ Measurements

As the cumulative distribution function (CDF) matching
method has been widely used to remove the systematic differ-
ences between satellite imagery and site-specific observations
for SM assessments [18], CDF was implemented in this study
to eliminate the scale issue before validation. It is evident from
Fig. 6 that both CCI SM and downscaled SM agree well with

Fig. 6. Comparison of in situ SM measurements and satellite SM data. (a)
Time series of the CCI SM, downscaled SM, and in situ SM at REMEDHUS
network scale during the study period, and (b) scatter plots of downscaled
SM at MSG pixel versus in situ SM measurements, and of CCI SM versus
in situ measurements.

the in situ SM over the study period. The station-averaged CCI
SM and downscaled SM have similar trends with the in situ
measurements [Fig. 6(a)]. As shown in Fig. 6(b), the root mean
square errors (RMSEs) with the in situ SM measurements are
0.054 and 0.057 m3/m3 for CCI SM and downscaled SM,
respectively. The correlation coefficient between in situ mea-
surements and CCI SM (downscaled SM) is 0.62 (0.61). These
results indicate that the downscaling approach can obtain SM
at higher spatial resolution with comparable accuracy to the
original coarse microwave product.

V. DISCUSSION

The proposed method has comparable accuracy with
the published downscaling methods implemented over the
REMEDHUS network [8], [9]. However, the present study
reveals at least two advantages compared with previous inves-
tigations. The primary advantage is that temporal information
(1/k) derived from land surface parameters, rather than direct
land surface parameters (e.g., LST and NSSR), were used to
downscale the coarse microwave SM data. It is known that
errors normally exist in instantaneous satellite-derived land
surface products. For example, an overall RMSE of 1–2 K
was reported with the MSG-derived LST product, whereas
the moderate-resolution imaging spectroradiometer LST data
are commonly recognized to have an RMSE of ∼1 K. It is
most likely that the errors in the instantaneous satellite-derived
land surface parameters can lead to various uncertainties when
they are used to downscale microwave SM products. For
the proposed approach, the temporal information (1/k) can
theoretically reduce the effects of errors in the instantaneous
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polar-orbit satellite-derived land surface parameters during
the downscaling procedure. Another advantage is that more
chances can be found in the proposed method, since geosta-
tionary satellites can observe the Earth with a fixed angle at
much higher frequencies (48–96 times per day) than polar-
orbit satellites (1–2 times per day). As shown in Fig. 2, even if
optical/thermal infrared observations are unavailable at several
times due to the effects of clouds (e.g., around 10:30 A.M.
when MODIS transits), the linear relationship can still be
determined with MSG observations at other times. Never-
theless, it should be noted that (6) is under the assumption
of the constant relation between SM and 1/k for all MSG
pixels within a CCI pixel. Hence, the proposed method is
not recommended for application over the regions where large
heterogeneity appears. Moreover, the simulated results have
also confirmed that the relationship between SM and 1/k is
more stable over the regions with low heterogeneity.

VI. CONCLUSION

In the present study, a new SM downscaling approach
was developed from the temporal variation in geostationary
satellite-derived LST and NSSR. This approach is developed
on the basis of a physical mechanism where a slower LST
rising rate can be observed when SM is higher under the same
absorbed energy condition. With MSG products, downscaled
SM at MSG pixels from the CCI products can well capture
the spatial patterns of the original SM data but with better
spatial details. A preliminary validation with in situ SM
measurements implies that the downscaled SM maintains a
comparable accuracy, with an RMSE at around 0.057 m3/m3

during the growing season from April to October in 2018.
Compared to the previous downscaling methods that primar-
ily use instantaneous optical/thermal infrared parameters, the
proposed approach shows several advantages, such as the
ability to decrease the effects of errors included in the opti-
cal/thermal infrared parameters when they are used to down-
scale microwave SM data. Furthermore, although the proposed
method has not been investigated under cloudy or partially
cloudy conditions where the traditional polar-orbit satellites-
based SM downscaling approaches are probably not available,
it has the potential to reduce the effects of clouds, since mul-
tiple observations are available from geostationary satellites.
Specifically, future studies can focus on this issue to explore
SM downscaling with satellite-derived temporal information
under specific cloudy conditions.
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5. Conclusion 

This thesis focused on the exploitation of geostationary satellite data for monitoring SM. The 

contributions of this thesis are presented in the following conclusions according to the research 

questions outlined in section 3.1.  

Q1: Is it possible to propose an optical/thermal infrared-based SM retrieval method (or 

downscaling method) which can be applied to cloudy days? 

Most optical/thermal-based methods rely on instantaneous optical/thermal land surface parameters 

(e.g. a single daily, maximum or minimum thermal data). These methods are inapplicable to the 

regions covered by clouds at the overpass time of satellites. However, only five sets of LST and 

NSSR in the daytime and two sets in the mid-morning period are required for the ellipse model and 

downscaling method, separately. Therefore, two methods in this thesis using the temporal 

information provided by geostationary satellite can break the cloud-free day limits. 

Q2: Can the drawbacks of traditional optical/thermal infrared-based SM retrieval methods 

to estimate SM directly instead of SM-related indices be overcome by a novel retrieval 

approach? 

In Figure 8, the elliptical relationship between the diurnal cycles of LST and NSSR has been 

proposed by four ellipse parameters, namely the ellipse center horizontal and vertical coordinate 

(x0 and y0), semi-major axis (a) and rotation angle (θ). As shown in Figure 9, the ellipse varies with 

different SM in a specific soil texture. Similarly, each ellipse is fitted with different soil textures 

for the same SM in Figure 10. Thus, the ellipse parameters are most likely capable of determining 

SM for various soil types under given atmospheric conditions. According to the diurnal cycles of 

LST and NSSR, the SM can be estimated based on an individual ellipse for each pixel. Therefore, 

the ellipse model can directly estimate quantitative volumetric SM without establishing empirical 

relationships between in-situ SM measurements and satellite-derived proxies of SM, which is 

independent of soil texture and ground-based measurements.   
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Figure 8. Sketches of the elliptical relationship between the diurnal cycles of LST and NSSR; x0, y0, a and θ are the 

ellipse parameters of the elliptical relationship between diurnal LST and NSSR cycles, which respectively represent 

the ellipse center horizontal and vertical coordinate, semi-major axis, semi-minor axis and rotation angle; xti and yti 

are LST and NSSR at five different time (i=0,1,2,3,4). 

Additionally, the ellipse parameters describe the physical processes and states. The value of x0 or 

y0 positively correlates with the mean LST or NSSR. a and semi-minor axis (b) describe the diurnal 

variation of LST and NSSR. If the ratio of a and b is larger, the ellipse will be flatter, which 

indicates the rate of change of LST with respect to NSSR becomes slower. In the same soil texture, 

volumetric heat capacity increases with increased SM content, and thereby slowing down the 

diurnal variation of LST. At the same time, due to the increased SM, a smaller soil reflectance 

makes NSSR larger. This results in the bigger θ. Therefore, θ can directly represent different SM 

under the same soil texture conditions as shown in Figure 9. 
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Figure 9. Ellipse fitting with diurnal cycles of non-dimensional LST and NSSR for clay soil  

 

Figure 10. Ellipse fitting with diurnal cycles of non-dimensional LST and NSSR for different soil textures but same 

SM 

Q3: Among all remote sensing SM products, blended CCI and SMOPS global SM products 

have either better temporal or better spatial coverage than those derived from a single sensor. 

Which one is more suitable for application? Can these two blended SM products synergize 

with each other in the application? 
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Based upon the results from both in-situ SM measurements and reanalysis SM data, CCI is 

recommended when both CCI and SMOPS are available, since CCI generally has better errors 

statistics compared to SMOPS across most of the regions worldwide. Specifically, CCI is 

prioritized in all equatorial climate, several arid climates, most of the warm temperate climate, and 

some continental climate regions. The primary reason is the enhanced quality control of the CCI 

SM product. For instance, the stricter TC analysis based error characterization guaranteed the 

quality of the CCI SM product. In contrast, SMOPS only performs better under three continental 

climate regions covering 0.6% of the global regions. It might due to the fact that CCI (v4.5 version) 

merged data from only one or two sensors over these continental climate regions, while SMOPS 

merged more available sensors including SMAP and GPM Microwave Imager. Compared to the 

daily CCI data, SMOPS can provide both daily and 6 hourly interval data. Additionally, 

considering the better spatial coverage of SMOPS, it can provide SM estimates with comparable 

accuracy over the gaps remaining by CCI. Hence, it is concluded that the two blended SM products 

have the potential to complement each other for a variety of applications. 

Q4: Currently most microwave SM products are at coarse spatial resolution of tens of 

kilometers. How to improve their spatial resolution to meet the criteria of the applications at 

the regional or local scale? 

A number of downscaling approaches have been developed to improve the spatial resolution of 

microwave SM products. Specifically, the optical/thermal-based downscaling methods are most 

widely used in recent decades. However, such methods normally rely on instantaneous 

optical/thermal land surface parameters, which are commonly inapplicable under cloudy conditions. 

The proposed method in paper IV is developed based on the temporal variation of geostationary 

satellite-derived LST and NSSR. A linear relationship between LST and NSSR in the mid-morning 

period has been found in Figure 11, which also demonstrated that the derivative of the slope (1/k) 

of the linear relationship increased with increasing SM. This may be explained by the fact that 

under the same radiation absorbed by the land surface, due to the effects of soil thermal inertia, a 

slower increase of LST can be commonly observed when SM content is higher. This is the 

theoretical foundation, which supports to disaggregate 25 km CCI SM product to 3 km.  
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Figure 11. Illustration of the derivative of slope (1/k) of the linear relationship for three sites (with varying SM 

conditions) between MSG derived-LST and NSSR in the mid-morning period from 8:30 a.m. to 11.00 a.m. on July 8, 

2018. 

Overall, the most promising development in SM retrieval using Earth observation data is possibly 

the progress in synergistic approaches, in which two or more Earth observation datasets with 

different imaging characteristics are exploited. In the future, two topics should be addressed. First, 

the downscaling method only works in the lower vegetated regions with low heterogeneous of land 

cover and topography. Therefore, how to improve the transferability over heterogeneous areas 

should be further explored. Second, optical/thermal data have a limited surface penetration depth, 

high perturbation of the signal by clouds and signal attenuation by the earth's atmosphere. Although 

microwave emissions can penetrate clouds and rain to provide continuous SM, the microwave-

based SM products have some limitations as mentioned before. Even though several methods based 

on the synergistic use of optical/thermal and microwave data have already been developed, no 

practical approach has been proposed to estimate SM directly from satellite observations at fine 

spatial resolution in cloudy days. Therefore, a new method suitable in all-weather based on 

optical/thermal infrared data and microwave data is great interest for future research.  
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