194 research outputs found

    A framework for emotion and sentiment predicting supported in ensembles

    Get PDF
    Humans are prepared to comprehend each other’s emotions through subtle body movements or facial expressions; using those expressions, individuals change how they deliver messages when communicating between them. Machines, user interfaces, or robots need to empower this ability, in a way to change the interaction from the traditional “human-computer interaction” to a “human-machine cooperation”, where the machine provides the “right” information and functionality, at the “right” time, and in the “right” way. This dissertation presents a framework for emotion classification based on facial, speech, and text emotion prediction sources, supported by an ensemble of open-source code retrieved from off-the-shelf available methods. The main contribution is integrating outputs from different sources and methods in a single prediction, consistent with the emotions presented by the system’s user. For each different source, an initial aggregation of primary classifiers was implemented: for facial emotion classification, the aggregation achieved an accuracy above 73% in both FER2013 and RAF-DB datasets; For the speech emotion classification, four datasets were used, namely: RAVDESS, TESS, CREMA-D, and SAVEE. The aggregation of primary classifiers, achieved for a combination of three of the mentioned datasets results above 86 % of accuracy; The text emotion aggregation of primary classifiers was tested with one dataset called EMOTIONLINES, the classification of emotions achieved an accuracy above 53 %. Finally, the integration of all the methods in a single framework allows us to develop an emotion multi-source aggregator (EMsA), which aggregates the results extracted from the primary emotion classifications from different sources, such as facial, speech, text etc. We describe the EMsA and results using the RAVDESS dataset, which achieved 81.99% accuracy, in the case of the EMsA using a combination of faces and speech. Finally, we present an initial approach for sentiment classification.Os humanos estão preparados para compreender as emoções uns dos outros por meio de movimentos subtis do corpo ou expressões faciais; i.e., a forma como esses movimentos e expressões são enviados mudam a forma de como são entregues as mensagens quando os humanos comunicam entre eles. Máquinas, interfaces de utilizador ou robôs precisam de potencializar essa capacidade, de forma a mudar a interação do tradicional “interação humano-computador” para uma “cooperação homem-máquina”, onde a máquina fornece as informações e funcionalidades “certas”, na hora “certa” e da maneira “certa”. Nesta dissertação é apresentada uma estrutura (um ensemble de modelos) para classificação de emoções baseada em múltiplas fontes, nomeadamente na previsão de emoções faciais, de fala e de texto. Os classificadores base são suportados em código-fonte aberto associados a métodos disponíveis na literatura (classificadores primários). A principal contribuição é integrar diferentes fontes e diferentes métodos (os classificadores primários) numa única previsão consistente com as emoções apresentadas pelo utilizador do sistema. Neste contexto, salienta-se que da análise ao estado da arte efetuada sobre as diferentes formas de classificar emoções em humanos, existe o reconhecimento de emoção corporal (não considerando a face). No entanto, não foi encontrado código-fonte aberto e publicado para os classificadores primários que possam ser utilizados no âmbito desta dissertação. No reconhecimento de emoções da fala e texto foram também encontradas algumas dificuldades em encontrar classificadores primários com os requisitos necessários, principalmente no texto, pois existem bastantes modelos, mas com inúmeras emoções diferentes das 6 emoções básicas consideradas (tristeza, medo, surpresa, repulsa, raiva e alegria). Para o texto ainda possível verificar que existem mais modelos com a previsão de sentimento do que de emoções. De forma isolada para cada uma das fontes, i.e., para cada componente analisada (face, fala e texto), foi desenvolvido uma framework em Python que implementa um agregador primário com n classificadores primários (nesta dissertação considerou-se n igual 3). Para executar os testes e obter os resultados de cada agregador primário é usado um dataset específico e é enviado a informação do dataset para o agregador. I.e., no caso do agregador facial é enviado uma imagem, no caso do agregador da fala é enviado um áudio e no caso do texto é enviado a frase para a correspondente framework. Cada dataset usado foi dividido em ficheiros treino, validação e teste. Quando a framework acaba de processar a informação recebida são gerados os respetivos resultados, nomeadamente: nome do ficheiro/identificação do input, resultados do primeiro classificador primário, resultados do segundo classificador primário, resultados do terceiro classificador primário e ground-truth do dataset. Os resultados dos classificadores primários são depois enviados para o classificador final desse agregador primário, onde foram testados quatro classificadores: (a) voting, que, no caso de n igual 3, consiste na comparação dos resultados da emoção de cada classificador primário, i.e., se 2 classificadores primários tiverem a mesma emoção o resultado do voting será esse, se todos os classificadores tiverem resultados diferentes nenhum resultado é escolhido. Além deste “classificador” foram ainda usados (b) Random Forest, (c) Adaboost e (d) MLP (multiplayer perceptron). Quando a framework de cada agregador primário foi concluída, foi desenvolvido um super-agregador que tem o mesmo princípio dos agregadores primários, mas, agora, em vez de ter os resultados/agregação de apenas 3 classificadores primários, vão existir n × 3 resultados de classificadores primários (n da face, n da fala e n do texto). Relativamente aos resultados dos agregadores usados para cada uma das fontes, face, fala e texto, obteve-se para a classificação de emoção facial uma precisão de classificação acima de 73% nos datasets FER2013 e RAF-DB. Na classificação da emoção da fala foram utilizados quatro datasets, nomeadamente RAVDESS, TESS, CREMA-D e SAVEE, tendo que o melhor resultado de precisão obtido foi acima dos 86% quando usado a combinação de 3 dos 4 datasets. Para a classificação da emoção do texto, testou-se com o um dataset EMOTIONLINES, sendo o melhor resultado obtido foi de 53% (precisão). A integração de todas os classificadores primários agora num único framework permitiu desenvolver o agregador multi-fonte (emotion multi-source aggregator - EMsA), onde a classificação final da emoção é extraída, como já referido da agregação dos classificadores de emoções primárias de diferentes fontes. Para EMsA são apresentados resultados usando o dataset RAVDESS, onde foi alcançado uma precisão de 81.99 %, no caso do EMsA usar uma combinação de faces e fala. Não foi possível testar EMsA usando um dataset reconhecido na literatura que tenha ao mesmo tempo informação do texto, face e fala. Por último, foi apresentada uma abordagem inicial para classificação de sentimentos

    Adaptive 3D facial action intensity estimation and emotion recognition

    Get PDF
    Automatic recognition of facial emotion has been widely studied for various computer vision tasks (e.g. health monitoring, driver state surveillance and personalized learning). Most existing facial emotion recognition systems, however, either have not fully considered subject-independent dynamic features or were limited to 2D models, thus are not robust enough for real-life recognition tasks with subject variation, head movement and illumination change. Moreover, there is also lack of systematic research on effective newly arrived novel emotion class detection. To address these challenges, we present a real-time 3D facial Action Unit (AU) intensity estimation and emotion recognition system. It automatically selects 16 motion-based facial feature sets using minimal-redundancy–maximal-relevance criterion based optimization and estimates the intensities of 16 diagnostic AUs using feedforward Neural Networks and Support Vector Regressors. We also propose a set of six novel adaptive ensemble classifiers for robust classification of the six basic emotions and the detection of newly arrived unseen novel emotion classes (emotions that are not included in the training set). A distance-based clustering and uncertainty measures of the base classifiers within each ensemble model are used to inform the novel class detection. Evaluated with the Bosphorus 3D database, the system has achieved the best performance of 0.071 overall Mean Squared Error (MSE) for AU intensity estimation using Support Vector Regressors, and 92.2% average accuracy for the recognition of the six basic emotions using the proposed ensemble classifiers. In comparison with other related work, our research outperforms other state-of-the-art research on 3D facial emotion recognition for the Bosphorus database. Moreover, in on-line real-time evaluation with real human subjects, the proposed system also shows superior real-time performance with 84% recognition accuracy and great flexibility and adaptation for newly arrived novel (e.g. ‘contempt’ which is not included in the six basic emotions) emotion detection

    An Efficient Boosted Classifier Tree-Based Feature Point Tracking System for Facial Expression Analysis

    Get PDF
    The study of facial movement and expression has been a prominent area of research since the early work of Charles Darwin. The Facial Action Coding System (FACS), developed by Paul Ekman, introduced the first universal method of coding and measuring facial movement. Human-Computer Interaction seeks to make human interaction with computer systems more effective, easier, safer, and more seamless. Facial expression recognition can be broken down into three distinctive subsections: Facial Feature Localization, Facial Action Recognition, and Facial Expression Classification. The first and most important stage in any facial expression analysis system is the localization of key facial features. Localization must be accurate and efficient to ensure reliable tracking and leave time for computation and comparisons to learned facial models while maintaining real-time performance. Two possible methods for localizing facial features are discussed in this dissertation. The Active Appearance Model is a statistical model describing an object\u27s parameters through the use of both shape and texture models, resulting in appearance. Statistical model-based training for object recognition takes multiple instances of the object class of interest, or positive samples, and multiple negative samples, i.e., images that do not contain objects of interest. Viola and Jones present a highly robust real-time face detection system, and a statistically boosted attentional detection cascade composed of many weak feature detectors. A basic algorithm for the elimination of unnecessary sub-frames while using Viola-Jones face detection is presented to further reduce image search time. A real-time emotion detection system is presented which is capable of identifying seven affective states (agreeing, concentrating, disagreeing, interested, thinking, unsure, and angry) from a near-infrared video stream. The Active Appearance Model is used to place 23 landmark points around key areas of the eyes, brows, and mouth. A prioritized binary decision tree then detects, based on the actions of these key points, if one of the seven emotional states occurs as frames pass. The completed system runs accurately and achieves a real-time frame rate of approximately 36 frames per second. A novel facial feature localization technique utilizing a nested cascade classifier tree is proposed. A coarse-to-fine search is performed in which the regions of interest are defined by the response of Haar-like features comprising the cascade classifiers. The individual responses of the Haar-like features are also used to activate finer-level searches. A specially cropped training set derived from the Cohn-Kanade AU-Coded database is also developed and tested. Extensions of this research include further testing to verify the novel facial feature localization technique presented for a full 26-point face model, and implementation of a real-time intensity sensitive automated Facial Action Coding System

    Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge

    Get PDF
    More than a decade has passed since research on automatic recognition of emotion from speech has become a new field of research in line with its 'big brothers' speech and speaker recognition. This article attempts to provide a short overview on where we are today, how we got there and what this can reveal us on where to go next and how we could arrive there. In a first part, we address the basic phenomenon reflecting the last fifteen years, commenting on databases, modelling and annotation, the unit of analysis and prototypicality. We then shift to automatic processing including discussions on features, classification, robustness, evaluation, and implementation and system integration. From there we go to the first comparative challenge on emotion recognition from speech-the INTERSPEECH 2009 Emotion Challenge, organised by (part of) the authors, including the description of the Challenge's database, Sub-Challenges, participants and their approaches, the winners, and the fusion of results to the actual learnt lessons before we finally address the ever-lasting problems and future promising attempts. (C) 2011 Elsevier B.V. All rights reserved.Schuller B., Batliner A., Steidl S., Seppi D., ''Recognising realistic emotions and affect in speech: state of the art and lessons learnt from the first challenge'', Speech communication, vol. 53, no. 9-10, pp. 1062-1087, November 2011.status: publishe

    Lightweight Adaptation of Classifiers to Users and Contexts: Trends of the Emerging Domain

    Get PDF
    Intelligent computer applications need to adapt their behaviour to contexts and users, but conventional classifier adaptation methods require long data collection and/or training times. Therefore classifier adaptation is often performed as follows: at design time application developers define typical usage contexts and provide reasoning models for each of these contexts, and then at runtime an appropriate model is selected from available ones. Typically, definition of usage contexts and reasoning models heavily relies on domain knowledge. However, in practice many applications are used in so diverse situations that no developer can predict them all and collect for each situation adequate training and test databases. Such applications have to adapt to a new user or unknown context at runtime just from interaction with the user, preferably in fairly lightweight ways, that is, requiring limited user effort to collect training data and limited time of performing the adaptation. This paper analyses adaptation trends in several emerging domains and outlines promising ideas, proposed for making multimodal classifiers user-specific and context-specific without significant user efforts, detailed domain knowledge, and/or complete retraining of the classifiers. Based on this analysis, this paper identifies important application characteristics and presents guidelines to consider these characteristics in adaptation design

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    An affective computing and image retrieval approach to support diversified and emotion-aware reminiscence therapy sessions

    Get PDF
    A demência é uma das principais causas de dependência e incapacidade entre as pessoas idosas em todo o mundo. A terapia de reminiscência é uma terapia não farmacológica comummente utilizada nos cuidados com demência devido ao seu valor terapêutico para as pessoas com demência. Esta terapia é útil para criar uma comunicação envolvente entre pessoas com demência e o resto do mundo, utilizando as capacidades preservadas da memória a longo prazo, em vez de enfatizar as limitações existentes por forma a aliviar a experiência de fracasso e isolamento social. As soluções tecnológicas de assistência existentes melhoram a terapia de reminiscência ao proporcionar uma experiência mais envolvente para todos os participantes (pessoas com demência, familiares e clínicos), mas não estão livres de lacunas: a) os dados multimédia utilizados permanecem inalterados ao longo das sessões, e há uma falta de personalização para cada pessoa com demência; b) não têm em conta as emoções transmitidas pelos dados multimédia utilizados nem as reacções emocionais da pessoa com demência aos dados multimédia apresentados; c) a perspectiva dos cuidadores ainda não foi totalmente tida em consideração. Para superar estes desafios, seguimos uma abordagem de concepção centrada no utilizador através de inquéritos mundiais, entrevistas de seguimento, e grupos de discussão com cuidadores formais e informais para informar a concepção de soluções tecnológicas no âmbito dos cuidados de demência. Para cumprir com os requisitos identificados, propomos novos métodos que facilitam a inclusão de emoções no loop durante a terapia de reminiscência para personalizar e diversificar o conteúdo das sessões ao longo do tempo. As contribuições desta tese incluem: a) um conjunto de requisitos funcionais validados recolhidos com os cuidadores formais e informais, os resultados esperados com o cumprimento de cada requisito, e um modelo de arquitectura para o desenvolvimento de soluções tecnológicas de assistência para cuidados de demência; b) uma abordagem end-to-end para identificar automaticamente múltiplas informações emocionais transmitidas por imagens; c) uma abordagem para reduzir a quantidade de imagens que precisam ser anotadas pelas pessoas sem comprometer o desempenho dos modelos de reconhecimento; d) uma técnica de fusão tardia interpretável que combina dinamicamente múltiplos sistemas de recuperação de imagens com base em conteúdo para procurar eficazmente por imagens semelhantes para diversificar e personalizar o conjunto de imagens disponíveis para serem utilizadas nas sessões.Dementia is one of the major causes of dependency and disability among elderly subjects worldwide. Reminiscence therapy is an inexpensive non-pharmacological therapy commonly used within dementia care due to its therapeutic value for people with dementia. This therapy is useful to create engaging communication between people with dementia and the rest of the world by using the preserved abilities of long-term memory rather than emphasizing the existing impairments to alleviate the experience of failure and social isolation. Current assistive technological solutions improve reminiscence therapy by providing a more lively and engaging experience to all participants (people with dementia, family members, and clinicians), but they are not free of drawbacks: a) the multimedia data used remains unchanged throughout sessions, and there is a lack of customization for each person with dementia; b) they do not take into account the emotions conveyed by the multimedia data used nor the person with dementia’s emotional reactions to the multimedia presented; c) the caregivers’ perspective have not been fully taken into account yet. To overcome these challenges, we followed a usercentered design approach through worldwide surveys, follow-up interviews, and focus groups with formal and informal caregivers to inform the design of technological solutions within dementia care. To fulfil the requirements identified, we propose novel methods that facilitate the inclusion of emotions in the loop during reminiscence therapy to personalize and diversify the content of the sessions over time. Contributions from this thesis include: a) a set of validated functional requirements gathered from formal and informal caregivers, the expected outcomes with the fulfillment of each requirement, and an architecture’s template for the development of assistive technology solutions for dementia care; b) an end-to-end approach to automatically identify multiple emotional information conveyed by images; c) an approach to reduce the amount of images that need to be annotated by humans without compromising the recognition models’ performance; d) an interpretable late-fusion technique that dynamically combines multiple content-based image retrieval systems to effectively search for similar images to diversify and personalize the pool of images available to be used in sessions

    Dynamic Estimation of Rater Reliability using Multi-Armed Bandits

    Get PDF
    One of the critical success factors for supervised machine learning is the quality of target values, or predictions, associated with training instances. Predictions can be discrete labels (such as a binary variable specifying whether a blog post is positive or negative) or continuous ratings (for instance, how boring a video is on a 10-point scale). In some areas, predictions are readily available, while in others, the eort of human workers has to be involved. For instance, in the task of emotion recognition from speech, a large corpus of speech recordings is usually available, and humans denote which emotions are present in which recordings
    corecore