91,174 research outputs found

    Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters

    Get PDF
    [EN] Background: Even though virtual reality (VR) is increasingly used in rehabilitation, the implementation of walking navigation in VR still poses a technological challenge for current motion tracking systems. Different metaphors simulate locomotion without involving real gait kinematics, which can affect presence, orientation, spatial memory and cognition, and even performance. All these factors can dissuade their use in rehabilitation. We hypothesize that a marker-based head tracking solution would allow walking in VR with high sense of presence and without causing sickness. The objectives of this study were to determine the accuracy, the jitter, and the lag of the tracking system and its elicited sickness and presence in comparison of a CAVE system. Methods: The accuracy and the jitter around the working area at three different heights and the lag of the head tracking system were analyzed. In addition, 47 healthy subjects completed a search task that involved navigation in the walking VR system and in the CAVE system. Navigation was enabled by natural locomotion in the walking VR system and through a specific device in the CAVE system. An HMD was used as display in the walking VR system. After interacting with each system, subjects rated their sickness in a seven-point scale and their presence in the Slater-Usoh-Steed Questionnaire and a modified version of the Presence Questionnaire. Results: Better performance was registered at higher heights, where accuracy was less than 0.6 cm and the jitter was about 6 mm. The lag of the system was 120 ms. Participants reported that both systems caused similar low levels of sickness (about 2.4 over 7). However, ratings showed that the walking VR system elicited higher sense of presence than the CAVE system in both the Slater-Usoh-Steed Questionnaire (17.6 +/- 0.3 vs 14.6 +/- 0.6 over 21, respectively) and the modified Presence Questionnaire (107.4 +/- 2.0 vs 93.5 +/- 3.2 over 147, respectively). Conclusions: The marker-based solution provided accurate, robust, and fast head tracking to allow navigation in the VR system by walking without causing relevant sickness and promoting higher sense of presence than CAVE systems, thus enabling natural walking in full-scale environments, which can enhance the ecological validity of VR-based rehabilitation applications.The authors wish to thank the staff of LabHuman for their support in this project, especially JosĂ© Miguel MartĂ­nez and JosĂ© Roda for their assistance. This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project NeuroVR, TIN2013-44741-R and Project REACT, TIN2014-61975-EXP), by Ministerio de Educacion y Ciencia of Spain (Project Consolider-C, SEJ2006-14301/PSIC), and by Universitat Politecnica de Valencia (Grant PAID-10-14).Borrego, A.; Latorre Grau, J.; Llorens RodrĂ­guez, R.; Alcañiz Raya, ML.; NoĂ©, E. (2016). Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. Journal of NeuroEngineering and Rehabilitation. 13:1-9. https://doi.org/10.1186/s12984-016-0174-1S1913Lee KM. Presence. Explicated Communication Theory. 2004;14(1):27–50.Riva G. Is presence a technology issue? Some insights from cognitive sciences. Virtual Reality. 2009;13(3):159–69.Banos RM, et al. Immersion and emotion: their impact on the sense of presence. Cyberpsychol Behav. 2004;7(6):734–41.Llorens R, et al. Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario. Sensors (Basel). 2015;15(3):6586–606.Navarro MD, et al. Validation of a low-cost virtual reality system for training street-crossing. A comparative study in healthy, neglected and non-neglected stroke individuals. Neuropsychol Rehabil. 2013;23(4):597–618.Parsons TD. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front Hum Neurosci. 2015;9:660.Cameirao MS, et al. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010;7:48.Llorens R, et al. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clin Rehabil. 2015;29(3):261–8.Llorens R, et al. Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury. J Neuroeng Rehabil. 2015;12:37.Fong KN, et al. Usability of a virtual reality environment simulating an automated teller machine for assessing and training persons with acquired brain injury. J Neuroeng Rehabil. 2010;7:19.Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015;95(3):415–25.Llorens R, et al. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–25. e2.Cruz-Neira C, et al. Scientists in wonderland: A report on visualization applications in the CAVE virtual reality environment. In: 1993. Proceedings IEEE 1993 Symposium on Research Frontiers in Virtual Reality. 1993.Juan MC, Perez D. Comparison of the levels of presence and anxiety in an acrophobic environment viewed via HMD or CAVE. Presence. 2009;18(3):232–48.Yang YR, et al. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture. 2008;28(2):201–6.Cho KH, Lee WH. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study. Am J Phys Med Rehabil. 2013;92(5):371–84.Darter BJ, Wilken JM. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation. Phys Ther. 2011;91(9):1385–94.Yang S, et al. Improving balance skills in patients who had stroke through virtual reality treadmill training. Am J Phys Med Rehabil. 2011;90(12):969–78.Walker ML, et al. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Arch Phys Med Rehabil. 2010;91(1):115–22.Riley PO, et al. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture. 2007;26(1):17–24.Alton F, et al. A kinematic comparison of overground and treadmill walking. Clin Biomech. 1998;13(6):434–40.Lee SJ, Hidler J. Biomechanics of overground vs. treadmill walking in healthy individuals. J Appl Physiol. 2008;104(3).Slater M. Measuring presence: a response to the witmer and Singer presence questionnaire. Presence. 1999;8(5):560–5.Viau A, et al. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil. 2004;1(1):11.Parsons TD, et al. The potential of function-led virtual environments for ecologically valid measures of executive function in experimental and clinical neuropsychology. Neuropsychol Rehabil. 2015;11:1–31. doi: 10.1080/09602011.2015.1109524 .Aravind G, Lamontagne A. Perceptual and locomotor factors affect obstacle avoidance in persons with visuospatial neglect. J Neuroeng Rehabil. 2014;11:38.Darekar A, Lamontagne A, Fung J. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment. Hum Mov Sci. 2015;40:359–71.Whittle MW. Chapter 4 - Methods of gait analysis. In: Whittle MW, editor. Gait analysis. Edinburgh: Butterworth-Heinemann; 2007. p. 137–75.Hodgson E, et al. WeaVR: a self-contained and wearable immersive virtual environment simulation system. Behav Res Methods. 2015;47(1):296–307.Akizuki H, et al. Effects of immersion in virtual reality on postural control. Neurosci Lett. 2005;379(1):23–6.Thies SB, et al. Comparison of linear accelerations from three measurement systems during "reach & grasp". Med Eng Phys. 2007;29(9):967–72.Fiala M. Designing highly reliable fiducial markers. IEEE Trans Pattern Anal Mach Intell. 2010;32(7):1317–24.Garrido-Jurado S, et al. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition. 2014;47(6):2280–92.Kim K, et al. Effects of virtual environment platforms on emotional responses. Comput Methods Programs Biomed. 2014;113(3):882–93.Slater M, Steed A. A virtual presence counter. Presence. 2000;9(5):413–34.Witmer BG, Singer MJ. Measuring presence in virtual environments: a presence questionnaire. Presence Teleop Virt. 1998;7(3):225–40.MartĂ­n-GutiĂ©rrez J, et al. Design and validation of an augmented book for spatial abilities development in engineering students. Comput Graph. 2010;34(1):77–91.Lopez-Mir F, et al. Design and validation of an augmented reality system for laparoscopic surgery in a real environment. Biomed Res Int. 2013;2013:758491.Abawi DF, Bienwald J, Dorner R. Accuracy in optical tracking with fiducial markers: an accuracy function for ARToolKit. In: Third IEEE and ACM International symposium on mixed and augmented reality, ISMAR 2004. 2004.Malbezin P, Piekarski W, Thomas BH. Measuring ARTootKit accuracy in long distance tracking experiments. In: The first IEEE International workshop augmented reality toolkit. 2002.Paquette C, Paquet N, Fung J. Aging affects coordination of rapid head motions with trunk and pelvis movements during standing and walking. Gait Posture. 2006;24(1):62–9.Graham JE, et al. Walking speed threshold for classifying walking independence in hospitalized older adults. Phys Ther. 2010;90(11):1591–7.Gorea A. A refresher of the original Bloch’s Law paper (bloch, july 1885). i-Perception. 2015;6:4.Moss JD, Muth ER. Characteristics of head-mounted displays and their effects on Simulator sickness. Hum Factors. 2011;53(3):308–19.Draper MH, et al. Effects of image scale and system time delay on Simulator sickness within head-coupled virtual environments. Hum Factors. 2001;43(1):129–46.Fujisaki W. Effects of delayed visual feedback on grooved pegboard test performance. Front Psychol. 2012;3:61.Keshner EA, et al. Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1379–82.Slaboda JC, Keshner EA. Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke. J Neurol. 2012;259(12):2664–72.Tossavainen T. Comparison of CAVE and HMD for visual stimulation in postural control research. Stud Health Technol Inform. 2004;98:385–7.Akiduki H, et al. Visual-vestibular conflict induced by virtual reality in humans. Neurosci Lett. 2003;340(3):197–200.Duh HBL, et al. Effects of field of view on balance in an immersive environment. In: Virtual Reality, 2001. Proceedings. IEEE. 2001.Krijn M, et al. Treatment of acrophobia in virtual reality: the role of immersion and presence. Behav Res Ther. 2004;42(2):229–39.Mania K, Chalmers A. The effects of levels of immersion on memory and presence in virtual environments: a reality centered approach. Cyberpsychol Behav. 2001;4(2):247–64.Gorini A, et al. The role of immersion and narrative in mediated presence: the virtual hospital experience. Cyberpsychol Behav Soc Netw. 2011;14(3):99–105.Fromberger P, et al. Virtual viewing time: the relationship between presence and sexual interest in androphilic and gynephilic Men. PLoS One. 2015;10(5), e0127156.Slater M, et al. Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput Graph Appl. 2009;29(3):76–84.Nir-Hadad SY, et al. A virtual shopping task for the assessment of executive functions: Validity for people with stroke. Neuropsychol Rehabil. 2015;11:1–26. doi: 10.1080/09602011.2015.1109523 .Vasilyeva M, Lourenco SF. Development of spatial cognition. Wiley Interdiscip Rev Cogn Sci. 2012;3(3):349–62.Banakou D, Groten R, Slater M. Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc Natl Acad Sci U S A. 2013;110(31):12846–51.Yee N, Bailenson JN, Ducheneaut N. The proteus effect: implications of transformed digital self-representation on online and offline behavior. Commun Res. 2009;36(2):285–312.Baylor AL. Promoting motivation with virtual agents and avatars: role of visual presence and appearance. Philos Trans R Soc Lond B Biol Sci. 2009;364(1535):3559–65.Clemente M, et al. Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Sys App. 2014;41(4, Part 2):1584–92.Clemente M, et al. An fMRI study to analyze neural correlates of presence during virtual reality experiences. 2013. Interacting with Computers

    A Dose of Reality: Overcoming Usability Challenges in VR Head-Mounted Displays

    Get PDF
    We identify usability challenges facing consumers adopting Virtual Reality (VR) head-mounted displays (HMDs) in a survey of 108 VR HMD users. Users reported significant issues in interacting with, and being aware of their real-world context when using a HMD. Building upon existing work on blending real and virtual environments, we performed three design studies to address these usability concerns. In a typing study, we show that augmenting VR with a view of reality significantly corrected the performance impairment of typing in VR. We then investigated how much reality should be incorporated and when, so as to preserve users’ sense of presence in VR. For interaction with objects and peripherals, we found that selectively presenting reality as users engaged with it was optimal in terms of performance and users’ sense of presence. Finally, we investigated how this selective, engagement-dependent approach could be applied in social environments, to support the user’s awareness of the proximity and presence of others

    Media Presence and Inner Presence: The Sense of Presence in Virtual Reality Technologies

    Get PDF
    Abstract. Presence is widely accepted as the key concept to be considered in any research involving human interaction with Virtual Reality (VR). Since its original description, the concept of presence has developed over the past decade to be considered by many researchers as the essence of any experience in a virtual environment. The VR generating systems comprise two main parts: a technological component and a psychological experience. The different relevance given to them produced two different but coexisting visions of presence: the rationalist and the psychological/ecological points of view. The rationalist point of view considers a VR system as a collection of specific machines with the necessity of the inclusion \ud of the concept of presence. The researchers agreeing with this approach describe the sense of presence as a function of the experience of a given medium (Media Presence). The main result of this approach is the definition of presence as the perceptual illusion of non-mediation produced by means of the disappearance of the medium from the conscious attention of the subject. At the other extreme, there \ud is the psychological or ecological perspective (Inner Presence). Specifically, this perspective considers presence as a neuropsychological phenomenon, evolved from the interplay of our biological and cultural inheritance, whose goal is the control of the human activity. \ud Given its key role and the rate at which new approaches to understanding and examining presence are appearing, this chapter draws together current research on presence to provide an up to date overview of the most widely accepted approaches to its understanding and measurement

    The Effects of Finger-Walking in Place (FWIP) on Spatial Knowledge Acquisition in Virtual Environments

    Get PDF
    Spatial knowledge, necessary for efficient navigation, comprises route knowledge (memory of landmarks along a route) and survey knowledge (overall representation like a map). Virtual environments (VEs) have been suggested as a power tool for understanding some issues associated with human navigation, such as spatial knowledge acquisition. The Finger-Walking-in-Place (FWIP) interaction technique is a locomotion technique for navigation tasks in immersive virtual environments (IVEs). The FWIP was designed to map a human’s embodied ability overlearned by natural walking for navigation, to finger-based interaction technique. Its implementation on Lemur and iPhone/iPod Touch devices was evaluated in our previous studies. In this paper, we present a comparative study of the joystick’s flying technique versus the FWIP. Our experiment results show that the FWIP results in better performance than the joystick’s flying for route knowledge acquisition in our maze navigation tasks

    Three levels of metric for evaluating wayfinding

    Get PDF
    Three levels of virtual environment (VE) metric are proposed, based on: (1) users’ task performance (time taken, distance traveled and number of errors made), (2) physical behavior (locomotion, looking around, and time and error classification), and (3) decision making (i.e., cognitive) rationale (think aloud, interview and questionnaire). Examples of the use of these metrics are drawn from a detailed review of research into VE wayfinding. A case study from research into the fidelity that is required for efficient VE wayfinding is presented, showing the unsuitability in some circumstances of common metrics of task performance such as time and distance, and the benefits to be gained by making fine-grained analyses of users’ behavior. Taken as a whole, the article highlights the range of techniques that have been successfully used to evaluate wayfinding and explains in detail how some of these techniques may be applied

    Empirical Comparisons of Virtual Environment Displays

    Get PDF
    There are many different visual display devices used in virtual environment (VE) systems. These displays vary along many dimensions, such as resolution, field of view, level of immersion, quality of stereo, and so on. In general, no guidelines exist to choose an appropriate display for a particular VE application. Our goal in this work is to develop such guidelines on the basis of empirical results. We present two initial experiments comparing head-mounted displays with a workbench display and a foursided spatially immersive display. The results indicate that the physical characteristics of the displays, users' prior experiences, and even the order in which the displays are presented can have significant effects on performance

    Virtual Reality in Marketing: A Framework, Review, and Research Agenda

    Full text link
    [EN] Marketing scholars and practitioners are showing increasing interest in Extended Reality (XR) technologies (XRs), such as virtual reality (VR), augmented reality (AR), and mixed reality (MR), as very promising technological tools for producing satisfactory consumer experiences that mirror those experienced in physical stores. However, most of the studies published to date lack a certain measure of methodological rigor in their characterization of XR technologies and in the assessment techniques used to characterize the consumer experience, which limits the generalization of the results. We argue that it is necessary to define a rigorous methodological framework for the use of XRs in marketing. This article reviews the literature on XRs in marketing, and provides a conceptual framework to organize this disparate body of work.This work was supported by the Spanish Ministry of Science, Innovation and Universities funded project - ATHENEA-DPI2017-91537-EXP and by the European Commission project RHUMBO - H2020-MSCA-ITN-2018-813234Alcañiz Raya, ML.; BignĂ©, E.; Guixeres, J. (2019). Virtual Reality in Marketing: A Framework, Review, and Research Agenda. Frontiers in Psychology. 10:1-15. https://doi.org/10.3389/fpsyg.2019.01530S11510Alcañiz, M., Parra, E., & Chicchi Giglioli, I. A. (2018). Virtual Reality as an Emerging Methodology for Leadership Assessment and Training. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.01658Alshaal, S. E., Michael, S., Pamporis, A., Herodotou, H., Samaras, G., & Andreou, P. (2016). Enhancing Virtual Reality Systems with Smart Wearable Devices. 2016 17th IEEE International Conference on Mobile Data Management (MDM). doi:10.1109/mdm.2016.60Ausin, J. M., Guixeres, J., BignĂ©, E., & Alcañiz, M. (2017). Facial Expressions to Evaluate Advertising: A Laboratory versus Living Room Study. Advances in Advertising Research VIII, 109-122. doi:10.1007/978-3-658-18731-6_9Babić Rosario, A., Sotgiu, F., De Valck, K., & Bijmolt, T. H. A. (2016). The Effect of Electronic Word of Mouth on Sales: A Meta-Analytic Review of Platform, Product, and Metric Factors. Journal of Marketing Research, 53(3), 297-318. doi:10.1509/jmr.14.0380Baños, R. M., Botella, C., RubiĂł, I., Quero, S., GarcĂ­a-Palacios, A., & Alcañiz, M. (2008). Presence and Emotions in Virtual Environments: The Influence of Stereoscopy. CyberPsychology & Behavior, 11(1), 1-8. doi:10.1089/cpb.2007.9936Barlow, A. K. J., Siddiqui, N. Q., & Mannion, M. (2004). Developments in information and communication technologies for retail marketing channels. International Journal of Retail & Distribution Management, 32(3), 157-163. doi:10.1108/09590550410524948Barnes, S. J. (2011). Understanding use continuance in virtual worlds: Empirical test of a research model. Information & Management, 48(8), 313-319. doi:10.1016/j.im.2011.08.004Bayousuf, A., Al-Khalifa, H. S., & Al-Salman, A. (2018). Haptics-Based Systems Characteristics, Classification, and Applications. Encyclopedia of Information Science and Technology, Fourth Edition, 4652-4665. doi:10.4018/978-1-5225-2255-3.ch404Bearden, W. O., & Netemeyer, R. G. (1999). Handbook of Marketing Scales. doi:10.4135/9781412984379BignĂ©, E., Llinares, C., & Torrecilla, C. (2016). Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study. Journal of Business Research, 69(4), 1423-1427. doi:10.1016/j.jbusres.2015.10.119Bonetti, F., Warnaby, G., & Quinn, L. (2017). Augmented Reality and Virtual Reality in Physical and Online Retailing: A Review, Synthesis and Research Agenda. Progress in IS, 119-132. doi:10.1007/978-3-319-64027-3_9Brady, M., Fellenz, M. R., & Brookes, R. (2008). Researching the role of information and communications technology (ICT) in contemporary marketing practices. Journal of Business & Industrial Marketing, 23(2), 108-114. doi:10.1108/08858620810850227Bressoud, E. (2013). Testing FMCG innovations: experimental real store versus virtual. Journal of Product & Brand Management, 22(4), 286-292. doi:10.1108/jpbm-05-2012-0141Brody, A. B., & Gottsman, E. J. (1999). Pocket BargainFinder: A Handheld Device for Augmented Commerce. Lecture Notes in Computer Science, 44-51. doi:10.1007/3-540-48157-5_6Bruer, J. T. (s. f.). Building bridges in neuroeducation. The Educated Brain, 43-58. doi:10.1017/cbo9780511489907.005Burke, R. R. (2017). Virtual Reality for Marketing Research. Innovative Research Methodologies in Management, 63-82. doi:10.1007/978-3-319-64400-4_3Burke, R. R. (2002). Technology and the Customer Interface: What Consumers Want in the Physical and Virtual Store. Journal of the Academy of Marketing Science, 30(4), 411-432. doi:10.1177/009207002236914Carpenter, I. D., Simmons, J. E. L., Ritchie, J. M., & Dewar, R. G. (1997). Virtual manufacturing. Manufacturing Engineer, 76(3), 113-116. doi:10.1049/me:19970309Castellanos, M. C., Ausin, J. M., Guixeres, J., & BignĂ©, E. (2018). Emotion in a 360-Degree vs. Traditional Format Through EDA, EEG and Facial Expressions. Advances in Advertising Research IX, 3-15. doi:10.1007/978-3-658-22681-7_1Chen, L.-D., & Tan, J. (2004). Technology Adaptation in E-commerce: European Management Journal, 22(1), 74-86. doi:10.1016/j.emj.2003.11.014Chicchi Giglioli, I. A., Pravettoni, G., Sutil MartĂ­n, D. L., Parra, E., & Raya, M. A. (2017). A Novel Integrating Virtual Reality Approach for the Assessment of the Attachment Behavioral System. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.00959Clemente, M., Rey, B., Rodriguez-Pujadas, A., Barros-Loscertales, A., Banos, R. M., Botella, C., 
 Avila, C. (2013). An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences. Interacting with Computers, 26(3), 269-284. doi:10.1093/iwc/iwt037Clemente, M., RodrĂ­guez, A., Rey, B., & Alcañiz, M. (2014). Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Systems with Applications, 41(4), 1584-1592. doi:10.1016/j.eswa.2013.08.055Daugherty, T., Li, H., & Biocca, F. (2008). Consumer learning and the effects of virtual experience relative to indirect and direct product experience. Psychology and Marketing, 25(7), 568-586. doi:10.1002/mar.20225Dellarocas, C., Katona, Z., & Rand, W. (2013). Media, Aggregators, and the Link Economy: Strategic Hyperlink Formation in Content Networks. Management Science, 59(10), 2360-2379. doi:10.1287/mnsc.2013.1710DONNA L. HOFFMAN THOMAS P. NOVAK. (1997). A New Marketing Paradigm for Electronic Commerce. The Information Society, 13(1), 43-54. doi:10.1080/019722497129278Farah, M. F., Ramadan, Z. B., & Harb, D. H. (2019). The examination of virtual reality at the intersection of consumer experience, shopping journey and physical retailing. Journal of Retailing and Consumer Services, 48, 136-143. doi:10.1016/j.jretconser.2019.02.016Fisher, C. E., Chin, L., & Klitzman, R. (2010). Defining Neuromarketing: Practices and Professional Challenges. Harvard Review of Psychiatry, 18(4), 230-237. doi:10.3109/10673229.2010.496623Fox, J., Arena, D., & Bailenson, J. N. (2009). Virtual Reality. Journal of Media Psychology, 21(3), 95-113. doi:10.1027/1864-1105.21.3.95Fusaro, M., Tieri, G., & Aglioti, S. M. (2016). Seeing pain and pleasure on self and others: behavioral and psychophysiological reactivity in immersive virtual reality. Journal of Neurophysiology, 116(6), 2656-2662. doi:10.1152/jn.00489.2016Grewal, D., Roggeveen, A. L., & NordfĂ€lt, J. (2017). The Future of Retailing. Journal of Retailing, 93(1), 1-6. doi:10.1016/j.jretai.2016.12.008Gummesson, E. (1987). The new marketing—Developing long-term interactive relationships. Long Range Planning, 20(4), 10-20. doi:10.1016/0024-6301(87)90151-8Higuera-Trujillo, J. L., LĂłpez-Tarruella Maldonado, J., & Llinares MillĂĄn, C. (2017). Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality. Applied Ergonomics, 65, 398-409. doi:10.1016/j.apergo.2017.05.006Hoffman, D. L., & Novak, T. P. (1996). Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations. Journal of Marketing, 60(3), 50-68. doi:10.1177/002224299606000304Homburg, C., Jozić, D., & Kuehnl, C. (2015). Customer experience management: toward implementing an evolving marketing concept. Journal of the Academy of Marketing Science, 45(3), 377-401. doi:10.1007/s11747-015-0460-7Huang, Y. C., Backman, K. F., Backman, S. J., & Chang, L. L. (2015). Exploring the Implications of Virtual Reality Technology in Tourism Marketing: An Integrated Research Framework. International Journal of Tourism Research, 18(2), 116-128. doi:10.1002/jtr.2038Hunt, S. D. (1983). General Theories and the Fundamental Explananda of Marketing. Journal of Marketing, 47(4), 9-17. doi:10.1177/002224298304700402IJsselsteijn, W., Ridder, H. de, Freeman, J., Avons, S. E., & Bouwhuis, D. (2001). Effects of Stereoscopic Presentation, Image Motion, and Screen Size on Subjective and Objective Corroborative Measures of Presence. Presence: Teleoperators and Virtual Environments, 10(3), 298-311. doi:10.1162/105474601300343621Ischer, M., Baron, N., Mermoud, C., Cayeux, I., Porcherot, C., Sander, D., & Delplanque, S. (2014). How incorporation of scents could enhance immersive virtual experiences. Frontiers in Psychology, 5. doi:10.3389/fpsyg.2014.00736Jaeger, S. R., & Porcherot, C. (2017). Consumption context in consumer research: methodological perspectives. Current Opinion in Food Science, 15, 30-37. doi:10.1016/j.cofs.2017.05.001Jerald, J. (2017). Human-centered design for immersive interactions. 2017 IEEE Virtual Reality (VR). doi:10.1109/vr.2017.7892361Jones, K., & Biasiotto, M. (1999). Internet retailing: current hype or future reality? The International Review of Retail, Distribution and Consumer Research, 9(1), 69-79. doi:10.1080/095939699342688Kalantari, M., & Rauschnabel, P. (2017). Exploring the Early Adopters of Augmented Reality Smart Glasses: The Case of Microsoft HoloLens. Progress in IS, 229-245. doi:10.1007/978-3-319-64027-3_16Kannan, P. K., & Li, H. «Alice». (2017). Digital marketing: A framework, review and research agenda. International Journal of Research in Marketing, 34(1), 22-45. doi:10.1016/j.ijresmar.2016.11.006Kaplan, A. M., & Haenlein, M. (2009). Consumer Use and Business Potential of Virtual Worlds: The Case of «Second Life». International Journal on Media Management, 11(3-4), 93-101. doi:10.1080/14241270903047008Kaplan, A. M., & Haenlein, M. (2009). The fairyland of Second Life: Virtual social worlds and how to use them. Business Horizons, 52(6), 563-572. doi:10.1016/j.bushor.2009.07.002Stanney, K., Kennedy, R., Harm, D., Compton, D., Lanham, D., & Drexler, J. (2003). Con.gural Scoring of Simulator Sickness, Cybersickness and Space Adaptation Syndrome. Virtual and Adaptive Environments, 247-278. doi:10.1201/9781410608888.ch12Kenning, P. H., & Plassmann, H. (2008). How Neuroscience Can Inform Consumer Research. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 532-538. doi:10.1109/tnsre.2008.2009788Keshavarz, B., & Hecht, H. (2011). Validating an Efficient Method to Quantify Motion Sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(4), 415-426. doi:10.1177/0018720811403736Klein, L. R. (1998). Evaluating the Potential of Interactive Media through a New Lens: Search versus Experience Goods. Journal of Business Research, 41(3), 195-203. doi:10.1016/s0148-2963(97)00062-3Kolesar, M. B., & Wayne Galbraith, R. (2000). A services‐marketing perspective on e‐retailing: implications for e‐retailers and directions for further research. Internet Research, 10(5), 424-438. doi:10.1108/10662240010349444Koontz, M. L., & Gibson, I. E. (2002). Mixed reality merchandising: bricks, clicks – and mix. Journal of Fashion Marketing and Management: An International Journal, 6(4), 381-395. doi:10.1108/13612020210448664Liston, P. M., Kay, A., Cromie, S., Leva, C., D’Cruz, M., Patel, H., 
 Aromaa, S. (2012). Evaluating the iterative development of VR/AR human factors tools for manual work. Work, 41, 2208-2215. doi:10.3233/wor-2012-0443-2208Kruijff, E., & Riecke, B. E. (2018). Navigation Interfaces for Virtual Reality and Gaming. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. doi:10.1145/3170427.3170643Lamberton, C., & Stephen, A. T. (2016). A Thematic Exploration of Digital, Social Media, and Mobile Marketing: Research Evolution from 2000 to 2015 and an Agenda for Future Inquiry. Journal of Marketing, 80(6), 146-172. doi:10.1509/jm.15.0415Latorre, J., Llorens, R., Colomer, C., & Alcañiz, M. (2018). Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. Journal of Biomechanics, 72, 268-273. doi:10.1016/j.jbiomech.2018.03.008LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Lee, K. S., & Tan, S. J. (2003). E-retailing versus physical retailing. Journal of Business Research, 56(11), 877-885. doi:10.1016/s0148-2963(01)00274-0Lee, N., Broderick, A. J., & Chamberlain, L. (2007). What is ‘neuromarketing’? A discussion and agenda for future research. International Journal of Psychophysiology, 63(2), 199-204. doi:10.1016/j.ijpsycho.2006.03.007Li, H., Daugherty, T., & Biocca, F. (2003). The Role of Virtual Experience in Consumer Learning. Journal of Consumer Psychology, 13(4), 395-407. doi:10.1207/s15327663jcp1304_07Chuan-Chuan Lin, J., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International Journal of Information Management, 20(3), 197-208. doi:10.1016/s0268-4012(00)00005-0Liu, C., & Arnett, K. P. (2000). Exploring the factors associated with Web site success in the context of electronic commerce. Information & Management, 38(1), 23-33. doi:10.1016/s0378-7206(00)00049-5Lorenz, M., Busch, M., Rentzos, L., Tscheligi, M., Klimant, P., & Frohlich, P. (2015). I’m There! The influence of virtual reality and mixed reality environments combined with two different navigation methods on presence. 2015 IEEE Virtual Reality (VR). doi:10.1109/vr.2015.7223376MarĂ­n-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E. P., 
 Valenza, G. (2018). Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports, 8(1). doi:10.1038/s41598-018-32063-4Mars, P., Chen, J. R., & Nambiar, R. (2018). Learning Algorithms. doi:10.1201/9781351073974Massara, F., Liu, S. S., & Melara, R. D. (2010). Adapting to a retail environment: Modeling consumer–environment interactions. Journal of Business Research, 63(7), 673-681. doi:10.1016/j.jbusres.2009.05.004Mathwick, C. (2002). Understanding the online consumer: A typology of online relational norms and behavior. Journal of Interactive Marketing, 16(1), 40-55. doi:10.1002/dir.10003Mazloumi Gavgani, A., Walker, F. R., Hodgson, D. M., & Nalivaiko, E. (2018). A comparative study of cybersickness during exposure to virtual reality and «classic» motion sickness: are they different? Journal of Applied Physiology, 125(6), 1670-1680. doi:10.1152/japplphysiol.00338.2018McGrath, J. L., Taekman, J. M., Dev, P., Danforth, D. R., Mohan, D., Kman, N., 
 Bond, W. F. (2017). Using Virtual Reality Simulation Environments to Assess Competence for Emergency Medicine Learners. Academic Emergency Medicine, 25(2), 186-195. doi:10.1111/acem.13308Meehan, M., Insko, B., Whitton, M., & Brooks, F. P. (2002). Physiological measures of presence in stressful virtual environments. ACM Transactions on Graphics, 21(3), 645-652. doi:10.1145/566654.566630Meißner, M., Pfeiffer, J., Pfeiffer, T., & Oppewal, H. (2019). Combining virtual reality and mobile eye tracking to provide a naturalistic experimental environment for shopper research. Journal of Business Research, 100, 445-458. doi:10.1016/j.jbusres.2017.09.028Menezes, P., Gouveia, N., & PatrĂŁo, B. (2017). Touching Is Believing - Adding Real Objects to Virtual Reality. Lecture Notes in Networks and Systems, 681-688. doi:10.1007/978-3-319-64352-6_64Merrilees, B. (2002). Interactivity Design as the Key to Managing Customer Relations in E-Commerce. Journal of Relationship Marketing, 1(3-4), 111-126. doi:10.1300/j366v01n03_07Nalivaiko, E., Davis, S. L., Blackmore, K. L., Vakulin, A., & Nesbitt, K. V. (2015). Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiology & Behavior, 151, 583-590. doi:10.1016/j.physbeh.2015.08.043Neslin, S. A., Grewal, D., Leghorn, R., Shankar, V., Teerling, M. L., Thomas, J. S., & Verhoef, P. C. (2006). Challenges and Opportunities in Multichannel Customer Management. Journal of Service Research, 9(2), 95-112. doi:10.1177/1094670506293559Pantano, E., & Servidio, R. (2012). Modeling innovative points of sales through virtual and immersive technologies. Journal of Retailing and Consumer Services, 19(3), 279-286. doi:10.1016/j.jretconser.2012.02.002Papagiannidis, S., Pantano, E., See-To, E. W. K., & Bourlakis, M. (2013). Modelling the determinants of a simulated experience in a virtual retail store and users’ product purchasing intentions. Journal of Marketing Management, 29(13-14), 1462-1492. doi:10.1080/0267257x.2013.821150Parsons, T. D. (2015). Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Frontiers in Human Neuroscience, 9. doi:10.3389/fnhum.2015.00660Perid, J. L. A., & Steiger, P. (1998). Making Electronic Commere Easier to Use With Novel User Interfaces. Electronic Markets, 8(3), 8-12. doi:10.1080/10196789800000032Ranasinghe, N., Nakatsu, R., Nii, H., & Gopalakrishnakone, P. (2012). Tongue Mounted Interface for Digitally Actuating the Sense of Taste. 2012 16th International Symposium on Wearable Computers. doi:10.1109/iswc.2012.16Rieuf, V., Bouchard, C., Meyrueis, V., & Omhover, J.-F. (2017). Emotional activity in early immersive design: Sketches and moodboards in virtual reality. Design Studies, 48, 43-75. doi:10.1016/j.destud.2016.11.001Schnall, S., Hedge, C., & Weaver, R. (2012). The Immersive Virtual Environment of the digital fulldome: Considerations of relevant psychological processes. International Journal of Human-Computer Studies, 70(8), 561-575. doi:10.1016/j.ijhcs.2012.04.001Scholz, J., & Smith, A. N. (2016). Augmented reality: Designing immersive experiences that maximize consumer engagement. Business Horizons, 59(2), 149-161. doi:10.1016/j.bushor.2015.10.003Seibert, J., & Shafer, D. M. (2017). Control mapping in virtual reality: effects on spatial presence and controller naturalness. Virtual Reality, 22(1), 79-88. doi:10.1007/s10055-017-0316-1Skarbez, R., Brooks, Jr., F. P., & Whitton, M. C. (2018). A Survey of Presence and Related Concepts. ACM Computing Surveys, 50(6), 1-39. doi:10.1145/3134301Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing Our Lives with Immersive Virtual Reality. Frontiers in Robotics and AI, 3. doi:10.3389/frobt.2016.00074Stone, R. J. (1995). The reality of virtual reality. World Class Design to Manufacture, 2(4), 11-17. doi:10.1108/09642369310091106Szymanski, D. M., & Hise, R. T. (2000). E-satisfaction: an initial examination. Journal of Retailing, 76(3), 309-322. doi:10.1016/s0022-4359(00)00035-xTeo, W.-P., Muthalib, M., Yamin, S., Hendy, A. M., Bramstedt, K., Kotsopoulos, E., 
 Ayaz, H. (2016). Does a Combination of Virtual Reality, Neuromodulation and Neuroimaging Provide a Comprehensive Platform for Neurorehabilitation? – A Narrative Review of the Literature. Frontiers in Human Neuroscience, 10. doi:10.3389/fnhum.2016.00284Tikkanen, H., Hietanen, J., Henttonen, T., & Rokka, J. (2009). Exploring virtual worlds: success factors in virtual world marketing. Management Decision, 47(8), 1357-1381. doi:10.1108/00251740910984596Usoh, M., Catena, E., Arman, S., & Slater, M. (2000). Using Presence Questionnaires in Reality. Presence: Teleoperators and Virtual Environments, 9(5), 497-503. doi:10.1162/105474600566989Van Herpen, E., Pieters, R., & Zeelenberg, M. (2009). When demand accelerates demand: Trailing the bandwagon☆. Journal of Consumer Psychology, 19(3), 302-312. doi:10.1016/j.jcps.2009.01.001Van Herpen, E., van den Broek, E., van Trijp, H. C. M., & Yu, T. (2016). Can a virtual supermarket bring realism into the lab? Comparing shopping behavior using virtual and pictorial store representations to behavior in a physical store. Appetite, 107, 196-207. doi:10.1016/j.appet.2016.07.033Van Kerrebroeck, H., Brengman, M., & Willems, K. (2017). When brands come to life: experimental research on the vividness effect of Virtual Reality in transformational marketing communications. Virtual Reality, 21(4), 177-191. doi:10.1007/s10055-017-0306-3Vargo, S. L., & Lusch, R. F. (2007). Service-dominant logic: continuing the evolution. Journal of the Academy of Marketing Science, 36(1), 1-10. doi:10.1007/s11747-007-0069-6Varma, V., & Nathan-Roberts, D. (2017). Gestural Interaction with Three-Dimensional Interfaces; Current Research and Recommendations. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 61(1), 537-541. doi:10.1177/1541931213601618Verhoef, P. C., Kannan, P. K., & Inman, J. J. (2015). From Multi-Channel Retailing to Omni-Channel Retailing. Journal of Retailing, 91(2), 174-181. doi:10.1016/j.jretai.2015.02.005Verhulst, A., Normand, J.-M., Lombart, C., & Moreau, G. (2017). A study on the use of an immersive virtual reality store to investigate consumer perceptions and purchase behavior toward non-standard fruits and vegetables. 2017 IEEE Virtual Reality (VR). doi:10.1109/vr.2017.7892231Vrechopoulos, A., Apostolou, K., & Koutsiouris, V. (2009)
    • 

    corecore