3,054 research outputs found

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    Exploring New Horizons in Evolutionary Design of Robots

    Get PDF
    International audienceThis introduction paper to the 2009 IROS workshop “Exploring new horizons in Evolutionary Design of Robots” considers the field of Evolutionary Robotics (ER) from the perspective of its potential users: roboticists. The core hypothesis motivating this field of research will be discussed, as well as the potential use of ER in a robot design process. Three main aspects of ER will be presented: (a) ER as an automatic parameter tuning procedure, which is the most mature application and is used to solve real robotics problem, (b) evolutionary-aided design, which may benefit the designer as an efficient tool to build robotic systems and (c) automatic synthesis, which corresponds to the automatic design of a mechatronic device. Critical issues will also be presented as well as current trends and pespectives in ER

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie
    corecore