993 research outputs found

    Prognostics: Design, Implementation, and Challenges

    Get PDF
    Prognostics is an essential part of condition-based maintenance (CBM), described as predicting the remaining useful life (RUL) of a system. It is also a key technology for an integrated vehicle health management (IVHM) system that leads to improved safety and reliability. A vast amount of research has been presented in the literature to develop prognostics models that are able to predict a system’s RUL. These models can be broadly categorised into experience-based models, data-driven models and physics-based models. Therefore, careful consideration needs to be given to selecting which prognostics model to take forward and apply for each real application. Currently, developing reliable prognostics models in real life is challenging for various reasons, such as the design complexity associated with a system, the high uncertainty and its propagation in the degradation, system level prognostics, the evaluation framework and a lack of prognostics standards. This paper is written with the aim to bring forth the challenges and opportunities for developing prognostics models for complex systems and making researchers aware of these challenges and opportunities

    A "DESIGN FOR AVAILABILITY" METHODOLOGY FOR SYSTEMS DESIGN AND SUPPORT

    Get PDF
    Prognostics and Health Management (PHM) methods are incorporated into systems for the purpose of avoiding unanticipated failures that can impact system safety, result in additional life cycle cost, and/or adversely affect the availability of a system. Availability is the probability that a system will be able to function when called upon to do so. Availability depends on the system's reliability (how often it fails) and its maintainability (how efficiently and frequently it is pro-actively maintained, and how quickly it can be repaired and restored to operation when it does fail). Availability is directly impacted by the success of PHM. Increasingly, customers of critical systems are entering into "availability contracts" in which the customer either buys the availability of the system (rather than actually purchasing the system itself) or the amount that the system developer/manufacturer is paid is a function of the availability achieved by the customer. Predicting availability based on known or predicted system reliability, operational parameters, logistics, etc., is relatively straightforward and can be accomplished using several methods and many existing tools. Unfortunately in these approaches availability is an output of the analysis. The prediction of system's parameters (i.e., reliability, operational parameters, and/or logistics management) to meet an availability requirement is difficult and cannot be generally done using today's existing methods. While determining the availability that results from a set of events is straightforward, determining the events that result in a desired availability is not. This dissertation presents a "design for availability" methodology that starts with an availability requirement and uses it to predict the required design, logistics and operations parameters. The method is general and can be applied when the inputs to the problem are uncertain (even the availability requirement can be represented as a probability distribution). The method has been demonstrated on several examples with and without PHM

    AN OPTIONS APPROACH TO QUANTIFY THE VALUE OF DECISIONS AFTER PROGNOSTIC INDICATION

    Get PDF
    Safety, mission and infrastructure critical systems have started adopting prognostics and health management, a discipline consisting of technologies and methods to assess the reliability of a product in its actual life-cycle conditions to determine the advent of failure and mitigate system risks. The output from a prognostic system is the remaining useful life of the host system; it gives the decision-maker lead-time and flexibility in maintenance. Examples of flexibility include delaying maintenance actions to use up the remaining useful life and halting the operation of the system to avoid critical failure. Quantifying the value of flexibility enables decision support at the system level, and provides a solution to the fundamental tradeoff in maintenance of systems with prognostics: minimize the remaining useful life thrown while concurrently minimizing the risk of failure. While there are cost-benefit models to quantify the value of implementing prognostics, they are applicable to the fleet level, they do not incorporate the value of decisions after prognostic indication (value of flexibility or contingency actions), and do not use PHM information for dynamic maintenance scheduling. This dissertation develops a decision support model based on `options' theory- a financial derivative tool extended to real assets - to quantify maintenance decisions after a remaining useful life prediction. A hybrid methodology based on Monte Carlo simulations and decision trees is developed. The methodology incorporates the value of contingency actions when assessing the benefits of PHM. The model is extended and combined with least squares Monte Carlo methods to quantify the option to wait to perform maintenance; it represents the value obtained from PHM at the system level. The methodology also allows quantifying the benefits of PHM for individualized maintenance policies for systems in real-time, and to set a dynamic maintenance threshold based on PHM information. This work is the first known to quantify the flexibility enabled by PHM and to address the cost-benefit-risk ramifications after prognostic indication at the system level. The contributions of the dissertation are demonstrated on data for wind farms

    A framework for effective management of condition based maintenance programs in the context of industrial development of E-Maintenance strategies

    Get PDF
    CBM (Condition Based Maintenance) solutions are increasingly present in industrial systems due to two main circumstances: rapid evolution, without precedents, in the capture and analysis of data and significant cost reduction of supporting technologies. CBM programs in industrial systems can become extremely complex, especially when considering the effective introduction of new capabilities provided by PHM (Prognostics and Health Management) and E-maintenance disciplines. In this scenario, any CBM solution involves the management of numerous technical aspects, that the maintenance manager needs to understand, in order to be implemented properly and effectively, according to the company’s strategy. This paper provides a comprehensive representation of the key components of a generic CBM solution, this is presented using a framework or supporting structure for an effective management of the CBM programs. The concept “symptom of failure”, its corresponding analysis techniques (introduced by ISO 13379-1 and linked with RCM/FMEA analysis), and other international standard for CBM open-software application development (for instance, ISO 13374 and OSA-CBM), are used in the paper for the development of the framework. An original template has been developed, adopting the formal structure of RCM analysis templates, to integrate the information of the PHM techniques used to capture the failure mode behaviour and to manage maintenance. Finally, a case study describes the framework using the referred template.Gobierno de Andalucía P11-TEP-7303 M

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    Setting sail towards predictive maintenance:developing tools to conquer difficulties in the implementation of maintenance analytics

    Get PDF
    Unexpected downtime of equipment is disruptive in complex manufacturing supply chains and imposes high costs due to forgone productivity. Executives in asset-intensive industries therefore regard such unexpected failures of their physical assets as a primary operational risks to their business. Predictive maintenance (PdM) (including condition-based maintenance) can aid practitioners in preventing these unexpected failures and getting insight into current and future behaviour of their assets. However, the use of PdM in practice seems to lag behind recent technological advancements and our theoretical understanding. The current study therefore aims to further develop our understanding on the use and adoption of predictive maintenance and, based on these observations, develop tools to better support the practical application of predictive maintenance. This research is guided by the following research question: How can the practical application of predictive maintenance better be supported? To be able to answer this question, an explorative multiple-case study is conducted including fourteen cases from various industries in the Netherlands to study successful applications of predictive maintenance. The focus in this multiple-case study lays on both the technical and the organizational aspects of PdM, because the organizational application process of PdM seems overlooked by the academic literature. The multiple case study reveals that almost all organizations who applied PdM successfully have followed a costly trial and error process. This appears to be the result of the technical and organizational complexity of the application of PdM and the absence of effective theoretical guidance in: (i) selecting the most suitable techniques for PdM; (ii) identifying the most suitable candidates for PdM; and (iii) evaluating the added value of PdM. To conquer the three main identified problems and to assist practitioners in the implementation of PdM, three corresponding decision support tools – which can be used together – have been designed in the remainder of this dissertation. The three solutions are designed using a structured design science process. Therefore, after studying the problems in-depth to define design criteria and select design principles, the developed solutions are demonstrated in practice using case studies in various industries. Future research should be guided towards the refinement and testing of the provided methods

    Degrader Analysis for Diagnostic and Predictive Capabilities: A Demonstration of Progress in DoD CBM+ Initiatives

    Get PDF
    This paper presents a modified reliability centered maintenance (RCM) methodology developed by The Applied Research Laboratory at The Pennsylvania State University (ARL Penn State) to meet challenges in decreasing life cycle sustainment costs for critical Naval assets. The focus of this paper is on the requirements for the development of the on-board Prognostics and Health Management (PHM) system with a discussion on the implementation progress for two systems: the high pressure air compressor (HPAC), and the advanced carbon dioxide removal unit (ACRU). Recent Department of Defense (DoD) guidance calls for implementing Condition Based Maintenance (CBM) as an alternative to traditional reactive and preventative maintenance strategies that rely on regular and active participation from subject matter experts to evaluate the health condition of critical systems. The RCM based degrader analysis utilizes data from multiple sources to provide a path for selecting systems and components most likely to benefit from the implementation of diagnostic and predictive capabilities for monitoring and managing failure modes by determining various options of possible CBM system designs that provide the highest potential ROI. Sensor data collected by the PHM system can be used with machine learning applications to develop failure mode predictive algorithms with greatest benefit in terms of performance, sustainment costs, and increasing platform operational availability. The approach supports traditional maintenance strategy development by assessing the financial benefit of the PHM technology implementation with promising potential for many industrial and military complex adaptive system applications

    Condition-based maintenance implementation: A literature review

    Get PDF
    Industrial companies are increasingly dependent on the availability and performance of their equipment to remain competitive. This circumstance demands accurate and timely maintenance actions in alignment with the organizational objectives. Condition-Based Maintenance (CBM) is a strategy that considers information about the equipment condition to recommend appropriate maintenance actions. The main purpose of CBM is to prevent functional failures or a significant performance decrease of the monitored equipment. CBM relies on a wide range of resources and techniques required to detect deviations from the normal operating conditions, diagnose incipient failures or predict the future condition of an asset. To obtain meaningful information for maintenance decision making, relevant data must be collected and properly analyzed. Recent advances in Big Data analytics and Internet of Things (IoT) enable real-time decision making based on abundant data acquired from several different sources. However, each appliance must be designed according to the equipment configuration and considering the nature of specific failure modes. CBM implementation is a complex matter, regardless of the equipment characteristics. Therefore, to ensure cost-effectiveness, it must be addressed in a systematic and organized manner, considering the technical and financial issues involved. This paper presents a literature review on approaches to support CBM implementation. Published studies and standards that provide guidelines to implement CBM are analyzed and compared. For each existing approach, the steps recommended to implement CBM are listed and the main gaps are identified. Based on the literature, factors that can affect the effective implementation of CBM are also highlighted and discussed.This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 39479; Funding Reference: POCI-01-0247-FEDER-39479]
    corecore