2,120 research outputs found

    Review implementation of linguistic approach in schema matching

    Get PDF
    Research related schema matching has been conducted since last decade. Few approach related schema matching has been conducted with various methods such as neuron network, feature selection, constrain based, instance based, linguistic, and so on. Some field used schema matching as basic model such as e-commerce, e-business and data warehousing. Implementation of linguistic approach itself has been used a long time with various problem such as to calculated entity similarity values in two or more schemas. The purpose of this paper was to provide an overview of previous studies related to the implementation of the linguistic approach in the schema matching and finding gap for the development of existing methods. Futhermore, this paper focused on measurement of similarity in linguistic approach in schema matching

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    A Planning Approach to Migrating Domain-specific Legacy Systems into Service Oriented Architecture

    Get PDF
    The planning work prior to implementing an SOA migration project is very important for its success. Up to now, most of this kind of work has been manual work. An SOA migration planning approach based on intelligent information processing methods is addressed to semi-automate the manual work. This thesis will investigate the principle research question: “How can we obtain SOA migration planning schemas (semi-) automatically instead of by traditional manual work in order to determine if legacy software systems should be migrated to SOA computation environment?”. The controlled experiment research method has been adopted for directing research throughout the whole thesis. Data mining methods are used to analyse SOA migration source and migration targets. The mined information will be the supplementation of traditional analysis results. Text similarity measurement methods are used to measure the matching relationship between migration sources and migration targets. It implements the quantitative analysis of matching relationships instead of common qualitative analysis. Concretely, an association rule and sequence pattern mining algorithms are proposed to analyse legacy assets and domain logics for establishing a Service model and a Component model. These two algorithms can mine all motifs with any min-support number without assuming any ordering. It is better than the existing algorithms for establishing Service models and Component models in SOA migration situations. Two matching strategies based on keyword level and superficial semantic levels are described, which can calculate the degree of similarity between legacy components and domain services effectively. Two decision-making methods based on similarity matrix and hybrid information are investigated, which are for creating SOA migration planning schemas. Finally a simple evaluation method is depicted. Two case studies on migrating e-learning legacy systems to SOA have been explored. The results show the proposed approach is encouraging and applicable. Therefore, the SOA migration planning schemas can be created semi-automatically instead of by traditional manual work by using data mining and text similarity measurement methods

    Ontology matching: state of the art and future challenges

    Get PDF
    shvaiko2013aInternational audienceAfter years of research on ontology matching, it is reasonable to consider several questions: is the field of ontology matching still making progress? Is this progress significant enough to pursue some further research? If so, what are the particularly promising directions? To answer these questions, we review the state of the art of ontology matching and analyze the results of recent ontology matching evaluations. These results show a measurable improvement in the field, the speed of which is albeit slowing down. We conjecture that significant improvements can be obtained only by addressing important challenges for ontology matching. We present such challenges with insights on how to approach them, thereby aiming to direct research into the most promising tracks and to facilitate the progress of the field

    Un environnement de spécification et de découverte pour la réutilisation des composants logiciels dans le développement des logiciels distribués

    Get PDF
    Notre travail vise Ă  Ă©laborer une solution efficace pour la dĂ©couverte et la rĂ©utilisation des composants logiciels dans les environnements de dĂ©veloppement existants et couramment utilisĂ©s. Nous proposons une ontologie pour dĂ©crire et dĂ©couvrir des composants logiciels Ă©lĂ©mentaires. La description couvre Ă  la fois les propriĂ©tĂ©s fonctionnelles et les propriĂ©tĂ©s non fonctionnelles des composants logiciels exprimĂ©es comme des paramĂštres de QoS. Notre processus de recherche est basĂ© sur la fonction qui calcule la distance sĂ©mantique entre la signature d'un composant et la signature d'une requĂȘte donnĂ©e, rĂ©alisant ainsi une comparaison judicieuse. Nous employons Ă©galement la notion de " subsumption " pour comparer l'entrĂ©e-sortie de la requĂȘte et des composants. AprĂšs sĂ©lection des composants adĂ©quats, les propriĂ©tĂ©s non fonctionnelles sont employĂ©es comme un facteur distinctif pour raffiner le rĂ©sultat de publication des composants rĂ©sultats. Nous proposons une approche de dĂ©couverte des composants composite si aucun composant Ă©lĂ©mentaire n'est trouvĂ©, cette approche basĂ©e sur l'ontologie commune. Pour intĂ©grer le composant rĂ©sultat dans le projet en cours de dĂ©veloppement, nous avons dĂ©veloppĂ© l'ontologie d'intĂ©gration et les deux services " input/output convertor " et " output Matching ".Our work aims to develop an effective solution for the discovery and the reuse of software components in existing and commonly used development environments. We propose an ontology for describing and discovering atomic software components. The description covers both the functional and non functional properties which are expressed as QoS parameters. Our search process is based on the function that calculates the semantic distance between the component interface signature and the signature of a given query, thus achieving an appropriate comparison. We also use the notion of "subsumption" to compare the input/output of the query and the components input/output. After selecting the appropriate components, the non-functional properties are used to refine the search result. We propose an approach for discovering composite components if any atomic component is found, this approach based on the shared ontology. To integrate the component results in the project under development, we developed the ontology integration and two services " input/output convertor " and " output Matching "

    The 5th Conference of PhD Students in Computer Science

    Get PDF

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    The 4th Conference of PhD Students in Computer Science

    Get PDF

    Structural Graph-based Metamodel Matching

    Get PDF
    Data integration has been, and still is, a challenge for applications processing multiple heterogeneous data sources. Across the domains of schemas, ontologies, and metamodels, this imposes the need for mapping specifications, i.e. the task of discovering semantic correspondences between elements. Support for the development of such mappings has been researched, producing matching systems that automatically propose mapping suggestions. However, especially in the context of metamodel matching the result quality of state of the art matching techniques leaves room for improvement. Although the traditional approach of pair-wise element comparison works on smaller data sets, its quadratic complexity leads to poor runtime and memory performance and eventually to the inability to match, when applied on real-world data. The work presented in this thesis seeks to address these shortcomings. Thereby, we take advantage of the graph structure of metamodels. Consequently, we derive a planar graph edit distance as metamodel similarity metric and mining-based matching to make use of redundant information. We also propose a planar graph-based partitioning to cope with large-scale matching. These techniques are then evaluated using real-world mappings from SAP business integration scenarios and the MDA community. The results demonstrate improvement in quality and managed runtime and memory consumption for large-scale metamodel matching
    • 

    corecore