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Abstract

Data integration has been, and still is, a challenge for applications process-

ing multiple heterogeneous data sources. Across the domains of schemas,

ontologies, and metamodels, this imposes the need for mapping specifica-

tions, i.e. the task of discovering semantic correspondences between ele-

ments. Support for the development of such mappings has been researched,

producing matching systems that automatically propose mapping sugges-

tions.

However, especially in the context of metamodel matching the result

quality of state of the art matching techniques leaves room for improvement.

Although the traditional approach of pair-wise element comparison works

on smaller data sets, its quadratic complexity leads to poor runtime and

memory performance and eventually to the inability to match, when applied

on real-world data.

The work presented in this thesis seeks to address these shortcomings.

Thereby, we take advantage of the graph structure of metamodels. Conse-

quently, we derive a planar graph edit distance as metamodel similarity

metric and mining-based matching to make use of redundant information.

We also propose a planar graph-based partitioning to cope with large-scale

matching. These techniques are then evaluated using real-world mappings

from SAP business integration scenarios and the MDA community. The re-

sults demonstrate improvement in quality and managed runtime and mem-

ory consumption for large-scale metamodel matching.
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Chapter 1

Introduction

Data integration has been, and still is, a challenge for applications process-

ing multiple heterogeneous data sources. Across the domains of schemas,

ontologies, and metamodels this heterogeneity inevitably imposes the need

for mapping specifications. Thereby, a mapping specification requires the

task of creating semantic correspondences between elements to integrate

multiple data sources.

An industrial example for the integration of multiple data sources is

given through the point of sale scenario [134], where data coming from

several retail stores needs to be integrated in a central system. A retail store

has cashiers processing sales using tills and a local system collecting all data.

The data from the sales of products is sent to and aggregated in a central En-

terprise Resource Planning (ERP) system [136]. Thereby, the central system

and third-party systems of different stores naturally differ in their internal

formats which may be defined using schemas, ontologies, or metamodels.

To integrate the systems a mapping between the concepts of the third-party

systems and the central ERP is needed. For instance, two different represen-

tations for a purchase order or customer data have to be mapped onto each

other. Support for the development of such mappings has been researched,

producing matching systems that automatically propose mapping sugges-

tions, e. g. in schema matching [126], ontology matching [33] and meta-

model matching [98].

In the three matching domains most of the proposed systems claim an

overall result of automatically finding nearly complete mappings, e. g. in

[94, 25, 37, 38, 32]. These results are, however, only possible when run-

ning on a limited data set. When applied on heterogeneous real-world data

our evaluation demonstrates that established state of the art matching tech-

niques show only approximately half of all possible mappings found. This

observation has also been confirmed by the results of the ontology align-

ment real-world task [32, 125]. Consequently, in this thesis we identified

the challenge of (1) improving the quality of matching results.

1



2 Introduction

The challenge of improving matching quality is not restricted to meta-

model matching but also applies to schema and ontology matching. The

three domains differ in the way data structures are defined. Schemas allow

for a tree-based definition of elements and types. Ontologies and metamod-

els follow a similar way with a graph-based structure, typed relations, and

the notion of inheritance. The difference in structure also concerns matching

which is either tree or graph-based utilizing the structures available.

In this thesis we concentrate on metamodel matching where the data is

defined through metamodels using object-oriented concepts such as classes,

attributes, references, etc. We focus on the area of metamodel matching and

thus Model Driven Architecture (MDA) [118], since MDA constitutes an in-

dustrial standard and specifies graph-based data models. This approach is

justified by two reasons, first the field of metamodel matching is relatively

unexplored and provides matching on typed graphs. Second, metamodels

are increasingly applied in industry, for instance in SAP [4] throughout sev-

eral products [135, 9, 143] leading to the necessity for improved matching

systems. However, the concepts developed in this thesis are not restricted to

metamodels but can also be applied to schema and ontology matching. The

general applicability of our approach is demonstrated in our evaluation by

applying our concepts to metamodels and schemas.

Besides the necessity of an improvement in matching quality another

challenge is raised by an increase in size and complexity of schemas and

metamodels in an enterprise context. As a consequence, the task of matching

these large-scale schemas and metamodels for data integration purposes has

surpassed the capabilities of most matching systems [125]. The traditional

approach of pair-wise element comparison leads to quadratic complexity

and thus runtime and memory issues. This results in the second challenge

of (2) missing support for large-scale matching.

The goal of this thesis is to improve the result quality of metamodel

matching in terms of correctness and completeness in the context of large-

scale matching tasks. The main hypothesis of this thesis is that metamodel

matching and matching in general can be improved by utilizing the graph

structure of metamodels. This hypothesis is confirmed and validated us-

ing real-world data, both from the domains of metamodels and business

schemas.

In the following, we will discuss the problems of matching quality and

scalability. Based on these problems we will state our research questions and

corresponding hypotheses to conclude with our contributions. This introduc-

tion is completed by outlining our thesis chapters.
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1.1 Quality Problem in Matching

Metamodel matching aims at the calculation of mappings between two meta-

models. These mappings should be presented to a user to support him in the

task of mapping specification. Those mappings are finally used to integrate

heterogeneous metamodels. Consequently, metamodel matching should re-

duce the effort as well as errors in the process of mapping specification.

Since the mappings calculated are intended to be used by a domain expert

often in an enterprise context, it is essential that those mappings are, as far

as possible, correct and complete. The correctness and completeness defines

the quality of metamodel matching. If the mappings calculated show a low

correctness and completeness, metamodel matching may even impose an

additional burden to a user applying it. Therefore, quality is one of the main

concerns of metamodel matching.

One reason for, on average, only about half of all mappings being found

and being correct, is the insufficient amount of information contained in

a metamodel, i. e. its expressiveness. A metamodel defines object-oriented

structures and thus explicit information like packages, classes, relations, at-

tributes, etc. But, a metamodel does not contain implicit information such as

the meaning of terms, codes, preconditions, etc. This additional knowledge

is typically only known to domain experts.

An improvement of quality can be achieved by taking additional infor-

mation into account. This can be generic information available, domain-

specific knowledge, configurations or pre-processing and post-processing.

For instance, the work of Garces [45] proposes a domain-specific language

to incorporate external knowledge in matching processes. Some systems,

e. g. [28], try to capture this additional knowledge in external representa-

tions to improve matching quality. The additional knowledge is external, be-

cause metamodels do not require a user to specify that information, thus it is

not part of the metamodel. Another approach is to reuse existing mappings

for instance by using transitivity for mapping calculation [23] or by cover-

age analysis [132]. However, each of these approaches requires external or

domain-specific knowledge which one cannot be taken for granted.

Another reason for deficits in matching quality is the existence of redun-

dant information. This is due to the fact that one element may be mapped

onto multiple occurrences of another, thus producing multiple mappings in-

stead of one. This redundant information produces misleading mappings,

which may present more incorrect mappings to a user.

To summarize we identified the problem of: (1) insufficient correctness

and completeness of matching results.
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1.2 Scalability Problem in Matching

The problem of scalability naturally arises in the context of large-scale data

as confirmed by Rahm [125]. Especially in industry metamodels easily ex-

ceed the size of 1,000 elements and may contain even more than 8,000

elements. For instance, the aforementioned point of sale scenario involves

metamodels of such a size, because data about stores, customers, transac-

tions, billing, etc. has to be stored [134]. Matching two metamodels with

8,000 elements each results in 64,000,000 comparisons to be made and

stored in the memory for a combination. Even with state of the art ap-

proaches this leads to issues of high memory consumption and a runtime

overhead.

The memory and runtime problems result in an inacceptable system ap-

plicability and usability. High memory consumption potentially leads to an

unresponsive system and in the worst case to an abortion or crash of the

matching system. The runtime problem becomes especially important in

case of an interactive scenario. If a user wants to obtain metamodel match-

ing results for a given matching task of two metamodels he typically wants

to receive system feedback in seconds or better milliseconds. With large-

scale metamodels the system response time increases quadratically to min-

utes or even hours.

Only some systems tackle this problem by limiting the matching context

with light-weight matching techniques [10]. However, these techniques re-

duce the result quality significantly and do not tackle the memory problem

for metamodels of arbitrary size. Another approach in the area of schema

matching is to reduce the number of comparisons but not the schema size,

e. g. in COMA++ [25] and aFlood [54]. These approaches apply a partition-

ing on the input, splitting it into smaller subparts and based on these parts

define the comparisons to be made. However, the parts are not matched

independently, thus the runtime is decreased but not the memory consump-

tion. Hence, the approaches do not solve the problems of memory consump-

tion and unmatchable metamodels. In addition, the approaches [25, 54]

are limited to schemas or ontologies, hence they are not easily applicable

to metamodels. We derive the second cause problem of our thesis: a (2)

missing support for matching metamodels of large-scale size.

1.3 Research Questions and Contributions

Our main objectives are to improve quality and increase scalability for meta-

model matching. A solution using information additional to metamodels is

not a viable choice because this information is generally not available or

requires an additional effort by a domain expert to produce. Therefore, we
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focus on information inherent to metamodels, namely the structural graph

information of a metamodel.

Structural graph information has been utilized for fix-point based simi-

larity propagation in schema matching [107] but not for a comparison and

similarity calculation solely based on structure. The reason lies in the sig-

nificant computational complexity of the graph isomorphism problem. The

calculation of an edge-preserving mapping between two graphs is known

to belong to NP [47]. However, the complexity of (sub-)graph isomorphism

calculation can be reduced by restricting a general graph structure to spe-

cific graph classes that obey certain graph properties; an observation that

will prove useful when investigating our research question:

Research question 1. ”How can metamodel graph structure be used to im-

prove the correctness, completeness, runtime, and memory consumption of

metamodel matching?”

The identification of general (sub-) graph isomorphism belongs to NP,

therefore the complexity must be reduced. It is known that a restriction

of the input graph to special classes of graphs reduces the complexity of

the isomorphism calculation. The problem is to identify the type of classes

which retain as much information as possible, thus the class which is the

closest to the general graph.

A well-known class restricting the input are trees. Trees are used for path

computations, indices, matching [162] etc. However, a tree represents only

a smaller part of the original complete graph. Especially in the context of

matching this imposes a drawback in terms of quality, because less context

information is available for matching.

Another more general class of graphs, known since 1930, are planar

graphs. Planar graphs are graphs which can be drawn in a plane without in-

tersecting edges. They have been formally defined by Kuratowski’s Theorem

[90]. These graphs allow for a reduced polynomial complexity of several

general graph problems and hence address the NP-problem. Recently they

have gained interest (among others) in fingerprint classification by the work

of Neuhaus [113] and general graph theory by Aleksandrov [3]. Due to their

results we opt for planarity as a promising property for metamodel match-

ing.

Of course not every metamodel is a planar graph per se, but each meta-

model can be transformed into a planar graph in logarithmic time [11] by

removing a minimal number of edges. In case of removed edges the original

and planar isomorphism problem are not equivalent, because the removed

edges are not considered for the isomorphism calculation. For the special

class of trees the same problem inequivalence applies.

Representing metamodels as planar graphs offer advantages over trees.

The number of edges removed when transforming a metamodel into a pla-

nar graph is considerably lower for the planar graph compared to a trans-
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formation into a tree1. We formulate our first hypothesis in trying to answer

our research question:

Hypothesis. H 1. Subgraph isomorphism calculation based on planar meta-

model graphs improves correctness and completeness of metamodel matching.

The second reason for a deficit in result quality of previous approaches

is, as mentioned, redundant information which produces misleading map-

pings. To tackle this problem we aim to identify and process such redundant

information to increase the overall matching result quality. Graph theory pro-

vides established algorithms used to discover reoccurring patterns, so-called

graph-mining algorithms [14]. Applying and adapting those techniques to

identify the redundant information is in our opinion an area worth explor-

ing, which leads to our next hypothesis:

Hypothesis. H 2. Mining for reoccurring patterns on metamodel graphs im-

proves correctness and completeness of metamodel matching.

Furthermore, the scalability problem identified by us has to be tackled

in order to improve memory consumption as well as to reduce runtime. To

improve memory consumption and reduce runtime the matching problem

has to reduce the number of comparisons and contexts, that is the size of

metamodels to be matched. A common approach in graph theory is parti-

tioning, that is the separation of a graph into independent (unconnected)

subgraphs of similar size [117]. Since metamodels are graphs and we inves-

tigate planarity, we formulate the following hypothesis:

Hypothesis. H 3. Partitioning of planar metamodel graphs and partition-

based matching improves support for and enables arbitrary large-scale meta-

model matching.

Thereby ”support” refers to a reduction in memory consumption and

runtime on a local machine. The improved support also includes matching

of metamodels of arbitrary size, because partitioning enables an indepen-

dent matching of maximal sized partitions in a distributed environment. The

three hypotheses presented will be validated throughout our thesis. This val-

idation results in the following four contributions for structural graph-based

metamodel matching:

C1 We propose a planar graph edit distance algorithm for improvement

of matching quality by efficiently calculating graph structure similarity

for metamodels.

C2 We suggest two matching algorithms based on graph-pattern mining

for detecting (1) design patterns and (2) redundantly modelled infor-

mation for metamodel similarity calculation.

1Our results show an average of 1% removed for planarity in contrast to 19% for trees,

see Sect. 7.3.
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C3 To tackle the large-scale matching problem, we propose to use planar

graph-based partitioning for metamodel matching. Our approach di-

vides the input graph into subgraphs, i. e. partitions. The calculation

of partition pairs is then investigated using four partition assignment

algorithms. The partitioning and partition assignment reduce memory

consumption and runtime of a matching system.

C4 We perform a comprehensive real-world evaluation incorporating 31

large-scale mappings from SAP business integration scenarios as well

as 20 mappings from the MDA community. These data sets form our

gold-standards, i. e. they are compared with the mappings obtained by

our matching algorithms.

The results of our evaluation validate our claims. That means, we demon-

strate the effectiveness, i. e. improvements in correctness and completeness,

and efficiency, i. e. decreases in runtime and memory consumption, of our

solution for graph-based metamodel matching.

1.4 Thesis Outline

We structure our thesis as follows: Chap. 2 describes the foundations of

graph-based metamodel matching introducing metamodel matching tech-

niques, the basics of graph theory, graph matching, graph mining, and graph

partitioning. Additionally, it also defines the graph properties reducibility

and planarity. Our problem analysis is given in Chap. 3 performing a root-

cause analysis for large-scale metamodel matching. The problem analysis

concludes with our requirements and derives our research question. Related

approaches on the identified problems of matching quality and scalability

are presented in Chap. 4. Thereby, we provide an overview on state of the

art of matching techniques as well as strategies for large-scale matching.

Chapter 5 presents our approach on improving the matching quality by

graph-based matching utilizing planarity and redundant information. Chap-

ter 6 presents our algorithm for graph-based partitioning that tackles the

scalability problem in matching.

In Chap. 7 we validate our results with our graph-based matching frame-

work MatchBox and real-world data. The data of our comprehensive evalua-

tion stems from the MDA community as well as from business message map-

pings within SAP. Using this data we validate our algorithms w.r.t. the qual-

ity and scalability improvements. Based on the results obtained we discuss

the applicability and limitations of our algorithms. Finally, we summarize

and conclude this thesis in Chap. 8 giving recommendations for matching

oriented data model development and pointing out directions for further

research.





Chapter 2

Background

Since our work addresses metamodel matching employing structural graph-

based approaches, this chapter will introduce the fundamental areas of meta-

model matching and graph theory. We give a definition of metamodel, match-

ing, and basic graph theory concepts. The foundations of structural match-

ing are presented by an overview on state of the art in graph matching and

graph mining. We also discuss the state of the art in graph partitioning for

the purpose of large-scale matching.

2.1 Metamodel Matching

Metamodel matching is the discovery of semantic correspondences between

metamodels, i. e. the matching of metamodel elements. In the following sub-

sections we will define both terms, metamodel and matching.

2.1.1 Metamodel

A metamodel is ”the shared structure, syntax, and semantics of technology

and tool frameworks”. This definition is given by the OMG in the Meta Object

Facility (MOF) [120] specification. An interpretation is that a metamodel is

a prescriptive specification of a domain with the main goal of the specifica-

tion of a language for metadata. This language allows to efficiently develop

domain-specific solutions based on the domain specification. This view is

shared by several authors such as [6, 51, 97]. Consequently, a metamodel

consists of (1) abstract syntax and (2) static semantics. The (1) abstract

syntax specifies the modelling elements available. The (2) static semantics

define well-formedness constraints, thus defining which model elements are

allowed to be composed.

Model elements are used to specify a metamodel, which itself describes

a set of valid instances, the models. These relations are called the three lay-

ered architecture of metamodels [118] and are depicted in Fig. 2.1. The

9
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Figure 2.1: MOF three layer architecture and example

instanceof relation connects the different layers M1–M3, thus each element

of a lower layer is an instance of an element of the upper one. A meta-

metamodel on M3 defines metamodels on M2, where each of these meta-

models define models on M1. On the right hand side of Figure 2.1 an ex-

ample is given. MOF defines the elements available to define UML, where

on M2 the UML metamodel defines which elements are available for class

diagrams. Finally, on M1 a concrete class diagram can be modelled.

The constructs which MOF provides for the definition of metamodels are

object-oriented constructs. A metamodel can be defined using the two main

elements: packages and classes.

A package is the main container for classes, separating metamodels into

modules. A class represents a type and can be instantiated. It can contain

any number of attributes, references, and operations. An attribute itself has

a type acting as a means for specifying values of a class’ instance. Relation-

ships between classes are represented by references and associations. An

association is a binary relation between two classes, whereas a reference

acts as a pointer on the associations. MOF also supports the notion of inher-

itance as a relation between two classes. MOF provides a range of primitive

types, e. g. string or integer and it also provides the possibility of defining

custom data types. A special data type is the enumeration, which allows to

specify a range of values of an attribute.

The classes and other object oriented elements are used to define a meta-

model, for instance UML [119], BPMN [115] or SysML [116]. A Java-based

implementation of MOF is the Eclipse Modeling Framework (EMF) [142]. It

provides the same concepts for modelling as MOF but extends them by a

Java specific type system. We use EMF as the implementation and language

for expressing and matching metamodels.
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Matcher [0,1]

Source element es

Target element e t

Figure 2.2: Generic matcher receiving two elements as input and calculating

a corresponding similarity value as output

The definition of a metamodel by the OMG or EMF is not formal. MOF

is defined verbally, where EMF is defined by its implementation. A precise

and formal definition of a metamodel can be given by adopting a schema

matching algebra [161]. This separation complements the classification of

state of the art matching techniques. The schema matching algebra defines a

schema in a generic way, thus being technical space independent1. We adopt

this definition of schema as follows:

Definition 1. (Metamodel) A metamodel M is described by a signature S =
(E, R, L, F ) where

• E = {e1, e2, . . . , en} is a finite set of elements

• R = {r1, r2, . . . , rn}|r ⊆ E × E · · · × E is the finite set of relations

between elements.

• L = {l1, l2, . . . , ln} is a finite, constant set of labels

• F = {f1, f2, . . . , fn}|f : E × E · · · × E → L is the finite set of functions

mapping from elements to labels

According to this definition a metamodel comprises of elements. In case

of MOF these elements are class, package, reference, attribute, operation

and enumeration. The relations in case of MOF are containments, inheri-

tance, and associations in general. The names or values of the elements and

relations are labels. The definition also defines a schema with the elements:

element, attribute, and type. The relations in case of schemas are limited to

containment and types.

2.1.2 Matching

Matching is the discovery of semantic correspondences between metamodel

elements, that is individuals and relations. The match operator is defined as

operating on two metamodels; its output is a mapping between elements of

these metamodels. Following the definition by Rahm and Bernstein [7] we

define the match operator as follows:

1For a definition of technical space see [91].
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Figure 2.3: Architecture and process of a generic matching system

Definition 2. (Match) The match operator is a function operating on two in-

put metamodels M1 and M2. The function’s output is a set of mappings between

the elements of M1 and M2. Each mapping specifies that a set of elements of

M1 corresponds (matches) to a set of elements in M2. The semantics of a cor-

respondence can be described by an expression attached to the mapping.

The match operator is realized by a matching system as described in the

following.

2.1.2.1 Architecture of a matching system

A generic representation of a parallel matching system (e. g. [23, 24, 151])

and its components is depicted in Figure 2.3. On the left hand side two

input metamodels are given, then they are processed by the matching system

(match operator) and an output mapping is created. The matching system

is separated into components as follows:

1. Metamodel import – transforms a metamodel into the matching sys-

tem’s internal data model

2. Matcher – calculates a similarity value between all pairs of elements

3. Combination – combines the matcher results to create an output map-

ping

1. Metamodel import The import component transforms a given meta-

model into a matching system’s internal model. Thereby, some systems apply

pre-processing steps, e. g. [64, 95]. That means they exploit properties of the

input metamodels to adjust the subsequent matching process. For instance,

the weights of name-based techniques are adjusted if major differences in

the element names of the two metamodels are detected.
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2. Matcher A matcher calculates a semantic correspondence (match) be-

tween two elements. Unfortunately, it has been noted in several publications

e.g. [126, 25], that there is no precise mathematical way of denoting a cor-

rect match between two elements. This is due to the fact that metamodels

(as well as schemas and ontologies) contain insufficient information to pre-

cisely define the semantics of elements. Therefore, implementations of the

match operator have to rely on heuristics approximating the notion of a

correct mapping. A match is realized by a matching technique, which incor-

perates information such as labels, structure, types, external resources etc.

We define a matching technique as follows:

Definition 3. (Matching Technique) A matching technique is a function map-

ping input metamodel elements on a value between 0 and 1; fm : E×E → R
N

with es × et 7→ [0, 1]. This value represents the confidence defined by the func-

tion.

An implementation of a matching technique is a matcher and therefore

defined as:

Definition 4. (Matcher) A matcher is an implementation of a matching tech-

nique.

Figure 2.2 presents an abstract representation of a matcher. It depicts

two given input metamodel elements (along with their corresponding con-

text) which are processed by a matcher. Thereby, a matcher makes use of a

particular matching technique to derive a similarity. In the subsequent Sec-

tion 2.1.2.2 we present a classification and details on matching techniques.

3. Combination The combination component aggregates the results of all

matchers and finally selects the output matches as mappings. Thereby, the

most common way is to employ different strategies to achieve the aggre-

gation of the matcher results [8, 25, 124, 151]. Common strategies are to

average the separate results or to follow a weighted approach. Further ex-

amples are the minimum, maximum or similarity flooding [107] strategies.

The aggregation can be followed by a selection which, for instance, applies a

threshold for the similarity value of matches to be considered for the output

mapping.

Types of matching systems The matching system depicted in Figure 2.3

implies a parallel execution of matchers which is not obligatory. Indeed,

there are three types of matching systems, namely:

• Parallel matching systems,

• Sequential matching systems,
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• Hybrid matching systems.

Parallel matching systems, e. g. [25], apply each matcher independently

on the input metamodels. The matchers are executed in parallel and their

result is aggregated. This approach is also followed by MatchBox [151]

our proposed system for metamodel matching. In contrast, a sequential

matching system, e. g. [37, 38], applies matchers one after another, i. e. a

matcher’s result serves as input for the following. This allows for an incre-

mental refinement of matching results but may worsen an existing error.

Finally, hybrid systems are also possible, for instance [64] use fix-point cal-

culations by incrementally executing parallel matchers to use their results

as input, again using the same matchers.

Hybrid matching systems have been generalized in meta-matching sys-

tems [123]. These systems are actually composition systems for matchers.

They allow a user to specify the matcher interaction and combination to

be applied. Matchers are combined via operators that have an order. This

allows, for instance, for an intersection or union of matcher results, thus

of matching techniques. In the following section we will classify and detail

these matching techniques.

2.1.2.2 Matching techniques

Several matching techniques have been proposed during the last decades

originating from the areas of database schema matching, ontology matching,

and metamodel matching. For a common understanding of these matching

techniques and the self-containment of this thesis we provide an overview

of them. The most popular classification of matching techniques has been

proposed by Rahm and Bernstein in 2001 [126]. It has been refined and

adopted by Shvaiko in 2007 [33] presenting a more complete and up-to-

date view on matching techniques. We decided to adopt the classifications of

Rahm and Shvaiko in one as outlined in [147]. The combined classification

has been developed with respect to the information used for matching, e. g.

names (labels) or relations.

Our classification of matching techniques is given in Figure 2.4. We call

the classification adopted because we removed the class of matching tech-

niques relying on upper level formal ontologies since it is actually a special

form of reuse. We also removed the class of language-based techniques be-

cause it actually defines a specialisation of the existing class of string-based

techniques. Furthermore, we refined the class of graph-based techniques

thus extending the classification.

As can be seen, there are two types of classes: element level and structure-

level matching. The types differentiate between techniques operating on

elements and their properties and techniques using relations between the

elements and thus the structure. Both classes are described in detail in the
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Figure 2.4: Classification of matching techniques

two following sections. Thereby, every technique class will be refined and

examples for corresponding matching systems are given.

2.1.2.3 Element-level techniques

Element-level matching techniques make use of information available as

properties of elements. In the context of metamodels and our algebraic def-

inition, an element is an individual, thus a class, an attribute, a package, an

operation, or an enumeration. An element’s label is used for matching. This

covers labels such as names, documentation or data types.

String-based String-based techniques cover similarity calculation using

string information. Relevant string information includes an element’s name

but it also includes metadata such as documentation, annotation, etc. The

techniques can be divided into the following three classes:

• Prefix-based calculation uses a common prefix as a base for a heuristics

to derive a similarity value.

• Suffix-based calculation is similar to prefix-based calculation but uses

a suffix instead.

• Edit-distance-based calculation aims at calculating the number of edit

operations necessary to transform one string into another. The more

information needed, the less similar two given names are. The most

popular approach is the Levenshtein-distance [153].
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• N-gram calculation targets the linguistic similarity of model elements.

The element labels are split into n-character sized tokens (n-grams).

For each token a similarity based on n-grams is computed, which is

then the total count of equal character sequences of size n and com-

pared to the overall number of n-grams. The resulting ratio is the

string similarity.

String-based matching techniques are used by several matching systems

in the form of a name matcher [24, 37, 38, 98, 107, 151] or derivations

thereof.

Constraint-based Constraint-based matching techniques use information

of elements which define a certain constraint on an element. Constraints

include data types, keys, or cardinalities. Constraint-based techniques follow

the rational that two elements having similar constraints should be similar.

Two main classes can be separated:

• Data types are used to derive a similarity of elements based on the data

type’s similarity. For simple types such as integer or float a static type

conversion table can be used. For complex types such as structures etc.

more advanced techniques have to be applied.

• Multiplicity can be used to derive similarity. For instance, similar inter-

vals of data types indicate a certain similarity.

Linguistic resources Linguistic resources are used by matching techniques

relying on external sources. These external sources can be dictionaries, a

common knowledge thesaurus or a domain-specific dictionary. An example

for a domain-specific dictionary is a code list, encoding terms in a code as

used by SAP [29]. Another popular example is WordNet [39] a publicly

available dictionary used for matching.

Mapping reuse Mapping reuse techniques take advantage of mappings

already calculated. A prerequisite is a storage for mappings which contains

all mappings and the corresponding metamodels in order to reuse these

mappings. The most simple approach is using transitivity as an indicator for

similarity, i. e. if an element A maps onto an element B, and B maps onto an

element C, then one may conclude that A maps onto C. Another approach is

to use existing matching techniques to derive a similarity between elements

to be mapped and already mapped ones, to reuse the knowledge of their

mappings.

An example for mapping reuse is COMA [24], which uses fragments that

are, as a matter of fact, precisely complex types to derive mappings for the

elements [23] referencing those fragments.
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(a) Global (b) Local (c) Region

Figure 2.5: Example graph for global, local, and region-based matching con-

text; grey highlights the elements used for matching

2.1.2.4 Structure-level techniques

Structure-level based matching techniques follow the rationale ”structure

matters”, which is grounded in the theory of meaning [35]. Thereby, it is

noted that relations between elements and their position are similar for sim-

ilar elements. This structure as encoded in relations, e. g. containment or

inheritance, can be used to match different elements. An important aspect

of relation-ship matching techniques is the kind of graph they operate on:

in the context of matching, two classes are of interest, a general graph and

a tree. The following matching techniques can be applied on both. How-

ever, a general graph contains more information whereas a tree allows for

optimized algorithms reducing complexity especially in terms of runtime.

We distinguish four classes of structure-level matching techniques as de-

picted in Fig. 2.5 2: global graph-based, local graph-based, region graph-

based, and taxonomy-based matching.

(a) Global graph-based Global graph-based matching uses a complete

graph in contrast to local graph-based matching, which only investigates

relative elements, e. g. parent elements. Global graph-based matching tech-

niques are either exact or inexact.

Exact algorithms describe a mapping from a vertex (element) onto an-

other vertex as well as a mapping for edges. Subgraph isomorphism algo-

rithms are exact algorithms. In contrast, inexact algorithms allow for an

error-tolerant approach since vertices can be removed or relabelled.

• Exact algorithms, e. g. subgraph isomorphism algorithms, calculate a

mapping between two metamodel graphs. The result of an exact algo-

rithm is a mapping for each element and relation of one metamodel

onto an element or relation of the other metamodel, if and only if they

have the same type.

2A circle represents an element where an edge represents a relation, as defined in the

convention of Sect. 2.2.2.
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• Inexact algorithms such as the graph edit distance or maximum com-

mon subgraph algorithms apply a sequence of edit operations, com-

posed of: add, remove, and relabel (rename). A sequence of such op-

erations defines a mapping from one graph onto another, thus calcu-

lating the maximal common subgraph along with the operations nec-

essary.

Global graph-based techniques have not been investigated in depth so

far. However, there are selected related results, e. g. a tree-based edit dis-

tance approach by Zhang et. al [159], a simplified maximum common sub-

graph by Le and Kuntz [92], and an edit distance approach using expecta-

tion maximization by Doshi and Thomas [27].

(b) Local graph-based Local graph-based matching techniques make use

of the context of an element, i. e. the relation of this element to its neigh-

bours in a metamodel’s graph. Traditional local graph-based matching tech-

niques operate on a tree. Therefore, they use the children, leaf, sibling, and

parent relationship, relative to a given element. An extension of these tech-

niques is to generalize a graph’s spanning tree and use the neighbours in

the graph for matching. Examples for local graph-based techniques are the

children, leaf, siblings, and parent matchers in [24, 151]. For a description

of those see Sect. 7.2 in our evaluation.

(c) Region graph-based Region graph-based techniques make use of re-

gions within a graph, i. e. subgraphs of the complete graph. These subgraphs

are studied regarding occurences in the two metamodel graphs and regard-

ing the subgraphs’ frequency, i. e. how often they occur in the complete

graph. This frequency can be used to derive a similarity between the sub-

graphs’ elements. For instance, subgraphs sharing a high frequency are more

similar. In contrast to local techniques, the context of region techniques

is not restricted to a specific kind of relationship since a frequency is de-

termined. An example of region graph-based techniques is the graph min-

ing matcher in Section 5.2 in Chapter 5 or the filtered context matcher of

COMA++ [25].

Taxonomy-based Taxonomy-based matching techniques operate on the

special taxonomy graph in contrast to the general relationship graph. The

techniques used for taxonomies are specialized in making use of the tree

structure, for instance name path matching and aggregation via super or

subconcept rules (parent-child relations).

Repository of structures The approach of a repository of structures is sim-

ilar to mapping reuse. A repository contains the mappings, corresponding
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metamodels, and coefficients denoting similarities between the metamod-

els. The storage of similarities allows for a faster retrieval of mappings for a

given metamodel. The coefficients are metrics such as structure name, root

name, maximal path length, etc. These numbers act as an index for a set of

metamodels, which allows for an efficient retrieval.

Logic-based Logic-based matching techniques make use of additional con-

straints defined on metamodels. This covers conditions defined over the

metamodels as well as conditions applied to the metamodels. The matching

is based on constraints in a logic language, or performed via post processing

by adding reasoned mappings. For instance, consider a mapping between

attributes, then a mapping between the containing classes has to exist, be-

cause attributes need a containing element. Adding this mapping is an ex-

ample of logic-based matching.

2.2 Graph Theory

In this section we introduce basic terms such as graphs and labelled graph.

The basic terms are followed by a discussion of metamodel graph represen-

tations. Subsequently, we define special graph properties which are useful

for matching and partitioning and provide the foundations of the fields of

graph matching, graph mining, and graph partitioning.

2.2.1 Definitions

Graphs are structures originating from the field of mathematics. They are a

collection of vertices and edges, where the edges connect the vertices, thus

establishing a pair-wise relation. The first to be known studying graph the-

ory is Leonhard Euler in 1736 in his work on the ”Seven Bridge of Königs-

berg” Problem [31]. This work has been refined further and is applied in

many areas of today’s computer science, e. g. in path finding problems, lay-

outing, search computing, query optimization, etc. A graph is defined as

follows:

Definition 5. (Graph) A graph G consists of two sets V and E, G = (V, E).
V is the set of vertices and E ⊆ V × V is the set of edges.

A graph is called undirected, iff the edge set if symmetric, i. e. with e1 =
(v1, v2) also e2 = (v2, v1) is in E. Otherwise, the vertex pairs defining an

edge are ordered and the graph is called directed.

A graph is finite if the set of vertices is finite. A graph comprising an

infinite set of vertices is infinite. Figure 2.6 (a) depicts an example for a

graph, showing the vertices (circles) being connected by edges (lines). An
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Figure 2.6: Example for a graph, a direct graph, and a directed labelled

graph

example of a directed graph is given in the same Fig. 2.6 (b) adding to each

edge a direction indicated by an arrow.

Definition 6. (Number of edges/vertices) The number of vertices n is defined

as n = |V |. The number of edges m is defined as m = |E|.

In addition, each vertex and edge of a graph may have a label. A label

may represent a colour, type, weight or name of a vertex or edge.

Definition 7. (Labelled Graph) A labelled graph G, is defined as a graph and

two labelling functions: fe : E → Le and fv : V → Lv that map edges and

vertices on edge lables and vertex labels, respectively.

Labelled graphs are also called attributed graphs. Whenever referring

to a graph in this work we refer to a labelled, undirected, finite graph. An

example for a directed labelled graph is presented in Fig. 2.6 (c). Each vertex

has an assigned label, in our example a name.

2.2.2 Metamodel representation

Ehrig et al. show in their work [30] that metamodels are equivalent to la-

belled, directed, finite graphs (attributed typed graphs extended by inheri-

tance). That means for each metamodel a graph exists which has the same

expressiveness and allows for the same transformations (graph operations).

Even though we could treat metamodels as graphs per se, we base our ob-

servations on a metamodel’s mapping on a graph to explicitly discuss the

representations of relations, because we want to use the structure for match-

ing. The first step towards a metamodel graph mapping is to separate vertex

and edge mappings, where:

• A vertex mapping specifies which elements of a metamodel are repre-

sented as vertices of the metamodel’s graph,

• An edge mapping defines which metamodel elements relate these ver-

tices.
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Figure 2.7: Package, class, attribute, and operation mapping onto a vertex

These mappings are based on the graphical representation of a meta-

model as defined in [120] or similar in the Unified Modeling Language

(UML) [121].

2.2.2.1 Graph-based representation

Vertex mapping The elements which are mapped onto vertices are: pack-

age, class, attribute, enumeration, operation, and data type. In the meta-

model’s graphical representation they are represented as boxes or parts of

boxes.

Figure 2.7 depicts the correspondence between the elements package,

class, attribute, and operation and corresponding vertices. In the context of

a labelled graph each vertex is labelled according to an element’s name. An

additional labelling is the type information, which can also be represented

in a graph.

Edge mapping Edges of a graph express relations between vertices. Con-

sequently, in a mapping between metamodels and graphs, edges may rep-

resent relationships such as inheritance, reference, and containment. These

relations are also represented as edges within a metamodel’s graph. The

mappings of these relations can be defined as follows:

1. Inheritance can be represented explicitly by edges representing the

inheritance relation or implicitly via copying all inherited members in

the corresponding subclasses.

2. References and containment can be mapped onto separated edge types.

It is important to realize that the mapping between a metamodel and a

graph is not unique due to different representations of inheritance relations.

For example, Fig. 2.8 depicts an example metamodel and three different

graph representations. The metamodel captures common scenarios, where

four classes A, B, C, and D are connected by references or containments. A

is related to B via bInA, B is related to D via dInB, C is contained in A via

the relation cInA, and D is contained in C by dInC. Furthermore, A and D

are related by an inheritance, i e. D is a subclass of A.
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Figure 2.8: Inheritance-, reference-based, and complete graph representa-

tion of a metamodel

The first graph (a) is the inheritance-based graph, where only inheri-

tance relations are represented as edges. According to the vertex mapping

the package P and the classes A, B, C, and D are mapped onto vertices. Ver-

tices A and B are connected by a dotted line representing the inheritance.

Furthermore, all vertices are connected with the package vertex to guaran-

tee the reachability of all vertices, thus there is an edge for each vertex to

P.

The reference-based representation (b) is similar to (a), but represents

the implicit containment of a package and its classes by edges. Further, A is

connected to all vertices B, C, and D, and B and C are connected to D. Finally,

the complete graph (c) is a combination of both representations: reference-

and inheritance-based.

2.2.2.2 Tree-based representation

Matching techniques such as a parent, children, or leaf matcher3 operate

on a tree, because this representation allows for efficient processing of the

matcher logic. A tree is a special class of a graph, where each vertex takes

part in a parent-child relationship and the graph has a special root vertex.

Formally, we define a tree as:

Definition 8. (Tree) A graph G is called a tree, if it has no simple cycle and

|V | = |E| − 1.

A simple cycle is a traversal of vertices where each vertex is traversed

once. The number of edges relates to the number of vertices, because every

vertex has at most one parent.

A metamodel does only define one trivial explicit tree. In a metamodel

all elements are contained in a package and each package may contain sub-

packages. This containment forms an explicit tree consisting of a package as

3For a detailed explanation of these matchers please see Sect. 7.2 in our evaluation.
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tree representations of a metamodel

the root vertex and the contained elements as its children. The leaves of the

tree are the attributes of the classes.

However, there are also containment relationships defined via references

between classes (marked as containment relations). These relations are also

part of the overall containment and should be considered in a tree as well.

All of the containment references may form a graph, thus one needs to de-

fine a proper tree. In the following the tree definition of a metamodels graph

is discussed. Please note that the vertex mapping is analogous to the map-

ping on a graph.

Edge mapping The problem consists of a mapping from a graph onto a

tree. Several approaches to this problem can be found in literature. The

closest one in mapping a meta-model onto a tree is the Minimal Spanning

Tree (MST) of a metamodel. A MST is a subgraph of a graph connecting all

vertices, thereby forming a tree with the sum of the costs of all edges being

minimal. An established algorithm in order to determine the MST of a graph

is Kruskal’s algorithm [84].

The mapping onto a tree structure starts with a package and the ele-

ments contained. In order to compute the MST first all references and all

containment references are handled as edges of a graph. An example of a

metamodel mapping is depicted in Fig. 2.9, with three possible MSTs based

on the three types of relations.

In Fig. 2.9 (a) the resulting tree is formed by the flattened containment

hierarchy, therefore C is contained in A, and D in C, whereas B follows the

containment in the package P. The flattened reference import is depicted in

Fig. 2.9 (b) having the path A, B, D, because the algorithm takes the left

side path first (assuming these elements have been created first). Since we

are calculating the MST, no element will have multiple occurrences in the

resulting tree.
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Besides the problem of defining a proper tree structure, inheritance has

to be dealt with. A common approach ignores the semantics of inheritance

and discards this information. Alternatively, a metamodel can be flattened,

i. e. copying all attributes and relations of a super class into its subclasses.

This approach preserves the information defined by inheritance, but loses

the connection between super and subclasses. In Fig. 2.9 (a) and (b) a flat-

tened import is shown based on the reference and containment hierarchy,

whereas (c) shows a non-flattened import, because D does not contain the

references inherited from A.

2.2.3 Graph properties

In this section we introduce the graph properties reducibility and planarity.

Reducibility is used by our redundancy matcher and planarity in our pla-

nar graph-based edit distance matcher as well as in the planar graph-based

partitioning.

2.2.3.1 Reducibility

Reducibility describes the behaviour of a graph under edge contraction.

Edge contraction defines the merging of vertices and their edges. If under

edge contraction the graph can be contracted into a single vertex, the graph

is called reducible. Formally, edge contraction is defined as:

Definition 9. (Edge contraction) Let the graph G = (V, E) contain an edge

e = (u, v) with u 6= v. Let f be a function which maps every vertex in V \{u, v}
to itself, and {u, v} to a new vertex w.

• The contraction of e results in a new graph G′ = (V ′, E′), where V ′ =
(V \ {u, v}) ∪ w, E′ = E \ {e}, and

• For every x ∈ V , x′ = f(x) ∈ V ′ is incident to an edge e′ ∈ E′ if and

only if the corresponding edge e ∈ E is incident to x in G.

The foundation of reducibility are graph minors, which are based on the

principle of edge contraction. A minor of a graph is defined as follows:

Definition 10. (Graph minor) An undirected graph H is called a minor of

the graph G if H is isomorphic to a graph obtained by zero or more edge

contractions on a subgraph of G.

A minor H of G thus results from any sequence of edge contraction op-

erations on a graph H that lead to a subgraph of G. The edge contraction is

applied on a particular edge by removing it and merging it with its incident

vertices. This operation can be applied on a set of edges in any order.

Figure 2.10 shows a minor of a graph along with the edge contraction

necessary. The graph in (b) is a minor of the graph in (a), because a sequence
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(b) Graph H, Minor of G(a) Graph G

a b

c

(c) Edge 
contraction

Figure 2.10: Example of a graph, a minor of this graph, and the correspond-

ing edge contraction

of edge contraction operations can be defined to form a subgraph. These

operations are shown in Fig. 2.10 (c), where three vertices are labelled to

explain the operations. First, the edge connecting the vertices a and c is

removed and both vertices are merged. The result is a multi-edge between

a and b. Second, one edge of the multi-edge is removed and both vertices

are merged. The remaining multi-edge becomes a self-edge of a. Finally, the

self-edge is deleted. The resulting graph H is a minor of G.

This sequence of edge contraction has also been used in the area of

compilers [2]. In this field the analysis of control flow graphs requests for

graph (tree) operations such as edge contraction, too. Thereby, use is made

of two special transformations, T1 and T2. Applying them on a graph in any

order defines the reducibility of a graph:

Definition 11. Reducibility Let G = (V, E) be a directed graph where the

following transformations are defined:

• T1: Remove a self-edge (v, v) in G.

• T2: If (v, w) is the only edge entering w and w 6= v delete w. Replace all

edges (w, x) by a new edge (v, x) and additionally all edges (x, w) by an

edge (x, v).

A graph is called reducible, if and only if it can be transformed to a single

vertex by applying the two transformations T1 and T2. Otherwise the graph is

called irreducible.

2.2.3.2 Planarity

The planarity property of a graph defines when to call a graph planar. It has

not been considered for metamodel matching so far. However, planarity al-

lows for interesting applications, since graph algorithms requiring planarity

can reduce some NP-complete problems to a polynomial, mostly quadratic,



26 Background

(a) Graph (b) Planar embedding (c) Non planar K5

Figure 2.11: Example of a graph, its planar embedding, and non-planar ex-

tension

Non-planar K5 Non-planar K3,3

Figure 2.12: The non-planar graphs K5 and K3,3

runtime when applied on planar graphs. For instance, identifying graph sim-

ilarity by subgraph isomorphism calculation on general graphs is known to

be NP-complete. If the input graphs are restricted to be planar, the problem

can be solved in almost quadratic time. We make use of this property for our

planar graph edit distance matcher (Chap. 5) and our planar partitioning

(Chap. 6).

An illustrative description of planarity is: A graph is planar, if such draw-

ing exists, that none of the graph edges intersect. That means, a graph is

planar if it can be embedded into a plane without intersecting edges. This

process creates a planar embedding. Figure 2.11 depicts an example for a

graph (a) and the corresponding planar embedding (b). As can be seen the

example graph is planar. However, if the graph is extended as shown by

the dashed line in (c), the graph becomes non-planar, because there is no

drawing without intersecting edges.

The graph including the dashed line in Fig. 2.11 (c) is a special graph

called K5, which is one of the two basic non-planar graphs. The other basic

graph is called K3,3 and consists of six vertices, which are arranged in two

lines of three vertices each with edges between all opposing vertices. Figure

2.12 depicts both graphs.
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General graphs

Planar graphs

Trees

Figure 2.13: Subset relation between general graphs, planar graphs, and

trees

These graphs are essential for the formal definition of planar graphs,

which has been done 1930 in Kuratowski’s theorem [90]. He states:

Theorem 1. A finite graph is planar if and only if it does not contain a sub-

graph that is a subdivision of K5 (the complete graph on five vertices) or K3,3

(complete bipartite graph on six vertices, three of which connect to each of the

other three).

Thereby, a subdivision is the result of a vertex insertion in an edge. That

means, an edge is split into two edges via a new vertex, still the two new

edges connect the original vertices via the new vertex. Instead of using sub-

divisions their counterpart, minors, can be used for defining planarity. In

1937 Wagner’s conjecture [152] has been presented and proved in 2004 by

Robertson and Seymour [131]. It states:

Theorem 2. (Planar) A finite graph is planar if and only if it does not include

K5 or K3,3 as a minor.

According to the definition of a minor, which is a contraction of vertices

and their edges, the theorem states, that the graph must not be reducible on

either one of the non-planar graphs, K5 and K3,3. Consequently, every tree

is also a planar graph.

The relation between general graphs, planar graphs, and trees is de-

picted in Fig. 2.13. The set notation shows the subset relation between the

special classes of graphs. Each tree is also a planar graph, where each pla-

nar graph (and tree) is naturally a general graph, whereas not every graph

is planar or a tree.

The question arises if metamodels are planar and if not, how to make

them planar. Both theorems are not suited for a planarity check implemen-

tation, but there are algorithms for doing the check with a linear complexity.

The most popular one will be described followed by an algorithm to make

metamodels planar.
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2.2.3.3 Planarity check for metamodels

Metamodels are not planar per se, therefore a planarity check is needed. The

planarity check is well-known in graph theory, so we selected in this thesis

an established algorithm by Hopfcroft and Tarjan [61], because it has the

lowest runtime complexity (O(n)).

The idea of the algorithm is to divide a graph into bi-connected compo-

nents (cf. [20], page 11), which are tested for their planarity. Hopfcroft and

Tarjan have shown that a planarity of all components results in planarity for

the complete graph. The test for each component is done by detecting cy-

cles in them. Each cycle is arranged as a path, where non-cycle edges have

to be arranged left-hand or right-hand side. Both groups have to contain

non-interlacing edges. If for a given edge no group can be found without

violating the non-interlacing property, the graph is non-planar. For further

details refer to [61].

2.2.3.4 Maximal planar subgraph for metamodels

If a planarity check fails, a metamodel needs to be made planar in order

to take advantage of the planarity property. The planarity property can be

established by removing vertices or edges. To solve the problem an approach

exists where the number of edges is maximal. That means, if an edge that

has been previously removed would be re-added, the graph would be non-

planar. This algorithm has been proposed by Cai et al. [11] resulting in a

complexity of O(m log n) (m is the number of edges and n of vertices).

The idea of the algorithm is to recursively compute planar subgraphs of

all successors of a particular edge. Afterwards, the subgraphs are combined

into one graph by deleting planarity-violating edges. The approach by Cai

et al. tests every edge whereas Hopfcroft and Tarjan consider all paths. Fur-

thermore, the algorithm by Cai et al.uses a so-called attachment, which is a

set of blocks grouping non-interlacing non-cycle edges. The attachments are

used to determine the edges to be removed by testing for planarity. Finally,

the attachments are recursively merged to construct the maximal planar

subgraph. For further details please refer to [11].

The algorithms allow checking any given metamodel for planarity and

performing planarisation if necessary. The overall complexity of both opera-

tions is O(m log n) (m is the number of edges and n of vertices).

2.2.4 Graph matching

Graph matching is the similarity calculation of two input graphs. It has first

been treated as a mathematical problem but was adopted in several appli-

cation domains such as pattern recognition and computer vision, computer-

aided design, image processing, graph grammars, graph transformation, and
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Figure 2.14: Classification of graph matching algorithms adopted from

[145]

bio computing [145]. Conceptually, graph matching can be seen as the deci-

sion problem whether a graph H contains a subgraph isomorphic to a graph

G, i. e. if both graphs share similarities. This condition can be relaxed to

identifying a subgraph contained in both graphs and even to graphs with a

certain distance. Unfortunately, the problem of finding a graph isomorphism

for general graphs belongs to NP and is either in NP-complete or P [127].

Therefore, approximations or restrictions on graph properties can be used to

cope with the complexity problem. To solve the aforementioned questions

so-called graph matching algorithms have been proposed.

2.2.4.1 Overview of graph matching algorithms

Graph matching algorithms can be divided into two classes: exact and inex-

act algorithms. Exact algorithms aim at a subgraph calculation whereas in-

exact algorithms are error-tolerant and allow certain distances between the

subgraphs. Figure 2.14 depicts a classification provided by [145]. The subse-

quent paragraphs deal with the exact, i. e. graph and subgraph isomorphism

algorithms, and inexact algorithms, i. e. graph edit distance, maximum com-

mon subgraph and combinatorial methods, in detail.

Exact matching Exact matching algorithms aim at calculating for two

given input graphs a one-to-one mapping between their vertices and edges.

The resulting mapping is a graph isomorphism which is defined as follows:

Definition 12. ((Sub-)Graph Isomorphism). Given a graph Gs = (Vs, Es)
as source and Gt = (Vt, Et) as target a graph isomorphism is defined by a func-

tion f : Vs → Vt such that for every edge es = (v, w) also et = (f(v), f(w)) ∈
Et. If |Vs| < |Vt|, then f is called a subgraph isomorphism.

The standard approach on subgraph isomorphism identification is based

on backtracking and has been proposed by Ullmann [144] in 1976. Despite

being widely referenced the algorithm lacks scalability. That means it is only
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applicable for a rather small number of vertices in the graphs compared

(less than 20). Our experiments showed that even at a size of 15 elements

for metamodels to be matched the runtime rises to minutes. This is due to

a search space explosion for graph isomorphism calculation, because every

possible edge/vertex combination needs to be investigated.

Inexact matching Inexact matching approaches relax the edge preserva-

tion condition of graph isomorphism identification. That means edge map-

pings are not necessarily required if vertex mappings have been found. One

approach on inexact matching is defined by the graph edit distance proposed

1983 by Sanfelui [133]. We define the graph edit distance as follows:

Definition 13. (Graph Edit Distance). Let Gs and Gt be two graphs. The

Graph Edit Distance (GED) is defined as a finite sequence of edit operations

leading to an isomorphism of Gs and Gt. The edit operations are addition,

deletion, or relabelling of a vertex or edge.

Several approaches for a calculation of the graph edit distance have

been proposed, a survey of graph edit distance algorithms can be found

in [44]. Still the problem of graph edit distance calculation for general

graphs remains NP-complete [44], because every vertex of the source graph

can be mapped on every vertex of the target graph with different edit dis-

tances. Therefore, general edit distance algorithms are not applicable for

large graphs [110], but again approximate or input restricting algorithms

can be applied.

2.2.5 Graph mining

The essential task of graph mining algorithms is to discover frequent sub-

graphs (patterns) in one or more graphs. Mining algorithms have been used

in the domains of bioinformatics for the discovery of frequent chemical frag-

ments and classification [103], VLSI reverse engineering [89] and in general

for tasks of deriving association rules due to similar patterns [14].

These applications have in common that they can be reduced to the prob-

lem of finding reocurring subgraphs. We define a frequent subgraph as fol-

lows.

Definition 14. (Frequent Subgraph) Given a subgraph S(V ′, E′) of a graph

G(V, E) with V ′ ⊆ V and E′ ⊆ E and a function f : G → N. The frequency

of S is defined by f(S). If f(S) > t, t ∈ N then S is called frequent.

A subgraph has to occur more than t times in a graph to be called fre-

quent. We define such frequent subgraphs as patterns.

Definition 15. (Pattern) A pattern P is a frequent subgraph.
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(a) Graph (b) Pattern (c) Example Embedding (d) Another example embedding

Figure 2.15: Example of a graph, a pattern and embeddings of this pattern

According to this definition, each pattern has one or more occurrences.

We call these occurrences embeddings.

Definition 16. (Embedding) If a subgraph S of G exists so that S is isomor-

phic to a pattern P , then S is an embedding of P .

For clarification Fig. 2.15 depicts examples for the previously defined

terms. On the left (a) a graph is shown with (b) a possible pattern. An

embedding of this pattern is shown in (c). Our example pattern has to have

more than one embedding to be frequent, accordingly we display another

possible embedding in (d).

According to [89], there are two distinct settings classifying the min-

ing algorithms w.r.t. their scenario, namely the single graph setting and the

graph transaction setting:

• Single graph setting defines an extraction of patterns in one graph

where the frequency of a pattern is the number of embeddings in this

graph.

• Graph transaction setting defines an extraction of patterns on a number

of graphs. The frequency of a pattern is thereby determined by the

number of graphs which have at least one embedding of this pattern.

Please note that single graph setting algorithms are not applicable for

graph transaction scenarios but graph transaction algorithms for single graph

settings. We depict the two settings in our classification in Fig. 2.16 with two

additional dimensions approximate and complete which has been introduced

in [89]. Since the main complexity of the algorithms is due to the subgraph

isomorphism tests they can be separated into complete and approximate al-

gorithms. Complete mining algorithms are complete in the sense that they

are guaranteed to discover all frequent subgraphs, that is patterns. In con-

trast, approximate algorithms calculate a subset of the complete set of all

patterns and thus not the optimal, i. e. complete, solution.

2.2.6 Graph partitioning and clustering

Graph partitioning and graph clustering both deal with the problem of split-

ting a graph into smaller subgraphs. Graph clustering algorithms try to op-
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Figure 2.16: Classification of graph mining algorithms

timize the clusters calculated w.r.t. an a priori defined quality criterion. In

contrast, graph partitioning aims at calculating subgraphs of nearly equal

size in the context of a weighted graph. We define the graph paritioning

problem as given in [117] as follows:

Definition 17. (Graph partitioning) Given a weighted graph G = (V, E)
and a positive integer p, the problem of graph partitioning consists of finding p
subsets V1, V2, ... Vp of V with i, j ∈ {1, . . . , p} such that

1.
⋃

i=1...p

Vi = V and Vi ⊆ V , Vi 6= ∅ and Vi ∩ Vj = ∅ for i 6= j

2. w(Vi) ≈
w(V )

p
, where w(Vi) and w(V ) are the sums of the vertex weights

in Vi and V , respectively, and ≈ allows for small derivations in size,

3. The cut size, i. e. the sum of the weights of edges crossing between the

subsets is minimized.

The goal of graph partitioning is the calculation of a given number of

subgraphs balanced in their weight. Each subset Vi of Def. 17 and the corre-

sponding edges are a partition.

Definition 18. (Partition) Given a graph G = (V, E) each subgraph Si ⊆ G
is a partition.

Thus a partition not only defines a subset of a graph but requires each

vertex of the graph to be only part of one partition, hence partitions are

disjoint. Partitioning algorithms try to find a minimal number of vertices or

edges being removed from a graph such that the resulting vertices or edges

form partitions.

We give a classification of hierarchical graph clustering and graph parti-

tioning algorithms in Fig. 2.17. Algorithms for graph splitting are either hi-

erarchical graph clustering or graph partitioning algorithms each separated

into local and global approaches.

Local graph clustering approaches begin with assigning each vertex to

a different cluster. Then, these clusters are merged until a given criterion

is reached. Approaches following this behaviour are called agglomerative.
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Figure 2.17: Classification of graph partitioning and clustering algorithms;

adopted from [117]

Representatives are given in the modularity approach by Newman [114]

or density-based clustering [93]. In contrast, there are divisive clustering

approaches which begin with the complete graph, splitting it recursively

until again a given criterion is fulfilled. Examples for global clustering are

Betweeness [48] or clustering based on the Kirchhoff equations [155].

Local graph partitioning approaches are similar to local clustering algo-

riths, the most popular one is the greedy approach by Kernighan and Lin

[78]. Their approach has been adopted in hMetis [75] transforming it into

a gobal multilevel approach. Another example for global partitioning is bi-

section, which recursivly splits a graph, by using the vertex distances [111].

For a more detailed and extensive survey of graph partitioning approaches

please refer to [117].

2.3 Summary

We have introduced the fundamental concepts of metamodel matching and

graph theory. The key findings of this chapter may be summarized as fol-

lows:

Metamodel matching We defined a metamodel as the prescriptive specifi-

cations of a domain which specifies a language for metadata. We described

the MOF-standard as a meta-metamodel defining object-oriented concepts

like classes, attributes, and relations such as inheritance or references. A for-

mal definition of a metamodel was given, defining a metamodel as a set of

individuals, labels, labelling functions, and relations. We then defined the

match operator, which is applicable on two metamodels creating a mapping

between elements of these two metamodels. Presenting a common match-

ing system architecture, we also defined a matching technique as a function

assigning a similarity value for two given metamodel elements and we pre-

sented a classification of the state of the art of matching techniques. These

classes are separated into element-level techniques, e. g. string-based, and

structure-level techniques, e. g. graph matching.
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Graph theory We gave an overview of the basics of graph theory, defining

a graph as a set of vertices connected by edges. Subsequently, we defined

a directed graph as a graph with directed edges and a labelled graph as

a graph with a labelling function, assigning a label to vertices and edges.

Finally, we stated that we use a directed, labelled, and finite graph in this

thesis. We also introduced the terms and gave a short overview on the state

of the art for graph matching, graph mining, and graph partitioning.

Reducibility and planarity We defined reducibility as a special graph prop-

erty, which is used in our matching and partitioning approaches. Reducibility

defines the edge contraction operation on a graph, i e. the deletion of edges

and merging of corresponding vertices leading to a hierarchical graph.

The graph property planarity allows efficient algorithms to be applied in

case of NP -complete subgraph isomorphism and partitioning problems. We

gave a definition of planarity, stating that a graph is planar if it cannot be

reduced to the special graphs K5 and K3,3 or more illustratively, if a graph

can be drawn into a plane without any edge intersection.



Chapter 3

Problem Analysis

The core problem addressed in this thesis is insufficient quality of match-

ing and insufficient support of scalability. In this chapter we present our

structured problem analysis to demonstrate the problems we tackle with

our work and to define the scope of our work. We begin with an illustra-

tive example for the core problem. Then we describe our methodology for

analysing the problem followed by the root-cause analysis, and the objec-

tives which lead to the resulting requirements of our solution. The relation

to the requirements is established by presenting our systematic approach for

developing a solution for the problems analyzed and our research question.

3.1 Motivating Example

Our motivating example originates from the area of retail stores and is an

official SAP scenario [134]. A retail store has cashiers processing sales using

tills and a local system collecting all data. This data is sent to and aggregated

in a central Enterprise Resource Planning (ERP) system. Since SAP does not

produce tills and associated systems, the central system and third-party sys-

tems of different stores need to be integrated. The subsequent section deals

with a refined description of the scenario motivating the problem of data in-

tegration of different formats and thus metamodels. The related metamod-

els are described in Sect. 3.1.2, followed by an exemplary description of

problems in applying matching on a large-scale scenario in Sect. 3.1.3.

3.1.1 Retail scenario description

The retail scenario describes an integration scenario between a Point of Sale

(POS) system and an Enterprise Resource Planning (ERP) system. A POS

system is a third-party system located in a retail store having an own user

interface tailored to support cashiers. A POS system is specialized to the

35
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Figure 3.1: Example of data integration in case of message exchange be-

tween a retail store (POS system) and an ERP system

sales process of a customer, thus it needs to be supplied with master data

such as article data as well as promotion and bonus buys.

Complementarily, an ERP system includes functionality to plan and man-

age the business of a company. It provides means for article data manage-

ment, planning, ordering, goods movement, report generation, etc.

Figure 3.1 illustrates the retail store scenario. On the left hand side a cus-

tomer interacting with a store and the corresponding POS system is shown.

On the right hand side, the company is represented by its ERP system and

a graph representing a report, indicating the planning facilities provided

by the ERP system. In the middle data is exchanged between the ERP and

the POS system. For instance, the data can be related to goods movement

or sales from the POS to the ERP or article data as well as promotion and

bonus buys. According to [134] the data flow contains:

• Data transfer from the ERP to the POS system

– Article and price data: inventoried and value-only article types in

various article categories (single article, generic article ...)

– Bonus buys data (with requirements and conditions necessary to

determine a specific deal)

– Promotion data (with special price, start and end date of promo-

tion)

• Transfer of data from the POS system to the ERP

– Sales and returns: article purchases or returns at the POS

– Tendering: legally valid means of payment used at the POS

– Financial transactions: involve monetary flow at the POS without

movements of goods (e.g. cash withdrawals)

– Totals transactions: represent information on the balancing of

registers and stores

– Control transactions: technical information about behaviour of

the POS (e.g. cash drawer opening / closing)
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Figure 3.2: Details of retail store data integration example

The data exchange of both systems is depicted in more detail in Fig.

3.2. The third party POS and the SAP ERP system exchange messages in

different formats to communicate. These formats need to be transformed

into each other to enable the different systems to process them. The design

time challenge is the integration of both data formats, i. e. the integration of

both metamodels.

This metamodel integration is achieved by specifying a mapping be-

tween the metamodels’ elements. This could be done manually, however, in

our case the source metamodel constitutes 971 elements, where the target

metamodel has 3,775 elements. A mapping specification will easily require

weeks to be completed [143], so this task is time-consuming and error-prone

as also identified in several publications, e. g. in [8, 37, 151]. The required

assistance is provided by metamodel matching as will be discussed in the

following section.

3.1.2 ERP and POS metamodels

In case of two different metamodels defining two different specifications of

similar entities, a data integration problem arises. In our example these spe-

cifications are messages exchanged between the POS and ERP system with

respect to sales, good movement, etc. Both systems have been developed for

a special purpose and by different vendors, the third-party POS for support-

ing cashiers and the SAP ERP for planning the whole business, and therefore

both systems have different schemas tailored to their purpose.

The metamodel of a POS system needs to capture information about

transactions, article purchases, payments, cashier withdrawals, etc. An ERP

system’s metamodel needs to define all this information and additional data

about stores, bonuses, etc. In our scenario the POS metamodel consists of

3,775 elements, i. e. classes and attributes. The metamodel of an ERP for re-

tail contains 971 elements. Figure 3.3 depicts excerpts of these metamodels,

the POS metamodel on the left and the ERP metamodel on the right.

The POS excerpt starts with the RetailTransaction containing three el-

ements: RetailLoyalty, RetailCustomer, and TransactionItem. The RetailLoy-

alty describes the bonus programme involvement of a customer, i. e. the
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Figure 3.3: Example of a transaction in a retail store metamodel and a cen-

tral ERP system metamodel

points awarded, the eligible amount and quantity of points, and the re-

deemed points. Thereby, each RetailLoyalty element is assigned to a cus-

tomer and vice versa. A RetailCustomer defines a customer by his name and

email. Furthermore, each customer has an address consisting of a street, city,

postal code, and country code. The last element of a RetailTransaction is the

transaction itself, i. e. the TransactionItem element, which contains informa-

tion about the tax, possible granted discount, payment information, and

optional gift card certificates. This transaction is assigned to an order. This

CustomerOrder has two identifiers and relates to the transaction element.

The ERP excerpt follows a different naming used in SAP ERP systems

originating from a restricted length of identifiers in old ERP systems. A com-

pany internal transaction is described by the -POSDW -TRANSACTION INT

element. It relates to two elements, the retail line item as information about

the purchase and the item element acting as a proxy for the -POSDW -

LOYALTY element. The loyalty captures information about the points award-

ed, the eligible amount and quantity, redeemed points, and additionally the

name of the customer card holder’s name. Each transaction also consists of

a -POSDW -RETAILLINEITEM which has LINEITEMVOID acting as proxy for

the associated customer. A -POSDW -CUSTM has a name, street, city, and

country.

3.1.3 Data integration problems

The data integration problem of both metamodels is the problem of defin-

ing a mapping between the POS and the ERP metamodels. The mapping
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defines the correspondences between the metamodels which in our exam-

ple is straight forward. A customer, transaction item, and loyalty each have

corresponding elements. However, considering the real world scale of this

problem, i. e. more than 3,000 elements, this task requires a lot of time for

specifying and checking the mappings.

Metamodel matching assists in this task by calculating the element cor-

respondences. The most common approach is to use the name similarity

of elements. Considering our example, this works for the loyalty items, be-

cause the names RetailLoyalty and -POSWD -LOYALTY are similar to each

other. This is done by using a string edit distance, e. g. refer to [153]. How-

ever, the customer elements will be hard to be mapped using name-based

similarity. A type-based approach may assist by discovering the mapping be-

tween both country code elements (countryCode and CUSTCOUN). Still, the

proxy objects such as Item or LINEITEMVOID will not be discovered, also

references such as CUSTCARDNUMBER are hard to find. Consequently, the

mappings discovered by matching tend to be incomplete.

Another problem is the discovery of incorrect mappings. For instance,

consider the relation named other between RetailCustomer and RetailLoyalty

in the POS metamodel. There exists an equally named relation in the ERP

metamodel, but it relates -POSDW -CUSTM and LINEITEMVOID. Therefore,

the mapping discovered solely on names is incorrect. A possible solution is

a combination of type and name information as well as the consideration of

structural properties based on trees.

Consequently, metamodel matching may produce incomplete and par-

tially incorrect results. That leads to the conclusion that the matching task

lacks quality and mapping calculation is a challenging task. Even with the

use of all matching techniques presented in Sect. 2.1.2.2 not all mappings

are found. So, the matching quality leaves room for improvement.

Another issue arises when considering the size of the matching task. A

common metamodel matching system compares all pairs of source and tar-

get elements to derive the mapping. In our case these are 971 × 3, 775 el-

ements, which results in 3,665,525 comparisons. These comparisons have

to be done for each matching technique applied, which increases the total

even more. This high number of comparisons leads to a high runtime (in

the range of minutes or even hours) for the matching as well as high mem-

ory consumption (in the range of gigabytes) for the given task. Considering

even bigger examples of metamodels with more than 10,000 elements the

matching task may be impossible due to lack of memory.

To conclude the real-world large-scale retail example shows that both

matching quality and scalability can be improved. An analysis of these prob-

lems, objectives, corresponding requirements and our approach is presented

in the subsequent section.
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3.2 Problem Analysis

The problem analysis we present will justify and detail our research ques-

tion on improving metamodel matching in quality and scalability by utiliz-

ing structural information. The problem analysis was carried out by applying

the method of Zielorientierte Projektplanung (ZOPP), i. e. Objectives-oriented

Project Planning, which has been proposed by the German Technical Coop-

eration (GTZ) [60].

The idea of ZOPP is to begin with a problem hierarchy, which is the basis

for narrowing the scope. The resulting scoped problem hierarchy is trans-

formed to a goal hierarchy to finally define the objectives resulting from

the problems. Thereby, the problem hierarchy consists of problems and sub-

problems, where each subproblem is a cause for a problem. In the following,

we use the first section to present our problem hierarchy and define the

scope. In the second section we derive our goal hierarchy and define the

corresponding objectives. The third section formulates the objectives into

requirements for our approach in the fourth section.

3.2.1 Problems and scope

The problems we identified are captured in the problem hierarchy. The prob-

lem hierarchy is a tree, where the parent child relation is defined as ”leads

to” and the child parent as ”is caused by”. That means each problem is a

subproblem of another one, thus forming a problem hierarchy.

3.2.1.1 Problems

The core problem our thesis deals with is the insufficient matching result

quality and support for scalability. This problem has also been illustrated in

the previous example in Sect. 3.1.3. In the following we will describe our

cause analysis and the resulting subproblems.

1. Insufficient matching quality and scalability The cause problem we iden-

tified corresponds to our research question that is the root of the prob-

lem hierarchy in Fig. 3.4. The two cause problems separate the prob-

lem tree into the problem of incorrect and incomplete results as well

as insufficient support for industrial scale matching.

2. Incorrect and incomplete matching results The matching quality of to-

day’s matching systems in general and metamodel matching systems

in particular is insufficient. That means the results of today’s match-

ing systems are partially incorrect and incomplete. Consequently, they

leave room for improvement. This problem is backed by two argu-

ments. First, we investigated the state of the art of metamodel match-

ing and implemented a system incorporating these techniques. We



3.2 Problem Analysis 41

Core Problem
1. Insufficient matching quality 

and support of scalability

2. Incorrect & 
incomplete matching 

results

2.3 Metamodels contain 
redundant information

2.1 Metamodels contain 
insufficient information for 
matching

2.4 Existing matching 
techniques do not fully 
exploit structural 
information

2.2 Existing matching 
techniques use potentially 
unavailable special 
information

3.1 High memory 
consumption causes 
matching termination

3.2 High runtime causes 
unresponsive systems

3. Insufficient support for 
large-scale metamodel 

matching

3.3 Support by problem 
size reduction causes loss 
in quality

Figure 3.4: Problem hierarchy

carried out an analysis using real-world data and demonstrated that

only half of all matches were found [151] confirmed for large-scale

schemas by [125]. Second, a metamodel contains insufficient informa-

tion for matching.

2.1 A metamodel contains insufficient information for matching This

observation has already been made in schemas [126] and is eas-

ily transferred to metamodels. A metamodel (see Definition 1)

only contains individuals and labels, thus static structure. It lacks

not only information about executional semantics, but also about

the context and other metadata, which is needed in order to for-

mulate mappings. Sometimes, only a domain expert is capable of

specifying a mapping, because of his knowledge of the semantics

of the elements.

2.2 Existing matching techniques use (unavailable) special information

There are matching techniques which try to make use of addi-

tional special information (metadata) or background knowledge

[29]. However, this leads to the second problem of existing match-

ing techniques using (unavailable) special information. The infor-

mation they make use of does not exist per se. Therefore, one has

to assume that this information is missing, thus their techniques

may even decrease the result quality.

2.3 Metamodels contain redundant information Another possible cause

is the problem that metamodels contain redundant information.
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Even though it is considered bad style and should be avoided,

real-world metamodels contain redundant information such as

duplicated information or multiple ways of expressing the same

entity. This redundant information is misleading for matching

techniques and decreases the result quality.

2.4 Existing matching techniques do not fully exploit structural informa-

tion The fourth problem identified by us is that existing matching

techniques do not fully exploit structural information. The ratio-

nale behind this problem is that the more information available

and the more matching techniques make use of it, the better the

achieved result. For an overview of existing matching systems re-

fer to Sect. 4.1.

3. Insufficient support for large-scale metamodel matching The problem

of insufficient support for large-scale metamodel matching states that

runtime and memory consumption problems arise when increasing

the size of the metamodels to be matched to a certain extent. That

means matching metamodels of arbitrary size is not supported. The

main reason for this problem is the quadratic number of comparisons

for matching. The matches are derived by comparing each element of

one metamodel with each element of another metamodel, thus there

is a quadratic number of comparisons due to the cartesian product of

elements being compared.

3.1 High memory consumption causes matching termination One con-

sequence of large-scale metamodels and a quadratic number of

comparisons is an increasing memory consumption, which finally

leads to problems of insufficient memory. When hitting memory

boundaries the process has to terminate and the resulting map-

ping is empty. Currently, metamodel matching systems are not

able to match such metamodels.

3.2 High runtime causes unresponsive systems Matching of large-scale

metamodels naturally leads to an increasing runtime. In conse-

quence, the response time is in the range of minutes or even

hours, provoking an unresponsive system and waiting times for a

user.

3.3 Support by problem size reduction causes loss in quality Another

cause for insufficient scalability support is a resulting trade-off

between result quality and scalability. As stated before in the two

subproblems concerning memory and runtime the scalability is-

sue has to be tackled by reducing the problem size. However, if

one follows a context reduction approach as the generic match-

ing and differencing system EMF Compare [10] the matching is
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limited to neighbours of an element to match instead of consid-

ering the whole metamodel, as a consequence the result qual-

ity decreases considerably, since less information can be used for

matching.

3.2.1.2 Scope

We define the scope of our work by selecting some of the identified problems

and neglecting the others based on the possibility to improve shortcomings

by graph-based techniques. Furthermore, we want to pursue a generic solu-

tion, thus we neglect problems which require special support. We also base

our scope on the restriction of a matching system independent solution, i. e.

there is no need to change an existing system besides adding our proposed

solution. The following problems will be tackled: metamodels contain re-

dundant information (2.3), existing matching techniques do not fully exploit

structural information (2.4), high memory consumption (3.1), high runtime

(3.2), and the trade-off between scalability and quality (3.3). Consequently,

we contribute to the solution of the problem of insufficient matching result

quality due to incorrect and incomplete results (2.) and we aim to provide

support for matching metamodels of large-scale (3.). We also contribute to

the solution of the core problem of insufficient matching quality and scala-

bility. The problems which we do not consider (2.1, 2.2) and which are out

of scope will be discussed in the two subsequent paragraphs.

2.1 Insufficient matching information in metamodels This problem has

been identified in the areas of ontologies [33] and XML schemas [126], and

is easily transferred to metamodels. Attempts to solve the problem have been

made by adding metainformation such as mappings to upper level ontolo-

gies [28], etc. However, none of these proposals could present a complete

solution, i. e. none could identify all matches. Therefore, this problem will

not be tackled by our work; instead we will concentrate on using already

available information.

2.2 Existing matching techniques use (unavailable) special information

We will not tackle this problem but derive our approach from it. Rather

than finding a way to add the missing information we pursue the usage of

already existing information, namely the graph structure of a metamodel.

We decide to only make use of already available information, because we

do not want to impose another task for the user. Adding the information

would require an additional effort for the matching task. Furthermore, the

additional special information requires an adaption of the infrastructure to

support the loading, storing, etc. thereof.
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Figure 3.5: Objective hierarchy

3.2.2 Objectives

The objectives we define are derived from the problem hierarchy as in Fig.

3.4. Removing the problems 2.1 and 2.2 which are out of scope we present

the objective hierarchy in Fig. 3.5. The hierarchy follows the example of the

problem hierarchy with the final objective of increasing matching quality

and support of scalability.

1. Increase matching quality and support scalability The two subobjectives,

an increase in quality and concepts for a scalability support form our

main goal.

2. Increase correctness and completeness of matching results The correct-

ness and completeness define the quality of the matching results, if

both are increased without decreasing each other, the overall result

quality is improved. An improvement can be achieved by pursuing the

following two subobjectives tackling the previous problems.

2.2 Exploit structural information for matching The structural infor-

mation, i. e. a metamodel’s graph structure, should be used for

matching. That means matching algorithms should use this infor-

mation for matching calculation. There are several algorithms in

graph theory that make use of the structure for similarity calcula-

tion, a detailed analysis of these algorithms is presented in Chap.

5.

2.4 Exploit redundant information for matching Redundant informa-

tion in the metamodels to be compared can cause misleading

matches but can also be used for matching. This information

should be facilitated to increase the result quality. Redundant

information first needs to be identified by so-called mining al-
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gorithms and then be matched. In Chap. 5 we will present an

analysis of the existing algorithms.

3. Support matching metamodels of large-scale size This objective implies

concepts to tackle the problems of memory and runtime. Along with

these two problems the trade-off between scalability and quality has

to be considered.

3.1 Concept for managed memory consumption Scalability should be

supported by a concept which allows for managed memory con-

sumption through the matching process. This memory consump-

tion should also allow for matching of metamodels of arbitrary

size.

3.2 Concept for reducing matching runtime The complexity of match-

ing is quadratic to the size of the input metamodels’ elements

to be matched. Consequently, the runtime increases quadratically

with the increase of input elements. The objective is to develop a

concept which reduces the matching runtime.

3.3 Optimize trade-off between scalability and matching result quality

While introducing a concept for managed memory consumption

and reduced runtime the problem is split into smaller subprob-

lems. This problem reduction implies a trade-off between result

quality and scalability, which should be optimized. That means

support for managed memory consumption while having a rea-

sonable runtime and result quality.

3.2.3 Requirements

The objectives identified allow for a definition of requirements to find solu-

tions that fulfil these objectives. The requirements are given in Tab. 3.2.3

and grouped into three groups, the first two deal with Objective 2.2 to in-

crease correctness and completeness and the third group deals with the sup-

port of scalability, that is Objective 2.4.

R1 Exploit structural and redundant information The solution should auto-

matically exploit available structural and redundant information, i. e.

without user interaction.

R1.1 Exploit redundant information and graph structure The solution

should exploit the explicit graph structure of a metamodel. This

information should be used for matching in combination with

other matching techniques, e. g. linguistic ones. In addition, re-

dundant information should be exploited for metamodel match-

ing.
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Table 3.1: Overview of requirements

Requirement Subrequirements

R1 Exploit struc-

tural and

redundant

information

R1.1 Exploit graph structure and redun-

dant information

R1.2 Improve correctness and/or com-

pleteness

R1.3 Maximal quadratic complexity

R2 Matching

metamodels

of large scale

R2.1 Partition input metamodels

R2.2 Reduce runtime

R2.3 Minimal losses, preserve, or even

improve result quality

R1.2 Improve correctness and completeness While matching the redun-

dant information the solution should improve correctness and

completeness of the mappings calculated.

R1.3 Maximum quadratic complexity If possible, the solution should

adhere to the quadratic complexity imposed by the matching

problem.

R2 Matching large-scale metamodels The solution should allow matching

metamodels of large-scale size.

R2.1 Partition input metamodels The solution should support a par-

titioning of the input metamodels which allows for a reduced

problem space for matching.

R2.2 Reduce runtime The solution should reduce the overall runtime

of the matching process.

R2.3 Minimal loss of result quality The solution should minimize the

loss of result quality. If possible it should preserve or even im-

prove the correctness and completeness of mappings calculated.

3.2.4 Approach

The requirements identified specify the solution to fulfil our objectives (cf.

Sect. 3.2.2). The connection is the approach on developing a solution based

on the requirements for the objectives. Figure 3.6 depicts our approach and

its single steps.
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Figure 3.6: Steps of our problem solving approach on increasing quality and

scalability

The basis is the main objective of increasing the matching result quality

and the support for scalability. It is split into the two objectives concerned

with structural and redundant information, and matching metamodels of

arbitrary size (scalability). These three objectives will be approached by us

in a uniform manner consisting of the following four steps:

1. Review state of the art graph theory algorithms The main focus of our

work is on using structural (graph) information. Therefore, we first

review generic algorithms in the field of graph theory which provide

solutions for the respective objectives.

2. Identify special requirements w.r.t. metamodel matching The next step

is to narrow down the set of algorithms reviewed. We identify require-

ments which are imposed by the domain of metamodel matching. That

means requirements such as specific graph properties, graph type re-

strictions, complexity, etc. They are used as a basis for a selection and

adaptation of the generic graph algorithms.

3. Select and adapt suitable algorithms The algorithms studied are com-

pared w.r.t. the identified requirements. The algorithms which fulfil

the requirements are adapted and changed according to the domain

of metamodel matching.
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4. Validate via implementation and comparative evaluation The algorithms

designed in the selection and adaptation step are implemented in a

prototype and finally evaluated in a comprehensive evaluation using

real-world data sets. Finally, the results obtained are compared to the

objectives and requirements.

3.2.5 Research question

The research question given and motivated in our introduction is: ”How can

metamodel graph structure be used to improve the correctness, complete-

ness, runtime and memory consumption of metamodel matching?”.

We defined three hypotheses H1, H2, and H3. H1 and H2 state that the

subgraphisomorphism and graph-mining algorithms will improve the result

quality. These hypotheses are supported by our requirements for matching

R1 and also by our approach in surveying the state of the art in graph the-

ory and selecting and adapting suitable algorithms. Consequently, this will

contribute to the answer of our research question.

The hypothesis H3 deals with planar partitioning for large-scale match-

ing and is supported by the requirements of R2 and again by our approach.

In investigating the state of the art in graph partitioning and clustering we

derive the planar partitioning and thus contribute to H3 and finally to our

research question.

3.3 Summary

In this chapter we gave a motivating example for metamodel matching and

challenges regarding matching quality and scalability. Moreover, we per-

formed a problem analysis, derived objectives and requirements, and out-

lined our approach on a solution for the objectives.

Motivating example The motivating example presented by us originates

from the area of retail stores. A retail store provides a system for cashiers

and goods movement provided by a third-party where all data is gathered

in a central ERP system. The third-party systems have to be integrated with

the central system provided by SAP. Thereby, metamodel matching assists in

specifying mappings for this data integration problem. However, the result

quality suffers from missing information, different naming conventions, etc.

Also both metamodels consist of more than 900 elements, which leads to

runtime and memory consumption issues.

Problem analysis We performed a problem analysis on the matching re-

sult quality and scalability issues based on ZOPP. Thereby, we first identified
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two cause problems: (1) insufficient correctness and completeness of match-

ing results and (2) insufficient support for large-scale metamodel matching.

We also performed a root-cause analysis for these two problems. This was

followed by a scope identification and a derivation of the objectives which

constitute a solution to the cause problems. Namely the objectives are: ex-

ploit structural information for matching, exploit redundant information for

matching, and support matching of metamodels of arbitrary size.

These objectives lead to a set of requirements our solution has to fulfil,

which are refined in the respective chapters 5 and 6 where our solution is

presented. Finally, we presented our four steps for solving the cause prob-

lems, which are pursued for all three objectives. They involve a study of

existing graph algorithms based on an objective specific requirement analy-

sis. Based on the requirements, algorithms are selected and adapted in the

context of large-scale metamodel matching. The proposed solution is then

investigated in a comprehensive evaluation.





Chapter 4

Related Work

Having set the foundation of our work and analyzed the problems of match-

ing quality and scalability, we want to give an overview on state of the art

matching systems. We first introduce the areas of schema, ontology, and

metamodel matching and selected systems. Subsequently, we present re-

lated structural matching approaches w.r.t. our proposed planar graph edit

distance and graph mining-based matching. We point out the shortcom-

ings of the existing approaches and how our proposals may complement

them, thus establishing our research ground. This is also done for large-

scale matching approaches, discussing their short-comings in either quality

or memory consumption and their relation to our planar partitioning.

4.1 Matching Systems

Several systems have been developed in the areas of schema, ontology, and

metamodel matching. Although all systems tackle the problem of meta data

matching, they were and are being researched in a relatively independent

manner.

Prior to studying matching systems, one needs to clarify the relation

of the domains of schemas, ontologies, and metamodels. In this work, we

adopt the perspective of Aßmann et al. [6] and extended their perspective

by including XML schemas. Schemas, ontologies, and metamodels provide

vocabulary for a language and define validity rules for the elements of the

language. The difference is in the nature of the language, either it is pre-

scriptive or descriptive [6]. Thereby, schemas and metamodels are restric-

tive specifications, i. e. they specify and restrict a domain in a data model

and systems specification, hence they are prescriptive. As a complement, on-

tologies are descriptive specifications and as such focus on the description of

the environment. Schemas are used for a tree-based description of data for

processing by a machine, whereas metamodels abstract a domain of inter-

est in a graph-based structure. Therefore, using a similar vocabulary made

51
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of linguistic and structural information, the three domains differ in their

purpose.

Since the three domains have a different purpose, matching systems for

these domains have been developed independently. First, (1) schema match-

ing systems have been developed to mainly support business and data inte-

gration, as well as schema evolution [24, 77, 100, 107, 126]. Thereby, the

schema matching systems take advantage of the explicit tree structure. Sec-

ond, with the advent of the Semantic Web, (2) ontology matching systems

are dedicated to ontology evolution and merging, as well as semantic web

service composition and matchmaking [17, 53, 76, 154, 68, 160]. They are

especially of use in the biological domain for aligning large taxonomies as

well as for classification tasks. Finally, in the context of MDA, which requires

refinement and model transformation (3), metamodel matching systems are

concerned with model transformation development, with the purpose of

data integration as well as metamodel evolution [10, 37, 38, 73, 151].

In the following we will describe matching systems from each of these

domains and their applied matching techniques to provide an overview on

the state of the art in matching.

4.1.1 Schema matching

Based on a survey of schema-based matching approaches [138] three widely-

known systems applicable in the schema matching domain were selected

as representatives of the group. The three selected systems are COMA++

[24], Cupid [100], and the similarity flooding algorithm [107]. Similarity

flooding was first implemented for schema matching, but has since been

adapted and is nowadays used in systems in other domains, e. g. ontologies

[160] and metamodels [38].

Similarity flooding The similarity flooding algorithm [107] is a hybrid

matching algorithm that relies on the hypothesis that if two entities are sim-

ilar then there is also a certain similarity between their neighbours. Schemas

are represented as directed labeled graphs and the algorithm runs in an iter-

ative fix-point computation to produce a mapping between vertices of input

graphs. First, initial string-based techniques are applied to obtain starting

similarity values for the fix-point computation. Starting from similar ele-

ments, the similarity is propagated to neighbour elements through propa-

gation coefficients. The process is finished when a fix point is reached and

the final mapping is then returned. Similarity flooding has been integrated

with linguistic techniques in the protoype model management system Rondo

[108].
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COMA++ COMA++ [23] is a matching system that uses a COmbination

of MAtching techniques to produce mapping results. The matchers operate

on an internal model, namely a directed acyclic graph. Schema elements are

represented by nodes in the graph and they can be connected by directed

links representing different types of relationships. The matcher library con-

sists of linguistic matchers, matchers that combine structural and termino-

logical matching techniques, as well as matchers based on a repository of

structures. The results from the different matchers are aggregated and se-

lected to a single similarity value for a pair of elements. It has to be noted

that COMA++ was extended to also be applicable in the ontology domain.

Cupid Cupid [100] is a matching system that applies both terminological

and structural matchers. Input schemas are imported into an internal repre-

sentation as trees, on which the matching techniques operate. The matching

algorithm has three phases and operates only on tree structures to which

non-tree cases are reduced. The first phase applies string-, language-, and

constraint-based techniques, as well as linguistic resources to compute sim-

ilarity. During the second phase local tree-based techniques are applied. In

the third phase a weighted aggregation and threshold-based selection pro-

duce the final mapping.

A comparison of our concepts with the approaches of COMA++ and

similarity flooding can be found in Sect. 4.2 and 4.3.

4.1.2 Ontology matching

The ontology matching domain is also related to our work and presents

a multitude of systems (more than 30). Therefore, we selected systems

based on their performance in the Ontology Alignment Evaluation Initiative

(OAEI) contest benchmark1 and their relatedness to our approach, i. e. they

are considered if they apply graph-based techniques or tackle the scalability

problem. Three systems were chosen, namely Aflood [53], Falcon-AO [69],

and RiMOM [160].

Aflood The Aflood (Anchor-Flood) system [53] targets the mapping of

large scale ontologies. It does not compare each element of two ontolo-

gies, but rather chooses so called anchor-elements to group elements based

on an anchor’s neighbourhood. Elements are assigned to a group based on

the inheritance relation. The elements in the resulting groups are matched

using local matchers. The local matchers apply string-based and language-

based techniques, and make use of linguistic resources. Additionally, in-

stance matching is supported as part of the system. Based on this infor-

1http://oaei.ontologymatching.org/
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mation a structural similarity among elements in a so called semantic link

cloud [53] is computed to produce the alignments (mappings).

Falcon-AO Falcon-AO aims at automatic ontology mapping by a matcher

library of four matchers. The library consists of two linguistic based match-

ers, one calculates element similarity based on a vector space model and

the other is a string edit distance. The third matcher is called GMO (Graph

Matching for Ontologies) [63], which is a graph based matcher. The last

matcher represents the partitioning of large ontologies and GMO and the

partitioning matcher are discussed in Sect. 4.2. Finally, the values from the

matchers are aggregated using a weighted approach.

RiMOM The Risk Minimization Ontology Mapping system (RiMOM) [95,

160] is an ontology matching system that uses several matching configu-

rations. The system evaluates preliminary information, i. e. input metrics,

about how different configurations would perform and prefers some of them

based on that information. The system applies linguistic matching tech-

niques, calculating a string edit distance, the linguistic resource WordNet,

a vector-based similarity, and path similarity. Hence, it uses linguistic and

local matching based on trees. The different similarity values are combined

to produce a single value to give the final mapping.

4.1.3 Metamodel matching

Although the research area of metamodel matching is developing, it does

not yet offer as many matching systems as the ontology and schema match-

ing domains. It has to be noted that we consider only metamodel matching

systems, and no model matching tools as described in [81]. Six metamodel

matching systems were identified by us, namely the Atlas Model Weaver

[37] (extended by AML [45]), EMFCompare [10], GUMM [38], MatchBox

[151], which is the system proposed by us and described in Sect. 7.2, Mod-

elCVS [73] (implicitly applying COMA++ from the schema matching do-

main), and SAMT4MDE [18].

AMW Fabro et al. [37] proposed the Atlas Model Weaver (AMW), a system

for semi-automatic model integration using matching transformations and

weaving models. A weaving model captures the different possible relation-

ships between two models. The matching is performed by creating the weav-

ing model between the two input metamodels. Thereby, both linguistic and

structural information is exploited. The linguistic approach calculates string

similarity between names of elements and also uses dictionaries where the

structure similarity computation follows the similarity flooding approach. In
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AML [45] an extension was proposed which allows the modelling of domain-

specific matchers to improve the matching results for specific matching tasks,

but with the drawback of low performance [46].

EMFCompare The main focus of EMFCompare [10] is to calculate dif-

ferences between versions of the same model by applying both matching

and differencing techniques. However, the authors of EMFCompare explic-

itly state its applicability for metamodels, thus we also added it because of

its popularity. The matching engine uses statistical information, heuristics

and instance information. The name of an element, its content, type and re-

lations are the metrics being analyzed in order to produce a similarity value.

Each of the aforementioned information is represented as a string and a

string edit distance is applied for similarity calculation. In order to reduce

information noise and to provide better results, EMFCompare applies a filter

on the match results.

GUMM Falleri et al. proposed the Generic and Useful Model Matcher sys-

tem (GUMM) [38] for metamodel matching based on the similarity flooding

algorithm [107]. Similar to us they use directed labeled graphs to internally

represent metamodels. On these graphs they apply the similarity flooding al-

gorithm. For the initial similarities, which the algorithm needs, string-based

metrics are used, including for example the Levenshtein Distance [153]. A

fix-point iteration process is then started to produce the result mapping.

ModelCVS The ModelCVS system [73] proposes an approach to match

metamodels, in which metamodels are semi-automatically transformed into

ontologies, a process which the authors call metamodel lifting. Afterwards

an alignment (matching) between the ontologies is performed and finally a

bridging between the metamodels is derived from the ontology mapping. To

find similarities between the resulting ontologies, several tools were applied

and the one with the best results was chosen, namely, COMA++ [24].

SAMT4MDE The Semi-Automatic Matching Tool for Model Driven Engi-

neering (SAMT4MDE) [18] is a tool for metamodel matching. A matching

algorithm based on cross-kind-relationships is used and extended to also

use structural information from the models being matched. The overall sim-

ilarity value between two classes is a weighted sum of the base similarity

and the structural similarity. The base similarity uses the idea of cross-kind-

relationship implication, for example if A contains B and B is-a C, then A

contains C. The base similarity calculation is also based on a repository of

taxonomies. The structural similarity is computed using taxonomy- and tree-

based techniques.
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4.2 Matching Quality

The majority of matching systems, including schema, ontology, and meta-

model matching, applies local matching techniques [100, 107, 23, 95, 53,

37, 10, 38, 18]. As described before, local matching does not take the com-

plete structure into account. Moreover, matching in most of the systems is

restricted to trees. However, there are approaches and systems which apply

global graph-based techniques and which are consequently related to our

work for concepts on a graph edit distance (Sect. 5.1). We discuss those

approaches in the following section, highlighting the difference to our ap-

proach. Next, we describe related approaches that make use of region-based

(redundant) information for matching, which is related to the graph mining-

based matching as proposed by us in Sect. 5.2.

Graph matching In metamodel matching the only graph matching tech-

nique used in systems [36, 38] is similarity flooding [107], which originates

from schema matching. This local technique suffers from two main draw-

backs, first it does not consider the graph structure as a whole but rather

investigates neighbour relations. Second, it uses propagation and thus heav-

ily relies on input matches, i. e. linguistic information, which may propagate

an error multiple times to wrong results. In contrast, our approach uses

the whole graph structure and does not suffer from error propagation. It is

worth noting, that the results of our planar graph edit distance may serve

as an input to similarity flooding. However, this option has not been inves-

tigated by us, since a parallel similarity combination tends to be superior to

similarity flooding as demonstrated by [23].

In the field of ontology matching two approaches for global graph-based

matching were proposed. The first approach is GMO [63], which is part

of the Falcon system. Its basic idea is to transform an input ontology into

a bipartite graph. Inside a bipartite graph the vertices can be split into two

disjoint sets. Between each element of one set and each element of the other

set an edge is established. These edges represent the similarity. GMO uses

structural measurements to iteratively refine the matrix. Finally, after the

iterations converge a mapping can be derived. The cause problem of the

approach is that metamodels are not bipartite, and thus GMO cannot be ap-

plied. However, one could add vertices and edges to a metamodel until it

becomes bipartite, but this procedure could lead to three-times the edges as

also shown for ontologies in [56]. This is a fact, because all elements (ver-

tices) have to be arranged into the disjoint groups. This added information

would potentially produce misleading or wrong mappings, thus we neglect

this approach.

Another interesting idea in ontology matching was proposed by [27],

which deals with Expectation Maximization. The approach is to transfer an
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ontology into a direct labeled graph and interpret the problem of match-

ing as maximum likelihood search. This search is known from the field of

statistics and tries to evaluate the probability that a given match is valid for

two given ontology graphs, thereby they make use of linguistic techniques.

The computation is done over several iterations, each refining the previous

result. The main drawback of the approach is its lack of scalability. The au-

thors report a calculation time of 18 minutes for 40 elements [27], which

makes it not applicable for real-world scenarios, which show on average 180

elements as given by our evaluation data in Sect. 7.3.

The work most related to our approach has been proposed in [162].

They propose a tree edit distance, which uses a general tree edit distance

specialised for schema matching using a schema-specific cost function. In

contrast our approach is not limited to trees and can be applied to any graph.

Redundant information The usage of redundant information has not been

tackled explicitly so far. However, there are two non-metamodel approaches

which are to some extent related to our work. The first one originates from

ontology matching and aims at matchings calculated based on pre-defined

patterns [130]. The authors define four patterns which are evaluated on a

given ontology and based on the embeddings (occurences) mappings are

derived. In contrast, our approach is capable of detecting arbitrary patterns

which makes it generic, where their approach is ontology- and domain-

specific.

Another related approach is presented by COMA++ [25] with the frag-

ment approach. The idea is to compare the path of elements in a schema

to differentiate between the context of re-occuring elements. The approach

collects all multiple matches of a matching technique and refines them using

their path. We follow a different approach and do not rely on a first match-

ing but rather extract redundant information explicitly. Furthermore, with

our Design Pattern matcher we are capable of identifying design patterns,

which tend not to be present as multiple matches.

Table 4.2 gives an overview on related structural matching approaches. The

approaches are classified according to whether they operate on graphs, per-

form local, global, or region-based matching, and if they are applicable to

metamodels. Thereby, local, global, and region-based matching refers to our

extended matching technique classification in Sect. 2.1.2.2. We conclude

that our work is the only one applying global graph-based techniques on

metamodels and also the only one applying region graph-based techniques

on metamodel graphs.
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Table 4.1: Overview on related structural matching approaches

Graph Local Global Region Meta-

model

Our work ✓ ✓ ✓ ✓ ✓

Melnik et al. [107] ✓ ✓ ✗ ✗ ✗

Falleri et al. [38] ✓ ✓ ✗ ✗ ✓

Fabro et al. [37] ✓ ✓ ✗ ✗ ✓

GMO [63] ✓ ✗ ✓ ✗ ✗

Doshi & Thomas [27] ✓ ✗ ✓ ✗ ✗

Do et al. [25] ✗ ✓ ✗ ✓ ✗

Ritze et al. [130] ✓ ✗ ✗ ✓ ✗

Zhang [162] ✗ ✗ ✓ ✗ ✗

4.3 Matching Scalability

In this section we present related approaches to scalability support of match-

ing systems. Thereby, we again consider schema, ontology, and metamodel

matching, because in metamodel matching only EMFCompare [10] takes

scalability into account. Large-scale matching follows one of the following

approaches:

1. Light-weight matching,

2. Context reduction,

3. Self-configuring matching workflows, or

4. Partitioning.

Light-weight matching Light-weight matching employs only simple match-

ing techniques, such as linguistic ones, to save runtime and memory. Still

those approaches do not solve the runtime and memory consumption prob-

lem. They only postpone it, because they still need to match the cartesian

product of source and target elements. In metamodel matching EMFCom-

pare [10] and in ontology matching the RIMOM [95] system follow this

approach.

Context reduction Another proposal for scalability support in ontology

matching is given by Aflood [54]. They apply an incremental approach start-

ing to match only certain elements, so-called anchors. If matches are found,

the neighbours of those anchors are matched recursively until no match can

found. Although the approach seems to perform well on certain data, in the
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worst case, e. g. identical metamodels, again the complete data is matched.

Consequently, the scalability problem is only tackled partially.

Self-configuring matching workflows Peukert [123] and RIMOM [95]

apply a different approach by making use of self-configuring matching work-

flows. Thereby, light-weight matching techniques serve as a selector of ele-

ments to be matched, to reduce the number of comparisons to be made for

subsequent techniques. Unfortunatly, this also only tackles runtime but not

memory and hence does not solve the scalability problem.

Partitioning Partitioning is an approach following the divide and conquer

paradigm. Thereby, the input is separated into parts and those parts are ei-

ther used for selection of match partners or for an independent matching

of the parts. COMA++ [25] follows a partitioning approach by identifying

fragments. Those fragments represent either types or user-defined patterns,

and determine the comparisons to be made. This approach reduces the num-

ber of comparisons for matching but does not tackle the memory problem,

because the matchers still use the complete metamodel (schema) for match-

ing.

Falcon-AO [156] took this idea and applied a partitioning based on the

graph clustering algorithm ROCK [156]. To reduce the number of compar-

isons for matching, they apply a threshold-based assignment, as also studied

by us. However, the cause problem of this approach is the partition simi-

larity calculation. FALCON-AO proposes to calculate anchor pairs (source-

target pairs with a high similarity) using name and annotation matchers

prior to partitioning or being defined by a user. The matching is only ap-

plied to partitions with shared anchors. Consequently, both ontologies have

to be matched completely with light-weight techniques which again imposes

memory issues.

Another approach based on the prominent clustering algorithm k-means

also applies partitioning for schemas [140]. Thereby, they assume a user-

defined small-sized pattern which helps in selecting the centroids (similar

to the anchors). All elements with a neighbourhood larger than the pattern

are considered as candidates. In the next step all partitions consisting of

centroids are incrementally extended until a fix-point is reached, i. e. no

element gets assigned to a partition. The authors note that the algorithm

sometimes produces unbalanced clusters, which negatively influences the

solution. Again, the clustering algorithm reduces runtime and memory in

most cases, but it cannot ensure a maximal cluster (partition) size and thus

does not tackle the memory problem in general.

Recently, Gross [50] proposed a partitioning for COMA++. The approach

is to sequentially partition an input ontology into maximal-sized partitions.

These partitions are matched independently and in parallel. To tackle the
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Table 4.2: Overview on related large-scale matching systems

Run- Memory Partit- Struct. Assign- Meta-

time ioning Pres. ment model

Our work ✓ ✓ ✓ ✓ ✓ ✓

COMA++ Part. [50] ✓ ✓ ✓ ✗ ✗ ✗

Falcon-AO [156] ✓ ✗ ✓ ✓ ✓ ✗

COMA++ Frag. [25] ✓ ✗ ✓ ✗ ✗ ✗

k-Means [140] ✓ ✗ ✓ ✗ ✗ ✗

Aflood [54] ✓ ✗ ✗ ✗ ✗ ✗

EMFCompare [10] ✓ ✗ ✗ ✗ ✗ ✓

RIMOM [95] ✓ ✗ ✗ ✗ ✗ ✗

Peukert [123] ✓ ✗ ✗ ✓ ✗ ✗

memory problem local information is stored in elements by pre-processing.

That means that an element’s children, siblings, parents and name similar-

ity are pre-computed and stored for parallel matching. Besides imposing

a matching overhead in pre-processing, the authors also note the major

drawback of their approach; it does not allow for global structural match-

ing or similarity flooding. The reason is the missing structural information

since it cannot be stored without storing the complete ontology, which again

does not solve the problem. In contrast, our approach allows for a structure-

preserving partitioning and thus for global graph-based matching and simi-

larity flooding.

Table 4.3 summarizes our related work on large-scale matching. The

features investigated were runtime and memory. We discuss whether the

corresponding approach reduces the runtime and memory and thus tackles

the problem. Partitioning states whether the corresponding approach applies

a splitting into parts, while structure-preserving investigates whether the

approach still allows for global structural matchers. The assignment column

gives insights into whether the approach utilizes an assignment of partitions

and the last column specifies the applicability to metamodels.

To conclude, our approach differs from the state of the art in tackling

both memory and runtime while providing a structure preserving partition-

ing and explicit consideration of assignment.

4.4 Summary

Our work is related to the fields of schema, ontology, and metamodel match-

ing. Therefore, we gave an overview on matching systems from these related

areas and discussed related work dealing with improvements of matching

quality by structural matching and matching scalability in detail.
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Matching quality The common approach on graph matching across all

three domains [37, 38, 160] is similarity flooding [107]. However, this al-

gorithm is a similarity propagation approach which does not use the global

graph structure. Two approaches from ontology matching either suffer from

the assumption of bipartite graphs [63] or scalability issues [27]. A related

approach from the area of schema matching calculates the edit distance be-

tween trees [162], where we calculate an edit distance for graphs (Sect.

5.1).

Redundant information is not explicitly used for matching. However, the

fragment-based approach of COMA++ [25] tries to identify complex types

in schemas to derive a similarity between those fragments, but this approach

relies on multiple matches. Another approach from ontology matching aims

at calculating occurences of four pre-defined patterns [130], which we ex-

ceed by calculating these patterns via mining and then checking their oc-

curences for matching as given in Sect. 5.2.

Matching scalability Approaches on matching scalability can be separated

into light-weight matching [10], context reduction [54], self-tuning match-

ing processes [95, 123], and partitioning [140, 25, 156, 50]. Although all

approaches tackle the runtime issue one way or the other, the memory con-

sumption problem is only tackled by [156, 50]. Thereby, [156] suffers from

its domain specifics and partition assignment calculation, which may lead

to memory issues. The alternative approach [50] on the other hand does

not apply a structure-preserving partitioning and is therefore not applica-

ble to global graph-based algorithms or similarity flooding. These issues are

tackled by our planar partitioning as given in Chap. 6.





Chapter 5

Structural Graph Edit Distance

and Graph Mining Matcher

The problem of insufficient matching quality identified by us led to the ob-

jective of exploiting structural and redundant information. In this chapter

we propose solutions for this objective by building on established graph the-

ory. The solutions are three novel matching approaches: (1) a planar graph

edit distance matcher, (2) a design pattern matcher, and (3) a redundancy

matcher. These matchers are described by us in a uniform manner while

categorizing them into graph matching and graph mining.

Since the algorithms perform structural graph-based matching we first

conduct a requirements driven analysis of generic algorithms from graph

theory. We then select algorithms as basis for our matchers and describe

them. Subsequently, we provide an illustrative example calculation and re-

marks on our algorithms.

5.1 Planar Graph Edit Distance Matcher

In order to exploit structural information for increased matching quality we

propose to apply an approximate subgraph isomorphism algorithm. Graph

isomorphism algorithms have not been used for matching so far because

of their intrinsic complexity especially in runtime [150]. However, our ap-

proach is based on an efficient, i. e. quadratic complexity, generic graph

matching algorithm presented by Neuhaus and Bunke [113]. Their algo-

rithm has been proposed for fingerprint classification and operates on un-

labelled, planar graphs with each vertex having more than one edge. Since

their algorithm shows good quality and a quadratic runtime we propose

to adjust and extend the algorithm for metamodel matching. We propose

techniques to consider labels and a pre-processing planarization. We also

propose to consider one-edge vertices, e. g. attributes, for the edit distance

calculation and thus for matching. To further increase the quality of the al-

63
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Figure 5.1: Example of source and target graphs, a common subgraph, and

our extensions

gorithm we present our k-max degree approach based on partial user-input

mappings.

Figure 5.1 depicts a source (a) and target graph (b), an example output

of the original algorithm (c), and an example output of our extensions (d).

The original output determines the common subgraph (A, B, C) as interpre-

tation of the GED, omitting the vertex a1, because it violates its prerequisite

of biconnectivity. Our extensions add a similarity value in [0,1] for each ver-

tex as shown in Fig. 5.1 (d). Further, we include all one-edge vertices in

calculation thus adding a1 to the output graph.

In the following, we will first present an analysis of existing generic

graph matching algorithms to justify our selection of the approximate al-

gorithm by Neuhaus and Bunke. Subsequently, we introduce our algorithm

for metamodel matching and an example calculation for the planar graph

edit distance. Finally, we present an improvement in result quality by our

k-max degree approach, which uses partial user-defined mappings as input.

Since the seed mappings are based on selected elements presented to a user,

we propose a simple, scalable, and efficient heuristic for the selection of

these elements.

5.1.1 Analysis of graph matching algorithms

In the following we first perform our requirements analysis of graph match-

ing algorithms. Second, we present suitable graph matching algorithms sep-

arating them into exact and inexact algorithms. Finally, we compare them to

our criteria, thus establishing the justification and basis for our planar graph

edit distance matcher.

5.1.1.1 Requirements for metamodel matching

Our requirements analysis is based on the objectives defined in our problem

analysis in Sect. 3.2.3. Recapitulating, we defined that a matching algorithm

should (R1.1) exploit graph structure, (R1.2) improve correctness and com-

pleteness of existing matching systems, and (R1.3) have at most quadratic

complexity.
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When exploiting the graph structure an algorithm should support di-

rected labelled graphs, i. e. metamodel graphs. While supporting metamodel

graphs an algorithm should make maximum use of such structural infor-

mation. That means a complete algorithm computing all possible matches

should be preferred over an approximate algorithm. This is backed by the

second requirement of improving the correctness and completeness, which

is naturally more likely by a complete algorithm rather than an approximate

one. The last requirement of quadratic runtime is applied on graph matching

algorithms to preserve the upper bound of the overall matching process. To

summarize, the requirements for graph matching algorithms in the context

of metamodel matching are:

1. Support of directed labelled graphs

2. Maximal use of structural information

3. Quadratic complexity

These requirements will be used in the following section for an overview

and comparison of graph matching algorithms.

5.1.1.2 Overview of graph matching algorithms

Table 5.1 depicts an overview of the graph algorithms grouped into exact

and inexact matching algorithms. These algorithms are arranged accord-

ing to our requirements of temporal and spatial complexity, input graph

restrictions and whether they are approximate or complete algorithms. The

selection of particular algorithms is based on their popularity and their com-

plexity, which should be quadratic if it is no standard algorithm.

To cope with larger graphs, algorithms have been proposed which ei-

ther restrict the input graphs on certain properties or approximate the solu-

tion. Table 5.1 shows in the first five rows an overview of exact algorithms.

The algorithm by Ullmann [144] exhibits an exponential complexity and is

therefore not applicable for metamodel matching, since it cannot be used for

mid-size structures (more than 20 elements). The approximate algorithm by

Cordella [16] shows a better behaviour, but has an inacceptable worst case

complexity. Luks [99] proposed an approach by restricting the input graph

on each vertex having a bounded valence (degree as in number of neigh-

bours). In metamodels this is not given, therefore we neglect this approach,

because enforcing the property would result in a huge loss of information. A

restriction of the input graphs on unique labels has been proposed by Dick-

inson [19]. Again metamodels do not show unique node labels, i. e. a fixed

set of labels, thus we cannot apply the algorithm. Hopcroft [62] restricts

the input on planar graphs proposing a polynomial algorithm, but due to its
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worse than quadratic memory complexity, we cannot apply this algorithm

for metamodel matching.

The second group of rows in Tab. 5.1 shows three inexact algorithms

which satisfy a polynomial execution time. The graph edit distance calcula-

tion proposed by Neuhaus [113] has a quadratic runtime and linear memory

consumption by restricting the input to planar graphs. The approximate ap-

proach proposed by Riesen et al. [128] requires bipartite graphs as input

and shows a quadratic runtime. Finally, Zhang [159] proposed an edit dis-

tance based on a tree representation showing a quadratic complexity both

in runtime and space, where spatial complexity can be considered the same

as memory consumption.

Algorithm Time Spatial Restriction Nature

Comp. Comp.

Exact

Ullmann [144] O(n!n2) O(n3) – complete

Cordella [16] O(n!n) O(n) – approx.

Luks [99] O(n5) n.a. bounded valence complete

Dickinson[19] O(n2) n.a. unique node labels complete

Hopcroft [62] O(n2) n.a. planar graphs complete

Inexact

Neuhaus [113] O(n2) O(n) planar graphs complete

Riesen [128] O(n2) O(n) bipartite graphs approx.

Zhang [159] O(n2) O(n2) trees complete

Table 5.1: Overview and comparison of graph matching algorithms; n.a. –

information is not available, n – number of nodes

5.1.1.3 Summary

Based on the comparison of matching algorithms in Tab. 5.1 we selected

the algorithm we want to apply in the context of metamodel matching. Re-

capitulating the requirements, every algorithm supports directed labelled

graphs. The second requirement states a maximal use of structural informa-

tion, i. e. complete algorithms are preferred over approximate ones, there-

fore [16, 128] are neglected. Additionally, the tree-based approach [159]

is not used, because a tree representation of a graph naturally contains

less information than the graph itself. The third requirement is a maximal

quadratic runtime, as a result [99, 144] are not considered by us. [99] re-

quires unique node labels, which is not fulfilled by metamodel graphs; there-

fore we do not consider it. The standard algorithm by Hopcroft and Tarjan

[62] shows memory issues and is consequently not considered. Finally, we
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selected [113] as the inexact algorithm for planar edit distance calculation

in the context of metamodel matching, since it fulfils all of our requirements.

5.1.2 Planar graph edit distance algorithm

The approximate algorithm we propose to use for metamodel matching com-

putes a lower bounded Graph Edit Distance (GED), instead of the minimal

GED for two given input graphs. Thereby, the algorithm assumes planar la-

belled biconnected graphs, thus the input of the planar graph edit distance

algorithm is a planar labelled biconnected source and target graph. The out-

put of the original algorithm is a common subgraph and the corresponding

GED. The output in terms of similarity is therefore one or zero. It is one

if a vertex (element) is part of the common subgraph or zero if not. The

algorithm calculates the minimal GED to reach a nearly maximal common

subgraph. There are two parameters which influence the GED calculation:

the costs for deletion and insertion as well as the function calculating the

distance between two vertices. Finally, a seed match is needed to denote

the starting point for calculation. Algorithm 5.1 presents the algorithm in

pseudo code, which consists of:

1. Fetch the seed match (or the next match)

2. Calculate neighbourhood distance to identify new matches

(a) Distance function based on linguistic and structural similarity

(b) Processing of neighbours’ attributes

3. Add new matches for next iteration and continue with step 2

1. Seed match In order to apply the algorithm in the context of metamod-

els, several adjustments and extensions are necessary. First, a seed match

needs to be given which is used as a starting point for the neighbourhood

edit distance calculation. Therefore, we define the root package vertices

match as input.

2. Neighbourhood distance Starting with the seed match v0
s → v0

t (both

metamodels’ root packages) the neighbours of the source vertex N(vs) and

the neighbours of the target vertex N(vt) are matched against each other.

The results are matches between a set of source and target vertices, this

serves as input for the next iteration.

The match between both neighbourhoods (N(vs), N(vt)) is calculated,

using a matrix of all N-vertices’ distances, which are searched for the mini-

mal edit distances. Thereby, one takes advantage of the planar embedding,

which ensures that the neighbourhood of vs, vt is ordered. So, there is no
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Algorithm 5.1 Planar graph edit distance algorithm

1 input : Gs , Gt , v0

s → v0

t

2 v a r i a b l e : FIFO queue Q
3 add seed match v0

s → v0

t to Q
4 f e t c h next match vs → vt from Q
5 match neighbourhood N(vs ) to the neighbourhood N(vt )
6 add new matches occur r ing in s tep 5 to Q
7 i f Q i s not empty , go to s tep 4
8 de l e t e a l l unprocessed v e r t i c e s and edges in Gs and Gt

9 re turn output mapping

need to calculate all distances for all permutations of all vertices of N(v) by

applying any cyclic edit distance approach. Since the algorithm only needs

to traverse the whole graph once, and the cyclic string edit distance based

on the planar embedding has a complexity of O(d2 · log d) [122], the overall

complexity is O(n · d2 · log d) (n the number of vertices and d is the number

of edges per node). The vertex distance function used is based on structural

and linguistic similarity, with a dynamic parameter calculation for weights

of the distance function.

2. (a) Distance function We defined the distance function of a vertex as a

weighting of structural and linguistic similarity, since this allows us to con-

sider structural and linguistic information and compensates for the absence

of one of them. The linguistic similarity ling(vs, vt) is the average string edit

distance between the vertex and egde labels. Thereby, we make use of the

Levenshtein distance of the name matcher of MatchBox as given in Sect. 7.2.

dist(vs, vt) = α · struct(vs, vt) + β · ling(vs, vt) ∧ α + β = 1 (5.1)

The structural similarity struct(vs, vt) is defined as the ratio of structural

information, i. e. the attribute count ratio attr(vs, vt) and reference count

ratio ref(vs, vt), thus allowing for a fast computation. The parameters do

not have to be necessarily the same as for the overall distance.

struct(vs, vt) = α · attr(vs, vt) + β · ref(vs, vt) ∧ α + β = 1 (5.2)

The ratio between the attributes and references, i. e. the references of a

source vertex vs to the references of a target vertex vt, are defined as the

attribute and reference count ratios respectively.

attr(vs, vt) = 1−
|countattr(vs)− countattr(vt)|

max(countattr(vs), countattr(vt))
(5.3)
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Finally, we defined the cost for insertion and deletion as being equal,

since both operations are equal for similarity calculation. Consequently, a

vertex to be matched has to be deleted if no matching partner with a simi-

larity greater than T can be found. The following threshold definition must

hold to keep a vertex vs:

sim(vs, vt) = 1− dist(vs, vt) ≥ 1− costdel(vs)− costins(vt) = T (5.4)

As an example, based on our evaluation data (see Sect. 7.3), we tested

different T and obtained best results for T = 0.74. Moreover the similarity of

edges is reflected by their label similarity, because our experiments showed

that this allows for better results than a numeric cost function.

The parameters α and β denote a weighting between the structural

and linguistic similarity and can be set constant, e. g. to 0.7 and 0.3. For

a dynamic parameter calculation we adopted the Harmony approach of

Mao et. al [101]. Since the problem is to find the maximum number of 1:1

matches between vertices, Harmony aims at calculating unique matches by

evaluating combinations which allow for maximum similarity. This is com-

puted in a matrix selecting the maximums of rows and columns deriving

the ratio of unique and total matches. Indeed, we noted an improvement

of more than 1 % using Harmony over a fixed configuration considering the

corresponding minor thesis [58] and our evaluation in Chap. 7.

2. (b) Additional processing The original algorithm only considers edges

contained in biconnected components of a graph, because only then an or-

dering can be defined. That means, only vertices reachable by at least two

edges are considered. Consequently, all attributes would be ignored. There-

fore, we extended the algorithm to match these vertices after the cyclic

string edit distance for a specific vertex combination has been calculated.

This only affects the complexity additively so it still is nearly quadratic.

3. Add new matches The processing is performed until no more matches

can be found, which occurs if no neighbours exist or they do not lead to a

match. Thereby, we added a removal of invalid matches, i. e. when a class

is matched on an attribute or a package vertex the similarity results in zero.

The same penalty applies to the match of opposite inheritance or contain-

ment directions. Finally, all unprocessed vertices and edges are removed,

thus constructing a common subgraph based on the minimal GED.

Finally, the output matches are created based on the matches calculated

before. The ouput is formed by all matches of the edit path calculation and

all corresponding similarity values.
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Figure 5.2: Example metamodel excerpts and corresponding graph represen-

tations

5.1.3 Example calculation

In the following we will present an illustrative example for our planar graph

edit distance calculation. The example is taken from the retail store inte-

gration scenario as given in Sect. 3.1.1. A reduced version of the POS and

ERP metamodel is depicted in Fig. 5.2 (a) and (b). At the bottom the cor-

responding graph representation of the excerpts can be found. Thereby, the

graph (c) corresponds to the excerpt (a) and (d) to (b) respectively. In both

excerpts we removed the attributes for a better overview. For simplicity we

removed the labels of the classes and replaced them by the letters a, b, c and

d. Still the information is preserved by the corresponding edge’s label.

The graph representation will be used in the example calculation which

is given in Fig. 5.3. The example depicts three steps of the edit distance

calculation with the similarity values of the elements calculated. These simi-

larity values represent the costs of relabeling an edge and thus determine if

a path should be followed. The root package vertex and thus starting point

is given with the elements a and u, which are highlighted by a bold border

in Fig. 5.3 at the top.

(i) First iteration The first step of the algorithm is to examine the neigh-

bourhood of a and u by following all outgoing edges. In the Figure this is

highlighted by dark grey. The labels of the edges are given and represent

edge and reference names or, if none are present, the target element’s name.

In the example both containments from a to b and a to c have no name,

therefore the edges are labelled according to the target element’s labels Re-
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Figure 5.3: Example calculation of planar graph edit distance

tailLoyalty and RetailCustomer. In contrast, the edge connecting u and v is

already labelled as loyalty.

After identifying the vertices’ neighbours the similarity of these source

and target elements is calculated, i. e. c and v, and b and v have to be com-

pared. The similarity between b and v is determined by the weighted sum of

the linguistic and structural similarity. The linguistic similarity of RetailLoy-

alty and loyalty is 0.53 using the Levenshtein distance [153] as also used

in our name matcher. The structural similarity is determined by the ratio of

three edges of b and three edges of v, which calculates as 1. For our exam-

ple we use the following parameters: α = 0.7, β = 0.3 and T = 0.5. As a

consequence the weighted sum is calculated as 0.7 · 0.53 + 0.3 · 1 = 0.67.

Since 0.67 > 0.5, the pair (b, v) is put into the list of matches and will be

considered in the next iteration. The pair (c, v) yields a similarity of 0.22

and will be discarded.

(ii) Second iteration The next iteration starts with the previously ob-

tained pair (b, v) again highlighted by a bold outline. The pairs for com-

parison are all combinations of a, c and u, w, x. Again these pairs are added

to the list of matches and are part of the algorithm’s output.
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(iii) Third iteration Finally, we consider the following iteration of (c, x)

where already calculated pairings are considered and combined with the

new calculated pairings of (a, v), (b, w), (d, v) and (d, w) for the final

output.

In summary, the algorithm first calculated a correspondence between (b,

v) and extended it to the pairs (a, u), (c, x). Along with these pairings the

similarity values form the output of the planar graph edit distance. This

calculation does not retrieve all mappings, because it misses the pairing (b,

w). Therefore, we investigated further improvements of the algorithm as

given in the subsequent section.

5.1.4 Improvement by k-max degree partial seed matches

Neuhaus and Bunke stated possible improvements by one seed match [113],

because the algorithm relies on its starting point, so we had a closer look at

how to handle one or more seed matches. Following this, we investigated

two possible approaches: (1) with or (2) without user interaction. The ap-

proach without user interaction is to use the default root package matches

(one seed match). However, taking user interaction into account allows for

further improvement in quality, but requires an additional effort, because

a user has to define mappings for a given source and target mapping prob-

lem. Therefore, we decided to follow a simple and scalable approach which

grants a maximum of information provided.

To keep the interaction simple, we require the user to only give feedback

once on a reduced matching problem. Consequently, we present the user

with a selection of source and target elements rather than letting him decide

on the whole range of elements. That means, the user only needs to match a

subset. The subset calculation by k-max degree follows a scalable approach

by applying a simple heuristic. K-max degree is based on the rationale that

the seed mapping elements should have the most structural information.

Investigating our evaluation data we noted a normal distribution of edges

per node, so the probability for vertices to match is highest if they have

the highest degree and thus structural information. The computation can be

done in linear time and therefore provides a scalable approach.

Matchable elements selection We propose to select the k vertices with a

maximal degree, i. e. the ranking of k vertices which contain most structural

information. So for a given k and graph G(V, E) we define k-max degree as:

degreemax(G, k) = {v1, v2, . . . , vk | degree(vi) ≥ degree(vi−1) ∧ vi ∈ V }
(5.5)
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Figure 5.4: Illustrative example of k-max degree selection and user interac-

tion by mapping specification

Seed matches The user defined mappings yield information on matches

and no-matches which are used for the planar GED matcher. These seed

matches are included into the algorithm by adding them to the list of all

matches. The planar GED matcher makes use of them during the graph edit

path calculation as well as during the cyclic edit distance calculation. That

means the calculation of a match as in Alg. 5.1 line 5 returns the value 1.0

for the seed matches or 0 for non-matches.

An example of the k-max degree seed match selection and specification

is depicted in Fig. 5.4, the graphs are abstract representations of the former

example of the retail store integration and edit distance calculation. In the

example we choose k = 2, i. e. we select the two vertices with a maximum

degree. The first Step (a) is to select the relevant vertices in the source

and target metamodel. The degrees of the vertices 1.a and 2.c are both 4,

therefore they are selected as mapping candidates. In the target metamodel

the selection results in the vertices 1.u and 2.x both have a degree of 3.

The selection is followed by the mapping specification of a user as given

in Step (b) in Fig. 5.4. The nodes with the maximum degree are presented

as candidates and a user has to specify mappings between them. These map-

pings as well as the information regarding non-matches, i. e. matches which

were dismissed by a user are used for the graph edit distance calculation.

The results show a considerable improvement which will be discussed in

our evaluation (Sect. 7.5.1.4).

5.2 Graph Mining Matcher

The GED calculates a global graph-based similarity but does not consider

redundant information. To actually exploit redundant information, i. e. pat-

terns, it first has to be discovered in a metamodel and second it has to be

mapped. We call the discovery phase pattern mining and split the mapping
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Figure 5.5: General mining based matching process

phase into pattern mapping and embedding mapping. Consequently, we pro-

pose three phases of mining based matching, namely:

1. Pattern mining,

2. Pattern mapping,

3. and embedding mapping.

These three phases are depicted in Fig. 5.5. Since graph theory provides

mature algorithms for pattern mining we propose to apply generic graph

mining algorithms in the first phase. In this phase a set of reoccurring pat-

terns and their embeddings for two given input metamodels are identified.

In the second phase we propose to map the patterns of the set onto each

other, identifying possible correspondences. Thereby, several matching tech-

niques can be used. The third step of embedding mappings calculates the ac-

tual output mapping. This is done by comparing the embeddings of mapped

patterns with each other in order to discover element mappings.

Reoccurring information can occur for two reasons, design patterns or

redundant modelling. Therefore, we propose two mining approaches for

these two kinds of patterns. We base our design pattern (DP) matcher on

gSpan [157] and our redundancy matcher on GREW [88]. We adopted and

integrated both algorithms in our matching process as described before and

extended them to handle metamodel graphs and especially to take linguistic

information into account.

Thereby, the algorithms operate on a common graph model, which is a

directed labelled (typed) graph. The graph model defined in Sect. 2.2.2 is

extended to reflect the labels as type classes. The type classes are used to

represent linguistic information, since the algorithms rely on precomputed

similarity classes (edge and vertex types) while mining. In the following we

present our analysis of graph mining algorithms and justify our choice of

gSpan as well as of GREW.
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5.2.1 Analysis of graph mining algorithms

Following our structure of the GED we first provide our requirements on

mining algorithms for the purpose of metamodel matching. We then provide

an overview on graph mining algorithms separating them according to their

setting of either single or graph transaction setting. This is followed by a

comparison of the algorithms presented to derive the base algorithms for

our design pattern and redundancy matcher.

5.2.1.1 Requirements for metamodel matching

Patterns in metamodels occur for two reasons, either they are the result of

applying design patterns [43] or redundant modelling. Thus, the first re-

quirement (R1.1), as formulated in our problem analysis in Sect. 3.2.3, is to

exploit exactly that information. Since the algorithms should lead to an im-

provement (R1.2) of quality they should make maximal use of the available

information and thus support metamodel graph properties that are directed

labelled graphs including reflexive edges (self references). An additional

consequence is the requirement to save embeddings during pattern discov-

ery because the final output mapping is calculated between elements, i. e.

embeddings.

The third requirement (R1.3) of Sect. 3.2.3 is a maximum quadratic

complexity in runtime. This requirement cannot be fulfilled by graph min-

ing algorithms, because they inherit NP-complete complexity from subgraph

isomorphism detection[14]1. The reason for this is given by the task of dis-

covering frequent patterns in one or more graphs. Thereby, a starting pat-

tern has to be generated, incrementally extended, and tested for subgraph

isomorphism on input graphs. The consequence is an overall exponential

runtime due to the isomorphism tests of candidates generated [14]. More-

over, the complexity of mining algorithms depends on the input graph size,

frequency of patterns, pattern size, etc. This makes a complexity analysis a

difficult task which has not been done so far.

However, there has been work in comparing mining algorithms for com-

mon data sets as in [103] that shows results for both runtime and memory.

Consequently, we state the requirements of low runtime and memory con-

sumption for an algorithm relative to the known approaches. To summarise,

our requirements for graph mining algorithms are:

1. Exploit redundant and design information,

2. Saving of pattern embeddings,

1There is one mining algorithm that makes use of planarity. However, it has been shown

that such an approach suffers from a high constant c for O(c · n2) and is only feasible for

pattern graphs with more than 800 nodes [86]. The patterns mined are much smaller and

thus the approach is not applicable.
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3. Support of metamodel graph properties,

4. Low runtime,

5. Low memory consumption.

5.2.1.2 Overview on graph mining algorithms

An overview and comparison of graph mining algorithms is depicted in Tab.

5.2. The first group on top of the table depicts an overview on the popular

single graph setting algorithms. For a complete survey please refer to [89].

As confirmed by [14, 89] the most popular and first single graph setting al-

gorithm is SUBDUE [1]. The original algorithm was presented in 1994 and

has been improved since [79]. The algorithm follows a greedy search by in-

cremental pattern extension. Thereby, the extended patterns are checked for

their compression of the input graph. That is the replacement of all pattern

embeddings by one vertex and the final graph size. The best compressing

patterns form the final output.

The GBI [106] algorithm follows a similar principle of replacing struc-

tures (reduction) but does not check for compression but rather for the en-

tropy of the patterns.

GREW [88] is dedicated to pattern extraction of one large graph. So far

complete approaches like SiGram [89] are not applicable to large graphs

(with more than 100 vertices). GREW is approximate so it is applicable in

large-scale scenarios while still remaining memory sufficient.

The graph transaction setting deals with pattern mining on a set of

graphs. Several algorithms have been proposed as given by a survey in [14],

therefore we only present a selection based on popularity and acceptance in

the second group in Tab. 5.2.

The first graph transaction setting mining system was proposed in AGM

[66], which introduced an apriori level-wise approach. Thereby, all patterns

which are one vertex serve as starting points. These patterns are merged

recursively where each step forms a level in the pattern search. Each merg-

ing is followed by a check for embeddings, i. e. the pattern is validated. The

maximal valid patterns form the final output. To prevent redundant checks

patterns are encoded and merged according to certain rules. This approach

has been further refined by FSG [87] by optimizing the performance, as was

done in FFSM [65]. gSpan [157] followed a similar approach but introduced

a depth first search based encoding system of the graphs and patterns, which

is more efficient in terms of computation time and memory [79]. A further

improvement of gSpan can be found in CloseGraph [158] which compresses

patterns and thus reduces the memory consumption.

In [103] these mining systems have been compared on a common data

set and implementation, concluding that gSpan is the fastest and most mem-

ory efficient system.
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Algorithm Nature Memory Runtime MM Graph Emb.

Single graph

SUBDUE [1] approx. + – ✓ ✓

GBI [106] approx. – – ✓ ✓

SiGram [89] complete – + ✗ ✓

GREW [88] approx. + ++ ✓ ✓

Graph transaction

AGM [66] complete + – – ✓ ✗

FSG [87] complete + – ✓ ✓

FFSM [65] complete – – + ✓ ✓

gSpan [157] complete + + ✓ ✓

CloseGraph [158] complete ++ + ✓ ✓

Table 5.2: Overview and comparison of graph mining algorithms; ✓/✗– sup-

port/no support; -/+ – more/less memory/runtime

5.2.1.3 Summary

We selected two algorithms to serve as a basis for mining based metamodel

matching. We chose two algorithms because of the two reasons for patterns

in metamodels that are (1) redundant information and (2) design patterns.

(1) Redundant information is redundant if it occurs more than once in

one metamodel, thus we investigated algorithms of the single graph set-

ting. Since graph mining algorithms show an exponential complexity we

weighted runtime and memory as most important. GREW shows the best

runtime compared to the other algorithms [88] and is especially applicable

to large-scale scenarios in contrast to SiGram, which due to its complete

nature needs to save every embedding, which results in an increased mem-

ory consumption. Since the other algorithms [79, 106] are also approximate

and show a worse runtime than GREW and they are not scalable [88, 102],

GREW consequently forms the basis of our redundancy matcher.

Since (2) design patterns occur across metamodels we selected an algo-

rithm from the graph transaction scenario. Again memory consumption and

runtime are of interest as well as support for metamodel graphs and embed-

ding saving. AGM [66] is not capable of saving embeddings and needs to be

discarded. Furthermore, a study [103] compared the gSpan, FSG, and FSSM

algorithms concluding that gSpan outperforms the others w.r.t. memory and

runtime. The proposed enhancement of gSpan, i. e. CloseGraph [158], even

improves the memory consumption while preserving its runtime. Therefore,

we chose the algorithm as a basis for our design pattern matcher.

In the following we will present the graph model on which both mining

matchers operate.
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Figure 5.6: Example for mining graph model types using similarity classes

5.2.2 Graph model for mining based matching

The mining of metamodels is done using a typed graph model. Thereby, all

vertices and edges are grouped into classes of similar elements to encode

linguistic and metamodel type information. The final type of an element e is

a tupel (t, S) where t is the metamodel type of the element, such as class or

attribute, and S a similarity class.

A similarity class S is defined by a two step process. First, all elements

are sorted according to their type, i. e. class, reference, operation, attribute

or package. These groups of different element types are then split into

subsimilarity classes based on name similarity. Thereby, a pair of elements

(ei, ej) is assigned to a similarity class if sim(ei, ej) > t with t being a

fixed threshold2 and ei the first element in a type class t. The similarity

class assignment is repeated for all assigned elements ej and unassigned el-

ements eu, this time multiplying a potential error by the following condition

sim(ei, ej) · sim(ej , eu) > t. The multiplication allows to prevent too large

similarity classes.

For instance, let sim(a, b) = 0.7, sim(b, c) = 0.7 and t = 0.7, and to

demonstrate the intransitivity of string similarity let sim(a, c) = 0.2. If we

only apply a fixed threshold, a, b and c would be added in two steps to the

same class. However, if we take the error of a similarity of 0.7 into account

sim(a, b) · sim(b, c) = 0.49, c would not be part of the class, but rather

create a new one. Finally, all similarity classes are assigned to a label, thus

establishing the similarity classes S.

Figure 5.6 depicts an example for the similarity class calculation and

the resulting graph. On the top left the example metamodel is depicted and

on the top right the resulting graph with the similarity classes as labels.

2The evaluation in the context of a master thesis [112] showed that t = 0.7 yields the

best results in terms of correctness (precision) and completeness (recall).



5.2 Graph Mining Matcher 79

(1)
Pattern mining

(3) 
Embedding 

mappingSource 
metamodel

Target 
metamodel

Mapped
Patterns

Embeddings of mapped 
patterns

Mapping

Figure 5.7: Design pattern matcher process

The dashed lines represent the correspondences between elements. On the

lower left the similarity class calculation is shown and on the lower right the

resulting classes, thereby pairings of elements are noted as Pi.

The example threshold has been set to t = 0.4, so the similarity classes

S1 = (P1, P2) result in the first comparison of all classes with the first

element of the type class, that is RetailTransaction. In absence of our er-

ror propagation the second iteration would add the class AddressCustomer

because of its similarity to RetailCustomer. This is not desirable, because

P2 · P4 = 0.23, therefore P4 is assigned to a new similarity class S2 = (P4).
S1 is assigned the label R and S2 the label A which are used to type the

vertices. For simplicity we omitted attributes and references, but they are

considered in the same manner.

The resulting type graph is labelled according to the metamodel types

(t) and the similarity classes (S) are used by the design pattern matcher

and the redundancy matcher for mining patterns. The linguistic similarity

is ensured by the previous similarity class calculations. In the subsequent

sections we will describe our two mining matchers in detail along the three

steps of mining based matching mentioned before.

5.2.3 Design pattern matcher

One type of patterns are design patterns which occur in both the source and

the target metamodel. Therefore, we propose an approach which searches

for patterns in both metamodels simultaneously. We base our approach on

gSpan [157], which has the main idea of mining by incremental pattern

extension. Starting with a trivial pattern of one edge, it is extended incre-

mentally until no further extension is possible. The possibility of extensions

is defined by the occurrences (embeddings) in both metamodels.

The design pattern matcher process is depicted in Fig. 5.7. First, both

graphs are searched for common pattern, thus the pattern mappings step is

obsolete, because a pattern is only found if for both graphs an embedding
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exists. The subsequent mapping of the patterns embeddings yields the final

mappings. The algorithm as given in Alg. 5.2 performs the pattern identifi-

cation and mapping and finally the mapping of the pattern embeddings.

The first step is a pre-processing (Alg. 5.2, line 3). Two input metamodel

graphs are processed as described in the previous section for establishing

similarity classes, which are the types. These types allow for isomorphism

tests by structural and linguistic information. Next, all frequent edge types

(edges having a frequency of more than one) are determined and used for

the actual pattern mining (line 4).

Algorithm 5.2 Design pattern matcher algorithm

1 input : source Gs(Vs, Es) , t a r g e t Gt(Vt, Et)
2 V ar i ab l e s : pa t t e rn s e t found
3 pre−process Gs , Gt

4 fo r each ef ∈ {e|freq(e) > 1 ∧ e ∈ Es, Et}
5 Add pa t t e rn s of minePatterns (ef ) to found
6 Mark edge as v i s i t e d
7 fo r each p ∈ found
8 i f p i s r e l e v an t
9 Add (emb(p, Gs), emb(p, Gt)) to output mapping

10 re turn output mapping

5.2.3.1 Pattern mining

The pattern mining follows steps proposed by gSpan [157] which are shown

in pseudo code in Alg. 5.3. In detail these steps are:

1. Mine for design patterns

(a) Mining of patterns by incremental extension of frequent edges

(b) Repeat pattern extensions until no frequent pattern is found

2. Filter patterns

The first pattern identification step is (1) the pattern mining. Given an

ordered list of frequent edge types, the most frequent edge type is selected

as the first pattern. Starting with this pattern of an edge a possible extension

on the basis of all embeddings in the first graph (Gs) is calculated (Alg. 5.3,

line 3). Second, it is checked if this extension is also possible in the second

graph Gt. That means, if there exist embeddings of this pattern in Gt (line

5) the pattern will be extended if possible, i. e. an edge will be added to the

pattern (and checked in all its embeddings) (Alg. 5.3 line 6). The extension

steps are repeated for all frequent edge types until all have been processed.
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Algorithm 5.3 Pattern mining in design pattern matcher (minePatterns)

1 input : Gs , Gt , pa t t e rn p
2 output : pa t t e rn found
3 ext← ex tens ions of p in Gs

4 fo r each x ∈ ext
5 i f x e x i s t s in Gt

6 x . embeddings ← emb(x, Gs) ∩ emb(x, Gt)
7 i f x i s c lo sed
8 add x to found
9 fo r each px ∈ ext

10 i f px i s extendable
11 minePatterns (Gs, Gt, px )
12 re turn found

Such an (1.a) extension of a pattern is built by adding an edge under

the restriction of a depth first search (DFS) tree. That means, each edge

to be added is enumerated, and the resulting graph has to comply with an

enumeration imposed by a DFS tree. Additionally, back-edges have to be

inserted first, i. e. edges that are not part of the DFS-tree but rather point

from a DFS tree node back to another one. This DFS restriction as given in

the original algorithm allows to define an order on the extensions possible

and thus reduces the search space [157]. If an extension only occurs in one

graph the pattern is not frequent and all possible resulting extensions can

be discarded. This is due to the antimonotonicity of the frequency measure,

which states that an infrequent subgraph cannot become frequent by adding

further edges [157].

The (1.b) extension of the current pattern is repeated until no embedding

can be found in the source or target graph. Thereby, each extension pattern

and the corresponding embeddings are saved. To reduce memory consump-

tion we apply a compression technique, the so-called closed graphs [158].

That means, if an extension of a pattern occurs in every embedding, the

unextended pattern does not need to be saved along with its embeddings,

because it is a subset of this extension. This condition is called equivalent

occurrence, meaning that the count of all embeddings of a pattern and the

count of all embeddings of the pattern extended by an edge is equal. Ap-

plying this technique allows for reduced memory, thus making the approach

applicable for larger metamodels (more than 1,000 elements).

In the following iteration the next frequent edge type is chosen and again

extended as given in Step 1 a.

The resulting patterns can contain trivial and misleading patterns, lead-

ing to misleading matches which may affect the result quality. In addition,

the exponential runtime complexity depends on the number of patterns as

well as their size.



82 Structural Graph Edit Distance and Graph Mining Matcher

For an improved result quality and runtime complexity we propose to (2)

filter the set of found patterns based on their relevance (Alg. 5.3 line 8). For

the relevance calculation we propose a weighted approach which relates the

size and frequency of a pattern. The relevance of a pattern p is calculated by

r(p) = |p|α · freq(p)β

where |p| is the size of a pattern (number of edges and vertices) and freq
its frequency (number of embeddings). The parameters α and β determine

a weight for the influence of size or frequency of a pattern. For instance, if

β is negative, the frequency has to be small for higher relevance.

5.2.3.2 Pattern mapping

Since patterns are only mined as valid patterns if they occur in both graphs,

i. e. there exist embeddings, there are no patterns exclusive for a source or

target metamodel. As a result there is no need to map patterns but only to

map the respective embeddings.

5.2.3.3 Embedding mapping

The previous mining step calculated patterns and their corresponding em-

beddings in the source and target graph. Consequently, each combination

of source and target embeddings of the same pattern map onto each other.

Therefore, we propose to create the cartesian product of the source and

target embeddings as output mappings (Alg. 5.3 line 9–10). These map-

pings are on pattern level and thus between subgraphs. The element-wise

mappings do not need to be calculated because they are defined by their

respective position in the pattern they belong to.

5.2.3.4 Example

We will work on the example depicted in Fig. 5.8 to demonstrate the princi-

ple of our design pattern matcher. Imagine two metamodels in a typed graph

representation as described in Sect. 5.2. There exist the following similarity

classes for the source and target metamodel: A, R for classes and a solid or

dashed line for references. For the sake of simplicity we depicted reference

types as lines and skipped attributes. The similarity classes (types) are used

to determine valid assignments and thus extensions, i. e. only elements of

the same type are assignable.

(a) Start pattern The pattern mining step processes all edge types, so we

depict one exemplary type which is the solid line. The pattern of two ver-

tices and an edge of type solid line is shown on the top left (Fig. 5.8 a).
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The vertices are enumerated according to a DFS convention. The embed-

dings of this pattern are highlighted in the source and target metamodel by

bold lines, thus the pattern has one embedding in each metamodel. Please

note that we only highlighted one embedding in the example for a better

overview, indeed there exist three embeddings for the source metamodel

and two for the target metamodel.

(c) Invalid extension
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Figure 5.8: Example for pattern mining by the design pattern matcher

(b) First extension The first extension of the pattern by an edge is shown

in Fig. 5.10 (b). This extension is valid, because in each metamodel exists

one embedding of the extended pattern. Again the nodes are labelled ac-

cording to a DFS convention.

(c) Invalid extension The next extension shows the negative case with an

invalid extension (Fig. 5.8 c). The pattern is extended according to the DFS

convention by a fourth vertex with the dashed line type. This pattern has



84 Structural Graph Edit Distance and Graph Mining Matcher

an embedding in the target graph as highlighted in bold. However, there is

no embedding in the source graph for the given edge type. This particular

extension and all resulting ones are discarded for further mining.

(d) Complete extension An example for a complete extended pattern is

shown at the bottom of Fig. 5.8. The pattern has been extended by a fourth

node with the dashed line type which has embeddings in both metamodels.

Finally, the pattern already determines the mappings between the source

and target elements by the position of the vertices within the pattern. We

depicted the mapping between those elements by a dashed line with an

arrow. These mappings form the output of the pattern mapping step and

are used for similarity value calculation for all elements, e. g. the name path

matcher (see Sect. 7.2).

5.2.3.5 Remarks

The graph mining algorithm has to solve two fundamental problems. First,

it has to ensure DFS-tree conforming extensions. This is done by a canoni-

cal code building, which is an NP-complete problem and exponential in the

size of the patterns. Second, all embeddings of a pattern, i. e. all subgraph

isomorphisms, have to be calculated, which is also NP-complete.

The algorithm’s complexity can be bounded by O(k · f + r · f). Thereby,

f is the count of frequent subgraphs, k is the maximal count of subgraph

isomorphisms of a pattern and r is the count of non-DFS conforming exten-

sions that have to be filtered. That means, k · f bounds the maximal number

of subgraph isomorphism computations while r · f bounds the number of

extension filterings.

Consequently, the algorithm needs to be reduced in runtime in order

to make it applicable in metamodel matching scenarios. Therefore, we pro-

posed to increase the number of edge and vertex types by similarity class cal-

culation. This decreases k because a pattern has fewer isomorphisms in the

presence of more types. We also limited the degree of a vertex to d, which

leads to a limitation of possible extensions. Finally, we also introduced a

maximum pattern size, to reduce the filtering calculations.

5.2.4 Redundancy matcher

Since redundant information occurs as frequent subgraphs in one graph we

propose to mine for redundant information based on the established ap-

proximate graph mining algorithm GREW [88]. The basic idea is to reduce

a graph by removing edges of one type and merging their connected vertices.

This is based on the edge contraction principle as defined in Def. 9 in Sect.

2.2.3.1. Interestingly, edge contraction is contrary to the design pattern min-

ing, which incrementally extends a pattern. In contrast, edge contraction
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Figure 5.9: Redundancy matcher process

reduces the graph step-wise until no further reduction or contraction is pos-

sible, thus attributes are merged into classes and classes with classes etc.

Figure 5.9 depicts the matching process of the redundancy matcher. In

contrast to the design pattern matcher the mining is not performed on the

two metamodel graphs simultaneously but independent from each other.

The patterns extracted are compared to each other in a second step using

our planar graph edit distance and finally their embeddings are mapped.

Algorithm 5.4 shows the redundancy matcher’s steps. The pre-processing

(line 3) is the same as for the design pattern matcher and creates a typed

graph using the similarity class calculation as described in Sect. 5.2. Lines

4 and 5 show the independent pattern identification, whereas line 7 spec-

ifies the distance computation between all patterns identified. Finally, the

mappings are created as given in line 8 and 9 respectively. In the following

sections we will detail each of these steps.

Algorithm 5.4 Redundancy matcher algorithm

1 input : source Gs(Vs, Es) , t a r g e t Gt(Vt, Et)
2 v a r i a b l e s : source pa t t e rn s founds , t a r g e t pa t t e rn s foundt

3 pre−process Gs, Gt

4 add r e l e v an t pa t t e rn s in minePatterns (Gs ) to founds

5 add r e l e v an t pa t t e rn s in minePatterns (Gt ) to foundt

6 fo r each ps in founds

7 fo r each pt in foundt with minimal d i s t ance to ps

8 c rea t e mapping (ps . embeddings , pt . embeddings )
9 re turn output mapping

5.2.4.1 Pattern mining

The pattern mining as given in the adapted algorithm GREW [88] and

shown in Alg. 5.5 comprises the following steps:

1. Mine for redundant patterns



86 Structural Graph Edit Distance and Graph Mining Matcher

(a) Determine the most frequent edge type for contraction

(b) Contract independent edges if frequent

(c) Repeat until no further contraction is possible

2. Repeat mining for redundant patterns with new edge type

3. Filter patterns

The input graph of the source metamodel is mined for redundant infor-

mation by (1 (a)) determining the most frequent edge type as start type for

frequent types. The type te of an edge e = (v, u) connecting the elements v
and u is defined as te = (e, tu, tv), i. e. by the edge itself and the incident ver-

tices. An edge type te is frequent if |emb(te)| > fmin, i. e. if more than fmin

non-overlapping edges of type te exist. The starting type is the one with the

maximal occurrences (Alg. 5.5, line 7). For this frequent edge type tf an

overlaying graph Go is constructed. A vertex in Go represents an occurrence

of the edge type. An edge in Go is created, if two occurrences share a vertex

in G.

If two edges to be contracted are adjacent one needs to be chosen. For

best result quality we propose to apply a maximal independent set calcu-

lation of vertices using a greedy algorithm as given in [52] (line 8 and 9),

because this aims at a maximal number of contractions and thus maximal

pattern size.

Algorithm 5.5 Pattern identification for redundancy matcher (minePat-

terns)

1 input : Graph G
2 v a r i a b l e s : found
3 ζ ← G
4 while f requent edges e x i s t
5 fo r each ef ∈ {e|freq(e) > 1 in ζ ordered by frequency
6 c a l c u l a t e maximal independent s e t M f o r type tf of ef

7 i f |M | > minFreq
8 add pat te rn represented by tf to found
9 mark every edge in M

10 con t r a c t marked edges in ζ
11 remove marked edges from G
12 re turn found

Afterwards, the (1.(b)) maximal independent set of edges is contracted.

That means the determined edges as well as their incident vertices are re-

placed by a multi-vertex (line 10). A multi-vertex is a vertex w that repre-

sents an embedding of a pattern, i. e. the edge e and its incident vertices u, v.

The edges incident to u, v will be replaced by multi-edges which are con-

nected to the multi-vertex w. Consequently, the multi-vertex is connected
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with the original graph and represents the original edge and its position in

the subgraphs of the incident multi-vertices. By this strategy, smaller pat-

terns are joined to larger patterns in every iteration.

The (1.(c)) edge contraction is repeated until no further contraction is

possible. This occurs if the graph is reduced to two remaining classes or no

independent set can be calculated.

The (2.) mining process is repeated, because the results of the algorithm

depend on the type chosen for contraction. Consequently, patterns to be

found are possibly missed. This behaviour justifies the approximate nature

of the algorithm as also noted by the GREW authors in [88]. However, the

result quality can be improved by applying the algorithm multiple times on

a graph. Thereby, the most frequent non-processed edge type is chosen and

the contraction is applied again. This results in different patterns for each

iteration. To reduce the overhead for each run, already contracted and thus

used edges will be removed from the graph to improve the coverage of the

algorithm.

The (3.) extracted patterns will be filtered in the same manner as for the

design pattern matcher, i. e. based on their relevance.

5.2.4.2 Pattern mapping

Since the patterns have been mined separately for a source and target graph

a mapping has to be calculated. Therefore, we propose to apply our GED as

described in Sect. 5.1. It is used to calculate a similarity value as well as a

mapping between two patterns. This planar graph edit distance determines

the distance of two patterns; where the most similar patterns will finally be

mapped.

5.2.4.3 Embedding mapping

The embeddings are mapped in the same way as for the design pattern

matcher with the additional information of mapped patterns. That means

only embeddings of two mapped patterns are matched with each other lead-

ing to the final element mappings.

5.2.4.4 Example

We present in Fig. 5.10 an illustrative example for our redundancy matcher.

The example shows the complete process of pattern mining, pattern map-

ping, and embedding mapping. For simplicity, we depicted only one meta-

model for mining, which contains a redundant address (A). The metamodel

has been pre-processed by assigning types to edges and vertices. The vertex

type is depicted as a label which is denoted as R, A. Edge types are repre-

sented by a dashed or solid line.
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Figure 5.10: Example for pattern mining by the redundancy matcher

Select most frequent edge type The pattern mining begins by selecting

the most frequent edge type (Fig. 5.10 a), defined as the type of an edge

and of adjacent vertices, which is a dashed line between the vertices of type

R and A. This type is preferred over the one given by two vertices of R
connected by a solid line, because the size of its maximal independent set is

less, since the embeddings share one vertex (R).

Contract selected edge type In the subsequent step all embeddings of this

edge type are contracted (Fig. 5.10 b). That means the edges are removed

and the adjacent vertices are merged into a new multi-vertex. In our exam-

ple the dashed line edges are removed and the vertices R and A are merged

in the new multi-vertex of the new type RA. Since no further contraction is

possible this is the resulting pattern as given in (d).

Map patterns This pattern has been mined for one metamodel; imagine

now an additional pattern from another metamodel, as given in Fig. 5.10

(e). The pattern from the previous steps can be found on the top where on

the bottom the example pattern is depicted. Both patterns are mapped using

our planar graph edit distance. The resulting mapping is shown as dashed

lines between the corresponding elements.

Map embeddings Finally, the pattern embeddings have to be mapped on

to each other. This step is given in Fig. 5.10 (f). Using an arbitrary matching

algorithm the elements are mapped, again depicted by a dashed line. Exactly
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the mappings between the redundant address elements are the output of the

redundancy matcher.

5.2.4.5 Remarks

Again the complexity introduces runtime problems for this matcher. The

isomorphism test of patterns is tackled by applying our planar graph edit

distance. However, the problem of determining the maximal independent

set remains. We tackle that by an approximate greedy algorithm [52]. The

last problem of identifying the edge positions is reduced by limiting the

pattern size.

5.3 Summary

In order to tackle the problem of insufficient matching quality we proposed

three approaches which make use of either structural or redundant informa-

tion: a planar graph edit distance algorithm as well as two graph mining

based approaches, the design pattern matcher and the redundancy matcher.

We analyzed and adopted existing graph theory algorithms. Table 5.3 de-

picts a summary of our contributions:

Planar graph edit distance matcher The planar graph edit distance algo-

rithm results from a structured analysis of graph matching algorithms. The

algorithms suffer from the problem of complexity, hence we deduced a re-

quirement analysis resulting in a selection of a planar graph edit distance al-

gorithm with quadratic runtime for our purposes. We proposed adaptations

and extensions of this algorithm to take linguistic and structural information

into account and to calculate mappings for metamodel matching. Addition-

ally, we proposed the k-max degree approach for further improvement of the

matching quality. Thereby, we make use of k user input mappings ranked by

the degree of elements.

Graph mining matcher Our graph mining matchers are based on the idea

of discovering reoccurring patterns in a metamodel for matching. There are

two reasons for such patterns, which are the presence of design patterns or

in case of redundant modelling. We investigated the state of the art in graph

mining and, based on a requirements analysis, selected two approaches

for each class of patterns. We proposed two matchers, the design pattern

matcher and the redundancy matcher. Both approaches show three steps,

which are: pattern mining, pattern mapping, and embedding mapping.

The design pattern matcher mines for patterns based on an incremental

extension of a pattern. Checking for each extension if it is a valid pattern,

i. e. if it occurs in both metamodels, design patterns are found. The pattern
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Matcher Contributions

Planar graph edit dis-

tance • Adoption and extension of planar graph edit dis-

tance for metamodel matching

• Definition of a vertex distance function based on

structural and linguistic similarity

• Dynamic parameter calculation for weights of a

distance function

• Consideration of relations’ direction by similar-

ity value penalties

• Similarity calculations during cyclic string edit

distance calculation

• Processing of one-neighbour vertices

• k-max degree approach for improved results

Design pattern & Re-

dundancy • Architecture and process for pattern mining al-

gorithms in metamodel matching

• Adopted two algorithms for design pattern

(gSpan) and redundancy-based (GREW) mining

• Definition of typed graph model including lin-

guistic information encoded in similarity classes

(types)

• Proposed relevance-based filtering of patterns

Table 5.3: Contributions of structural graph-based matchers

mapping is part of the identification, because a pattern has to occur in both

graphs. The final element mapping is calculated using matchers on the ele-

ments of pattern embeddings.

The redundancy matcher proposed by us mines two metamodels inde-

pendently for patterns. The mining is based on the principle of reducibility,

reducing the most frequent edge type until no further reduction is possible.

This approach is repeated for different edge types. The resulting patterns for

both metamodels are then mapped using our GED. Finally, the embeddings

of mapped patterns are matched with each other to calculate the output

mapping.



Chapter 6

Planar Graph-based

Partitioning for Large-scale

Matching

In this chapter we discuss our solution for the problem of insufficient support

for large-scale metamodel matching, i. e. the problems of memory and run-

time while mapping metamodels with thousands of elements. An approach

to tackle the memory problem is to split the input metamodels into parts

and match them independently. We propose to calculate these parts using a

planar partitioning approach based on a heuristic element removal and con-

nected component calculation. The subsequent partition merging is based

on our proposal of utilizing the structural measurements of coupling and

cohesion.

However, partitioning does not decrease runtime because a comparison

of all partition elements still leads to the cartesian product of source and tar-

get elements. The number of comparisons can be decreased by selecting only

a subset of partition pairs for matching in a so-called partition assignment

process. The selection and assignment of partitions for matching can reduce

runtime but also decrease result quality. Therefore, we present and compare

four partition assignment approaches, which are evaluated and discussed in

our evaluation.

The subsequent sections present an overview of the partitioning-based

matching followed by our planar graph-based partitioning to conclude with

a description and comparison of the assignment approaches applied by us.

6.1 Partition-based Matching

Especially in industry current matching systems cannot fulfil the demands

of matching large-scale metamodels, i. e. metamodels with more than 1,000

91
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Figure 6.1: Processing steps of partition-based matching and assignment

elements. Either they are not able to match them at all or they require enor-

mous resources for matching. As stated in our problem analysis in Sect. 3.2.1

the main reason for scalability issues of matching systems is the traditional

approach of pair-wise element comparison w.r.t. an input source and target

metamodel. Calculating element correspondences for all pairs of elements,

a system shows at least quadratic growth in memory and runtime.

An approach that is well-known in the area of schema matching [25] is

to split the input into smaller parts using clustering and match these parts

independently. We adopt this idea for metamodel matching as given in the

processing steps overview in Fig. 6.1. There, the input metamodels are split

into parts (partitions) in the first step (6.2) by a partitioning component. Par-

titioning is similar to clustering but offers the advantage of guaranteeing an

upper bounded partition size as well as a similar size for partitions. However,

partitioning reduces the memory needed but not the runtime. The reason is

simple, because matching each element of each partition of the source and

the target metamodel with each other, the number of comparisons done is

the same as matching pair-wise without partitioning. In addition, the parti-

tioning algorithm itself introduces some computational overhead.

To overcome this problem, promising combinations of source and tar-

get partitions are identified and assigned to each other via an assignment

algorithm resulting in sets of partition pairs in the second step (6.3). The

assignment is done based on a partition similarity, which we propose to cal-

culate using partition representatives instead of performing a pair-wise par-

tition element comparison. The goal is to only match partitions which show

a high similarity. To select these pairs we study two similarity threshold-

based approaches as well as two algorithms calculating optimal one-to-one

or one-to-many assignments. The assigned partition pairs serve as input for

an arbitrary matching system and are matched independently.

The first step, the partitioning, is described in the subsequent section

6.2 introducing our planar graph-based partitioning algorithm. Step 2, the

assignment, is detailed in subsection 6.3.
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6.2 Planar Graph-based Partitioning

Inspired by a generic algorithm from graph theory [3] we propose to use

an approach that divides an input metamodel into subgraphs, i. e. partitions.

Thereby, we exploit structural and metamodel type information. The idea

is to first split an input metamodel into partitions until these partitions fall

under a pre-defined size limit. The splitting is achieved by removing ele-

ments from the metamodel. The remaining elements are ordered according

to their connectivity to the partitions obtained. The ordered elements are fi-

nally merged with the partitions previously calculated. We propose to merge

these partitions and remaining elements based on coupling and cohesion,

two structural measurements, to achieve a structure-preserving partitioning.

The partitioning results in a number of output partitions, which do not

need to be user-defined since the size of the partitions is already given. In

the following sections we will analyse partitioning and clustering algorithms

to select the planar graph-based partitioning algorithm.

6.2.1 Analysis of graph partitioning algorithms

Partitioning and clustering are similar approaches as described in the back-

ground chapter (Sect. 2.2.6). Both calculate the splitting of an input into

smaller parts. The main difference is that partitioning aims at parts of simi-

lar size, whereas clustering does not.

In the following we will present an analysis of existing graph partition-

ing and graph clustering algorithms with the purpose of selecting the basis

for our partitioning phase. First, we derive requirements in the context of

large-scale metamodel matching and then study existing approaches w.r.t.

the requirements. Based on this we select the basis for our approach in the

subsequent section.

6.2.1.1 Requirements for metamodel matching

The requirements for large-scale metamodel matching state that an algo-

rithm should partition input metamodels (R2.1), reduce runtime (R2.2),

and lead to a minimal loss of result quality (R2.3) (see Sect. 3.2.3 ).

The partitioning of an input metamodel should also reduce the num-

ber of comparisons performed and thus reduce memory consumption. The

memory consumption reduction can be ensured if the input splitting en-

sures a maximal size per partition. Therefore, the partitioning algorithm has

to ensure a maximal size of partitions and consequently a variable number

of partitions. To reduce runtime an algorithm should not introduce addi-

tional complexity. Since matching has a quadratic complexity a partitioning

algorithm may not exceed quadratic complexity. Moreover, a minimal loss

in result quality should be achieved. Therefore, an algorithm has to support
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metamodel graph properties to utilize structural, type-based and linguistic

information for a better quality and thus a smaller loss by partitioning. To

summarize we derived the following requirements:

1. At most quadratic complexity,

2. Support of metamodel graph properties,

3. And a variable number of result partitions, i. e. a maximal size of par-

titions.

Subsequently, we will give an overview of graph partitioning and cluster-

ing algorithms and arrange them according to our requirements.

6.2.1.2 Overview of graph partitioning and clustering algorithms

An overview of graph clustering and partitioning algorithms is given in Tab.

6.1. The table shows 18 algorithms organized in three groups and arranged

according to our requirements. The first group depicts clustering algorithms,

the second partitioning algorithms, and the third a combined algorithm. In

the following we will explain our selection of the planar edge seperator

(Planar t-Separator) algorithm [3] for metamodel matching.

The first requirement is given by quadratic runtime. The clustering ap-

proaches of Edge Betweenness from community detection [48], Markov

chain-based clustering [26], Spectral Bisection [141], and Minimum Cut-

ting Tree-based clustering [40] do not fulfil this requirement and are ne-

glected. Next, the approaches Modularity [114], PNN [41], HCS [55], Kirch-

hoff equations [155], Planar Separator [96], and Multi Level clustering [22]

do not support edge weights and thus typed graphs. Therefore, we do not

consider these algorithms for partitioning.

Additionally, the approaches of Kernighan-Lin [78], Normalized Minimal

Cut [137], Heuristic Optimization [5], hMetis [75], and Recursive Bisection

[139] do not explicitly support a variable number of clusters or partitions.

Although, an upper bound may be derived from a fixed number of clusters,

the distribution of elements by the algorithms is done without consideration

of structure, because the algorithms do not allow for size derivations as

the graph-based partitioning. This behaviour leads to a non-consideration

of these algorithms.

The remaining algorithms fulfilling our requirements are Local Between-

ness [49], Chameleon [74], and the Planar Edge Separator [3]. We selected

the planar edge separator because local betweenness shows a worse com-

plexity and hence does not scale as well. Chameleon and the Planar Edge

Separator are quite similar, because both follow the idea of initial splitting

and remerging, but the authors of the planar edge separator argue their

approach tends to perform better than hMetis [3]. Since Chameleon is an
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Name Complexity Edge

Weights

Variable

no. of

parts

Maximal

size of

parts

Clustering

Modularity [114] O((n + m)n) ✗ ✓ ✓

PNN [41] O(n2) ✗ ✓ ✓

Edge Betweenness [48] O(n3) ✗ ✓ ✓

HCS [55] O(nm) ✗ ✓ ✓

Markov [26] O(n3) ✗ ✓ ✗

Min. Cut. Tree [40] O(n3) ✓ ✓ ✓

Normalized MinCut [137] O(n2) ✓ ✗ ✓

Kirchhoff equations [155] O(n) ✗ ✗ ✗

Local Betweenness [49] O(m log m) ✓ ✓ ✓

Partitioning

Kernighan-Lin [78] O(n2 log n) ✓ ✗ ✓

Heuristic Optim. [5] n.a. ✓ ✗ ✓

Spectral Bisection [141] O(n3) ✗ ✗ ✓

hMetis [75] O(n + m) ✓ ✗ ✓

Planar Separator [96] O(n) ✗ ✗ ✓

Planar Edge Separator [3] O(n2) ✓ ✓ ✓

Recursive Bisection [139] O(n + m) ✓ ✗ ✓

Chameleon [74] O(n2) ✓ ✓ ✓

Hybrid

Multilevel Clustering [22] O(n) ✗ ✗ ✓

Table 6.1: Graph clustering and partitioning algorithms; ✓– requirement

fulfilled, ✗– requirement not fulfilled, n – no. of vertices, m – no. of edges
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additive extension of hMetis we conclude that the planar edge separator

performs better.

However, for comparison we selected a representative algorithm for local

betweenness from software clustering [15] and a density-based clustering

algorithm [93] similar to Chameleon and compared them in context of a

diploma thesis [59], concluding that indeed the PES performs best. In the

following section we will explain our adoption of the PES as well as our

extending merging phase based on coupling and cohesion.

6.2.2 Planar Edge Separator based partitioning

The main idea of the partitioning algorithm is to split a metamodel into sub-

graphs of similar size by removing vertices from the graph and calculating

connected components1. The input of the algorithm is a maximal partition

size or maximal number of partitions. The overall partitioning is achieved

in three phases, partitioning, re-partitioning, and merging.

1. Partitioning First, an input metamodel graph is initially partitioned us-

ing a heuristic approach by removing vertices and their edges. These

vertices and edges are selected based on levels of the metamodel graph.

The partitions are calculated by the connected components of the ver-

tices remaining after removal.

2. Re-partitioning Since some of the resulting partitions may exceed the

size limit, they are re-partitioned in quadratic time while taking ad-

vantage of their planarity. Thereby again vertices are removed to re-

calculate connected components.

3. Merging Finally, all previously removed vertices that do not belong to

any partition need to be merged with the previously calculated parti-

tions to retain maximum structural information. There we propose to

apply a merging of elements and partitions based on coupling and co-

hesion of partition pairs, for maximal structural information and thus

matching result quality.

The three phases of our algorithm are given in Alg. 6.1 and are detailed

in the following paragraphs. To illustrate the algorithm we use an extended

version of the POS metamodel of Sect. 3.1.2 as shown in Fig. 6.2. It gives an

example of a retail store as previously introduced with a class diagram on

the left and the corresponding graph on the right side.

For the sake of simplicity the graph shows only classes, but attributes are

represented in a similar way. Please note that class labels and relation types

1A connected component is a connected subgraph, i. e. each vertex is reachable from

each vertex. One example algorithm for a connected component calculation is the Depth

First Search (DFS).
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are abbreviated. Based on this example a calculation of the partitioning is

depicted in Fig. 6.3.

Algorithm 6.1 Planar graph-based partitioning algorithm outline

Input: Graph G(V, E), maximal partition size wmax = tw(G)
1. Partitioning

(1) Add virtual vertex v0 to G and connect all vi ∈ degreemax(G, k) with k such that all

v ∈ V are reachable.

(2) Compute SSSP tree T rooted in vo w.r.t. G.

(3) Select a set of levels L in T , using a heuristic restricted by wmax.

(4) Move vertices in L into Vsep and compute connected components P1, . . . Pm of graph G

with V \ Vsep.

2. Re-partitioning

(5) Construct SSSP tree Tj consistent with T for partition pj with w(pj) > wmax.

(6) Select levels Lj with respect to Tj , whose removal partitions pj into components of

weight < wmax.

(7) Insert vertices of Lj into Vsep and compute the connected components in pj with Vj \
Vsep.

3. Merging

(8) For each pair of partitions (pi, pj) compute coup(pi, pj) and coh(pi, pj) and add them to

the list of merging candidates iff coup(pi, pj) > threscoup and coh(pi, pj) < threscoh.

(9) Select (pi, pj) with maximal coup and merge to new partition pij , if w(pij) ≤ wmax.

Re-compute coup(pi, pij) and coh(pi, pij).

(10) Repeat from (8) as long as (pi, pj) exists with coup(pi, pj) > threscoup and w(pij) ≤
wmax.

1. Partitioning The first phase of the algorithm is dedicated to an initial

partitioning of the input metamodel graph. The goal is to find a minimal

set of vertices to be removed to achieve maximal sized partitions. The size

is bounded by the input wmax. Thereby, we follow a heuristic level-based

approach as given in [3], which reduces the partitioning problem to a Single

Source Shortest Path (SSSP)2 problem.

As given in Alg. 6.1 (1), a SSSP tree is rooted in a virtual element vertex

v0 that is required for a connected graph as a basis for the SSSP tree cal-

culation3. As an extension of the original algorithm, we propose to connect

v0 to element vertices of a maximal degree until all elements are reachable.

First, the element vertex of the maximal degree (maximal number of edges)

is connected to v0, as a result all vertices it connects to are also indirectly

2A SSSP algorithm computes the shortest paths from one vertex to all other vertices with

respect to certain costs.
3The vertex v0 is needed as the root package of a metamodel cannot be used for parti-

tioning, since every vertex would be in the same level due to its direct reachability from the

root package.
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Figure 6.2: Example metamodel and the corresponding graph

connected to v0. Next, the element vertex of the remaining unreachable el-

ement that has the maximal degree is selected and again connected to v0.

This procedure is repeated until all elements are reachable via v0. We chose

the maximal degree as criterion because then a minimal number of new

edges to v0 is created, since a maximal degree indicates a higher number of

reachable vertices.

The vertex v0 is the root of the SSSP tree calculation as in Alg. 6.1 (2),

e. g. by using Dijkstra’s algorithm [21]. The resulting SSSP tree is then ar-

ranged in levels where each level is a set of vertices that have the same

distance to be reached. An example of a level graph is given in Fig. 6.3 (b).

(3) To select levels for removal we apply a heuristic as proposed in

[3]. Outlining their approach, first a level graph is constructed (Fig. 6.3 (a)

shows the levels and (b) the resulting level graph). That is a graph where

each vertex li represents a level Li and is connected to all levels with a

higher distance. Each edge between two vertices vi, vj gets costs assigned

as follows:

cost(vi, vj) = cost(L(vj) \ L(vi)) + 2⌊
2w(Gi,j)

wmax
⌋(d(vj−1)− d(vi)) (6.1)

L(v{i,j}) is a set of vertices that has the same distance as vx to v0, thus

the first part of Equation 6.1 depicts the cost for the removal of level L(vj).
The second part considers the resulting weight of partitions when removing

Lj . The sum of elements in levels between L(vi) and L(vj) is w(Gi,j), while

d(vi), d(vj−1) represent the number of levels between L(vi) and L(vj−1) re-

spectively. These costs are used for a shortest path computation on the level
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Figure 6.3: Example calculation for planar partitioning

graph. The resulting shortest path is a representation of levels to be removed,

which have the lowest costs.

(4) The removal of levels from the graph is done by adding their vertices

to the separator set Vsep. The corresponding edges of the removed vertices

are also removed from the graph. The remaining vertices of the graph G
are calculated for their connected components and form the initial set of

partitions as in Alg. 6.1 (8). Since a heuristic approach has been applied it

can happen that some partitions exceed the upper bound wmax and have to

be re-partitioned.

An example of the initial partitioning phase is given in Fig. 6.3. First, the

virtual root v0 has been added to the metamodel graph and connected to the

element vertex with the maximum degree that is TransactionItem (vertex T).

Since all elements are reachable no additional connection has to be intro-

duced. Following the SSSP calculation the resulting tree is depicted in Fig.

6.3 (a). All resulting six levels are shown in our example labelled L0, · · · , L5.

These levels form the level graph with added source and target vertices ls, lt
as depicted in Fig. 6.3 (b). Each vertex represents a level of the SSSP tree

and is connected to its succeeding levels. For our example the shortest path

from ls to lt is via l3, thus this level is selected for removal and the contained

vertices and their edges are removed as depicted in Fig. 6.3 (c). The result is

formed by calculating the connecting components of the remaining vertices

leading to the three partitions.

2. Re-partitioning The optional re-partitioning phase is applied to all par-

titions P that exceed the size limit wmax as given in Alg. 6.1 (5–7). Since it

is a complex calculation and identical to the one proposed in [3] (pp. 5–9)
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we refrain from detailing it. The phase is optional but some partitions may

violate the size limit.

A SSSP tree Tj for pj is calculated, which has to be consistent with the

original tree T . A tree is called consistent if all vertex distances of Tj have

at most the distances of the SSSP tree T of phase 1.

Of this SSSP tree, two levels can be removed in a way that the resulting

three partitions are at most half of the original weight using the approach

given in [3]. These two levels are removed by adding their vertices to Vsep

and the connected components are calculated. If necessary a set of funda-

mental cycles4 are removed. The removal guarantees resulting partitions of

sufficient weight ≤ wmax and hence size.

Having ensured the maximal size of all partitions p ∈ P the remaining

vertices in Vsep are still unassigned and thus not part of any partition. They

are merged with the partitions calculated w.r.t. the size wmax as described

in the following phase.

3. Merging The previous partitioning and re-partitioning produces two

outputs: a set of partitions P and the elements removed during the phases

Vsep. Since the elements in Vsep are not part of any partition they need to

be merged with the previously calculated partitions. In contrast to the sim-

ple random merge strategy of [3], we propose a merge strategy based on

structure, thus being structure-preserving. To ensure the matching of all el-

ements, we propose to add the remaining elements of the separator Vsep to

P as partitions of the size of one element. We select partitions to be merged

on two measurements: coupling and cohesion.

We propose to perform the merging on a weighted graph allowing for

metamodel specifics. Thereby, we define the edge weights of the input meta-

model graph in accordance with the density-based clustering approach [93],

i. e. attribute edges have a weight of 5, containment/aggregation of 4, asso-

ciations of 2, inheritance has a weight of 1. The weight assignment follows

the rationale of importance that means a higher weight indicates a higher

importance of a relation.

First, the merging phase as given in Alg. 6.1 (8–10) calculates coupling

and cohesion for all pairs of partitions. Inspired by [74] we define coupling

and cohesion as follows:

coup(pi, pj) =
w(E{pi,pj})

w(Epi
)+w(Epj

)

2

(6.2)

coh(pi, pj) =
wavg(E{pi,pj})

|pi|
|pi|+|pj | · wavg(Epi

) +
|pj |

|pi|+|pj | · wavg(Epj
)

(6.3)

4A fundamental cycle is a path inside a tree with the same start and end vertex containing

at most one non-tree edge
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Equation 6.2 defines coupling as the ratio between the sum of weights of

edges connecting both partitions (w(E{pi,pj})) and the average of the sum

of edge weights
w(Epi

)+w(Epj
)

2 in both partitions pi, pj . Complementarily, co-

hesion is defined by taking the relative partition size into account. Cohesion

weights the average edge weight sum of each partition (wavg(Epi
)) by the

relative size of a partition (
|pi|

|pi|+|pj |), with |pi| as the number of elements in

pi w.r.t. both partitions. We chose both measurements because coupling al-

lows to rank source and target partitions based on their connectivity where

cohesion allows to preserve partitions which consist of closely related ele-

ments, instead of merging them and thus adding misleading information for

matching.

In case of two partitions with one element each and one connecting edge

we propose to set coupling to the weight of the connecting edge and cohe-

sion to one, thus ensuring a preferred merging of single element partitions.

Beginning with the pair of partitions with maximal coupling the parti-

tions are merged as given in Alg. 6.1, phase 3 (9). Thereby, a pair pi, pj

is merged if the cohesion fulfils coh > threscoh. We chose threscoh = 4
5

because it captures the borderline case of two partitions with connected

elements. That is the inner connection of two partitions has the maximum

weight 5 for attribute relations and should not be merged if there is a weaker

connection between both partitions, i. e. 4 for containment relations. Addi-

tionally, the maximum size restriction has to be fulfilled. The coupling and

cohesion values have to be calculated for the new merged partition pnew and

all partitions connected to pi, pj .

The merging of partitions of maximal coupling is repeated as given in

Step (10) until no pair can be found which either has a sufficient cohesion

or which cannot be merged without violating the upper bound wmax. The

final output of the algorithm is the set of partitions P which has been created

in the merging phase.

Figure 6.4 depicts an example for the merging phase. On the left (a)

the partitions resulting from the previous initial partitioning are depicted

as dashed line polygons, the numbers of the lines represent the weights of

relations as defined by us before. The coupling of P, CO is calculated by

the weight of edges between them w(E{P,CO}) = 2 and the average of their

own (inner) edges’ weights, for the partition including P that is w(EP ) =
1 + 1 + 1 = 3 and w(ECA) = 0. Consequently, coup(P, CA) = 2

3+0

2

= 4
3 .

Calculating the coupling of the other pairs yields the following numbers

(RT, CO) = 4
3 , (RC, A) = 4, (CO, RC) = 2, (RS, S) = 8

9 , (RS, RC) = 8
9 .

Please note that the pair (RS, CO) is identical to the partition pair (RT, CO).
Resulting from this the partitions RC and A are merged, since they have the

highest coupling.

In the next step considering the recalculated coupling and cohesion val-

ues, the partitions CO and RT are merged. The partitions CO and (RC, A)
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Figure 6.4: Example of the partition merging phase

are not merged because of their cohesion. The cohesion coh(CO, RT ) is cal-

culated with wavg(CO) = 0 because CO has no edge and wavg(RC, A) = 4
because (RC, A) has only one edge. The cohesion is 2

1

3
·0+ 2

3
·4

= 3
4 and does

not exceed the threshold of 4
5 . Finally, (RS, S) are merged while the other

partitions do not satisfy the cohesion threshold. Since then no more merge

partners are available, the final output is exactly as depicted in Fig. 6.4 (b).

We have presented our planar graph-based partitioning, which splits a

metamodel into subgraphs of similar size by optimizing structural informa-

tion. The optimization is achieved by our proposed merging of partitions

based on coupling and cohesion, thus leading to better matching results by

structural matchers. Finally, our partitioning reduces the memory consump-

tion of a matching system and allows for distributed matching, because it

produces enclosed matching tasks. However, it still does not tackle the prob-

lem of runtime, especially on a local machine, which occurs due to pair-wise

comparison of all partition elements. We address this in the following sec-

tion.

6.3 Assignment of Partitions for Matching

Having tackled the memory consumption of a matching system the runtime

still remains an issue and even increases by the partition calculation. Con-

sidering a pair-wise comparison of all partitions of a source and target meta-

model the result is the cartesian product and thus matching of all source

with all target elements. Figure 6.5 depicts an example of pair-wise assign-

ment of all partitions; the source partitions are represented by grey circles,

the target partitions by white ones, the assignment and consequently the

pairs for matching are represented by arrows. The problem is now to re-

duce the number of comparisons with a minimal loss in matching quality.

That means an algorithm is needed which determines relevant partitions

and their assignment to be matched without performing the actual match-
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Figure 6.5: Partition matching without assignment

ing. This process is called partition assignment and is based on matching

those partitions which have the highest similarity. The similarity is calcu-

lated using partition representatives instead of pair-wise element compari-

son to reduce the computational overhead.

In this section we study and compare four partition assignment algo-

rithms. These they are:

• Threshold-based and quantile-based assignment, selecting a subset for

matching,

• Hungarian and generalized assignment, aiming at optimal one-to-one

or one-to-many partition assignments respectively.

First, a similarity measurement for partitions has to be defined as dis-

cussed in the following subsection. Then, we can apply and discuss the four

algorithms for partition assignment.

6.3.1 Partition similarity

The first step towards the partition assignment problem is to obtain similar-

ity values for each partition pair. These values can be calculated in various

ways by applying arbitrary matching techniques, e. g. in [156]. However, if

such techniques are applied on every element of a partition the final result

is again the cartesian product of all elements, which is undesirable because

of the computational effort.

Therefore, we propose to first select representatives for each partition.

Then these representatives are compared pair-wise using structural and lin-

guistic information, leading to source and target partition similarities. Since

the selection itself should not introduce additional overhead we propose to

base the representative selection on the k-max degree as introduced by us

in Sect. 5.1.4, where k represents the number of representatives per parti-

tion. The selection is done in linear time and uses the k elements with the

maximum degree, i. e. the maximal number of neighbours.

The partition similarity is obtained by the similarity measures introduced

for the graph edit distance matcher in Sect. 5.1. There we defined linguistic

and structural similarity.
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Figure 6.6: Partition matching with threshold-based assignment

Linguistic similarity The linguistic similarity is defined by us as the dis-

tance between the labels of two given elements. Thereby, we make use of a

name matcher, e. g. a tri-gram similarity.

Structural similarity We define the structural similarity as the ratio of

edges of two given elements. Thereby, we consider containment, attribute,

and inheritance edges and average the results. Recapitulating it is defined

for two given elements vs and vt as:

struct(vs, vt) =
1

2
· attr(vs, vt) +

1

2
· ref(vs, vt) (6.4)

The structural and linguistic similarity can be aggregated for a cluster

similarity calculation or be used separately. We demonstrated in the context

of a master thesis [59] that using structural similarity is superior to linguis-

tic, because it yields the same matching result quality but a better runtime.

6.3.2 Assignment algorithms

In the following sections we will describe two straight-forward approaches:

threshold-based and quantile-based assignment. Since both approaches use

the calculated similarity values to exclude partition assignments they may

miss partition pairs to be selected for matching. Therefore, we also present

two approaches mapping the assignment problem on an optimization prob-

lem aiming at one-to-one or one-to-many assignments. These approaches

are called Hungarian and generalized assignment.

6.3.2.1 Threshold-based assignment

A high similarity of a given partition pair indicates a large number of similar

elements in both partitions. Therefore, selecting pairs of partitions with a

high similarity should result in a large number of matching elements. The

rationale behind defining a threshold thres, as for instance in the matching
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system Falcon-AO [156], is to select only those partition pairs that have a

similarity exceeding thres. This can be formulated as in (6.5).

f(thres) = {(ps
i , pt

j)|sim(ps
i , pt

j) ≥ thres} (6.5)

The cause problem of this approach is the definition of the threshold

itself. A threshold thres largely depends on the given scenario and varies

as shown in our evaluation. For instance, consider an example of 4 source

and 4 target partitions with similarity values between the partition pairs

of 0.5 and 0.8. A threshold of 0.9 would fail to select any pair at all, even

though it may have worked for previous scenarios. In contrast, a threshold of

0.4 would select every pair for matching. Therefore, a preferable (average)

threshold that works best for any scenario cannot be given.

The threshold-based assignment shows a computational complexity of

O(n2) where n is the maximum of source and target partition count, because

for a given threshold each pair needs to be checked for its similarity.

Figure 6.6 depicts an example result for threshold-based assignment. In

this example a subset of 6 pairs is selected for matching, but two parti-

tions have no match partner, which shows the potential problems using a

threshold-based assignment. Please note, that this example serves as a com-

parative example for the non-assignment given in Fig. 6.5.

6.3.2.2 Quantile-based assignment

We propose quantile-based assignment to overcome the scenario depen-

dency of threshold-based assignment. A quantile q describes a fraction of

the partition pairs to match, e.g. the quantile q = 0.5 selects half of all parti-

tion pairs with the highest similarity. In case the number of source partitions

is denoted as |Ps| = m and the number of target partitions as |Pt| = n, then

the number of selected pairs based on the quantile is ⌈q · n ·m⌉ and these

pairs can be defined as:

f(q) = Q := {(ps
i , pt

j)|ps
i ∈ Ps ∧ pt

j ∈ Pt ∧ |Q| = q · |Ps| · |Pt|∧

∀(ps
i , pt

j) : sim(ps
i , pt

j) ≥ sim(ps
k, pt

l), (ps
k, pt

l) ∈ (Ps × Pt) \Q}
(6.6)

Unlike the threshold-based assignment the quantile-based approach al-

lows to predict the number of partition pairs selected and thereby can pre-

vent having none or all partition pairs selected for matching. This produces

a better result quality (see our evaluation in Sect. 7.5.1) and limits the influ-

ence of a specific scenario.

The quantile-based assignment shows a computational complexity of

O(n2logn) with n as the partition count, because all partition pairs need to

be sorted according to their similarity, for instance by Quicksort (O(nlogn))
and then selected w.r.t. a given quantile.
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Figure 6.7: Partition matching with quantile-based assignment

In Fig. 6.7 an example result for quantile-based assignment with q = 0.5
is depicted. As in threshold-based assignment a subset of partitions to be

matched is selected, but in contrast to threshold-based assignment more

partitions get selected, which are 8 that means 50% of all possible pairs (16).

Still, two partitions are not assigned and consequently will not be matched.

6.3.2.3 Hungarian assignment

Since the partition assignment is closely related to the Knapsack problem

[105] we propose to apply two algorithms from this area. The Knapsack

problem deals with the problem of an optimal distribution of n elements to

m containers. The Hungarian algorithm [85] proposed 1955 by three Hun-

garians, is one solution for the Knapsack problem. The partition assignment

problem is the same problem dealing with an optimal distribution of n par-

titions to m partitions.

The assignment problem originally underlying the Hungarian algorithm

tries to identify the set of optimal assignments of workers to jobs. Mapped

on the partition assignment problem workers represent the source partitions

where the jobs are represented by the target partitions. Thereby, a set of

jobs Ps (source partitions) and a set of workers Pt (target partitions) are

assigned in a one-to-one manner. That means only one job is assigned to

one worker and vice versa, thus they form exact one-to-one assignments.

The assignments are represented in a boolean matrix M = {mij} with i

as the worker and j as the job, with mij = 1 if a job is performed by a

corresponding worker and else 0. A combination of a job and a worker also

has an associated cost value represented in a cost matrix C with each matrix

element cij ∈ [0, 1] . The optimal solution assigns each worker a job while

minimizing the costs as defined in the following equation.

minimize

|Ps|∑

i=1

|Pt|∑

j=1

cij ·mij

subject to

|Ps|∑

i=1

mij = 1, j ∈ 1 . . . |Pt| ∧
|Pt|∑

j=1

mij = 1, i ∈ 1 . . . |Ps|

(6.7)
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Figure 6.8: Partition matching with Hungarian assignment

We propose to adapt the solution for this problem for partition assign-

ment in a one-to-one manner. That means the Hungarian algorithm can be

used to identify one-to-one partition pairs with an optimal overall similarity.

This is done by defining the costs as cij = 1−simij , because the costs depict

the distance between two partitions. The main idea of the algorithm is to

subtract from each row and column of the cost matrix the minimal value. By

subtracting the row or column minimum the position of the minimum leads

to at least one zero in each row and column. Then the algorithm tries to

mark exactly |Pt| rows or columns in such a way that all zeros are covered.

If this procedure fails it again subtracts the minimum for all uncovered ze-

ros. Thereby, the algorithm shows a complexity of O(n3). Since, we adopted

the algorithm unchanged we confer for details to [85].

Figure 6.8 depicts an example output of the Hungarian assignment. As

described, one-to-one assignments are produced with an overall optimal sim-

ilarity. Unfortunately, multiple assignments of source to target partitions are

not identified, since every source gets exactly one target assigned. The prob-

lem of one-to-one assignments becomes more distinct in case of a count

mismatch between the source and target partitions. For instance, in case of

5 source and 100 target partitions only 5 assignments can be computed. The

low number of assignments may lead to a decrease in matching result qual-

ity. Therefore, we also investigate the generalized assignment as described

in the following.

6.3.2.4 Generalized assignment

The Generalized Assignment [105] problem also tackles the assignment of

a set of source and target elements w.r.t. costs. In contrast to the Hungarian

algorithm it relaxes the condition of one-to-one assignments to one-to-many.

Generalized Assignment also deals with the Knapsack problem and an

element to bag distribution. Therefore, a profit matrix P = pij is defined,

representing the profit of assigning an element to a bag. For our partition

assignment problem that is the assignment of a source partition to target

partitions and thus their representative similarity simij = sim(ps
i , pt

j). In

addition, every target partition pt
j ∈ Pt gets a capacity cj (similar to a con-
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Figure 6.9: Partition matching with generalized assignment

tainer). The capacity denotes the maximal number of weight assignable to

pt
j . Consequently, every pair of source partition ps

i ∈ Ps and target partition

pt
j is assigned a weight wij .

The weight and capacity determine the degree of assignability between

two partitions. We chose to use the number of matching partition represen-

tatives for two partitions ps, pt as weight. This number contains the represen-

tatives e with similarity values exceeding a certain threshold x. The number

of representatives considered and chosen by their degree is a user-defined

parameter. We note the weight definition as follows:

wij = w(ps
i , pt

j) = |{(es, et)|sim(es, et) > x, es ∈ ps
i , et ∈ pt

j}| (6.8)

We define the capacity as the union of all possible weights because

this represents the maximal number of assignments possible. That means,

cj = |
⋃

i,j{(es, et)|sim(es, et) > x, es ∈ ps
i , et ∈ pt

j}|. The following equation

summarizes the optimization problem to be solved.

maximize

|Ps|∑

i=1

|Pt|∑

j=1

simijxij

subject to

|Pt|∑

j=1

wijxij < cj ∧
|Ps|∑

i=1

xij = 1

xij ∈ {0, 1}, i ∈ 1 . . . |Ps|, j ∈ 1 . . . |Pt|

(6.9)

Unfortunately, the Knapsack problem is NP-complete and not decidable

[105]. Therefore, several algorithms have been proposed to find an approxi-

mate solution to the problem as presented in [13]. Martello and Tooth [104]

proposed an algorithm with an average deviation of 0.1 % compared to the

optimal solution. Since we implemented the algorithm unchanged we only

give a short outline.

The algorithm consists of two phases: an initial assignment phase and an

optimization phase. The initial phase is executed for each of the measures

pij ,
pij

wij
,−wij ,−

wij

cj
choosing assignments in the way that the minimum of

the measures is assigned to the maximum of the measures. The procedure

is done for all elements and values choosing the solution with the highest
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profit. Subsequently, the optimization phase tries to swap elements to im-

prove the profit under the capacity restriction.

Figure 6.9 depicts an example output for the generalized assignment so-

lution of the partition assignment problem. It shows that every source par-

tition gets at least one target partition assigned for matching and that mul-

tiple assignments for one source partition are part of the output. However,

the weight calculation and thus the capacity calculation need the number of

representatives and the definition of a threshold which introduces another

parameter. The algorithm also suffers from a decrease of the fraction of pairs

selected with increasing input size. The more partitions are part of the in-

put the smaller the fraction of all possible pairs selected for matching. The

fewer pairs selected for matching the fewer elements are matched which

potentially decreases the result quality.

6.3.3 Comparison

The four assignment approaches are different in their nature and each shows

advantages and disadvantages. Therefore, we have arranged the approaches

in Tab. 6.2. The first column shows the approaches and the next columns list

the corresponding advantages and disadvantages. The threshold-based as-

signment is the simplest approach and allows for many-to-many mappings.

As discussed before it suffers from the fixed number as threshold and thus is

scenario specific. Besides the major drawback of scenario dependence also

the coverage, that is the fraction of elements of a metamodel considered for

matching, is unknown. As shown in the example in Fig. 6.6 the threshold-

based assignment may skip partitions for matching and thus lower the cov-

erage. Coverage is the share of assigned partition pairs to all possible pairs,

i. e. the cartesian product.

Quantile-based assignment also allows for many-to-many mappings and

shows stable results in contrast to threshold-based assignment. Since a frac-

tion of all possible pairs is selected the number is predictable. However,

quantile still suffers from the problem of coverage, because partitions may

be skipped for matching, thus the coverage is unknown.

Interpreting assignment as an optimization problem the approach of

Hungarian assignment produces one-to-one mappings for all partitions and

thus it is complete. That means it shows a complete coverage, because every

partition will be considered for matching. The strength of the Hungarian is

also its weakness because it does not allow for one-to-many assignments. It

also shows cubic complexity (O(n3)) which introduces computational over-

head. Since the Hungarian algorithm selects optimal one-to-one pairs, the

overall number of pairs is lower than for quantile (equal to the number of

source or target partitions).

The generalized assignment approximation tries to overcome some of

the limitations of the Hungarian algorithm. It allows for one-to-many map-
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Assignment Complexity Advantages Disadvantages

Threshold O(n2) n : m mappings manual threshold, scenario

dependent, unknown cover-

age

Quantile O(n2logn) n : m map-

pings, selected

pairs pre-

dictable

unknown coverage

Hungarian

[85]

O(n3) 1 : 1 mappings,

complete cover-

age

O(n3), no n : 1 mappings

Generalized

[104]

O(n2logn) 1 : n mappings,

complete cover-

age

uses internal threshold

Table 6.2: Advantages and disadvantages of the four assignment approaches

pings while having a quadratic complexity. However, it still shows a small

number of pairs being selected for matching which may reduce matching

quality. Additionally, the generalized assignment relies on an internal thresh-

old (the capacity) which needs to be defined on average scenarios.

As discussed all algorithms show advantages as well as disadvantages.

Therefore, we will examine the algorithms in our evaluation to derive rec-

ommendations for the usage of partition assignment approaches.

6.4 Summary

In order to solve the memory problems in the context of large-scale meta-

model matching we proposed a planar graph-based partitioning and partition-

based matching process. To reduce runtime we also considered the partition

assignment problem. Thereby, our novel approach determines and compares

partition representatives and based on their similarity selects partitions for

matching. We studied four solutions, two of them mapping the assignment

on an optimization problem. These contributions are summarized in Tab.

6.4 and detailed as follows.

Planar graph-based partitioning We have presented a planar partition-

ing approach to cope with the demands of large-scale metamodel match-

ing. First, we deduced a requirement driven analysis of existing partition-

ing and clustering algorithms. We concluded with the selection of planar

graph-based partitioning [3], also refered to as PES, mainly because of its

quadratic runtime and support for metamodel graphs. We adopted the three-
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Concept Contributions

Planar graph-based

partitioning • Planar graph-based partitioning for matching with

a partition-based matching process

• Definition of seed vertex for partitioning based on

k-max degree

• New partition merging phase based on coupling and

cohesion

Partition assignment
• Partition similarity calculation based on k-max de-

gree representatives

• Analysis and comparison of four assignment ap-

proaches

• Mapping of the partition assignment problem on

the generalized assignment algorithm

Table 6.3: Contributions of graph-based partitioning and assignment

phase approach of planar partitioning, which splits an input metamodel into

partitions of similar size by an initial partitioning utilizing our k-max degree

approach and re-partitioning by removing elements. Finally, these elements

and partitions are merged as proposed by us using coupling and cohesion to

optimize the amount of structural information per partition.

Partition assignment To reduce the number of comparisons between par-

titions we proposed solutions for the partition assignment problem. There,

partitions get assigned in pairs for matching based on their similarity, pre-

ferring pairs with high similarity for increased result quality. For an effi-

cient partition similarity calculation we propose to apply our k-max degree

approach for selecting partition representatives. These representatives are

used for partition similarity calculation. For the selection of partitions to be

matched we investigated four partition assignment approaches: threshold,

quantile, Hungarian and generalized assignment.

Based on an initial similarity between partitions, a selection of pairs has

to be made. Thereby, threshold and quantile allow for many-to-many par-

tition assignments by either selecting pairs above a certain threshold or a

fraction of possible pairs. In contrast, Hungarian and Generalized Assign-

ment try to solve the assignment as an optimization problem. They produce

either one-to-one (Hungarian) or one-to-many assignments (Generalized As-

signment). These approaches will be compared in our evaluation.





Chapter 7

Evaluation

In Chap. 5 we presented a planar graph edit distance matcher and graph

mining-based matching to improve matching result quality. To tackle the

runtime and memory issues we proposed in Chap. 6 planar graph-based

partitioning and discussed four partition assignment algorithms. This evalu-

ation chapter will answer the question: To which degree did we achieve our

goals to improve and support large-scale metamodel matching?

Therefore, we present the fourth contribution of our work: a systematic

evaluation based on existing real-world large-scale mappings from the MDA

community and SAP business scenarios. These mappings are compared to

the automatic results from our validating matching system. This matching

system incorporates our matchers and the proposed partitioning. In detail,

we first present our evaluation strategy and describe the data sets used. We

distinguish academic data sets from real-world business data and will show

that especially the real-world data fulfils the requirements of a hard and di-

verse data set. We then describe our matching framework MatchBox, which

serves as the implementation basis for our evaluation. Subsequently, we in-

troduce the measurements used. We then evaluate our matchers and the

partitioning in terms of correctness and completeness as well as memory

consumption and runtime behaviour. Finally, we summarize and discuss our

results by presenting the applicability and limitations of our proposed solu-

tions.

7.1 Evaluation strategy

In order to study the quality of a matching system, the quality of the map-

pings calculated has to be assessed. This assessment is done by comparing

the mappings calculated with existing mappings, so-called gold-standards,

for two given metamodels. Based on this correctness and completeness and

their harmonic mean can be derived. Those measures are also widely used

in matching system evaluations, e. g. in [126, 37, 33, 38].

113
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Based on this approach the main goal of our evaluation is to demonstrate

to which degree our solution meets the requirements and corresponding

goals. We define the following success criteria based on our requirements.

The first goal is to increase the correctness and completeness of matching re-

sults (G1), the second to support matching of large-scale metamodels (G2).

For the first of our goals G1 we derived the following questions to be an-

swered by our evaluation:

• To which degree does our planar graph edit distance matcher improve

result quality?

• To which degree does our design pattern and redundancy matcher

improve result quality?

The derived success criterion for our matchers is an increase in result

quality. The methodology we apply is to compare our matchers to a baseline.

The baseline is a matching system with state of the art matching techniques.

Thereby, we observe and interpret resulting changes in terms of correctness

and completeness of the matching results.

In order to assess the goal G2 regarding our graph-based partitioning we

formulate the following questions:

• Which partition size is the optimal choice w.r.t. to maximal result qual-

ity?

• To which degree does our planar partitioning reduce memory con-

sumption?

• Which assignment algorithm should be used for runtime reduction

while minimizing the loss in result quality?

The resulting success criterion is a decrease in memory and runtime with

a minimal loss in result quality. The methodology we follow to answer these

questions is to compare our matching system without (baseline) and with

our partitioning algorithm. Thereby, we investigate memory consumption

and runtime as well as changes in correctness and completeness to deter-

mine the trade-off between quality and scalability.

The main challenge of a matching system’s evaluation is the test data,

which means the gold-standards. Since we developed generic concepts we

investigated several data sets from different technical spaces to apply our

concepts. First, we extracted gold-standards from model transformations of

the ATL-zoo as proposed by us in [151]. Since this data set is of academic na-

ture we also investigated mappings available within SAP. Thereby, we discov-

ered real-world message mappings between business schemas which serve

as the second data set. In the following we will first describe our matching

system’s implementation and subsequently our data sets.
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7.2 Evaluation framework: MatchBox

In this section we will introduce our evaluation matching system. Basically,

it takes two metamodels as input and creates a mapping, i. e. correspon-

dences between model elements, as output. In order to create mappings we

use a matcher framework that forms the basis for combining results of dif-

ferent metamodel matching techniques. For this purpose, we adopted and

extended a matcher combination approach as proposed by us in [146, 147].

We have chosen the SAP Auto Mapping Core (AMC), which is an imple-

mentation inspired by COMA++ [25], a schema matching framework. In

contrast to COMA++, the AMC consists of a set of matchers operating on

trees. It incorporates schema indexing techniques for industrial applications,

whereas COMA++ is an academic prototype operating on a directed acyclic

graph (closest to a tree).

The evaluation was performed on a laptop running Java. The laptop was

running Java 1.6.0.22 64-bit on 4 Intel i5 cores with 2.4 GHz each. The main

memory was 4 GB of which 2 GB had been assigned to Java. The operating

system was Windows 7 on 64 bit.

In the following we will explain MatchBox’s architecture and its compo-

nents. Afterwards, we outline the matching algorithms implemented, demon-

strating how they are applied to metamodels. Finally, we describe the com-

bination of the different matchers’ results by an aggregation and selection

leading to a creation of mappings.

7.2.1 Processing steps and architecture

MatchBox is built around an exchangeable matching core, enriching it with a

graph model and functionality for metamodel import, similar to a traditional

matching system as described in Chap. 2. In order to create mapping results

several steps have to be performed, as outlined in Fig. 7.1:

1. Importing metamodels into the internal data model of MatchBox,

2. Applying matchers to obtain similarity values,

3. Combining similarity values of different matchers (aggregation and

selection) and creating a mapping.

These steps are in detail: (1) The metamodels have to be transformed

into the internal graph model of MatchBox. This step is necessary to apply

generic matching techniques, e. g. independent from the technical space or

level of abstraction. Having transformed the metamodels, several matchers

can be applied, each leading to separate results for two metamodel elements

(2). The system can be configured by choosing which matcher should be in-

volved in the matching process. Each matcher places its results into a matrix
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Figure 7.1: Processing of our metamodel matcher combination framework

MatchBox [151]

containing the similarity values for all source/target element combinations.

These matcher result matrices are arranged in a cube, which needs to be ag-

gregated in order to select the results for a mapping. This is done in the third

step (3) to form an aggregation matrix (e. g. by calculating the average). The

entries in the matrix are similarity values for each pair of source and target

elements. These values are filtered using a selection, e. g. by selecting all el-

ements exceeding a certain threshold. Finally, the selected entries are used

to create a mapping.

7.2.2 Matching techniques

The matchers of the core operate on the internal data model. Each matcher

takes two elements as input and produces their similarity value as output.

Adopting the SAP AMC framework, we applied a set of most common

matchers, namely: name matcher, name path matcher, parent matcher, chil-

dren matcher, sibling matcher, leaf matcher and data type matcher. The con-

cepts of the matchers implemented are described in the following.

Name matcher This matcher targets the linguistic similarity of metamodel

elements. It splits given labels into tokens following a case-sensitive ap-

proach. Afterwards, for each token a similarity based on trigrams is com-

puted. The trigram approach determines the total count of equal character

sequences of size three (trigram) and finally compares them to the overall

number of trigrams. Alternativly, a string edit distance based on Levenshtein

[153] can be used.

Name path matcher This matcher performs a name matching on the con-

tainment path of an element. Hence, it helps to distinguish sublevel-domains

in a structured containment tree even if leaf nodes do have equal names.

Essentially, a name path is a concatenation of all elements along a contain-
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ment path for a specific element. For matching the name matcher is applied

on both name paths, thereby separators are omitted.

Parent matcher This matcher follows the rationale that having similar par-

ents indicates a similarity of elements. The parent matcher computes the

similarity of a source and target element by applying a specific matcher (e.g.

the name matcher) to the source’s and target’s parents and returns the simi-

larity calculated.

Children matcher The children matcher follows the rationale that hav-

ing similar child elements implies a similarity of the parent elements. This

matcher uses any matcher to calculate an initial similarity, for the imple-

mentation we chose the leaf matcher since this matcher shows the best re-

sults. The children matcher evaluates the set of available children for a given

source and target node. Comparing both sets by applying the leaf matcher

leads to a set of similarities which are combined using the average strategy.

Sibling matcher The sibling matcher follows an approach similar to the

children matcher. It is based on the idea that a source element which has

siblings with a certain similarity to the siblings of a given target element

indicates a specific similarity of both elements. As in the children matcher,

any matcher can be used for the calculation of similarity values for the sib-

lings. In our implementation, we again chose the leaf matcher. The results

of the separate matching between the different siblings are stored in a set.

Finally, the set is combined as in the children matcher using the average of

all values.

Leaf matcher This matcher computes a similarity based on similar leaf

children. Thereby, the subtree beneath an element is traversed and all ele-

ments without children (leaves) are collected. This set of leaves correspond-

ing to a source element is compared to the set belonging to a target element

by applying the name matcher and aggregating the single results for the

source and target element. These aggregated values are aggregated again

using the average strategy.

Data type matcher The data type matcher uses a static data type conver-

sion table. In contrast to the type system provided by XML, metamodels

and in particular EMF allow a broader range of types. For example, EMF

allows defining data types based on Java classes. We extended the data type

matcher by conversion values for metamodel types and a comparison of in-

stance classes. For instance, comparing two attributes one of type EFloat the

other of type EInt, the data type matcher evaluates their data types, performs

a look-up on its type table and returns a similarity of 0.6.
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Name 
matcher

A B C

X 0.80 0.50 0.11

Y 0.44 0.66 0.08

Z 0.10 0.09 0.56

(i) Matcher results (ii) Aggregation (max) (iii) Selection (treshold > 0.4)

Result A B C

X 0.8 0.5 0.11

Y 0.44 0.66 0.17

Z 0.10 0.10 0.56

Source Target Value

X,Y A 0.7, 0.6

Y B 0.66

Z C 0.56

Leaf
matcher

A B C

X 0.7 0.0 0.0

Y 0.0 0.47 0.17

Z 0.0 0.10 0.30

Figure 7.2: Example of aggregation and selection of matcher results

7.2.3 Parameters and configuration

Following the AMC concept, each matcher produces an output result in the

form of a matrix. This matrix orders the source and target elements along

the X and Y axis respectively. The cells are filled with similarity values be-

tween 0 and 1. All similarity matrices are arranged along the matcher types

(Z axis) resulting in a cube. An example for a similarity matrix is given in

Fig. 7.2, part (i).

In order to combine the results obtained, the combination component

supports different strategies adopted from the AMC similar to the ones pro-

posed in [8] or [25]. The strategies are aggregation, selection, direction and

a combination thereof. The aggregation reduces the similarity cube to a ma-

trix, by aggregating all matcher result matrices into one. It is defined by

three strategies: max, average, and weighted. The selection filters possible

matches from the aggregated matrix according to a defined strategy, e. g. see

Fig. 7.2 (ii) and (iii). Possible strategies are threshold, maxN, and maxDelta.

The direction is dedicated to a ranking of matched elements according to

their similarity.

Matchers which use other matchers need to combine similarity values,

e. g. the children and sibling matchers. This is covered by providing two

strategies: average and dice. For more details on the strategies please see

Sect. B.2 in the appendix.

These combination strategies grant the possibility of configuring the

matching results by using the strategies and their parameters as outlined

before. Typically, a default strategy is defined for a user of MatchBox. Fol-

lowing the matching process, having aggregated and selected the similarity

values, the mappings are created.
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7.3 Evaluation Data Sets

The goal of our data set selection was to have heterogeneous real-world

and academic data that covers a variety of structural and linguistic proper-

ties. We selected two evaluation data sets, the ATL-zoo1 as proposed by us

in [151] and web service message mappings in an enterprise environment

(ESR). To introduce both sets we will first define the metrics used to describe

them, the data set statistics can also be found in [149]. We separated them

because the first is an academic data set and the second is from an enter-

prise context of SAP. In addition, the ATL-zoo data sets consist of EMF [109]

metamodels, where the ESR data is imported from schemas extracted from

web service message mappings.

7.3.1 Data set metrics

The real-world and academic data sets we introduced are diverse in size,

structure, naming, etc. and incorporate in sum 51 mappings. Since the meta-

model definition or graph itself can be difficult to comprehend when exceed-

ing a certain size we characterize them using metrics. We divide the metrics

into the following three groups:

• Dimensions of metamodels and mappings,

• Linguistic properties and,

• Structural properties.

Dimensions The first metric is the size sm of a metamodel m as defined

in (7.1). It is defined as the number of elements Em of the metamodel m.

Please note that the size does not contain the number of relations or labels.

sm = |Em| (7.1)

The size of a metamodel is not sufficient information to characterize

a mapping between two metamodels ss and st. Therefore, we also define

the source-target element ratio as a metric to show the ratio of the size of

metamodels mapped. We define the ratio (7.2) as the minimum of source

and target metamodel size ss/st divided by the maximum of the source and

target size.

r =
Min(ss, st)

Max(ss, st)
(7.2)

Following the ratio, a mapping’s size is also of interest, because it shows

the number of matches which are to be discovered by a matching system.

1http://www.eclipse.org/m2m/atl/atlTransformations/
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We define a mapping’s size (7.3) as the number of matches M , which are a

subset of the cartesian product of source Es and target elements Et.

m{s,t} = |M ⊇ Es × Et| (7.3)

Having defined a mapping’s size and the source-target metamodel ratio,

the next step is to investigate the coverage of a mapping. That is the average

of the fractions of the mapping and metamodel sizes. That means how many

metamodel elements are mapped relative to all elements.

cm =
1

2
· (

ms

ss
+

mt

st
) (7.4)

Linguistic properties In accordance with the matching techniques classifi-

cation of Sect. 2.1.2.2, the linguistic properties can be given by the number

of labels available. In the context of metamodels these lables are names.

Therefore, the name similarity and thus amount of linguistic information

available for matching can be measured by the name overlap of the elements

of the metamodels to be compared. The name overlap, as also used by [64],

describes the ratio between the identical and all names. As defined in (7.5)

it is the fraction of identical (overlapping) source element name labels Ln
s

(n denotes the name) and target element name labels Ln
t (Ln

s ∩ Ln
t ) and all

name labels given by both metamodels (Ln
s ∪ Ln

t ).

N =
Ln

s ∩ Ln
t

Ln
s ∪ Ln

t

(7.5)

Since the name overlap only describes a strict linguistic similarity by

requesting identical names we relax the condition by using token overlap

instead of names. We define a set of tokens as trigrams, e. g. as in the match-

ing systems [100, 23] of a name tri(L), that is all substrings of size three.

We took trigrams because it is a common approach for name matching and

we define the metric as given in (7.6). The equation is similar to Eq. 7.5 but

uses tokens rather than names.

T =
tri(Ln

s ) ∩ tri(Ln
t )

tri(Ln
s ) ∪ tri(Ln

t )
(7.6)

Structural properties The structural properties are defined by the under-

lying graph structure, which we aim to utilize for matching. Since we make

use of our k-max degree approach, we give values for the maximal degree of

a metamodel’s element, that is the number of neighbours or edges (except

the root package element). For the definition please see Sect. 2.2, Eq. 5.5.
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We define the edge count as another metric. The number of edges is

defined as the number of relations Rm of a metamodel m as given in (7.7).

em = |Rm| (7.7)

To measure the amount of information contained in a tree we define the

tree-original ratio. The ratio captures the number of edges in a metamodel’s

tree Rtree relative to the original graph Rgraph. It is defined as in (7.8), which

defines the fraction between the tree’s edges and the graph’s edges.

δtree =
|Rtree|

|Rgraph|
(7.8)

Similar to the tree ratio we also define the planar-original graph ratio.

That is the fraction of edges contained in the planarisation of a graph Rplanar,

and the edges of the original graph Rgraph(see (7.9)).

δplanar =
|Rplanar|

|Rgraph|
(7.9)

In the subsequent sections we will apply our metrics on the ESR and

ATL-zoo data to characterise the mapping data sets used for our evaluation.

7.3.2 Enterprise service repository mappings

The enterprise service repository mappings are a heterogeneous real-world

data set covering various business domains. It consists of more than 100

mappings2. These mappings are extracted from the ESR3 of SAP. Moreover,

they are heterogeneous in naming4 as well as in structure.

The mappings have been manually exported from the ESR. Since they

are defined in a SAP proprietary mapping format [83], they have been im-

ported using a parser generated by a grammar specification using EMFText

[57]. The grammar is given in Appendix A.2. The ESR mappings and meta-

models are then automatically transformed into our internal mapping model

using Java.

From the available ESR data we selected 31 mappings and consequently

62 participating metamodels. We based the selection on the matchability of

the cases5. Please note that we did not remove existing duplicate schemas

2The domains included in this diverse data set are: financial, human resources, point of

sale, health care, device integration, accounting, supplier relationship management (SRM),

supply chain management (SCM), etc
3A central repository in which service interfaces and enterprise services are modeled and

their metadata is stored[83].
4The languages used are English, German, and Spanish and there are metamodels that

only use codes as naming, etc.
5The selection was based on a threshold of 0.2 for the F-Measure obtained by an average

matching configuration. That means at least 20% of all mappings should be found by the

standard MatchBox and be correct.
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Figure 7.3: Size of ESR metamodels

since they participate in different mappings and are, therefore, also multiple

times part of the matching.

Metamodel size The ESR mappings consist of the 62 metamodels partic-

ipating in 31 mappings. The maximum size is 1,401 elements, where the

smallest metamodel consists of 6 elements. Figure 7.3 depicts the sizes of

all 62 metamodels sorted in an ascending order. It can be seen that most of

them are below a size of 200 elements. However, we also identified 15 large-

scale examples which are used to evaluate the scalability of our approach.

Source target ratio We depict the distribution of the source target element

ratio r in Fig. 7.4. To better illustrate the smaller examples we removed the

ratio for examples with more than 500 elements (those are almost equal in

size and thus close to the line). The centred line shows a one to one ratio

that means source and target size are equal. Most of the mappings show

a similar size ratio. However, there are extreme values which show a ratio

of 17 to 479 being mapped onto each other. This raises the question of the

mapping size and coverage, which will be answered in the following.

Mapping size The ESR mapping data set comprises 31 mappings with an

average size of 150.09. The maximal size is 1,401 where the minimum is 4.

The distribution of the mappings is given in Fig. 7.5. Most of the mappings

are below 200 elements and thus not of large-scale dimension. However,

eight mappings exceed the size of 500 and are not depicted for a better

overview. The ratio of those mappings is almost one.

Mapping coverage The coverage of the ESR mappings, i. e. the ratio of

source and target elements mapped, is depicted in Fig. 7.6. On average

the coverage is 0.83, that means that on average 83% of source and tar-

get elements are mapped onto each other. The maximum is 1, which means

all elements are mapped, where the minimum is 0.30. There only 30% of
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Figure 7.5: Size of ESR gold-standard mappings
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Figure 7.6: Coverage of ESR gold-standard mappings

all elements are mapped onto each other. Again these values underline the

real-world properties of the ESR mappings and its considerable range of

mappings.

7.3.2.1 Linguistic properties

The linguistic properties of the ESR mappings are investigated by the name

overlap, and token overlap.

Name overlap The diagram in Fig. 7.7 shows the distribution of the name

overlap of our ESR data (grey bars). 16 of all metamodel pairs show no

name overlap, 4 are identical in their names with an overlap of 1.0, where

4 show only an overlap of 0.1. The remainder distributes between 0.1 to

1.0 overlap. This demonstrates that the ESR mappings include some identi-

cal mappings but a lot with different naming which indicates failure when

applying name-based matching and thus improvements by structure-based

approaches. This is also underlined by an average name overlap of 0.28.

Token overlap The token overlap is depicted in Fig. 7.7 (white bars). Com-

plementary to the name overlap it depicts the number of overlapping tri-

grams. This time all mappings show a token overlap of at least 0.1. In ad-

dition, 17 cases have a token overlap of 0.2 or less which is also unsuitable

for name-based matching but 6 cases have a token overlap of 1.0 which are

the identical mappings and derivations thereof.

7.3.2.2 Structural properties

The structural properties for the enterprise service mappings are first mea-

sured by the number of edges available per metamodel, indicating the infor-

mation available for matching. Figure 7.8 shows the number of edges for all

ESR mapping metamodels ordered according to the metamodel’s size. On
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Figure 7.7: Name and token overlap for ESR source and target metamodels
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Figure 7.8: Number of edges for ESR metamodels

average a metamodel has 203.79 edges, where at most 1,491 edges exist,

the minimum is 5 edges.

Maximal degree Since we follow a degree-based approach whenever a

representative or element is selected we took values for the maximum de-

gree of the ESR metamodels. We ordered them according to a metamodel’s

size in Fig. 7.9. The maximal degree has no direct connection to a meta-

model’s size, small metamodels do show a smaller max degree than large

ones. The average maximal degree is 25.16, with a maximum of 141 and a

minimum of 5. The average degree for all ESR metamodel elements includ-

ing attributes is 1.13.

The argumentation of our approach is based on the amount of structural

information and the superiority of planar graphs compared to trees. There-

fore, we investigated the edge ratio of the ESR metamodels graphs w.r.t. a

tree as well as to a planar graph representation.

Tree-original graph ratio The percentage of loss in edges comparing a

tree or planar graph to the orginal graph is depicted in Fig. 7.10. The test
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Figure 7.9: Maximal degree for ESR metamodels
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Figure 7.10: Loss in edges (1− δplanar, 1− δtree respectively) for ESR meta-

model graphs

cases are ordered in an ascending order of the metamodels size. The values

of the tree edge loss show that independent of a metamodel’s size only 3

metamodels are indeed trees, since they have zero loss. However, 59 of 62,

i. e. 95% of all models are not trees. The loss of information is up to 0.25. On

average 0.13 is lost, which means on average a tree of an ESR metamodel

only contains 87% of structural information in terms of edges compared to

the original metamodel graph.

Planar-original graph ratio In comparison to the tree original ratio, we

also took the planar-original graph ratio. The value is on average 0.999%

meaning almost all ESR metamodels are planar and can be used with our

algorithms without any loss in structural information. The maximum loss of

edges is 0.026%.

7.3.3 ATL-zoo mappings

The ATL-zoo mappings are a data set extracted from a publicly available

source6. It is a collection of 109 ATL transformations serving educational and

6http://www.eclipse.org/m2m/atl/atlTransformations/
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Figure 7.11: Size of ATL metamodels

academic purposes. These transformations are defined between two meta-

models using the Atlas Transformation Language (ATL) [70] which defines

a grammar for specifying mappings. These mappings express one-to-one as

well as one-to-many correspondences. We used these transformations for

matching evaluation by transforming them into our internal mapping model.

A detailed description of our implementation can be found in Appendix A.1.

We selected 10 out of the 109 transformations based on their real-world

closeness omitting educational and toy examples. We also omitted transfor-

mations whose metamodels are not based on EMF, because our matching

framework MatchBox relies on it. Additionally, we took 10 examples from

an academic investigation by Kappel et al. [73]. They used examples for inte-

grating Ecore, UML, and WebML, which we easily imported into our internal

data model, since their mapping model is close to ours. In the following we

will detail the ATL data set similar to the ESR data set.

Metamodel size The size of the participating metamodels range from 5 to

142 elements with an average of 42.55 elements. The corresponding sizes

are also depicted in Fig. 7.11 ordering them in ascending order. The meta-

models are considerably smaller than the ones from the ESR data set which

can also be seen in the size of the gold mappings.

Source target ratio The ratio between the source and target metamodel’s

sizes for the ATL-zoo metamodels is given in Fig. 7.12. Compared to the ESR

mappings it shows a similar behaviour with most of the mappings being of

rather small and similar size. The average source target ratio is similar to

the ESR’s ratio. Thereby, the values range from 0.13 to 1.00 with the biggest

size mismatch being of 130 to 24 elements.
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Figure 7.13: Size of ATL gold-standard mappings

Mapping size The mappings extracted from the ATL-zoo are at minimum

of size 3 and at maximum 100. Furthermore, most of them are around the

size of 10 elements as shown in the diagram of Fig. 7.13. The average size

is 24.95 elements mapped for a source and target metamodel.

Mapping coverage The coverage of the mappings follows a lower dimen-

sion compared to the ESR, i. e. on average it is 0.35 for ATL in contrast to

0.85 for ESR. That means that the mappings cover fewer elements than the

real-world mappings, which underlines the academic nature of the ATL-zoo

mappings. The distribution of the coverage is shown in Fig. 7.14 ordered

according to the gold mapping size.
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Figure 7.14: Coverage of ATL gold-standard mappings

7.3.3.1 Linguistic properties

The linguistic properties of the ATL data set are again given by the overlap

of names and tokens for each pair of metamodels participating in a gold-

standard mapping (see Fig. 7.15).

Name overlap The ratio of identical names, that is the name overlap, is

on average 0.17, with 9 showing a minimum of 0 and 2 a maximum of 0.74.

The remaining metamodel pairs show values between 0.1 and 0.4.

Token overlap The token overlap is in a similar range, with an average

of 0.24 and a minimum of 0 and maximum of 0.9, where only 1 of all 20

transformations has no overlap at all. The majority has an overlap of 0.1,

one case shows an overlap of 0.85 (part of the class 0.9 in Fig. 7.15). This

shows that the ATL-zoo has slightly lower linguistic information available

compared to the ESR data.

7.3.3.2 Structural properties

The structural properties are depicted in Fig. 7.16 in terms of edges ordered

according to the corresponding metamodel’s size in ascending order. Natu-

rally, the number of edges increases with an increasing size in metamodels.

On average a metamodel has 54.65 edges, with at most 177 edges and a

minimum of 6 edges.

Maximal degree The maximal degree distribution for the ATL-zoo is shown

in Fig. 7.17. The average maximal degree is 7.2 ranging from 3 up to 17.

This is less than the 25.16 of the ESR mappings but can be reasoned by the

metamodels’ sizes. The average element degree including attributes is 1.33.
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Figure 7.16: Number of edges for ATL metamodels
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Figure 7.17: Maximal degree for ATL metamodels
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Figure 7.18: Loss in edges (1 − δplanar, 1 − δtree respectively) for ATL meta-

model graphs

Tree-original graph ratio The ratio of edges between a tree and a meta-

model’s graph is depicted in Fig. 7.18. None of the ATL-zoo metamodels is

a tree. The maximal ratio is 0.87. This also shows that at least 13% of all

edges are lost and not available for matching. Furthermore, the minimum

ratio is 0.37 which implies a considerable loss of 63% of edges. On average

more than one quarter of all edges are not part of a tree given by an average

ratio of 0.72.

Planar-original graph ratio In contrast to trees, a planar graph holds

more information as given in the planar-original graph ratio in Fig. 7.18.

Only 3 of the 40 metamodels are not planar which means that for 37 meta-

models no information is lost. The remaining three have a loss in ratio of

4%, 7%, and 12% respectively. That means that almost all edges are pre-

served by making the graph planar. The amount of information contained

is consequently more than in a corresponding tree, since the planar-original

graph ratio has an average ratio of 0.99%.

7.3.4 Summary

Both data sets ESR and ATL are used by us for evaluating our matching sys-

tem. The ESR data set shows a wider range of mappings and also in terms

of size provides large-scale examples. In contrast, the ATL Zoo metamodels

show more structural information than the ones from ESR, which is due

to the fact that the ESR metamodels are extracted from schema definitions

which serve as a basis of exchange in the SAP PI system [83]. Schemas by

their nature have less structural information, because they are built around

tree definitions which become graphs by type references. These schemas are

used as metamodels on a type-based graph. That means the type informa-

tion is preserved in a graph structure rather than flattened and converted to
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ESR ATL

Metric Avg. Max. Min. Avg. Max. Min.

Metamodel size 180.94 1,401.00 6.00 42.55 142.00 5.00

Source target ratio 0.55 1.00 0.04 0.87 1.00 0.19

Mapping size 153.94 1,401.00 4.00 24.95 100 3.00

Mapping coverage 0.83 1.00 0.30 0.35 1.00 0.15

Name overlap 0.28 1.00 0.00 0.17 0.74 0.01

Token overlap 0.40 1.00 0.02 0.24 0.85 0.03

Maximal degree 25.16 141.00 5.00 7.20 17.00 3.00

Edge size 203.79 1,491.00 5.00 54.65 177.00 6.00

Tree ratio 0.87 1.00 0.75 0.72 0.87 0.37

Planar ratio 1.00 1.00 0.98 0.99 1.00 0.88

Table 7.1: Comparison of metrics for ESR and ATL data set

a tree. Table 7.1 shows an overview of the numbers presented to character-

ize and compare the ATL and ESR data sets.

We conclude that the ESR and ATL data sets provide heterogeneous ex-

amples in size, linguistic, and structural properties. Consequently, they pro-

vide a profound basis for our evaluation as given in the following.

7.4 Evaluation Criteria

To evaluate the matching quality we use the established measures: precision

p, recall r, and F-Measure F , which are defined in [129] as follows. Let tp be

the true positives, i. e. correct results found, fp the false positives, i. e. the

found but incorrect results, and fn the false negatives, i. e. not found but

correct results. Then the formulas for these measures are as in (7.10):

p =
tp

tp + fp

r =
tp

tp + fn

F = 2 ·
p · r

p + r

(7.10)

• Precision p is the share of correct results relative to all results obtained

by matching. One can say precision denotes the correctness, for in-

stance a precision of 0.8 means that 8 of 10 matches are correct.

• Recall r is the share of correctly found results relative to the number of

all results. It denotes the completeness, i. e. a recall of 1 specifies that

all mappings were found, however, there is no statement about how

many more (incorrect) matches were found.
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• F-Measure F represents the balance between precision and recall. It

is commonly used in the field of information retrieval and applied by

many matching approach evaluations, e. g. [98, 72, 37, 38, 151].

The F-Measure can be seen as the effectiveness of the matching balancing

precision and recall equally. For instance, a precision and recall of 0.5 leads

to an F-Measure of 0.5 stating that half of all correct results were found and

half of all results found are correct.

It is important to note that, when we refer to average precision, re-

call, and F-Measure we took the average of those measures separately. That

means an average F-Measure is the average of all F-Measures and not calcu-

lated as the F-Measure from the average precision and recall.

7.5 Results for Graph-based Matching

The answer to the question: ”To which degree does our planar graph edit dis-

tance matcher improve result quality?” will be given in this section. Thereby,

we followed the approach to first take values for the best average combi-

nation using our original system without our graph matchers. We then ex-

change one of the original matchers for our graph matchers and measure

the quality again. The resulting delta shows the expected improvements of

our approach. The detailed series can be found in [149].

Baseline Precision, Recall, and F-Measure serve as a basis for comparison

of the result quality of our GED matcher and our mining matchers with

our baseline of established matching techniques implemented in the Match-

Box system. In order to define a baseline representing the best configura-

tion of MatchBox we first determined the optimal combination of matchers

achieving the highest F-Measure. That means the best suited number and

the choice of specific matchers along with a fixed threshold. We investigated

combinations of 4 to 6 matchers7 and varied the parameters: combination

strategy, selection strategy, threshold, MaxN, and delta (cf. Sect. B.2 in Ap-

pendix B) in order to identify the configuration leading to the best results.

As our MatchBox system applies tree-based matching techniques8 sev-

eral tree definitions have been investigated by us in [151]. Possible trees

are based on the containment, inheritance, or reference relations of a meta-

model. We conclude with the containment hierarchy (see Sect. 2.2.2 for

different representations) performing with the best F-Measure [151]. The

corresponding configuration consists of the four matchers name, parent,

7The range of 4 to 6 matchers has been confirmed by [23] as giving best results.
8State of the art matching techniques implemented operate on a tree, e. g. parent, chil-

dren, sibling, and leaf matchers. Therefore, for comparison we need to investigate an optimal

tree although it contains less information than a planar graph.
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Figure 7.19: Baseline quality results for the ESR and ATL data sets

children and sibling matcher. For an optimal F-Measure these linguistic and

similarity propagation-based matchers are configured with a fixed threshold

of 0.3, a delta of 0.04 and average combination for single matcher results.

This configuration leads to the results as given in Fig. 7.19. The first

group of bars on the left states the results for the ESR data set with pre-

cision 0.45, recall 0.612, F-Measure 0.485. To demonstrate the quality of

our matching system and to verify that the data sets are hard we applied

third-party matching systems. For the ESR data set we took the established

ontology matching system Falcon [69], because it is also capable of match-

ing schemas. The results for the Falcon system are an average precision of

0.758, a recall of 0.392, and F-Measure of 0.449. It can be seen that the Fal-

con system shows a higher precision than MatchBox but a lower F-Measure.

This is due to the optimized configuration of Falcon for precise results (pre-

cision), while we optimized the configuration of MatchBox for F-Measure9.

The second group from the right depicts the baseline for the ATL data set

with values of precision 0.437, recall 0.449, and F-Measure 0.419. As third-

party matching system we took the most prominent approach EMF Com-

pare [10] instead of Falcon, because in contrast to EMF Compare, Falcon

is not tailored to metamodels. The values for EMF Compare are depicted

in Fig. 7.19 on the right. The values are considerably lower (MatchBox F-

Measure 0.419 vs. 0.247 for EMF Compare ), because EMF Compare is made

for model differencing. That means their assumption is a high similarity of

the input, which is the case for differencing. However, they state that their

task is model comparison, thus we took their approach as comparison. We

9We could provide a corresponding configuration with similar values for precision but

a lower F-Measure, but this leads to the discussion of precision vs. recall. A high precision

could be preferred over a high recall, i. e. more correct but less complete results. However,

recall could also be preferred over precision because a user has to check all mappings any-

way. Therefore, we optimized our evaluation to F-Measure to represent the harmonic mean

between both measures.
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would like to point out that EMF Compare also provides an extension mecha-

nism which allows to integrate arbitrary matching techniques. Consequently,

MatchBox or parts of it may be integrated in EMF Compare effectively in-

creasing the result quality.

To conclude, it can be seen that the F-Measure values of third-party sys-

tems are below ours, demonstrating effectively the hardness of our match-

ing tasks and confirming that only about half of all matches are found and

correct for our real-world data sets.

7.5.1 Graph edit distance results

Our evaluation of our Graph Edit Distance matcher (GED) consists of the

following three incremental steps:

1. We start with a comparison of the graph edit distance matcher added

to MatchBox using reference-based graphs (Sect. 2.2.2) for the ESR

and ATL data sets.

2. Then we show further improvement by considering the inheritance

graph (Sect. 2.2.2) using our GED matcher in case of the ATL data

set. Thereby, the results are combined with the ones obtained by the

reference-based GED matcher.

3. Subsequently, we present our k-max degree approach showing its ben-

efits with increasing k for the ATL data set.

The subsequent sections will discuss and present each of the aforementioned

steps.

7.5.1.1 Reference-based GED for ESR

We first compared the graphs based on reference representations, i. e. inher-

itance is not considered. Since the ESR data set is made of business schemas

it contains no inheritance, thus we do not need to differentiate between the

two graph modes possible. For this purpose, we exchanged the leaf matcher

with our planar GED matcher, because the leaf matcher was contributing less

to the overall result than the other matchers [150]. The results by adding

our reference-based graph edit distance matcher are depicted in Fig. 7.20 in

the centre.

The numbers of precision 0.494, recall 0.585, and F-Measure 0.517 (in

the centre) show an improvement compared to the baseline depicted on

the left of the Figure. The delta obtained by our GED approach shows an

increase of 0.044 (4.4%) in precision, a small loss in recall of 0.027 (2.7%)

which yields an increase of 0.032 in F-Measure (3.2%).

For a detailed discussion of this distribution please see Sect. 7.7. In this

section we show that our approach in the best case improves the precision
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Figure 7.20: Result quality and delta for the ESR data set using the baseline

MatchBox configuration and MatchBox with the GED matcher

significantly by 0.454 (45.4%), where at worst it decreases the precision by

0.046 (4.6%). The recall only changes slightly which is a clear indication for

the precision improvement by the GED.

7.5.1.2 Reference-based and inheritance-based GED for ATL

The ATL data set of the MDA community consists of metamodels which also

make use of inheritance, e. g. the UML metamodel in an extensive manner.

Therefore, we investigated different graph representation modes as intro-

duced in Sect. 2.2.2. The best mode w.r.t. our evaluation is the representa-

tion based on no inheritance, i. e. reference edges are not mixed with in-

heritance edges. Combining MatchBox and a GED matcher based on the

reference graph without inheritance matching, the complete ATL test set

yields a precision of 0.519, recall 0.462, and F-Measure 0.455. Compared to

the original MatchBox, this is an improvement of 0.082 (8.2 %) in precision,

0.013 (1.3 %) in recall, and 0.036 (3.6 %) in F-Measure.

Since the inheritance information would be discarded, we added a sec-

ond planar GED matcher (Inh) based on the inheritance edge graph. It is

then combined with the results of the other matchers. The final numbers of

this matcher using inheritance as in Fig. 7.21 (MatchBox + GED + Inh) are:

precision 0.541, recall 0.467 and F-Measure 0.464. This leads to an improve-

ment in F-Measure of 0.9 % w.r.t. the planar GED and of 5.8 % compared

to the original MatchBox system. The main improvements are in precision

(10.4 %), i. e. the mappings presented are more likely to be correct.

Finally, we took the values for both GED matchers and a 5-max degree

approach, where we chose 5 based on a conservative estimation of low ef-
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Figure 7.21: Results quality for ATL data set using the GED matcher and

corresponding delta

fort for a user, but still achieving improvements w.r.t. the original system’s

baseline. Figure 7.21 depicts the final numbers of: 0.582 for recall, 0.582

for precision and 0.543 for F-Measure10. We achieved an improvement com-

pared to the baseline of 12.4% increasing the F-Measure from 0.41 to 0.54,

i. e. a relative increase of 31.7%. In the following we will describe the addi-

tional improvements using our k-max degree approach.

7.5.1.3 k-max degree GED for ATL

The evaluation of our k-max degree approach is based on the same set of

ATL-zoo test data. We applied only our GED reference matcher and GED

inheritance matcher to measure the improvement of the calculation. We as-

sume a one-time input by the user by giving correct matches (Seed(k)) for

the given problem of k vertices. We took values for k from 0 to 20, because

for greater k, the more values remain unchanged. The k=0 denotes the

reference value, i. e. matching without seed mappings. The user-input was

simulated by querying the gold-standards for corresponding mappings.

As discussed at the end of this chapter in Sect. 7.5.1.4 we refrained from

taking the values for the ESR data set. The short reason is the nature of

the ESR data set which would require the GED matcher to start multiple

calculations at multiple elements, because the elements and thus seeds are

less connected than in ATL. This feature is currently not supported by our

implementation, since it raises research questions for result merging.

We separate the results into two series using the ATL data set: (1) use

k-max and (2) use and add k-max. The first series should demonstrate the

impact of seed matches on the similarity calculation. Therefore, we did not

add the seed input matches after calculation to avoid influencing the final re-

sults by introducing correct additional matches. The second series preserves

10Please note that the F-Measure is not based on a F-Measure calculation of both averages

in precision and recall. Instead, it is the average of the F-Measures taken.
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Figure 7.22: Delta of precision, recall, and F-measure for increasing k input

mappings used only by the GED matcher for the ATL data set
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Figure 7.23: Delta of precision, recall, and F-measure for increasing k input

mappings used by the GED matcher and added to final result for the ATL

data set

the seed matches by adding them after the matching, presenting the results

for a real-world usage, because a user is interested in all matches.

Figure 7.22 depicts scenario (1), i. e. using only the GED matcher with

the given k-max correct matches as input for calculation, but not adding

the correct matches to the overall result, in case of the ATL data. The delta

between k = 0 and 20 is shown to demonstrate the benefit of the GED

matcher. The measurements are increasing, however they decrease at k = 5,

because the structural vertices provide less correct additional information

than for k = 4.

Figure 7.23 depicts the results for all three quality metrics when the in-

put matches are added to the final results. Increasing k improves the results

and for k = 3, 5, 8, 17 the slope is maximal which is due to the nature of our

test data. Overall, we achieve an increase in quality by increasing k. We can

conclude that the minimal k should be three, since our evaluation shows

considerable increase from this on. We also demonstrated, that our GED is

capable of discovering new matches by using seed matches.
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Figure 7.24: Distribution of precision delta comparing the MatchBox base-

line to MatchBox with the GED matcher for ATL and ESR data sets

7.5.1.4 Summary

Our evaluation based on 51 gold-standards (ESR and ATL) has investigated

the quality of the planar GED comparing it to the baseline of the original

MatchBox. Combining the numbers from the ESR and ATL data we noted

an improvement of 0.07 (7 %) in precision and decrease of 0.009 (0.9 %) in

recall leading to an overall improvement of 0.04 (4 %) in F-Measure.

Figure 7.24 shows the distribution of the delta of precision for ATL and

ESR for a detailed explanation of the GED behaviour. It shows the deltas

and their frequency, which illustrates the increase and decrease in precision

of our approach. We selected precision, because F-Measure shows a similar

behaviour but not as expressive as precision, while the recall remains almost

unchanged.

Indeed there are 7 cases in which the precision shows a loss of up to 0.15

(15 %). However, the loss can be explained by two factors: (1) a metamodel

size mismatch, and (2) a low token overlap. A source-target metamodel

ratio of 0.2 and lower produces a decrease in quality, because it leads to a

high edit distance calculated and consequently to a low similarity. However,

this behaviour coincides with a token overlap below 0.1, i. e. only 10% of

all element name parts are similar. Since our GED relies partly on linguistic

similarity the structure is insufficient to neglect the effect of the low token

overlap, thus our GED calculates wrong matches and decreases the result

quality. Both in combination, the size mismatches and token overlap, may

serve as a basis for decision for whether the GED matcher should be applied

or not, thus compensating for its disadvantages.

On the other hand, there are four cases with an increase of up to 0.454

(45.4% assigned to the 0.5 bin). This considerable number is again ex-

plained by the source-target ratio and token overlap. For each of the cases

the source-target ratio exceeds 0.5 and coincides with a token overlap of
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(a) Positive example –
Submetamodel variant

(b) Negative example –
size mismatch

Source Target Source Target

Figure 7.25: Positive and negative example for quality changes by the GED

matcher

at least 0.4. Consequently, this demonstrates that our GED matcher needs

linguistic information and that in those cases the GED can be applied with

result quality gains.

There exist three special cases with gains in precision, but with a size

ratio or token overlap below the mentioned thresholds of 0.2 and 0.1 re-

spectively. In these cases one metamodel is similar to parts of another from

a structural point of view. The GED is effective in that case and can be ap-

plied for improved matching results.

Figure 7.25 depicts a positive and negative example illustrating the GED’s

behaviour. On the left hand side (a) one of the metamodels to be mapped is

a variant of a submetamodel of the other, which is the case for the special

improvements of 0.12 and 0.14. Misleading matches are eliminated, thus

improving the precision considerably. The negative example in Fig. 7.25 (b)

illustrates the size mismatch which results in a quality loss of up to 15% in

precision.

An interesting question is posed by the following observation. Although

we applied graph-based techniques which allow for up to 25% more infor-

mation the results improved by only up to 15%. The reason is the overall

matching process. The previous matching does not solely use a tree-based

structure but also applies the name matcher. This matcher calculates its re-

sults without any knowledge about structure and similarities for the carte-

sian product of all elements. Consequently, almost all matches are found

(high recall) but with a low precision. The traditional tree-based techniques

refine the result, which our GED does as well, exceeding their results, but

not in the aforementioned dimensions because the structure is still not suffi-

cient to capture all semantics and thus mappings.

Applicability We deduce from our observations that the planar graph edit

distance matcher can be applied to any metamodel, except those which

show a source-target ratio below 0.2 (w.r.t. our data set) and a token over-
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lap below 0.1. In addition, we observed that the GED produces good results

for a source-target ratio above 0.5 and a token overlap above 0.4.

7.5.2 Graph mining results

The evaluation of both graph-mining based matchers is similar to the GED

evaluation. We first derive optimal configurations of the mining matcher

parameters to then compare their results to our baseline, i. e. the original

MatchBox system.

Recapitulating, the mining-based matching is performed by pattern map-

ping and embeddings mapping. This processing order is also followed by

us in our evaluation. That is, first we discuss parameters such as maximal

pattern size to cope with the complexity of the pattern extraction and the

pattern mapping. Then we discuss the relevance-based filtering of patterns

to reduce the number of comparisons and embedding mappings. Finally,

we evaluate the overall quality achieved by mapping of patterns. We will

present both mining matchers in each phase in the following. We used the

ATL and the ESR data sets to obtain our values.

7.5.2.1 Preliminaries

As already mentioned, the cause problem of graph mining is its exponential

complexity. Even though we applied the optimization of using closed graphs

the problem still remains. To prevent it from restricting our implementation

to a certain size several solution strategies can be applied:

• Process abortion after a pre-defined time out,

• Definition of a maximal pattern size,

• Filtering of patterns.

The most obvious limitation is the runtime itself. After mining for a spe-

cific time, the algorithm can be aborted. Already found patterns can be pro-

cessed in the following phases. In tests, the time limit was set to 15 seconds

and was reached only in the largest test cases (1,401 elements). We also

noticed during our evaluation that graph mining applied to identical meta-

models explodes both in number of patterns and runtime. This is due to

the fact that two identical metamodels contain any combination of patterns

in size and position. Therefore, we conclude that our mining-based match-

ing should not be applied for identical metamodels but these can be easily

detected by pre-processing (token overlap and source-target ratio). Conse-

quently, we removed all identical mapping test cases for this part of the

evaluation.
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7.5.2.2 Pattern mining and mapping

The parameters in question for the extraction phase are: a time out, a maxi-

mal pattern size, and a filtering of patterns. Since the time out is not needed

for our data set, we evaluated the size restriction and the filtering.

Since the algorithms spend most of the calculation time on big patterns

(more than 12 elements), we evaluated a maximum size restriction of pat-

terns to mine. Our design pattern matcher and the redundancy matcher

are both exponential in runtime with respect to the maximal size of found

patterns, because both algorithms calculate subgraph isomorphisms for pat-

terns. Additionally, the design pattern matcher also depends on the number

of existing patterns because it searches for all of them in contrast to the re-

dundancy matcher. This fact also causes exponential memory consumption

dependent on pattern size for the design pattern matcher. Evaluating max-

imal pattern sizes from 5 to 30 we concluded that limiting the size to 12

performed best in terms of runtime, since the exponential growth led to a

runtime of minutes for certain examples larger than 1311.

The relevance-based filtering of patterns uses two criteria to decide if a

given pattern should be filtered: size and frequency. Therefore, we measured

the combination of both relative to the F-Measure obtained. The result for

a maximal average F-Measure was α = 2 and β = −1 with a threshold for

linguistic classes of t = 0.5 [112]. This means that the quadratic pattern size

decides over a pattern frequency on the pattern’s relevance. In other words,

the bigger a pattern the more important it is, the more frequent, the less

important.

Another possibility is to filter according to a pattern’s type. For instance,

trivial patterns which are attribute element relationships need to be filtered.

The patterns that were found were categorized as given in the correspond-

ing diploma thesis [112]. There, the patterns were separated into trivial

patterns (attribute-class relations), star (multiple attributes-class), list (rela-

tions forming a path), trees (reference or inheritance tree), and graphs (any

other pattern).

We observed that our design pattern matcher discovered in 19 of 46

mappings patterns, most of these patterns are from the ATL-zoo test data.

In 13 cases those patterns were graphs and in 12 cases tree patterns. It also

discovered in 18 cases list patterns, in 13 star patterns, and in 19 trivial

patterns. However, in 19 cases patterns had been filtered out.

The redundancy matcher mined patterns in 43 out of 46 metamodel

pairs (mappings). Thereby, in only two cases tree patterns were found. The

redundancy matcher mined lists in 32 cases, and in 27 cases star patterns.

This underlines the mining for redundant information which is local infor-

11We performed a detailed analysis of pattern sizes in the context of a diploma thesis in

[112]
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Figure 7.26: Result quality for design pattern, redundancy, and baseline

matchers

mation not conforming to a design pattern, where in contrast the design

pattern matcher mined more graph and tree patterns.

7.5.2.3 Embedding mappings and results

Using the previous insights for the different parameters, the quality of the de-

sign pattern and redundancy matcher was compared to the baseline match-

ing system. Figure 7.26 shows the results obtained by the matchers.

An overall improvement of the quality could be achieved by adding the

design pattern matcher. Precision as well as recall could be improved mean-

ing that incorrect mappings got filtered and new mappings could be found.

The overall average precision improved by 2.2% while the recall for all map-

pings was improved by 1.2%. Thereby, the improvements were limited to

11 of the test cases, where for the others either no patterns were mined or

the result remained unchanged. The results of the redundancy matcher are

different. The ESR and ATL data sets both show redundant information and

thus patterns which leads on average to the results as shown in Fig 7.26, i. e.

0.5% in precision and 0.3% in recall.

The evaluation showed that the design pattern matcher is best applicable

in small- to mid-sized transformations. The redundancy matcher obtained

best results in large models with much redundant and structural informa-

tion. It could only improve these special case transformations and is not ap-

plicable in general as the average numbers for F-Measure show. The use of

linguistic information during the mining process is essential for the precision

of the mappings as well as for the runtime of the algorithms. Nonetheless

additional limits for runtime and maximal pattern size are needed.
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7.5.3 Discussion

The high complexity in runtime and memory of the mining algorithms used

demanded for artificial limitations of the complexity, i. e. a maximal pattern

size and a frequency-based pattern filtering. This results in a decrease of the

patterns found and their applicability for matching. That means only pat-

terns of limited size (12) were found, hence a divergence of the quality has

to be accepted. Therefore, we conclude that mining-based matching can be

applied, but on average it only shows little improvements. This opens direc-

tions for further research, for instance how to apply light-weight matching

techniques to reduce the search space instead of using filtering.

Applicability The mining can be applied to any metamodel except identity

mappings and metamodels without any patterns. Both properties are easily

identifiable via pre-processing, still there exist metamodels with patterns

which do not benefit from our approach.

7.6 Results for Graph-based Partitioning

Our proposed planar partitioning based on the planar edge seperator (PES)

and the corresponding four assignment algorithms should tackle the prob-

lem of large-scale metamodel matching (Chap. 6). Therefore, we identified

the questions: Which partition size is the optimal choice w.r.t. to maximal

result quality? To which degree does our planar partitioning reduce mem-

ory consumption? Which assignment algorithm should be used for runtime

reduction while minimizing the loss in result quality? To answer these ques-

tion we determined the best configuration for the following parameters: par-

tition size, partition algorithm, and assignment algorithm (see [149] for the

series). We apply the following incremental approach:

1. First, we apply partitioning only, i. e. planar partitioning and two com-

parable algorithms. We determine their quality, memory consumption

as well as runtime and conclude with the choice of the PES.

2. Subsequently, we investigate the behaviour of the assignment algo-

rithms to demonstrate the effectiveness of the generalized assignment.

3. Having selected a partitioning and assignment algorithm we finally

present a comparison between partition-based matching and the base-

line.

In the following we shortly describe the measurements used, to then

give our results for the partition algorithms, and subsequently discuss the

assignment algorithms.
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Figure 7.27: Quality and runtime baseline for 15 ESR large-scale mappings

without partition-based matching

Metrics The result quality is characterized by the introduced metrics pre-

cision, recall, and F-measure. The scalability is given by using the runtime

and memory consumption.

Runtime If not stated otherwise runtime refers to the complete matching

process in seconds including partitioning, partition assignment, and parti-

tion matching. Otherwise, we will state explicitly which phases runtime was

measured for.

Memory consumption Memory consumption is given by the average of

memory in megabyte (MB) used during the complete matching process. We

measured memory and runtime using the built-in facilities provided by Java,

having a separate memory observing thread and averaging each number

over 10 runs.

The resulting baseline numbers for our baseline system (without parti-

tioning) are given in Fig. 7.2712. The numbers for precision, recall, and F-

Measure are 0.31, 0.54, and 0.34. The corresponding memory consumption

has a maximum of 566 MB with a runtime of 1.75 min.

7.6.1 Partition size

First, we need to identify the data set as candidate for evaluating our par-

titioning. Therefore, we compared MatchBox with and without our graph-

based partitioning, respectively applying the enterprise service and ATL data

sets. Thereby, we took our PES with the generalized assignment and a parti-

tion size of 10013. The results for the ATL data set demonstrated that intro-

12We restricted our data set to all samples with more than 200 elements. We also added

examples with more than 800 elements of the complete ESR data with an F-Measure below

0.2 but above 0.1 to have an evaluation data set of 15 ESR mappings.
13We also tested 50, 150 and 200, where 100 was the most representative. However, the

results and conclusion hold for the other sizes as well.
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Figure 7.28: Comparison of precision and recall dependent on the partition

size for PES

ducing partitioning creates an additional overhead, since the runtimes are

4.53 seconds with partitioning vs. 3.92 seconds without partitioning. It also

shows a decrease in F-Measure by 4.49%. The decrease is reasoned by the

removal of context information by partitioning a given input and matching

those partitions independently.

Minimal metamodel size Our evaluation showed that partitioning should

be applied for metamodels with more than 200 elements. Consequently, we

also reduced the ESR data by removing examples where the participating

metamodels have less than 200 elements, which leaves us with 15 mappings

as gold-standards for evaluation.

Result quality Figure 7.28 depicts our measurements of result quality. In-

terestingly, the PES shows a precision of 0.27 and recall of 0.47 at a partition

size of 50. This results from the structural arrangement of type information

in the business schema metamodels. These types are isolated with their defi-

nition in partitions – by our PES and our proposed merging – and positively

matched with each other. This information is lost when increasing the par-

tition size because then more than the type information is contained in a

single partition. The recall, as given in Fig. 7.28, shows also an increase be-

ginning with a size of 50 up to 500, again due to the context information

increase.

Runtime and memory We observe that the partition size influences the

result quality. But it also affects memory and partitioning runtime as shown

in Fig. 7.29. The PES shows a runtime of up to 0.43 minutes at worst. An in-

crease in the partition size also leads to an increase in the runtime, because

more re-partitioning and mergings have to be calculated. Regarding memory

consumption, an increase in size does not affect the memory consumption
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Figure 7.29: Comparison of memory and runtime dependent on the partition

size for PES

much, because still the same number of elements and their partitions assign-

ments have to be stored.

To summarize, the optimal trade-off in quality and scalability is given

by a partition size of 50. The optimal values are precision 0.27, recall 0.47,

runtime 0.27 min, and the memory consumption is 356 MB. Still, the quality

and especially precision are lower than the values obtained by the original

system, therefore we evaluated the assignment approaches in the following

section.

7.6.2 Partition assignment

Based on our PES with a partition size of 50, we show precision, recall, F-

measure, runtime, and memory consumption for all assignment approaches

depending on their input parameter, e. g. a threshold for threshold-based

assignment.

Thereby, we use the same configuration for the assigned partitions to be

matched with the four baseline matchers: name, parent, children, and sib-

ling. The threshold remains 0.3, with an average aggregation, but to reduce

the number of wrong matches do not apply a delta selection for the single

match tasks. The final output mappings are then combined using a delta of

0.0414. The similarity of partitions is calculated by 5 representatives. The

representatives are chosen based on their degree, preferring the maximum.

7.6.2.1 Threshold-based assignment

Investigating an increasing threshold from 0.1 up to 0.9 our first observation

is no change for values between 0.1 and 0.5 (see Fig. 7.30 left). The reason

for this observation is the partition similarity which exceeds these thresholds

for partitions containing type information. At a threshold of 0.7 we can note

14Appendix B describes the aggregation and selection parameters in more detail.
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Figure 7.30: Quality, memory, and runtime results for different thresholds

using threshold-based assignment
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Figure 7.31: Quality, memory, and runtime results for different quantiles

using quantile-based assignment

an increase in precision, followed by a decrease at a threshold of 0.8. This

observation can be explained by the fact that for a high threshold a reduced

number of partitions with low similarity are assigned to each other, which

reduces the number of wrong matches leading to a high precision. But if

the threshold is set too high correct matches are filtered out, decreasing the

recall. The precision increase is accompanied by a decrease in recall, which

is reasoned by the same argumentation, i. e. a reduced number of partitions

matched also reduces the number of matches found.

The runtime and memory consumption are depicted in Fig. 7.30 on the

right. The runtime and memory consumption decrease with an increase in

the threshold, because fewer pairs are selected for matching and thus fewer

resources are used. The best results in F-measure (0.259) for our data can be

obtained by a threshold of t = 0.5. Considering the best quality the numbers

for memory and runtime are 632 MB and 2.08 min.
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Figure 7.32: Quality, memory, and runtime results for different iterations

using Hungarian assignment

7.6.2.2 Quantile-based assignment

The quantile-based assignment is evaluated by increasing the quantile and

thus the fraction of partitions to be matched. The results are shown in Fig.

7.31 with our quality measurements on the left. It can be seen that with an

increasing number of partitions matched the recall increases while the pre-

cision slightly increases, at higher quantile values both remain unchanged.

The explanation is similar to the one for threshold-based assignment, i. e.

an increasing number of partitions matched means an increasing number

of elements for matching. In contrast to threshold-based assignment there

is no static threshold, but rather a dynamic threshold ensuring a minimum

number of partitions to be matched. Accordingly, the memory as well as run-

time increase for an increase in matched elements. The optimal F-Measure

is given by a quantile of 0.4, i. e. 40% of all partitions are matched, leading

to 559 MB in memory and 1.18 min in runtime.

In contrast to threshold-based assignment, the quantile approach leads

to more stable results and is therefore the better choice for arbitrary match-

ing tasks. In comparison to threshold-based assignment, quantile-based as-

signment shows a higher optimal precision and recall. The overall average

F-measure for quantile-based assignment yields 0.284 compared to 0.259

for threshold.

7.6.2.3 Hungarian

Aiming at optimal one-to-one partition assignments the Hungarian approach

does not require defined parameters. However, the result of the algorithm

may improve by the number of recalculations (iterations). The result for one

up to four iterations is given in Fig. 7.32. The more iterations are executed

the worse precision, runtime and memory consumption are.
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Figure 7.33: Quality, memory, and runtime results for different thresholds

using generalized assignment

The maximal F-Measure of 0.298 can be obtained by executing one it-

eration. Thereby, the memory is 410 MB and the runtime is 0.65 min. The

F-Measure is better than for threshold (0.259) and quantile (0.284). The av-

erage memory consumption of 410 MB is lower than for quantile (559 MB)

and threshold (480 MB) because the Hungarian algorithm calculates opti-

mal one-to-one assignments. Thereby, the memory used for the matching is

only 181 MB, since the number of comparisons is reduced.

7.6.2.4 Generalized

The generalized assignment can be investigated w.r.t. the internal threshold

used for assignment of partitions. Thereby, we took values for a threshold

between 0.1 and 0.9, in steps of 0.1. The results are depicted in Fig. 7.33

showing an indifferent behaviour. The memory consumption and runtime

vary in a small interval around 430 MB and 0.7 min. The best F-Measure of

0.307 is given at a threshold of 0.2 with a memory of 438 MB and runtime

of 0.69 min. Therefore, we chose this value for comparison with the other

assignment approaches.

The result of our evaluation of the four assignment approaches is that

threshold and quantile perform worse than Hungarian and generalized as-

signment which are similar. However, the generalized assignment has a

higher recall of 0.42 compared to 0.36 of the Hungarian. In memory and

runtime both assignment algorithms perform similar, thus based on our test

data none of both can be favoured. However, the generalized assignment

may perform better in case of many-to-many mappings in contrast to the

Hungarian. Therefore, we chose the generalized assignment for a compari-

son to the baseline in the subsequent discussion.
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Figure 7.34: Quality, memory, and runtime results for partition based match-

ing

7.6.3 Summary

We summarize our evaluation by comparing our baseline system MatchBox

using the 15 large-scale metamodels with graph-based partitioning and gen-

eralized assignment for partition-based matching. Figure 7.34 depicts a com-

parison of the baseline to partition-based matching. We note that the overall

runtime of a complete matching process can be reduced from 1.75 min to

0.69 min. The memory consumption can be decreased from 566 MB to 438

MB on average. These values were obtained for a local maching and no par-

allel matching. However, the concept provided by us also allows to match

in parallel, even though we did not implement it. To summarize, on aver-

age 23% less memory is consumed and 60% less runtime is needed. Still,

a small loss in quality (0.11 in recall) has to be accepted, which is partly

compensated by a precision gain of 0.02.

Even though these numbers demonstrate the effectiveness we want to

illustrate the scalability of our approach. Therefore, we changed our 15

large-scale examples and unfolded the graph by flattening it. That means

we copied the content of type definitions to all referring classes, thus raising

the size from about 1,400 elements to about 8,000 elements. The results for

quality, memory, and runtime are depicted in Fig. 7.35. The quality shows

the same behaviour, improving the precision by 0.02 where the recall is de-

creased by 0.15. However, the memory can be decreased from 806 MB to

517 MB on average and even more from 1,7 GB to 900 MB at maximum of

the saving. The runtime is also improved from 7.92 min to 3.38 min. These

numbers constitute savings of 36% in memory and 57% in runtime on aver-

age.

We effectively demonstrated that our planar graph-based partitioning

approach reduces both runtime and memory consumption of a matching

system. However, we also noted a limitation of our approach. It should not

be applied to metamodels with fewer than 200 elements, because of the

partitioning overhead.
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Figure 7.35: Quality, memory, and runtime results for partition based match-

ing on flattened data

Applicability We can conclude that our approach is applicable to any meta-

model with more than 200 elements.

7.7 Discussion of Results

Our evaluation investigated the improvements in quality by our GED matcher,

by our mining matchers, as well as in scalability by our partitioning and par-

tition assignment approaches. However, the observations made are related

to the test data being used. As in all matching evaluations it is simply impos-

sible to have a complete set of test data covering each case of data model

possible. Still, our test data set of 51 examples with quite a diversity in struc-

ture and domain shows a range that has not been applied by other evalua-

tions. Having discussed the base of our evaluation, we want to address in

the following the applicability and limitations of our matching and partition-

ing approaches. Table 7.2 shows a summary of our evaluated concepts, their

applicability, and their limitations.

7.7.1 Applicability

The first statement to be made is that we showed that our concepts are

applicable in general. That means any metamodel can be processed by our

algorithms, where planarity is enforced when not given. Thereby, for the

real-world ESR at maximum 0.01 % of all edges are removed, which does

not influence the result quality.

Next, our graph edit distance matcher can be applied to any metamodel

to increase the result quality, especially in terms of precision. It has to be

noted that the GED naturally performs the better the more the metamodels

are structurally similar (source-target ratio). There are cases where the GED

decreases the quality due to an input size mismatch and low token overlap,

but they may be detected by a pre-processing of the input metamodels sizes
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Concept Result quality Applicability Limitation

Tree-based

matching

Baseline Spanning tree of con-

tainment relations

Choice of pot. multiple

trees

Planar graph

edit distance

Increase Metamodels Size mismatch, token

overlap needed, k-max

degree only for ATL

Mining-based

matching

Small increase Non-identical meta-

models

Small improvements

(1%), Patterns need to

exist

Planar parti-

tioning

Decrease, Gain

in memory and

runtime

Metamodels of size >

200 elements

Trade-off in recall and

memory/runtime

Table 7.2: Results and limitations for graph-based matching and partitioning

and token overlap. In case of a detected mismatch in size ratio and token

overlap a fall back matcher can be applied.

The same applies to our graph mining matchers, which may be applied

to any metamodel. However, to show an increase in result quality two re-

quirements have to be fulfilled. First, the metamodels need to contain any

patterns, and second the metamodels should not be identical. Again the sec-

ond property can be easily checked by simple input metrics. The pattern

existence can only be checked after the matcher has been applied, which

may increase runtime. However, w.r.t. quality, if no pattern exists a fallback

matcher may be used. Our observations show, that indeed the mining match-

ers do not increase the overall result quality. A possible reason is given by

the pattern limitations by filtering, thus it may be worth to investigate how

the search can be reduced before the mining, e. g. by light-weight matching

techniques.

Regarding our mining matchers, it should be investigated how they can

be applied in another way. For instance, by identifying patterns, mapping

them, and reusing them in coverage approaches such as [132]. Another pos-

sible application is to apply pattern mining for metamodel decomposition

and identifying mappable parts.

The partitioning we proposed is applicable for metamodels with more

than 200 elements. The reason is that before reaching that size, partitioning

is more expensive than matching and does not improve the results, thus par-

titioning should not be applied. Regarding large-scale metamodels we have

shown that our partitioning can be applied reducing memory and runtime to

more than a half, while improving precision with a small decrease in recall.

7.7.2 Limitations

One of the limitations of our structural approaches is the need for linguistic

information. We observed, that relying only on structural information leads
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to a result quality decrease. However, combining linguistic and structural

information leads to a result quality increase, especially in precision.

The next limitation is concerned with our k-max degree seed match ap-

proach for the GED. We observed that in case of the ATL-zoo result quality

is increased using this approach. However, in case of the ESR data set it

does not influence the quality at all. The reason is the behaviour of the GED

which does not start at a given seed match, but rather reuses the seed sim-

ilarity during computation. Beginning with the package element the k-max

degree elements are either never reached during edit distance calculation or

are already part of it. Therefore, to take advantage of them the GED would

have to start at the seed match elements for the calculation.

In our implementation the GED does not start at a given seed match,

because then it would have to start for multiple seeds at different points

leading to multiple runs, which increases runtime considerably. Additionally,

the separate results would have to be merged, a problem not investigated

by us. Therefore, we see this as a point for further work.

Our graph-based partitioning leads to a loss in result quality, which

shows the trade-off for a decomposition of a matching problem. One solu-

tion to this approach is an increase in the partition size, which comes along

with an increase in memory consumption and runtime. Having knowledge

of the mapping application and constraints one may choose a suitable size

for a given matching problem.

7.8 Summary

In this chapter we presented our fourth contribution, a comprehensive eval-

uation of our proposed graph-based matching and partitioning approaches.

We defined as our success criteria an increase of result quality and support

for scalability. The approach we followed is thereby a comparison of a base-

line system to the same system enhanced by our algorithms. Therefore, we

first implemented a state-of-the-art matching system adapting tree-based

schema matching techniques for graphs. Next, we described our test data

sets from the MDA community and SAP. Based on these data sets we in-

vestigated the correctness and completeness of the results obtained using

our approaches, i. e. precision and recall. For our graph-based matcher we

observed a quality gain, while the graph-based mining only leads to minor

improvements. Finally, we investigated the improvements in memory and

runtime and the effect on quality for partitioning of large-scale metamodels

demonstrating that we successfully meet the success criteria.

Data sets Our test data sets consist of 20 metamodels and mappings from

the MDA community (ATL) and 31 SAP message mappings (ESR). Both data
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sets are made of heterogeneous data from different domains, such as pur-

chase orders, UML version mappings, etc. We applied three state of the art

matching systems on the data sets showing that indeed the mapping result

quality shows an average F-Measure of 0.48. The F-Measures show that our

51 mappings are a hard matching task. It also shows the need for improve-

ment in result quality.

Planar graph edit distance The planar graph edit distance matcher (GED)

has been evaluated by us showing an improvement in result quality of up

to 0.45 (45%) in precision. On average our GED improves precision by 7%

resulting in an average increase in F-Measure by 4%. Thereby, it can be

applied to any graph, but decreases in result quality with an increase in

size mismatch between the two inputs. Furthermore, we have shown that

the best results are achieved by separating reference- and inheritance-based

matching.

Graph mining The graph mining matchers proposed by us were able to

identify patterns in both data sets and derive corresponding mappings. How-

ever, they only increased the overall result quality by about 1%. The main

reason for the low gain is the filtering of patterns to achieve a reasonable

runtime. In addition, only some metamodels contain design patterns or re-

dundant information that can be used by our mining.

Planar graph-based partitioning We have shown, that our planar parti-

tion-based matching (PES) reduces memory by about 23% and runtime by

about 57%, while providing a gain in precision of 2% and loss in recall

of 11%. Thereby, the memory consumption is reduced by the PES, while

runtime improvements are achieved by selecting partitions to be matched

based on the general assignment. The minimal size for a metamodel to be

partitioned is 200 elements, while the optimal size of a single partition using

our PES is 50.





Chapter 8

Conclusion

In this chapter we complete this thesis by presenting a summary and conclu-

sions of our work. We revisit our contributions and derive recommendations

for data model development from our results. Finally, we discuss and point

out further research directions for graph-based matching and applications

of planarity.

8.1 Summary

In the beginning of our thesis we established the basis for our work by in-

troducing the fundamental concepts of metamodel matching and graph the-

ory. In metamodel matching we defined a metamodel to be a modelling

paradigm based on object-oriented concepts to describe a domain of inter-

est. As a means of integrating heterogeneous metamodels we described the

foundations of metamodel matching. We gave an overview of established

element-level and structure-level matching techniques. Subsequently, we de-

fined graphs and the related concepts of graph isomorphism calculation. To

circumvent the complexity problem of graph isomorphism calculation, we

took advantage of the special graph property of planarity. Planarity allows

for reduced complexity of the isomorphism algorithms. We also introduced

basic concepts and the state of the art in graph mining and graph partition-

ing.

Next, having defined the concepts used, we carried out the problem

analysis of our thesis (Chap. 3). Applying the ZOPP methodology we de-

fined our two cause problems of (1) insufficient correctness and complete-

ness of matching results as well as (2) insufficient support for large-scale

metamodel matching. We then performed a root-cause analysis for these

two problems, identified the scope and derived the following objectives:

exploit structural information for matching, exploit redundant information

for matching, and support matching of metamodels of arbitrary size. These

three objectives impose requirements which lead to our research question

157
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of how to improve metamodel matching by graph-based algorithms. We

also presented our research approach which is to analyse and adopt exist-

ing graph theory algorithms, rather than to develop new algorithms from

scratch.

In Chap. 4 we investigated related work in the area of large-scale meta-

model matching. Thereby, we studied the three areas of metamodel, ontol-

ogy, and schema matching. We introduced related matching systems and al-

gorithms in each of those areas especially pointing out approaches which

tackle matching quality and scalability. We compared the related match-

ing systems and matching techniques, and concluded that most of the ap-

proaches use tree-based techniques or similarity flooding and none of them

apply global graph-based matching with planarity. The scalability problem is

tackled only by a few approaches in schema and ontology matching but none

of them applies structure preserving partitioning and also none of them (ex-

plicitly) addresses different solutions for the partition assignment problem.

We presented our first two contributions of structural graph-based match-

ers in Chap. 5. We proposed the adaptation of a planar Graph Edit Dis-

tance algorithm (GED). The GED calculates similarities between two meta-

model graphs in quadratic runtime complexity. Thereby, the GED has been

extended by us to take linguistic and structural information into account.

To improve the GED result quality we proposed a seed mapping approach

named k-max degree, which makes use of k user input mappings ranked

according to their number of neighbours (degree).

We further presented our graph mining matchers based on the idea of

discovering reoccurring patterns in a metamodel for matching. We proposed

two matchers, the design pattern matcher and the redundancy matcher. The

design pattern matcher mines for patterns based on an incremental exten-

sion of a pattern. The design patterns are found by incrementally checking

two metamodels in parallel for valid patterns. The redundancy matcher we

proposed mines two metamodels independently for patterns. The mining

is based on the principle of reducibility, reducing the most frequent edge

type until no further reduction is possible. The resulting patterns for both

metamodels are then mapped using our proposed planar GED.

Next, we presented our third contribution, a graph-based partitioning al-

gorithm for large-scale matching and a comparison of partition assignment

algorithms (Chap. 6). We proposed to adapt an existing planar partition-

ing algorithm to solve the memory problems in the context of large-scale

metamodel matching. The algorithm ensures partitions of similar size by

an iterative splitting of an input metamodel. We extended the algorithm by

proposing a merging phase based on coupling and cohesion, thus taking

structural information into account. We also presented and discussed the

threshold, quantile, Hungarian, and Generalized assignment algorithm with

the goal of runtime reduction. In our evaluation we studied the behaviour

of those assignments and made observations when to apply which one.
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With our comprehensive evaluation (Chap. 7) of the graph-based meta-

model matching and partitioning we provided the fourth contribution. We

presented two data sets used for a comparison of our baseline system Match-

Box to our algorithms. The test data consists of 51 gold-standard mappings

and originates from the ATL-zoo and the Enterprise Service Repository. We

investigated different metamodel graph representations with our test data

and concluded that a graph based on containment relations performs best

in quality for tree-based matching. Thereby, quality refers to the correct-

ness (precision) and completeness (recall) of the mappings calculated. We

observed a successful quality gain for the GED, while the graph-based min-

ing only yielded minor improvements. Finally, we studied the memory and

runtime of our baseline system MatchBox with and without our planar parti-

tioning algorithm. The results with partitioning were a substantial reduction

in memory consumption and runtime with a small trade-off in quality.

In the following section we will revisit our contributions, provide the

numbers of our evaluation, and discuss the results obtained in more detail.

8.2 Conclusion and Contributions

In the introduction of our thesis we claimed to provide four contributions.

In our problem analysis we derived two main objectives as well as our main

research question. In the following we want show how they fulfil the objec-

tives defined. This leads to an answer of our research question by interpret-

ing our evaluation insights. In this thesis the four contributions presented

were:

C1 The planar graph edit distance matcher for improvements in correct-

ness and completeness by metamodel graph similarity calculation,

C2 The design pattern matcher and the redundancy matcher, utilizing re-

dundant information and design patterns for improvements in correct-

ness and completeness,

C3 The planar graph-based partitioning for metamodel matching and a

study of assignment algorithms for reduction in runtime and memory

consumption, and

C4 A comprehensive real-world evaluation of our approaches based on 51

industrial large-scale gold-standard mappings.

In the following two paragraphs, we will compare objectives 2 and 3 re-

sulting from the main objective 1 an increase in matching quality and support

for scalability (Sect. 3.2.2) to our contributions.
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Increase correctness and completeness of matching results One main

objective was to increase completeness of matching results. The subobjective

which contributed largely to the main objective was to 2.2 exploit structural

information for matching. The structural information was exploited by our

planar GED combining linguistic information and global graph-based struc-

ture. The resulting improvements were up to 45% in correctness (precision)

and up to 27% in completeness (recall). On average the precision improved

by 7%, the recall remained almost unchanged (-0.9%), and the F-Measure

improved by 4%, which shows that the objective has been fulfilled.

The approach of subobjective 2.4 to exploit redundant information for

matching provided a smaller contribution. The subobjective was achieved

by our design pattern matcher and our redundancy matcher. Both matchers

show small improvements on average with 2.2% in precision, 1.2% in recall,

and 1.5% in F-Measure and are limited to examples which show patterns.

Therefore, the two mining approaches contributed considerably less to the

objective 2.

Support matching metamodels of large-scale size This objective address-

es the scalability support for matching. The objective has been split into

three subobjectives, one targeting the memory consumption, one the run-

time, and the last the quality trade-off.

Subobjective 3.1 a concept for managed memory consumption requires us

to reduce the memory consumption of the overall matching process. This is

tackled by our planar partitioning. The partitioning produces similar-sized

partitions under the restriction of an upper bound on the partition size. An

independent matching of these partitions ensures a managed memory con-

sumption. Our evaluation showed that with a partition size of 50 elements

on average 23% of memory is saved. We also presented a concept which

allows for structure-preserving distributed matching of metamodels of arbi-

trary size; hence we consider the objective as fulfilled.

The second subobjective was 3.2 a concept for reducing matching runtime

which we pursued by a study of our assignment algorithms for partitions. We

concluded with the generalized assignment algorithm as an optimal choice

with an average precision gain of 2%. By assigning partitions to be matched

with each other we reduced the number of comparisons which has been

confirmed by our evaluation, demonstrating a runtime reduction of 57% on

average, compared to traditional approaches.

However, especially the memory reduction does also reduce the quality,

because of the reduced matching context. The third subobjective thus re-

quired to 3.3 optimize the trade-off between scalability and matching result

quality. In our evaluation we evaluated best parameters for partition size,

assignment algorithms, etc. to conclude that by a size of 50, i. e. an average
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type size of our test data, and the generalized assignment the best trade-off

is given. Consequently, we also fulfilled this objective.

With the fulfilment of our two main objectives we reached our overall

goal of increasing matching quality and supporting scalability. Moreover, we

also enabled distributed matching with our planar partitioning, thus remov-

ing any memory boundaries. This allows to match large-scale metamodels

in a cloud-based environment and thus in a distributed manner, e. g. as also

under investigation by [50, 125]. In addition, we also demonstrated the fea-

sibility of planarity and thus answered our three hypotheses, which we will

now discuss in more detail.

Research question and hypotheses The first hypothesis H1 stated that

planar subgraph isomorphism calculation improves result quality. This hy-

pothesis has been confirmed by our planar GED (C1) and our evaluation

(C4). In almost all cases, the GED utilized global structural and linguistic

information to improve the matching result quality confirming H1.

The hypothesis H2 stated that the mining on metamodel graphs im-

proves result quality. This hypothesis has been confirmed for some cases

by our evaluation (C4) and our two mining matchers (C2). In case of ex-

isting patterns the mining matcher can improve the result quality. However,

in most cases no patterns were found and thus the result quality remained

unchanged. Therefore, we can only partly confirm our hypothesis and see

room for further work in mining-based matching.

The third and last hypothesis H3 stated that planar partitioning can pro-

vide support for large-scale metamodel matching. Our evaluation (C4) and

the planar partitioning with assignment (C3) demonstrated that indeed the

hypothesis is correct.

Overall, two of our hypotheses have been fully confirmed and one partly.

We conclude that we reached our goal and improved the matching result

quality and also provided support for large-scale metamodel matching. There-

fore, our thesis answered our research question: ”How can structural graph-

based algorithms improve the correctness, completeness, runtime, and mem-

ory consumption of metamodel matching?”.

Still, not all of our hypotheses could be confirmed and some limita-

tions exist. In the following section we will make recommendations for data

model development that would allow exploiting information contained in a

metamodel for improved matching.

8.3 Recommendations for Data Model Development

Our evaluation pointed out that even when applying graph-based techniques

the resulting quality may be insufficient. In addition, we presented a concept

for scalability support but with a trade-off in quality. Therefore, we want to
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present recommendations for data model design such that a resulting data

model provides more information for improved matching.

Planar modelling To maximize the performance of the matching algo-

rithms a metamodel should fulfil our basic assumptions of planarity. Al-

though data model designers tend to create planar models they do not en-

sure it, because in some cases complex non-planar relations are needed. We

recommend to create planar models to allow taking full advantage of the

structural information of a metamodel.

Precise modelling Precise modelling refers to recommendations to pre-

vent modelling of untyped elements and apply domain-specific modelling.

The problem of untyped elements is present when element type semantics

are modelled using string attributes, e. g. for complex types or enumerations.

These implicit semantics are hard to match and hence should be avoided by

modelling types as explicit classes and enumerations as such, thus being

precise.

Imprecise modelling also concerns the modelling of redundant informa-

tion rather than modelling types. This information may be used by our re-

dundancy matcher, but we recommend avoiding such information. Instead,

modelling of types and design patterns should be applied, because such in-

formation is easy to match and allows for reuse.

The modelling of types introduces another problem that is a mixed mod-

elling of domain-specific and unspecific parts which are hard to match. We

recommend being as domain-specific (precise) as possible. The more specific

the information is modelled, the better a matcher can distinguish between

elements and thus find similarities. This is supported by a separation of

domain-specific and unspecific information via modules, because they allow

for an explicit matching context.

Modularization A problem encountered are huge metamodels without

any separation into modules. Their size leads to an immense search space for

matching techniques as well as a splitting of connected big types in case of

partitioning, because connected types are elements forming a composite ele-

ment by containment relations. The partitioning of such types leads to worse

results, because only parts are matched. Our recommendation is to separate

a metamodel using hierarchical modules (packages). These modules ideally

contain 50 elements, complying with our partition size. The module hierar-

chy supports our partitioning due to the level selection approach which aims

at hierarchical models.

When assigning the partitions, the representatives we select for the par-

tition similarity potentially provide insufficient information, and in this case
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the quality of the matching is reduced due to missing or incorrect assign-

ments. Consequently, we recommend to model module representatives with

a precise labelling, i. e. a module root element or elements which act as

dedicated representatives and may lead to more correct assignments.

Reuse We also advocate reuse of information, because computational run-

time is needed if multiple reoccurring information has to be identified, e. g.

by our redundancy matcher, and this information may be incorrect. It would

be more efficient to put these shared elements into modules and reuse

these modules across metamodels. These modules would allow for improved

matching results, e. g. by reuse-based approaches such as [132].

The recommendations given are design guidelines for a metamodel designer

in order to support matching. However, even if a perfect metamodel is given,

due to the insufficient expressiveness of metamodels there is still further

work to be done in matching. This point among others is outlined in the

subsequent section on further work.

8.4 Further Work

We present directions for future research on metamodel matching in general,

our matching and partitioning techniques, and algorithms making use of

planarity.

Metamodel matching The quality problem in metamodel matching still

exists, as it is the case in the areas of schema and ontology matching. There-

fore, it is still necessary to either change the matching process or research

on matching techniques for improved result quality w.r.t. a certain domain

or problem.

Nowadays, matching assumes a complete matching calculation and pre-

sentation to the user. An alternative matching approach could consider the

low result quality and instead present top-n matches to the user. In the area

of schema matching one approach on top-n matches has been proposed [42].

However, research on a guided process, possible incremental learning, and

ways of visualizing is still needed.

Interestingly, our investigation of the state of the art also revealed that

reuse-based and statistical matching have not been researched intensively.

Consequently, they constitute one direction for further research, for instance

techniques from model matching [81, 82] may be adopted for that purpose.

Another open issue is the upper bound for the average F-Measure. A for-

mal analysis of the matching problem and techniques may show or prove the

upper bound for matching, for instance w.r.t. certain data set characteristics.

If an upper bound can be formally determined it is possible to provide users
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of matching tools statements on the quality of the mappings automatically

calculated.

This goes along with the next problem of a missing metamodel match-

ing benchmark, which would allow for a tool and technique comparison. A

benchmark could also provide hints for promising techniques for adoption

and insights into an average matching quality. A possible benchmark could

benefit from the ATL-zoo data as proposed by us in [151] and App. A.1,

because it is publicly available.

Planar GED Our planar Graph Edit Distance matcher (GED) provides gains

in quality but also shows drawbacks for size mismatches and low token

overlap of source and target metamodels. This problem may be tackled by

a heuristic approach which applies a light-weight matching technique and

starting at the most similar element. In addition, k-max degree seeds as

starting point for the edit distance calculation are also promising. This pro-

cedure may be repeated for multiple k-max seeds or light-weight matches.

This opens the question for a merging of the results of multiple GED runs

which has to be answered by further research.

We also observed the precision improvements of our GED. Since this

indicates a filter behaviour of our matcher it may be promising to integrate

it into a two-staged process. The first stage calculates mappings based on

local techniques, e. g. a name and parent matcher, where the second stage

refines the results obtained. To achieve this it has to be researched how to

combine our GED with a matching process-based system, e. g. as in [123].

The GED proposed by us is currently limited to metamodel matching,

because it uses metamodel specific type information for two separate runs

(reference and inheritance). However, it is interesting to see how the GED

behaves when applied to arbitrary models. Such work could yield promis-

ing results as outlined by us in [148], because traditional model matching

techniques rely on labels and statistics less on structure [81].

Mining-based matching The mining-based matching has shown a less

favourable matching quality in the average case. The cause problem is the

exploding search space and thus runtime and memory consumption. There-

fore, more research is needed on how to prune and decrease the initial

search space. One possible approach to be taken is to restrict the search

space to pre-defined patterns [130], but this restriction induces quality prob-

lems due to domain-specific patterns. Another solution to the search space

problem can be given by a pre-processing phase based on a preselection of

relevant regions via partitioning or light-weight matchers. This allows for an

increased pattern size due to search space reduction, while still not limiting

the space to pre-defined patterns.
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It is further interesting to investigate how pattern mining can be applied

for metamodel decomposition and mapping reuse, because the problem of

mapping reuse approaches, e. g. as in [132], is the initial pattern reposi-

tory. Using our mining, frequent patterns can be extracted and stored in a

repository, and then a mapping reuse approach can be applied to derive new

mappings.

Partition-based matching The most obvious missing work to be done for

our partitioning is an implementation of distributed matching using our par-

titioning. To this point we only provided the concept for distributed and

parallel matching but did not implement it. If implemented, it is especially

interesting to observe specific match configurations for certain partition pair-

ings.

So far we apply the same matchers and configuration for each partition

pair. However, particular partition pairs may require particular matchers and

configurations. Therefore, it should be studied how to derive the matchers

and configurations for partition pairs. When the configurations are available

it may be interesting to research matching task distribution on multiple ma-

chines w.r.t. matcher configurations.

Another open point is the partition similarity calculation. The calculation

time and assignment quality may be increased by applying an incremental

approach. Instead of comparing each pair of representative elements the

process could change to perform assignments during the similarity calcula-

tion. For instance, partitions are assigned based on the maximal similarity.

However, it needs to be researched how to process the partition pairs ex-

actly. Also the worst case behaviour of identical partition similarity needs to

be studied.

Planarity With our thesis we successfully applied graph algorithms based

on planarity. We observed that the graph theory of the last century provides

promising algorithms for a multitude of problems.

Planarity as a special graph property turned out to be useful for meta-

model matching. However, it may also be used for other algorithms and

applications, when it allows for more information available for calculation,

e. g. for software diagram layouting [71] or any problem connected to short-

est path calculations under special assumptions as in [80].

The end With our thesis we provide contributions to the field of meta-

model matching in terms of quality and scalability. We encouraged the use

of the graph structure and of the rather unused graph property planarity. Al-

though our partitioning solves the scalability problem via distributed match-

ing, structural matching still does not solve the quality issues completely,

thus the never-ending journey on matching quality continues.





Appendix A

Evaluation Data Import

A.1 ATL-zoo Data Import

We propose to use existing model transformations as gold standards for

matching evaluation. Since an evaluation by model transformations requires

a considerable amount of test data, one has to choose a model transforma-

tion providing such data. Once the data is available, the transformation has

to be imported into a mapping serving as a base for comparison.

The idea is to use a common mapping metamodel (format) to compare

the result mapping of a matching system and the gold-standard. For the gold-

standard mappings we used the Atlas Transformation Language (ATL) [70],

which is a model transformation language providing the base for a consid-

erable range of 103 transformations in the ATL-zoo1. Our approach is based

on the matching component MatchBox, a matcher combination system as

proposed in [151].

Figure A.1 depicts an example of an ATL-script import into the ATL-

model and finally into the mapping metamodel of MatchBox. The exam-

1http://www.eclipse.org/atl/zoo

rule Member2Male {
from

s : 
Families!Member ( not
s.isFemale())

to
t : 

Persons!Male (

fullName <-
s.firstName + ' ' + 
s.familyName

)
}

(i) ATL-script (iii) Mapping Model

' ':StringSymbol

familyName:VariableExp

+:OperatorCallExpr

firstName:VariableExpr +:OperatorCallExpr

Male:OclModelElement fullName:Binding

t:SimpleOut
PatternElement

Member2Male:
Rule

source

value

arguments

arguments

source

type bindings

elements

(ii) ATL-model

Mapping

Match

Member Male

firstName fullName

Match

source

target

target

source

familyName

Figure A.1: Example of an import from ATL

167



168 Evaluation Data Import

ple presents an ATL-transformation between two different metamodels de-

scribing a family. The metamodels can be described as follows. The first

metamodel defines a family as Member(s) differentiating on the gender by a

boolean attribute. In contrast, the second metamodel separates the concepts

by the explicit classes Male and Female. The names of persons are also mod-

elled differently, the first uses a firstName and familyName; the second uses

the fullName.

Figure A.1 (i) depicts the ATL-script transformation between both meta-

models. The parts highlighted in grey show corresponding elements. The

from and to parts define the (declarative mapping) between both classes

Member and Male. The part defining the name mapping is the (imperative)

mapping in the so-called binding. Figure A.1 (ii) shows the corresponding

ATL-model and (iii) the representation in our internal mapping metamodel.

In the following sections we will describe the transformations between

the ATL and MatchBox mapping model representations.

A.1.1 Import of metamodels

As discussed before, the imported metamodels’ elements are necessary for a

creation of a mapping model. Therefore, the metamodel importer is respon-

sible for traversing the metamodel elements and publishing them in the

internal mapping metamodel. In our implementation we applied a graph-

based model as utilized by MatchBox. The internal model is a subset of

EMOF and therefore represents a typed graph that supports inheritance and

associations as first-class concepts.

A.1.2 Import of ATL-transformations

The import of an ATL-script is twofold. First, we transform the ATL-script

into an ATL-model. Second, we apply a model transformation for creating a

corresponding mapping model. The actual import is a mapping between the

ATL metamodel as in Fig. A.2 and our mapping metamodel as in Fig. A.3.

A model transformation (module) in ATL is a set of transformation rules.

These transformation rules are the declarative part of ATL. ATL also offers

an imperative part, i. e. a so-called binding of a transformation rule and a

helper expression. Consequently, the following parts are considered:

• A Declarative mapping consists of an in- and out pattern defining cor-

responding classes.

• An Imperative mapping consists of bindings and helpers specifying ex-

pressions on corresponding attributes.

The internal mapping metamodel of MatchBox is simpler, because it is

not executable. A mapping consists of a set of matches and each match
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Figure A.2: Excerpt of the ATL metamodel
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Figure A.3: Excerpt of the MatchBox model
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defines a correspondence between a set of source and target element, as

given in Fig. A.3.

The mapping between both models is shown in Table 1, there we de-

scribe an ATL concept and the corresponding MatchBox mapping model con-

cept providing a description for further details or restrictions. Subsequently,

we give a description of the mapping grouped into the declarative and im-

perative mapping.

Declarative mapping An ATL-transformation is the starting point of our

import. This transformation contains any number of rules that constitutes

the transformation. Each rule consists of an in- and an out-pattern. The

in-pattern denotes the source element and the out-pattern the target ele-

ment(s). Our mapping metamodel consists of a mapping, followed by a

set of matches, each relating source elements and target elements. Conse-

quently, a mapping is created for the transformation, whereas each transfor-

mation rules’ components lead to a match. Algorithm A.1 shows the imple-

mentation of the mapping mentioned before in pseudo code.

Algorithm A.1 ATL-Rule Import

Require: Matl, Mmap ∈Model, m ∈Match
1: resolve all alias and helper definitions

2: for all r in Matl.rules do

3: for all out in r.outs do

4: m← create m
5: m.source← get S(r.in.type)
6: m.target← get S(r.out.type)
7: importBinding(r.binding)

8: Mmapping ←Mmapping ∪m
9: end for

10: end for

Matl, Mmap are the input ATL-model and the mapping model and m is

the output match returned by the rule import. Since ATL supports the def-

inition of so-called helpers, they have to be resolved as well. This is done

by using a helper’s signature, i. e. the return type and the input parame-

ters. This constitutes a mapping from the input to the output. Afterwards

all rules are traversed by creating a match which gets as source and target

the corresponding in and out elements. Besides these explicit elements, a

rule consists of a binding, which specifies constraints over the in- and out-

patterns. For instance, a Binding specifies a mapping between attributes of

the in- and out-patterns. Therefore, each binding has to be evaluated too.
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Table A.1: Mapping from ATL to the MatchBox mapping metamodel

ATL Element MatchBox Element Description

Module Mapping –

Module.elements Mapping.matches –

Rule Match(es) –

Rule.outPattern.elements match.target Each combination of in-

and out-pattern is mapped

onto match

Rule.inPattern.elements match.source Each combination of in-

and out-pattern is mapped

onto match

Binding.property match.target A binding’s property is

mapped onto a target of a

match

Binding.value match.source/target The value is mapped de-

pending on its type as spec-

ified below

Nav.OrAttr.CallExp match.source Resolving the expression

a match source is deter-

mined, whereas the bind-

ing’s property is set as a tar-

get of the match

VariableExp match.target The resolved type of the

VariableExp is mapped

onto the match target

using the in pattern as

source element(s)

OperatorCallExp match.target Each operand is mapped

onto a new match using

the in pattern sources and

mapping according to the

operand’s type

SequenceExp match.source Each element of the se-

quence is mapped as de-

fined before using it as

a source for a match,

whereas the bindings prop-

erty is set as a target of the

match
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Algorithm A.2 Binding Import (importB)

Require: b ∈ Binding, m ∈Match
1: v ← b.value
2: if v isOfType NavigationOrAttributeCallExp then

3: m← importB (v.source, v) {resolve type definitions}
4: else if v isOfType VariableExp then

5: m← resolve variable type of v.referredVariable and get corresponding

model element

6: else if v isOfType OperatorCallExp then

7: m← importB v.value {resolve parameters and types}
8: else if v isOfType SequenceExp then

9: for all e in v.value.elements do

10: if e isOfType NavigationOrAttributeCallExp then

11: m← importB e
12: end if

13: end for

14: else

15: {do nothing}
16: end if

Imperative mapping Our Binding evaluation is depicted in Algorithm A.2.

A binding has a so-called value, which is an OclExpression. This OclExpres-

sion can have multiple types. However, we consider a limited range that

covers the most common ones. A binding’s value could be either a (1) Nav-

igationOrAttributeCallExp, for instance rule.name or a (2) VariableExp, e. g.

A. A binding is also allowed to be an (3) OperatorCallExp, e. g. not or a (4)

SequenceExp, e. g. a + b. A binding also refers to a specific property which

has to be resolved according to the context provided by the out-pattern. In

the following we will describe each of these cases.

The (1) NavigationOrAttributeCallExp (line 2 to 3) denotes the ’.’ oper-

ator, thus referring to a specific attribute which has to be resolved in or-

der to constitute a mapping. Once the type of this attribute is available,

it is mapped on the target element determined by the binding property

and a corresponding match is created. Referring to our example in Fig.

A.1 the s.firstName denotes a NavigationOrAttributeCallExp, whereas the

firstName is a VariableExp.

A (2) VariableExp (line 4 to 5) is imported by resolving the type of the

variable this expression refers to. The match is created from the type for the

previous target. In our example in Fig. A.1 the firstName and familyName

are of type VariableExp.

Importing an (3) OperatorCallExp (line 6 to 8) leads to a handling of

the concatenation operation, all other operations are ignored. Thereby, all
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operands are resolved regarding their type and for each operand a match is

created. This match target is the one from the beginning.

Figure A.1 also depicts an example for a (4) SequenceExp which is the

+ in s.firstName + ’ ’ + s.familyName. This results in an evaluation of

both participating expressions of the names.

We implemented the import recursively, because these expressions can

be nested, e. g. the import of a VariableExp can trigger the import of another

VariableExp.

A.2 ESR Data Import

Below we provide the EMFText grammar used for the parser generation.
This parser imports the ESR data into an internal representation, which
again is transformed into the internal mapping metamodel of MatchBox.

SYNTAXDEF es

FOR <http://emftext.org/enterpriseServices>

<EnterpriseServiceMapping.genmodel>

START Mapping

OPTIONS {

reloadGeneratorModel = "true";

generateCodeFromGeneratorModel ="true";

usePredefinedTokens = "true";

memoize ="true";

}

TOKENS {

DEFINE NAMEPATH $ (’/’ (’0’..’9’|’a’..’z’|’A’..’Z’|’_’|’/’|

’@’ | ’[’ | ’]’ |’.’ | ’:’ | ’-’)*) $;

DEFINE EXPRESSION $ ((’0’..’9’|’a’..’z’|’A’..’Z’|’_’ | ’\’’ | ’@’ |’:’)

(’0’..’9’|’a’..’z’|’A’..’Z’|’_’|’/’| ’@’ |’\’’ | ’.’ | ’:’ |

’-’ | ’=’ | ’{’ | ’}’ | ’?’ | ’@’ )*) $;

DEFINE OPERATOR $ ((’a’..’z’ | ’0’..’9’| ’A’ ..’Z’)* ’(’)$;

}

RULES {

Mapping ::= matches*;

Matches ::= target "=" source;

ConstExpression ::= ("getSendSys()" | "sender()" |

"const(value=" (value[EXPRESSION])? ")" );

ExpressionList ::= expression ("," tail)? ;

AttributeList ::= ("," |"%WHITESPACE")? attribute[EXPRESSION]

("," tail)? ;

SourceSchemaElement ::= (namepath[NAMEPATH] | "null") ;

Target ::= namepath[NAMEPATH];

ConcatExpression ::= "concat(" elementList? ",

delimeter=" (delimiter[EXPRESSION])? ")";

ConcatLinesExpression ::= "concatLines(" elements ("," options)? ")";
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TrimExpression ::= "trim(" source ")";

SubstringExpression ::= "substring(" source ("," options)? ")";

SplitTextExpression ::="splitText(" elements ("," options)? ")";

ToUppercaseExpression ::="toUpperCase(" source ("," options )? ")";

TransformDateExpression ::= "TransformDate(" source "," options ")";

CurrentDateExpression::= "currentDate(" options ")";

CreateIfExpression ::="createIf(" condition ")";

FixedValueExpression ::= "FixValues(" source ("," table)? ")";

CopyPerValueExpression ::= "CopyPerValue(" elements ("," options)? ")";

SplitByValueExpression ::= "SplitByValue(" source ( "," options)? ")";

ReplaceValueExpression ::= "replaceValue(" source ( "," options)? ")";

CopyValueExpression ::= "CopyValue(" source ("," options)? ")";

SumExpression ::= "sum(" source ("," options)? ")";

CountByTemplateExpression ::= "countByTemplate("elementList

( "," options )? ")";

CountExpression ::= "count(" source ( "," options)? ")";

CounterExpression ::= "counter(" options ")";

GetPredecessorExpression ::= "GetPredecessor(" elements

("," options)? ")";

RemoveContextExpression ::= "removeContexts(" source ")";

CollapseContext ::= "collapseContexts(" source ")";

ExistsExpression ::= "exists(" source ")";

AndExpression ::= "and(" source1 "," source2 ")";

OrExpression ::= "or(" source1 "," source2 ")";

NotExpression ::= "not(" source ")";

IfExpression ::= "iF(" elements ( "," options )? ")";

IfWithoutElseExpression ::= "ifWithoutElse(" elements ( "," options )?

")";

StringEqualsExpression ::= "stringEquals(" leftSide "," rightSide ")";

EqualsAExpression ::= "equalsA(" leftSide "," rightSide ")";

CheckAllTrueExpression ::= "checkAllTrue(" elements ( "," options )? ")";

CheckIfEmptyExpression ::= "checkIfEmpty(" source ( "," options )? ")";

CheckTrueExpression ::= "CheckTrue(" source ("," options )? ")";

CheckForTrueExpression ::= "checkForTrue(" elements ("," options)? ")";

ConvertToStringExpression ::= "convertToString(" (source ",")?

options ")";

GenerateItemIDExpression ::= "generateItemId(" source ("," options)?

")";

MapWithDefaultExpression ::= "mapWithDefault(" source ("," options)?

")";

ValueMapExpression ::= "valuemap(" source ("," options) ? ")";

UseOneAsManyExpression ::="useOneAsMany(" elements ("," options)? ")";

AddFormatExpression ::= "addFormat(" elements ("," options) ? ")";

FormatByExampleExpression ::= "formatByExample(" elements

("," options)? ")";

UnknownOperationExpression ::= operation[OPERATOR] elements

( "," options )? ")";
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MatchBox Architecture

B.1 Architecture

Figure A.1 shows an overview of MatchBox’s architecture. As described in

Sec. 7.2 it uses an exchangeable matching core, which includes a set of

matching components (matchers) operating on the information provided by

an internal representation of metamodels. Additionally, it contains a combi-

nation component providing means for an aggregation and selection of re-

sults. The core, configuration and combination component are implemented

by the AMC.

The matching core operates on the repository which contains all meta-

models, provided models (instances) and mappings. The mapping importer

implements an import from the ATL transformation language, the Ontology

Alignment API (OAA) [34]), and the ESR mapping format to the mapping

model of the AMC. Thereby, the internal data model is a typed graph called

Genie. For a detailed description see the master thesis in [67].

The configuration component implements the configuration of the aggre-

gation and selection strategies. The metamodel importer transforms meta-

models into the internal data model. The data model of the repository im-

posed by the AMC matchers is introduced in the subsequent section. We

have implemented the MatchBox prototype using Java and the Eclipse Mod-

eling Framework (EMF) [109]. MatchBox’s repository is consequently EMF-

based; the core etc. is implemented in Java.

B.2 Combination Methods

• Aggregation The aggregation reduces the similarity cube to a matrix,

by aggregating all matcher’s results matrices into one. This aggrega-

tion is defined by four strategies: Max, Min, Average, and Weighted.

The Max strategy is an optimistic one, selecting the highest similarity

value calculated by any matcher. Contrary, the Min strategy selects the
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Figure B.1: Architecture of MatchBox

lowest value. Average evens out the matcher results, calculating the

average. In order to satisfy a different importance of matcher results,

Weighted computes the weighted sum of the results, according to user-

defined weights.

• Selection The selection selects possible matches from the aggregated

matrix according to a defined strategy. These are Threshold, MaxN,

and MaxDelta. Threshold selects all matches exceeding a particular

threshold. MaxN returns the N matches with the highest similarity val-

ues compared to all matches for a source and target element. Finally,

MaxDelta chooses first, the match with the highest similarity value; sec-

ond it returns those candidates within a certain relative range given by

the value for delta. The range is defined as the interval [Max−Max ∗
Delta, Max]. Furthermore, the selection strategies can be combined,

such as Threshold and MaxDelta.

• Direction The direction is dedicated to a ranking of matched elements

according to their similarity. In the Forward strategy elements of the

larger metamodel (in total of elements) are selected for each element

of the smaller schema. The Backward strategy is the inverse of the

Forward strategy. Both strategies can be combined in the Both strategy,

resulting in schema size independence. Consequently, a match has to

have a similarity value for each direction forward and backward.

• Combined similarity Matchers which use other matchers have a need

for means to combine the similarity values, e.g. like in the children or

sibling matcher. This is covered by providing two strategies: Average
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and Dice. Average divides the sum of similarity values of all matches

by the number of matches. The more optimistic approach, returning

higher similarity values is Dice, it uses the dice coefficient [12]. It is

computed by dividing the number of matchable elements by the count

of all elements.
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A model transformation tool. Scientific Computer Programs, 72:31–39,

2008.
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[152] Klaus Wagner. Über eine erweiterung eines satzes von kuratowski.

Deutsche Mathematik, 2:280–285, 1937.

[153] Robert A. Wagner and Michael J. Fischer. The string to string correc-

tion problem. Journal of the ACM, 21(21):168–173, 1974.

[154] Peng Wang and Baowen Xu. Lily: Ontology alignment results for oaei

2009. In Proceedings of the 5th International Workshop on Ontology

Matching (OM’09), 2009.

[155] Fang Wu and Bernardo A. Huberman. Finding communities in linear

time: a physics approach. The European Physical Journal B-Condensed

Matter and Complex Systems, 38(2):331–338, 2004.

[156] Wei Wu, Yuzhong Qu, and Gong Cheng. Matching large ontologies:

A divide-and-conquer approach. Data Knowledge and Engineering,

67:140–160, October 2008.

http://www.voggy.de/files/evaluation.zip
http://www.voggy.de/files/evaluation.zip


192 BIBLIOGRAPHY

[157] Xifeng Yan and Jiawei Han. gSpan: graph-based substructure pattern

mining. In Proceedings of the IEEE International Conference on Data

Mining (ICDM’02), 2002.

[158] Xifeng Yan and Jiawei Han. CloseGraph: mining closed frequent

graph patterns. In Proceedings of the ninth ACM International Con-

ference on Knowledge Discovery and Data Mining (SIGKDD’03), 2003.

[159] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the

editing distance between trees and related problems. SIAM Journal

of Computing, 18:1245–1262, 1989.

[160] Xiao Zhang, Qian Zhong, Juanzi Li, and Jie Tang. RiMOM results

for oaei 2010. In Proceedings of the 5th International Workshop on

Ontology Matching (OM’10), 2010.

[161] Zhi Zhang, Pengfei Shi, Haoyang Che, and Jun Gu. An algebraic

framework for schema matching. Informatica, 19(3):421–446, 2008.

[162] Zhongping Zhang, Rong Li, Shunliang Cao, and Yangyong Zhu. Simi-

larity metric for xml documents. In Proceedings of Workshop on Knowl-

edge and Experience Management, 2003.



List of Figures

2.1 MOF three layer architecture and example . . . . . . . . . . . 10

2.2 Generic matcher receiving two elements as input . . . . . . . 11

2.3 Architecture and process of a generic matching system . . . . 12

2.4 Classification of matching techniques . . . . . . . . . . . . . . 15

2.5 Examples for global, local, and region-based matching . . . . 17

2.6 Examples for a graph . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Package, class, attribute, and operation mapping . . . . . . . 21

2.8 Inheritance-, reference-based, and complete metamodel graph 22

2.9 Flattened containment and reference metamodel tree . . . . . 23

2.10 Example of a graph, a minor, and edge contraction . . . . . . 25

2.11 Example of a graph and planarity . . . . . . . . . . . . . . . . 26

2.12 The non-planar graphs K5 and K3,3 . . . . . . . . . . . . . . . 26

2.13 Subset relation between general, planar, and trees . . . . . . . 27

2.14 Classification of graph matching algorithms . . . . . . . . . . 29

2.15 Example of a graph, a pattern and embeddings of this pattern 31

2.16 Classification of graph mining algorithms . . . . . . . . . . . . 32

2.17 Classification of graph partitioning and clustering algorithms . 33

3.1 Example of data integration for POS and ERP . . . . . . . . . 36

3.2 Details of retail store data integration example . . . . . . . . 37

3.3 Metamodel example POS and ERP . . . . . . . . . . . . . . . 38

3.4 Problem hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Objective hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Steps of our problem solving approach . . . . . . . . . . . . . 47

5.1 Example of source and target graphs, and a common subgraph 64

5.2 Example metamodel excerpts and corresponding graphs . . . 70

5.3 Example calculation of planar graph edit distance . . . . . . . 71

5.4 Illustrative example of k-max degree with user interaction . . 73

5.5 General mining based matching process . . . . . . . . . . . . 74

5.6 Example for mining graph model types using similarity classes 78

5.7 Design pattern matcher process . . . . . . . . . . . . . . . . . 79

5.8 Example for pattern mining by the design pattern matcher . . 83

193



194 LIST OF FIGURES

5.9 Redundancy matcher process . . . . . . . . . . . . . . . . . . 85

5.10 Example for pattern mining by the redundancy matcher . . . 88

6.1 Processing steps of partition-based matching and assignment . 92

6.2 Example metamodel and the corresponding graph . . . . . . . 98

6.3 Example calculation for planar partitioning . . . . . . . . . . 99

6.4 Example of the partition merging phase . . . . . . . . . . . . 102

6.5 Partition matching without assignment . . . . . . . . . . . . . 103

6.6 Partition matching with threshold-based assignment . . . . . 104

6.7 Partition matching with quantile-based assignment . . . . . . 106

6.8 Partition matching with Hungarian assignment . . . . . . . . 107

6.9 Partition matching with generalized assignment . . . . . . . . 108

7.1 Processing of our framework MatchBox . . . . . . . . . . . . . 116

7.2 Example of aggregation and selection of matcher results . . . 118

7.3 Size of ESR metamodels . . . . . . . . . . . . . . . . . . . . . 122

7.4 Source and target metamodel element ratio for ESR . . . . . . 123

7.5 Size of ESR gold-standard mappings . . . . . . . . . . . . . . 123

7.6 Coverage of ESR gold-standard mappings . . . . . . . . . . . 124

7.7 Name and token overlap for ESR metamodels . . . . . . . . . 125

7.8 Number of edges for ESR metamodels . . . . . . . . . . . . . 125

7.9 Maximal degree for ESR metamodels . . . . . . . . . . . . . . 126

7.10 Loss in edges for ESR metamodel graphs . . . . . . . . . . . . 126

7.11 Size of ATL metamodels . . . . . . . . . . . . . . . . . . . . . 127

7.12 Source and target metamodel element ratio for ATL . . . . . . 128

7.13 Size of ATL gold-standard mappings . . . . . . . . . . . . . . 128

7.14 Coverage of ATL gold-standard mappings . . . . . . . . . . . . 129

7.15 Name and token overlap for ATL metamodels . . . . . . . . . 130

7.16 Number of edges for ATL metamodels . . . . . . . . . . . . . 130

7.17 Maximal degree for ATL metamodels . . . . . . . . . . . . . . 130

7.18 Loss in edges for ATL metamodel graphs . . . . . . . . . . . . 131

7.19 Baseline quality results for the ESR and ATL data sets . . . . . 134

7.20 Result quality for the ESR data using the GED . . . . . . . . . 136

7.21 Result quality for the ATL data using the GED . . . . . . . . . 137

7.22 Delta of quality for increasing k used only by the GED . . . . 138

7.23 Delta of quality for increasing k added to the result . . . . . . 138

7.24 Distribution of precision delta for GED . . . . . . . . . . . . . 139

7.25 Examples for quality changes by the GED matcher . . . . . . . 140

7.26 Result quality for mining-based matchers . . . . . . . . . . . . 143

7.27 Quality and runtime baseline for partition-based matching . . 145

7.28 Comparison of precision and recall dependent on size . . . . . 146

7.29 Comparison of memory and runtime dependent on size . . . . 147

7.30 Quality and runtime for threshold-based assignment . . . . . 148

7.31 Quality and runtime for quantile-based assignment . . . . . . 148



LIST OF FIGURES 195

7.32 Quality and runtime for hungarian assignment . . . . . . . . 149

7.33 Quality and runtime for generalized assignment . . . . . . . . 150

7.34 Summary for partition based matching . . . . . . . . . . . . . 151

7.35 Summary for flat partition based matching . . . . . . . . . . . 152

A.1 Example of an import from ATL . . . . . . . . . . . . . . . . . 167

A.2 Excerpt of the ATL metamodel . . . . . . . . . . . . . . . . . . 169

A.3 Excerpt of the MatchBox model . . . . . . . . . . . . . . . . . 169

B.1 Architecture of MatchBox . . . . . . . . . . . . . . . . . . . . 176





List of Tables

3.1 Overview of requirements . . . . . . . . . . . . . . . . . . . . 46

4.1 Overview on related structural matching approaches . . . . . 58

4.2 Overview on related large-scale matching systems . . . . . . . 60

5.1 Overview and comparison of graph matching algorithms . . . 66

5.2 Overview and comparison of graph mining algorithms . . . . 77

5.3 Contributions of structural graph-based matchers . . . . . . . 90

6.1 Graph clustering and partitioning algorithms . . . . . . . . . . 95

6.2 Comparison of the four assignment approaches . . . . . . . . 110

6.3 Contributions of graph-based partitioning and assignment . . 111

7.1 Comparison of metrics for ESR and ATL data set . . . . . . . . 132

7.2 Results and limitations of our concepts . . . . . . . . . . . . . 153

A.1 Mapping from ATL to the MatchBox mapping metamodel . . . 171

197





List of Algorithms

5.1 Planar graph edit distance algorithm . . . . . . . . . . . . . . 68

5.2 Design pattern matcher algorithm . . . . . . . . . . . . . . . . 80

5.3 Pattern mining in design pattern matcher (minePatterns) . . . 81

5.4 Redundancy matcher algorithm . . . . . . . . . . . . . . . . . 85

5.5 Pattern identification for redundancy matcher (minePatterns) 86

6.1 Planar graph-based partitioning algorithm outline . . . . . . . 97

A.1 ATL-Rule Import . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.2 Binding Import (importB) . . . . . . . . . . . . . . . . . . . . 172

199


	Introduction
	Quality Problem in Matching
	Scalability Problem in Matching
	Research Questions and Contributions
	Thesis Outline

	Background
	Metamodel Matching
	Metamodel
	Matching

	Graph Theory
	Definitions
	Metamodel representation
	Graph properties
	Graph matching
	Graph mining
	Graph partitioning and clustering

	Summary

	Problem Analysis
	Motivating Example
	Retail scenario description
	ERP and POS metamodels
	Data integration problems

	Problem Analysis
	Problems and scope
	Objectives
	Requirements
	Approach
	Research question

	Summary

	Related Work
	Matching Systems
	Schema matching
	Ontology matching
	Metamodel matching

	Matching Quality
	Matching Scalability
	Summary

	Structural Graph Edit Distance and Graph Mining Matcher
	Planar Graph Edit Distance Matcher
	Analysis of graph matching algorithms
	Planar graph edit distance algorithm
	Example calculation
	Improvement by k-max degree partial seed matches

	Graph Mining Matcher
	Analysis of graph mining algorithms
	Graph model for mining based matching
	Design pattern matcher
	Redundancy matcher

	Summary

	Planar Graph-based Partitioning for Large-scale Matching
	Partition-based Matching
	Planar Graph-based Partitioning
	Analysis of graph partitioning algorithms
	Planar Edge Separator based partitioning

	Assignment of Partitions for Matching
	Partition similarity
	Assignment algorithms
	Comparison

	Summary

	Evaluation
	Evaluation strategy
	Evaluation framework: MatchBox
	Processing steps and architecture
	Matching techniques
	Parameters and configuration

	Evaluation Data Sets
	Data set metrics
	Enterprise service repository mappings
	ATL-zoo mappings
	Summary

	Evaluation Criteria
	Results for Graph-based Matching
	Graph edit distance results
	Graph mining results
	Discussion

	Results for Graph-based Partitioning
	Partition size
	Partition assignment
	Summary

	Discussion of Results
	Applicability
	Limitations

	Summary

	Conclusion
	Summary
	Conclusion and Contributions
	Recommendations for Data Model Development
	Further Work

	Evaluation Data Import
	ATL-zoo Data Import
	Import of metamodels
	Import of ATL-transformations

	ESR Data Import

	MatchBox Architecture
	Architecture
	Combination Methods

	Bibliography

