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Abstract

Components aredeveloped as important and big autonomous and customizable software

units. The successfulness of the reuse is important and depend on first the efficiency of

the search procedure, second in the success of integration of the discovered component in

system engineering.

In order to find components that best meet their functionalities and QoS requirements, the

discovery process need to know both the QoS information for the components and the

reliability of this information. The problem, however is that the current approaches lack

both a well-defined semantics to of diverse components and the used discovery processes

are inherently restricted to the exact querying. Those problems may provide an incomplete

answer and may lead to low precision and recall.

When we integrate the discovered component, two things should be considered. one

is which solution will be integrated if we have many solutions for the same discovered

component. second how resole the collision problem in the matching of different data

types.

We propose a discovery ontology to describe functional and non-functional properties

of software components and an integration ontology to describe its internal structure.

We propose also an enhanced Search Engine for Component based software engineer-

ing(SEC++), a persistent component that acts as an intelligent search engine, which is

based on the subsumption mechanism and a function that calculates the semantic distance

between the query and the components descriptions. We also describe how user-specified

preferences for components in terms of non-functional requirements (e.g., QoS) can be

incorporated into the component discovery mechanism to generate a partially ordered list

of services that meet developer-specified functional requirements.

When integrating the discovered component, our search engine SEC++ interrogates the in-

tegration ontology to choose the component solving method which adapts with the current

environment. We also develop a convertor component for conversion between two differ-

ent types to solve the type collision problem. We propose a shared ontology-supported

components composition, which provides a novel solution if no individual component is
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found.

Our resultsare encouraging, in fact they are a great improvement over the SEC, SEC+

and other retrieval systems.

Key words: Component discovery, QoS, Ontology, Components composition, Compo-

nent integration.
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1
Introduction

Component-based andservice-oriented software architectures are likely to become widely

used technologies in the future distributed system development. Component reuse is a

critical requirement for the development process of component-based and service-oriented

software.

Component are developed as important and big autonomous and customizable software

units. The successfulness of the reuse is important and depend first on the efficiency of

the search procedure, and second on the outcome of the integration step.

Reuse is cost effective only when the developer can find and handle(ie. possibly adapts,

extends and integrates) a component quickly, and when the component solves a significant

problem that would be expensive to solve with software built and debugged from scratch.

Nowadays, many industrial and academic research results have been developed to solve is-

sues for component-oriented technologies, such as component discovery, description, and

component integration. Component discovery and integration, becomes a critical success

factor of component-based software engineering. However, component discovery and in-

tegration are still a highly complex but critical tasks in component-oriented technologies.

Several key challenges in component discovery and integration need to be addressed:
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• How to facilitate the discovery of components? In real world, there are usually

multiple components which offer seemingly similar features but with some varia-

tion (e.g., different component interfaces, different attributes, different quality, etc).

If we cannot locate possible components with respect to a request that serve as re-

placements to one another, we can not execute the constituent components properly.

• How to facilitate the integration of the discovered component in composite compo-

nent? Whentwo or more heterogeneous components are composed, two problems

should be considered. One is which component will be integrated if we have many

components having the same target. second is the type collision in the matching

of different data types. For example, type collision happens when a ’double’ type

output parameter of a component is matched with a ’string’ type input parameter.

The third thing to be considered is how to extract input parameters when a compo-

nent has two or more output results. This problem does not need to be considered

if all the results of the component match. However, if only some of returned output

results match, a process to extract them is needed.

The search step will become an important step in the development process. The search

step may fail if the explored component repositories are not appropriately structured. This

step may also fail if we use only exact query. This may provide incomplete answers since

queries are often overspecified and may lead to low precision and recall.

Recall is defined as the ratio of the number of correct solutions retrieved to the number

of correct solutions that exist. It indicates the ability of the system to retrieve all relevant

components. Ideally, recall should be high, meaning solutions should not be missed.

Precision is defined as the ratio of correct solutions retrieved to the total number of results

retrieved. High precision is the result of retrieving few irrelevant or invalid solutions. It

indicates the ability of the system to present only relevant components Morel et Alexander

(2004).

Most of the existing component discovery mechanisms Damianiet al. (1999), Ostertag

et al. (1992), Vitharanaet al. (2003) retrieve component descriptions that contain partic-

ular keywords from the user’s query. In the majority of the cases, this leads to low quality

of the retrieved results. The first reason for this is that query keywords might be seman-

tically similar but syntactically different from the terms in component descriptions, e.g.

’buy’ and ’purchase’ (synonyms).

Another problem with keyword-based component discovery approaches is that they can-

not completely capture the semantics of the user’s query because they do not consider the

relations between the keywords (e.g. if the query is "order food", the relation between
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these keywords could indicate a need for a restaurant).

An envisioned approach to overcome these limitations is to use ontology-based compo-

nent discovery. In this approach, ontologies are used for classification of the components

based on their properties. This enables retrieval based on components types rather than

keywords. This is our approach in this work.

Several semantic discovery approaches Penix et Alexander (1999), Rosaet al. (2001)

use only the exact and/or synonym matching. This can decrease the reuse of software

components, reduce the precision of the search engine and provide a large number of non-

necessary appropriate components. Also there is a lack of support for component selection

based on non functional attributes such as Quality of Service (QoS). Some approaches to

incorporation non functional attributes in component discovery lack support for dealing

with depend or independent domain. Also there is a of lack support for dealing with

Dynamic or Static non-functional attributes.

From the point of the integration process, static non-functional properties may compose

well as they tend not to change during the system execution. The dynamic non-functional

properties are influenced by the execution environment, which includes computational

resources.

To alleviate these problems, elaborate and implement an ontology to semantically de-

scribe the functional and the non-functional aspect of components. This description can

improve the quality of the search and can enhance both the recall and the precision. In

several cases, the non-functional constraints play a decisive role in the choice of the most

powerful component. To improve the re-use of software a component we use an approx-

imate comparison between the specified query and the components semantic description.

This comparison is based on the semantic distance and the subsumption notion.

In order to improve the precision and the recall of the discovery process we extend in

our approach the existing approaches to component discovery by semantically describ-

ing software components and incorporating non functional aspects specifications into the

component description as well as into the query. Doing so, we develop a tool, which helps

the developer to select the adequate component, and an ontology which contains the se-

mantic description and non functional information of components. This tool, called SEC+

(An enhanced Search Engine for Component Based Software Development), which is im-

plemented as a software component, can be integrated in several development environ-

ments such as Eclipse and Jbuilder. The first step in component selection is to determine

a set of components which offer the requested functionality in terms of operation name,

inputs,Output, Precondition and poscondition parameters. For the operation name we
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calculate the sematic distance between components names and query operation, then we

regard if the set of obtained candidate meet the requested functional properties of the de-

velopper (in terms of IOPE’s). In general, some components will match all the requested

IOPE parameters, while others will not. To distinguish between them, we categorize them

based on the degree of match Paolucciet al.(2002), Back et Wright (1998), Li et Horrocks

(2003).

The second step in the component discovery process further refines the set of candidate

component based on developer specified dynamic/static and indpendant/dependant do-

main non-functional attributes. The set of non-functional attributes may impact the com-

ponent quality offered by a component. However, different aspects of QoS might be im-

portant in different applications and different classes of components might use different

sets of non-functional attributes to specify their QoS properties.

To select the adequate component which can easily integrate in the current work, SEC++

interrogate an integration ontology. The integration ontology describe the more general

internal structure of each component specified in the discovery ontology. To obtain dis-

covery ontology instances we use adapters Fensel et al. (2003) to specify mappings among

the knowledge components of a PSM. The adapters are used to achieve the reusability,

since they bridge the gap between the general description of a PSM and the particular

domain where it is applied.

Before selecting the appropriate component, the developer can have an idea of the various

methods used to resolve the component. For example if the candidate is The towers-

of-Hanoi Erikssonet al. (1995) which is interesting as a case study of tradeoff of space

and time resources with more task-specific knowledge. The towers-of-Hanoi can be used

in several domains such as psychological research computer data backups WIKIPEDIA

(2007). It demonstrates several possible task-level indices that can be used to select can-

didate problem-solving methods from library. These indices characterize different dimen-

sions of the problem and of its potential solutions.

There is a several solution to solve this problem such asRecursive task decomposition,

iterative and piece-oriented methodsandchronological-backtracking method. Chrono-

logical backtracking is the general method that can provide solutions for several versions

of the component described in the discovery ontology. We can completely avoid back-

tracking, and can guarantee an optimal, solution. In general however, we might have

more than three pegs, and we might start or end with any state; the domain definition of

a legal move might be different, too. Although the task-specific methods are more usable

than in chronological backtracking with respect to alternative problem variants, they are
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not reusable across different tasks.

Common factors to consider in the selection of a problem-solving method for the choosing

component in the discovery step are:

1. Input and output of the component. What information is available at run time? What

is therun-time output.

2. Method flexibility. Is the component likely to be modified during development

and maintenance?What flexibility in terms of reconfiguration of the method for

modified component required.

3. Computational and space complexity: What are the resources available in terms of

time andspace?

If the developer select the component which resolved with the desired method, He can

use the two components: Output-Matching-Service and Input-Output-convertor. Output-

Matching-Service and Input-Output-convertor are component types used in matching pa-

rameters. Output-Matching-Service is a service that extracts what it needs from com-

ponent output parameters, and Input-Output-convertor is a component that converts the

output parameter type of a selected component to the input parameter type of a compo-

nent to be extracted.

This research contributes to the body of component composition by proposing an

ontology-supported and component-oriented approach to organizational knowledge man-

agement and components composition. We introduce an integrated a shared ontology for

component composition to improve the reuse and to search a composite component if

there is no individual component result. We have applied the proposed shared ontology

to a corporate Mathematical service application. The prototype shows that the developed

system can support semantic, dynamic, and automated component composition effec-

tively.

We conducted various experiments to evaluate the effectiveness of SEC+. Our results

are encouraging, in fact both precision and recall improved significantly compared to the

results obtained with other approaches

The remainder of this thesis is structured in two parts as follows:

In Part 1, and precisely in Chapter 1 we analyze related work in the areas of component

description, Component discovery and component classification.Chapter 2 presents and

compare first the Web ontology languages next the ontology editors. The description of
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the languages will consist in a short introduction to their functionalities and their instruc-

tions. Thecomparison between ontology editors will be resume in a table.

In part 2,we are going to present our approaches, which are the atomic component dis-

covery approach, composie component discovery approach and the integration ontology.

In Chapter 4, we evaluate the performance of the SEC+ by measuring the criteria Recall

and Precision. Retrieval performance experiments were performed both with and without

the semantic distance and the subsumption. We conclude in this chapter that SEC+ has a

high Recall and precision compared to many search engines. To demonstrate the benefits

of the proposed composition and integrated ontology, we have applied it to the Matrix

operations components

Conclusions and future work are given in Chapter 5 to show how our contributions can be

reused in the advancement of software component technology.



Part I

State ofthe art





2
Software component survey

2.1 Introduction

In the first part of in this Chapter, we are going to present a comparative study of clas-

sification and discovery approaches for software components. In the second part we will

present respectively the ontology definition, the languages of representing ontologies and

a survey of ontology editors and compare first the Web.

2.2 Component based software development

Component-based and service-oriented software architectures are likely to become widely

used technologies in the future distributed system development. Component reuse is a

crucial requirement for the development process of component-based and service-oriented

software. Components are developed as important and big autonomous and customizable

software units. The successfulness of the reuse is important and depends on the efficiency

of the search procedure. The search step is essential in the development process, since

the developer is generally faced with a significant number of various component types.
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The search step may fail if the explored component repositories are not appropriately

structured orif the required and the provided services are not correctly compared. The

use of a component repository, having a well-defined structure, is crucial for the efficiency

of the CBD approach. This allows the developer to easily seek and select the component

which perfectly meets his/her needs.

Through this study, we analyze the key factors that are necessary for obtaining a well-

organized software component repository and software components having a pertinent

description for the search procedures (see figure 2.1). These factors act not only on the

precision of the specified request but also on the component resulting from the search

process.

For component description, two generation approaches of description are distinguished:

manual generation Erdur et Dikenelli (2002) and automatic generation relying on different

methods such as introspection Sessions (1998), Neil et Schildt (1998), trace assertion

Whaleyet al. (2002) and invariant detection Perkins et Ernst (2004).

The second part identifies and describes five categories of methods for representing

component classification. The first is the adhoc method, called also behavioral method

Podgurski et Pierce (1992), Atkinson et Duke (1995). The second is based on the seman-

tic characteristics of the component Penix et Alexander (1999). The third uses the facet

classification Damianiet al. (1999), Ostertaget al. (1992), Vitharanaet al. (2003), Fer-

reira et Lucena (2001). The fourth method is based on the lattice Fischer (2000). Finally,

the fifth method applies the notion of ontology Erdur et Dikenelli (2002), Melinget al.

(2000) to describe and classify components. Different techniques are used to organize

components in repository: the cluster technique Nakkrasaeet al. (2004), the thesaurus

technique Liaoet al. (1997) and the subsumption technique Napoli (1992).

The third part addresses the component discovery techniques related to classification

methods. A successful adequation between the description and the classification meth-

ods should provide a powerful discovery service. This allows the developer to easily

discover the appropriate component that meets his/her needs. The most popular discovery

techniques are based on: genetic algorithms Xieet al.(2004), neural networks Nakkrasae

et al.(2004), symbolic learning Utgoff (1989) and probabilistic information retrieval Yun-

wen et Fischer (2001). These techniques use the decision tree algorithm Ruggieri (2004),

Vasiliu et al. (2004) or unification of the component description in the comparison phase

Yao et Etzkorn (2004).
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Figure 2.1: The approach structure

2.3 Component description

The descriptionof a component constitutes an effective means which makes it possible

for a user to obtain a complete and precise vision of the component.

Both functional and non-functional aspects of component description are handled by the

different existing approaches. Descriptions can be generated manually or automatically

and may consider two kinds of representing description levels. Two classes of component

description are distinguished: Stateless and Statefull behavioral categories.
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2.3.1 Description levels and Description aspects

1- Stateless:includes the service signature, its attributes, a component identification and

the exceptions. Different approaches propose IDL (Interface Description Langage) as a

specification language Fetike et Loos (2003) and particularly address COTS components.

2- Statefull: At this level, descriptions encompass component internal characteristics.

Three sub-levels are identified:

- Methods specification: The method specification allows the developer to understand the

component functionalities in detail. It describes not only the methods signature but also

the method body. The majority of used languages are formal such as the Oslo University

Notation (OUN) Rylet al. (2001) and the LARCH notation Penix et Alexander (1999).

- Component behavior specification: it is usually defined in terms of pre-condition, post-

condition of the operations, and invariants. This level of specification was described by

several languages such as XML, Eiffel style in Cicalese et Rotenstreich (1999), LARCH

in Zaremski et Wing (1995) and linear temporal logic (LTL) in Nakajima et Tamai (2001).

- Protocol specification: the protocol describes the component states when we execute

component methods. Finite State Machines Yellin et Strom (1997), Petri Net Bastide

et al. (1999) andπ-calculus Canalet al. (2000) are the most often used. This level of

specification is applied, not only for classification, but also for checking, substitution,

composition of components Farías et Y.Guéhéneuc (2003) and analysis of compatibility

between protocols Yellin et Strom. (1997).

In the specification of a software component, two different aspects are considered:

1. Functional aspect: It identifies the functionalities of the component that should provide.

The methods of a component are an example of this type of information. The approach

of Sofienet al. (2002) specifies the static part of the functional aspect through the service

interface and the dynamic part through the invocation interface.

2. Non-functional aspect: It specifies the component properties. They include properties

of safety, and fault tolerance as well as quality of service. The approach presented in Sun

(2003) classifies the non-functional information into two categories: dynamic constraints

and static constraints. This distinction is related to the degree of constraint change at the

run-time in different operating system and application server.
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2.3.2 Generation techniques for component description

Recent works propose tools which automatically generate specifications based on pro-

gram runs Whaleyet al. (2002), Ammonset al. (2002). These tools allow programmers

to benefit from formal specifications with much less effort. Other works specify the com-

ponent description manually. These approaches are hard to apply if there is a large number

of components in the repository.

The component can be specified at design-time by developers via interfaces. Such speci-

fications may also be generated for already implemented components. The IDL specifica-

tion for object and WSDL for Web services are two examples of description which may

be generated after component implementation.

Several works specify the component description manually via an interface. This descrip-

tion is stored as elements of databases Bragaet al. (2001), as an XML file, as ontologies

Paez et Straeten (2002) or as elements of knowledge base.

In Erdur et Dikenelli (2002), components are specified in XML and descriptions are pub-

lished by local or remote repositories. Domain ontologies are used for reusable compo-

nent retrieval and OQL queries are used for discovering the appropriate component.

A component specification can be also generated automatically against its implementation

either dynamically, by running the component, or statically by examining the program

source. Dynamic approaches are simpler to implement and are rarely blocked by inad-

equacies of the analysis, but they slow down the program and check only finitely many

runs Ernst (2000).

2.3.2.1 Statically generated description

A component description can be generated statically by analyzing the component code.

Several mechanisms are employed and supported by many tools such as Agora Seacord

et al. (1998), PEEL Henninger (1997) and Bandera Corbettet al. (2000)

The static extraction of component description from implementation code was addressed

by several other tools such as PEEL Henninger (1997), LCLint Evanset al. (1994), Ban-

dera Corbettet al. (2000) and Inscape Perry (1989).

Henninger (1997) presents a re-engineering tool, called PEEL ( Parse and Extract Emacs

Lisp), that translates Emacs Lisp files into individual, reusable, components in a frame-

based knowledge representation language named Kandor Devanbuet al. (1991). Kandor
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representations can be viewed as a set of attribute/value slots which contain information

about agiven component.

In Strunk et al. (2005), the specification extraction is made from SPARK annotations

Barnes (2003) to a PVS specification Rust (1998). A function is extracted from each sub-

program in SPARK ADA. Type restrictions over input types are extracted from precondi-

tion annotations, and PVS function bodies are extracted from postcondition annotations.

Johannes and Amer Henkel et Diwan (2003) develop a tool which discovers algebraic

specifications from Java classes. Algebraic specifications can describe what Java classes

implement without revealing implementation details. In this approach They start by ex-

tracting the classes signatures automatically using theJava reflection API. They use the

signatures to automatically generate a large number of terms, using heuristics to guide

term generation. Each term corresponds to a legal sequence of method invocations on an

instance of the class. The terms are then evaluated and compared with their outcomes.

These comparisons yield equations between terms. Finally, equations are generalized to

axioms and term rewriting is used to eliminate redundant axioms.

The work of Corbettet al. (2000) proposes an integrated collection and transformation

components, called Bandera which can extract the Java code source into finite-state mod-

els. Each state represents an abstraction of the state of the program’s and each transition

represents the execution of one or more statements transforming this state.

The paper Evanset al. (1994) describes LCLint, a tool that accepts programs as input

(written in ANSI C) and various levels of formal specification. It is intended to be used

in developing new code and in helping to understand, to document, and to re-engineer

legacy code.

Inscape Perry (1989) uses a specification language that can specify pre-conditions and

post-conditions of a procedure, as well as obligations on the caller following return from

the call (such as closing a returned file).

2.3.2.2 Dynamically generated descriptions

Three generation methods are distinguished: the trace assertion method, the invariant

detection method and the introspection.

Trace assertion method detection techniquesThe trace assertion method is initially

defined byD.L. Parnas Bartussek et Parnas (1978). It is a formal state machine-

based method for specifying module interfaces. A module interface specification
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regards a module as a black-box, identifying all module access programs, and de-

scribing theirexternally visible effects Janicki et Sekerinski (2001).

Traces describe the visible behavior of objects. A trace contains all events affecting

the object. It is described as a sequence of events.

The trace assertion method is based on the following postulates Janicki et Sekerinski

(2001):

-Information hiding(black box) is fundamental for any specification.

-Sequencesare natural and powerful tools for specifying abstract objects.

-Explicit equationsare preferable over implicit equations. Implicit equations might

provide shorter and more abstract specification, but are much less readable and more

difficult to derive than the explicit ones.

-State machinesare powerful formal tools for specifying systems. For many appli-

cations they are easier to use than process algebras, and logic-based techniques.

Whaley et al Whaleyet al. (2002) employs dynamic techniques to discover the

component interfaces. It proposes using multiple FSM submodels to model the class

interface. Each submodel contains a subset of methods. A state-modifying method

is represented as state in the FSM, and allowable pairs of consecutive methods are

represented as transitions of the FSMs. In addition, state-preserving methods are

constrained to execute only under certain states.

The work of Stotts et Purtilo (1994) suggests another technique called IDTS (Inter-

active Derivation of Trace Specs) Parnas et Wang (1989), for deriving Parnas’ trace

specifications from existing code modules. The algebraic specification is also used

to automatically generate a specification from modules. It can be seen as a com-

plementary approach for the trace assertion method. The main difference between

the two techniques is the use of implicit equations in algebraic specifications, and

explicit equations only in trace assertions.

Invariant detection Dynamic invariant detection methods discovers specifications by

learning generalproperties of a program execution from a set of program runs.

Invariants provide valuable documentation of a program’s operation and data struc-

tures which help developers to discover the appropriate component in a given repos-

itory.

The approach presented in Ernst (2000) describes a tool which detects dynamic in-

variants by starting with a specific space of possible program invariants. It executes

the program on a large set of test inputs, and infers likely invariants by ruling out
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those which are not violated during any of the program runs. Unlike static specifi-

cation, thisapproach has the advantage of being automatic and pervasive, but it is

limited by the fixed set of invariants considered as hypothesis.

The paper of Hangal et Lam (2002) introduces DIDUCE, a tool which helps devel-

opers to specify the behavior of programs by observing its executions. DIDUCE

dynamically formulates invariants hypothesis assured by the developer. It supposes

the strictest invariants at the beginning, and gradually relaxes the hypothesis when

violations are detected in order to allow new behavior.

Considerable research has addressed static checking of formal specifications Nau-

movich et al. (1997), Leino et Nelson (1998). This work could be used to verify

likely invariants discovered dynamically. For example Jeffords and Heitmeyer Jef-

fords et Heitmeyer (1998) generate state invariants from requirement specifications,

by finding a fixed point of equations specifying events causing mode transitions.

Compared to code analyzing, this approach permits operation at a high level of

abstraction and detection of errors early in the software life cycle.

Introspection Introspection is the ability of a program to look inside itself and return

information forits management.

Introspection is provided for Java programs. It describes the capacity of Java com-

ponents to provide information about their own interfaces. Introspection is imple-

mented for Java components. Introspection determines the properties, the events,

and the methods exported by a component. The introspection mechanism is imple-

mented by thejava.beans.Introspectorclass; it relies on both thejava.lang.reflect

reflection mechanism and a number of JavaBeans naming conventions. Introspec-

tor can determine the list of properties supported by a component, for example, if

a component has a "getColor" method and a "setColor" method, the environment

can assume you have a property named "Color" and take action appropriately. Bean

developers can also override introspection and explicitly tell the development envi-

ronment which properties are available.

The introspection mechanism does not rely on the reflection capabilities of Java

alone, however any bean can define an auxiliary BeanInfo class that provides addi-

tional information about the component and its properties, its events, and its meth-

ods. The Introspector automatically attempts to locate and load the BeanInfo class

of a Bean.

The introspection mechanism is used for many component models and in many

approaches. For example all JViews components advertise their aspects using a set

of AspectInfo class specializations, similar to BeanInfo introspection classes and
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COM type libraries. The work presented in Seacordet al.(1998)describes a search

engine for the retrieval of reusable code components. The introspection is used

by Agora system and Varadarajanet al. (2002) respectively for registering code

components, through its interface and for discovering the syntactic interface of a

component at run-time.

2.4 Component classification in repository

During the development process, the developer faces handling a significant number of

component types. The use of a component repository, having a clear structure, is crucial

for the effectiveness of the CBD approach. This allows the developer to easily search

and select the component which perfectly meets his/her needs. Several approaches tried

to improve software components classification by developing methods to represent the

classification of components based on their description. In existing work, two types of

classification are distinguished: The attribute-based classification and the method-based

classification.

2.4.1 Attribute-based classification

This classification is based on components attributes. It has two forms: an elaborated

form, which uses the components attributes to make a relation between components, and

a basic form, which uses the attribute types to organize the repository.

2.4.1.1 The basic attribute-based classification

The basic attribute-based classification uses the component attributes to classify

components. In the basic representation we distinguish three methods: The seman-

tical characteristic-based method, the behavior-based method and the facet-based method.

The behavior-based methodThis classification method is based on the exploitation of

results provided by the execution of the component. These results are collections

of answers which represent the dynamic behavior of the component. A relation of

a behavioral nature must be used to classify software components.
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In Pozewaunig et Mittermeir (2000) this technique is applied to functions. To fa-

cilitate thesearch process, the repository is divided into segments. Each segment

contains all the functions having the same types of input and output parameters. For

example, a segment contains all the functions having an input and output parameter

of type integer. The developer request is presented in the form of a program which

calls systematically each function of the concerned segment and collects the output

of each function to compare it with the required value. Only the functions which

check the value indicated in the request are provided.

In Podgurski et Pierce (1992); Atkinson et Duke (1995) components are identified

by classes. The behavior is defined as the response of the objects to sequences of

external messages. The comparison is made between the expected and the provided

results. In Atkinson et Duke (1995), the selected behavior may come from a class

or from a union of two classes.

The facet-based methodFacet classification approaches Damianiet al. (1999);Vitha-

rana et al. (2003) represent the type of information to describe software com-

ponents. Each facet has a name which identifies it and a collection of well-

controlled terms known as vocabulary to describe its aspects. For example, the facet

component-typecan have the following values: COM, ActiveX, Javabean, etc. In

the search procedure, the user query is specified by selecting a term for each facet.

The set of the selected terms represents the task to be executed by the component.

Ferreira et Lucena (2001) uses the component external description to organize the

repository. Different facets are defined, among which: the applicability, the spe-

cialization domain and the hardware platform. This approach handles several tech-

nologies of components: EJB and CORBA components. Zhanget al.(2000) distin-

guishes three granularity levels for a component in a Metacase environment:

• Project level component: like projects for developing information systems.

• Graph level component: like use case diagrams.

• Unit level component: like class, state and transition diagrams.

A facet formed by a n-uplet is designed for each type of component. A hierarchical

relation between the three types of facets is considered. The component description

is limited to the type of the component, its properties and the name of its superior.

The approach presented in Franchet al. (1999) is the only one which introduces

non-functional constraints. The components are ADA packages. Each facet in-

cludes the name of the non-functional constraints, a list of values and constraints
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called Nfconstraints. An interface can have several implementations (components):

the interface which minimizes the number of connections between components can

be implemented using several methods like hashing, AVL trees, etc. The compar-

ison distance is approximate since the developer chooses the component to which

he/she applies the correction necessary to adapt it to his/her needs. In this approach,

there is no specification phase since the facets are introduced in the implementation

level as ADA package.

The semantical characteristic-based methodThe component semantic characteristic is

represented bya pair (attribute, value). It represents the functional aspects of soft-

ware components. The identification of these characteristics and the classification

procedure are fixed and verified by an expert of the domain. The similarity between

two components is measured based on the number of common characteristics. The

search process is based on a syntactic comparison of the set of characteristics.

In Penix et Alexander (1999) the retrieval is achieved using feature-based classi-

fication scheme. When applying feature-based classification by hand, repository

components are assigned a set of features by a domain expert. To retrieve a set

of potentially useful components, the designer classifies the problem requirements

into sets of features and the corresponding class of components is retrieved from

repositories. Queries can be generalized by relaxing how the feature sets are com-

pared.

2.4.1.2 The elaborated classification

The elaborated classification uses the component properties (attributes and/or methods) to

form a relation. This relation can have a graph representation or a hierarchical form and

is restricted by constraints. We divide the elaborated classification into attribute-based

classification and method-based classification.

This type of representation is essentially used in the lattice method. The latter uses compo-

nent attributes and establishes relations between them. The concept of lattice was initially

defined by R. Wille Wille (1982). This concept is the representation of a relation,R, be-

tween a collection of objectsG (Gegentande) and a collection of attributesM (Merkmale).

The triplet (G,M, R) is called concept. The artificial intelligence is the first discipline

which uses this technique for representation and acquisition of knowledge. Wille Wille

(1982) considers each element of lattice as a formal concept and the graph (Hasse dia-

gram) as a relation of generalisation/specialisation. The lattice is seen as a hierarchy of

concepts. Each concept is seen as a pair (E,I ) whereE is a sub-set of the application
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instance andI is theintention representing the properties shared by the instances.

Granter and Wille Granter et wille (1996), and Davet and Priesly Davey et Priesly (1990)

apply the technique of lattice to establish the relation between objects and their attributes.

This idea was applied by Fischer (2000) and Davey et Priesly (1990) to classify software

components. The relationR is represented with a tree whose leaves are the components

and the nodes are the joint attributes. In the search phase, the user chooses one or more

attributes, according to his/her needs. The system notifies the associated components.

2.4.2 Method-based classification

This classification is handled using ontologies. For each component method this approach

defines its relation with its synonyms, its Hyperonymes and its Hyponymes.

Ontology is defined by Gruber as an explicit specification of a conceptualization or a

formal explicit description of concept(denoting sometimes a class) in a speech domain

Natalya et Deborah (2001). The properties of each concept describe the characteristics

and the attributes, also called slots or roles. The restrictions apply to the slots and are

called facets. The objects of classes constitute the knowledge base. Several disciplines

developed and standardized their own ontology with a well-structured vocabulary as in

e-commerce Fenselet al. (2001) and in medicine Humphreys et Lindberg (1993).

In software engineering and particularly in the specification and the search-related do-

mains for software components, ontology is also used. This type of description can facil-

itate organization, browsing, parametric search, and in general provides, more intelligent

access to components.

Bragaet al.(2001) uses ODL notations as a tool for the component external specification.

Term, ontology term and component are among the used concepts. Term contains the

slots names and descriptions. For each term, it defines its relation with its synonyms, its

Hyperonymes and its Hyponymes in the concept ontology term. In the class component,

a slot called type is defined. The comparison distance in this approach is exact.

The software components organization in Paez et Straeten (2002) is based on a multidi-

mensional classification. A dimension is defined by a set of facets. Each facet describes

an aspect of the component. The dimension implementation, for example, contains the

following facets: programming language, the execution platform, etc. In dimension re-

use, the facets are: the history of the use of the component, protocol, environment and

components frequently used by the component. Another dimension like ScrabbleGU,
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contains facets in which are defined the signatures of the methods. The notation used for

the specificationis Q-SHIQ.

2.4.3 Classification techniques

Classifying reusable components and easily retrieving them from existing repositories are

among objectives of reuse systems design Miliet al. (1995). In literature, we distinguish

two classification levels. The lower level hierarchy and the higher level hierarchy. The

first is created by a subsumption test algorithm Napoli (1992) that determines whether one

component is more general than another; this level facilitates the application of logical

reasoning techniques for a fine-grained, exact determination of reusable candidates. The

higher level hierarchy provides a coarse-grained determination of reusable candidates and

is constructed by applying the clustering approach to the most general components from

the lower-level hierarchy.

Classification by clustering techniques has been used in many areas of research, including

image processing and information retrieval. Applying a clustering algorithm to the most

general components of the lower-level hierarchy leads to the generation of the higher-level

hierarchy of the component library.

Many methods are employed to classify the components by clustering. Such methods

include fuzzy subtractive clustering algorithm Chiu (1996), neural network techniques,

decision tree algorithm and fusion algorithm.

The work of Nakkrasaeet al. (2004) employs Fuzzy Subtractive Clustering (FSC) which

is a fast one-pass algorithm for estimating the number of clusters and their centers in a

set of data to preprocess the software components. Once the software component groups

are formed, classification process can proceed in order to build a repository containing

cluster groups of similar components. The center of each cluster will be used to construct

the coarse grain classification indexing structure. Three levels of component description

are used: behavior, method and protocol specification. An approximate comparison query

and components is employed.

In similar domain, where components are used to implement documents, Zhang et al.

proposes a fusion algorithm Jian Zhang et Wang (2001) which clusters the components in

different result sets. Clusters that have high overlap with clusters in other result sets are

judged to be more relevant. The components that belong to such clusters are assigned the

highest score. The new score is used to combine all the result sets into a single set.
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A heuristical approach is used by Willet (1988), Carpineto et Romano (2000) and Daud-

jee etToptsis (1994) to cluster the set of components. In Willet (1988) components are

used to implement documents and heuristical decisions are used not only to cluster the

component set but also to compute a similarity between individual component clusters

and a query. As a result, hierarchical clustering-based ranking may easily fail to discrim-

inate between documents that have manifestly different degrees of relevance for a certain

query. Carpineto et al. applies in Carpineto et Romano (2000) the same approach to a

web page. Daudjee et Toptsis (1994) uses heuristical clustering scheme. The scheme

clusters software components also contains functional descriptions of software modules.

It is automatic and classifies components that have been represented using a knowledge

representation-based language. The facet method is used for representing the classifica-

tion. This representation takes the form of verb-noun pairs where the verb is the action or

operation performed and the noun is the object upon which the operation is performed

The work of Pozewaunig et Mittermeir (2000) adopts decision trees to classify and to

cluster the repository into partitions with respect to the signatures of all reusable com-

ponents. In the traditional approach, a partition contains assets which conform with the

signature only. However, to allow a higher level of recall, this approach uses generalized

signatures by extending the approaches of Novak (1997). The component description is

limited to the specification of component methods.

The thesaurus is also used to organize the components into a repository. It provides knowl-

edge about the relationships between index terms; it adds conceptual meaning to simple

keyword matching. Similarity between the query posed by the user and the candidate

searched for is computed by a model in which similarity between facets gives a measure

of conceptual closeness (or distance). After computing the conceptual distances, the result

is multiplied with facet weight (which is user-assigned).

Liao et al. (1997) develop a Software Reuse Framework (SRF) which is based on a built-

in hierarchical thesaurus. Its classification process may be made semi-automatic. SRF

is a domain-independent framework that can be adapted to various repositories and also

provides four search levels to assist users with different levels of familiarity with reposi-

tories.

Llorens et al. Llorenset al. (1996) implements "Software Thesaurus" (ST), a tool whose

objective is to develop software while reusing objects produced previously in other soft-

ware projects. This tool is defined by a new repository metamodel which supports the

classification and retrieval of essential software objects defined by current object oriented

methodologies using GUI.
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In other similar works Carpineto et Romano (1996), Carpineto et Romano (1994), the

thesaurus isintegrated into a concept lattice either by explicitly expanding the original

context with the implied terms or by taking into account the thesaurus ordering relation

during the construction of the lattice.

2.5 Component discovery

To improve component discovery, we must well classify the component repository as

mentioned in previous section. This classification facilitate the discovery process and

decrease the search time.

In this section, we study the component discovery related works that include: comparison

distance, search style, discovery techniques, interface type and discovery algorithm.

The comparison distance between the specified query and the component description can

be approximate or exact. We distinguish also two kinds of search: directed search and

indexed search. We divide the discovery techniques into probabilistic and the learning

techniques and we show that the majority of discovery algorithms are based on the deci-

sion tree and the unification of component descriptions.

2.5.1 Comparison distance and search style

The search procedure of software components is a delicate task especially when it handles

a repository containing a significant number of software components. Indeed, the search

procedure explores the structure of the repository to discover the seeked components.

In literature, we distinguish two kinds of search (figure 1): directed search and indexed

search. In the direct search, the developer negotiates directly with the component repos-

itory. In the indexed technique, the search process is conducted manually Fischer (2000)

or automatically Seacordet al. (1998) according to a pre-defined process. CodeFinder

Henninger (1997) and CodeBroker Yunwen et Fischer (2001) use automatic indexing. In

CodeFinder, the indices are terms and sentences, whereas in CodeBroker, the indices are

comments. The access to the repository is automatically managed by an agent.

The indexed search style is the mostly used in many discovery algorithms such as Decision

tree algorithm. In this algorithm the repository is indexed by a decision tree, which is a

tree data structure consisting of decision nodes and leaves. A leaf contains a class value

and the node specifies a test over one of the attributes.
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Software  component  repository description Software  component repository

Developer

Automatically indexed

               search

Direct search

Manually indexed search

Figure 2.2: Search style

The definition and the use of a comparison distance make it possible to quantify the result

of the comparison between the query requirements (Q) and the component properties.

This distance is represented by a Vector Space Models in Li (1998), several evaluation

functions in Cheng et Jeng (1997) and a probabilistic calculation in Yunwen et Fischer

(2001). Hence, search can provide an "exact" (P= 1) or approximate (P< 1) result,

where P is the probabilistic calculation . In the first case, the developer can re-use the

component as such in the application. In the second case, the developer has to adapt the

component to the task specified in the query.

The approximate comparison is used in many discovery techniques such as probabilistic

and learning techniques.

2.5.2 The discovery techniques

Existing software repositories that provide search facilities adopt different retrieval meth-

ods. Based on a variety of technologies, they can be divided into probabilistic and learning

techniques.
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2.5.2.1 Probabilistic techniques

In probabilistictechniques, components indexation and selection can be seen as infor-

mation retrieval problems. The goal is to estimate the relevance probability of a given

component description to a user with respect to a given query. Probabilistic assumptions

about the distribution of elements in the representations within relevant and irrelevant

documents are required.

The CodeBroker agent Yunwen et Fischer (2001) uses both free-text information re-

trieval techniques and signature matching to retrieve task relevant components. It uses the

probability-based information retrieval technique defined in Robertson et Walker (1994),

in order to compute the concept similarity between queries extracted from doc comments

of emacs programs and documents of components in the repository.

In Callanet al. (1992) the probabilistic retrieval model is a type of Bayesian network.

They consist of two component networks; the first for documents and the second for

queries. The links in the documents networks are weighed by conditional probabilities

defining the probability that the document is related to the concept. Queries are related

to different concepts by the user interface. Document selection is achieved using recur-

sive inference to propagate belief values through the inference net, and then retrieving

documents with the highes rank.

In Sofienet al. (2006) a persistent component, called SEC it developed. It can be loaded

in development environments during project creation. It contains the search process and

manages access to the repository of component descriptions. It executes the specified

query, retrieves and presents components using a probabilistic technique. In addition, it

sorts the resulted components according to the degree of similarity with the query. Four

degrees of similarity have been considered:

- Exact: If componentC and queryQ are

equivalent concepts, this is the Exact match ; denoted,C≡ R.

It means that for each couple of the request and the description, there is identity of types.

- PlugIn: If query Q is sub-concept of componentC, this is the PlugIn match ; denoted,

QvC.

It means that for each element of the query there is a similar element in component de-

scription

- Subsume: If queryQ is super-concept of componentC, this is the Subsume match ;
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denoted,CvQ.

- Disjoint: The last case is the Disjoint match; for which,C uQv⊥ .

It means that there is no element of the component description that corresponds to an

element of the query.

Similarly Fuhr and Pfeifer use in Fuhr et Pfeifer (1994) a probabilistic technique based on

three concepts: abstraction, reductive learning and probabilistic assumptions for informa-

tion retrieval. The three concepts may relate to: documents, queries, and terms.

2.5.2.2 Learning techniques

More recently, information science researchers presented new artificial-intelligence based

inductive learning techniques to extract knowledge or identify patterns in examples or

data. They include neural networks, genetic algorithms and symbolic learning. We pro-

vide below an overview of these three classes of techniques, along with a representative

technique for each one.

The neural network is used for structuring a repository of reusable component accord-

ing to the semantical similarities of the stored software components in order to

facilitate the search and to optimize the retrieval of similar repetitive queries. Neu-

ral networks are considered as content-addressable or associative memories in some

approach in support of imprecise querying.

The work of Clifton et Wen-Syan (1995) can be considered as instances of infor-

mation retrieval methods. In this approach, conventional abstractions are used to

describe software. Clifton and Li use design information as abstraction and pro-

pose neural network technology to accomplish the match.

The approach of Eichmann et Srinivas (1992) uses neural network to extend and to

improve the traditional methods where the query contains exact information about

the component in the repository. The motivations behind using neural networks

are to use relaxation, retrieving component based on approximate/best matches, to

optimize the retrieval of similar repetitive queries and to retrieve component from

large repository, using the fast associative techniques that are natural and inherent

in this tools.

Zhiyuan (2000) proposes a neural associative memory and bayesian inference tech-

nology to locate components in a repository. For each component, there are ten
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facets (type, domain, local identifier, etc.). The neural associative memory memo-

rizes therelationship between components and facet values. During the search, the

described component representation is mapped to facets. The value of each facet

is fed into its dedicated associative memory to recall the components that have the

same value for this facet. After one processing step, all the components having this

value will be recalled. In this approach, the comparison distance is exact and the

information type is functional.

Nakkrasaeet al.(2004) proposes two computational approaches to classify software

components for effective archival and retrieval purposes, namely, fuzzy subtractive

clustering algorithm and neural network technique. This approach uses a formal

specification to describe three properties of components: structural, functional, and

behavioral properties. Components specification are represented in a matrix form

to support classification in the component repository. Subsequent retrieval of the

desired component uses the same matrix to search the appropriate matching. The

specification level in this approach is behavioral, the information type is functional

and the comparison distance is approximate.

Genetic algorithms are based on the principle of genetics Michalewicz (1992). In such

algorithms apopulation of individuals (a component repository) undergoes a se-

quence of unary (mutation) and higher order (crossover) transformations. These

individuals strive for survival: a selection (reproduction) scheme, biased towards

selecting fitter individuals, produces the individuals for the next generation. After

a number of generations, the program converges - the best individual represents the

optimum solution Chen (1995). In our case the individual represents the component

and the best individual is the desired one.

The approach Xieet al. (2004) uses facet presentation to model query and compo-

nent. Genetic algorithm, which is based on facet weight self-learning algorithm can

modify dynamically the weight of the facet in order to improve retrieval accuracy.

This algorithm is integrated into FWRM’s that contains three main implementation

parts: Facet-Weight optimization system, component retrieve system and resource.

In Chen et Kim (1995), Chen and Kim developed a hybrid system, called GAN-

NET for information retrieval. The system performs concept optimization for user-

selected documents using genetic algorithms. They use the optimized concepts

to perform concept exploration in a large network of related concepts through the

Hopfield net parallel relaxation procedure.

symbolic machine learning In symbolic machine learning, knowledge is represented in

the formof symbolic descriptions of the learned concepts, e.g., production rules or
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concept hierarchies. It is used essentially for information retrieval. The problem

of componentretrieval can be converted into information retrieval, the information

represents the component description.

In literature, several symbolic learning algorithms have been developed. Quinlan’s

ID3 decision tree building algorithm and its descendants Quinlan (1986) are popular

algorithms for inductive learning. ID3 takes objects of a known class, specified

in terms of properties or attributes, and produces a decision tree containing these

attributes that correctly classifies all the given objects. To minimize the number of

tests, necessary to classify an object, it uses an information-economics approach.

Its output can be summarized in terms of IF-THEN rules.

In Hsinchun et Linlin (1994), Hsinchun and Linlin adopted ID3 and the incremental

ID5R Utgoff (1989) algorithm for information retrieval. Both algorithms were able

to use user-supplied samples of desired documents to construct decision trees of

important keywords which could represent the user queries.

For large-scale real-life applications, neural networks and, to some extent, genetic algo-

rithms have some limitations. In fact, they suffer from requiring extensive computation

time and lack of interpretable results. Symbolic learning, on the other hand, efficiently

produces simple production rules or decision tree representations. The effects of the repre-

sentations on the cognition of searchers in the real-life retrieval environments (e.g., users’

acceptance of the analytical results provided by an intelligent system) remain to be de-

termined Chen (1995). The importance of sample size has been stressed heavily in the

probabilistic techniques Fuhr et Pfeifer (1994).

2.5.3 Discovery algorithm

Well organized repositories can be queried by developers according to a search process.

To perform process and to deliver the component that meets the developer’s need many

algorithms have been proposed. Most of them are based on decision trees and unification

of component descriptions. We distinguish two forms of unification: string unification and

graph unification. This unification make easy the selection of the appropriate component

by using one of the discovery techniques mentioned above.
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2.5.3.1 Unification based discovery

String unificationcan be used to order components and hence to organize repositories hi-

erarchically. Theses hierarchies can then be exploited to optimize the search process or to

compute a navigation structure. The unification in Cheng et Jeng (1997) is a unification of

logic expressions. It uses the order-sorted predicate logic (OSPL) to specify components.

The relationship between two components is based on the sort information and a logical

subsumption test applied to the specification body. The search process assesses the equiv-

alence class for each of the predicates and functions and develops a unified hierarchy of

components.

The discovery algorithm based on graph unification consists in transforming the query

and the component specification into graph representation. After this step a discovery

technique is used to compare between the resulted graphs.

AIRS (AI-based Reuse System) Ostertaget al. (1992) represents a component using a

set of (feature; term) pairs. Each feature has a feature graph that the system traverses in

search of conceptually close features with respect to the user query. This represents the

distance (and thus the user effort) required to modify the retrieved candidate to meet the

user’s needs. The number of features used to represent all components is fixed.

Manuel et al. (2000) use conceptual graphs for the representation of the compo-

nent(document) and the query. A conceptual graph is a network of concepts and relation

nodes. The concept nodes represent entities, attributes, or events (actions). The relation

nodes identify the kind of relationship between two concept nodes. The retrieval mecha-

nism consists in comparing two conceptual graph representations. It is composed of two

main parts:

1. Find the intersection of the two (sets of) graphs,

2. Measure the similarity between the two (sets of) graphs

The work of Yao et Etzkorn (2004) uses conceptual graphs to describe a component. In

the retrieval process the query is translated into a conceptual graph in order to enhance

both retrieval precision and recall by deploying the same representation technique on both

sides: user query side and component side.
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2.5.3.2 Decision tree-based discovery

A decisiontree is a tree data structure consisting of decision nodes and leaves. A leaf

contains a class value. A decision node specifies a test over one of the attributes, which is

called the attribute selected at the node. For each possible outcome of the test, a child node

is present Ruggieri (2004). In particular, the test on a discrete attributeA has h possible

outcomesA = d1, . . . , dh,whered1, . . . , dhare the known values for attributeA.

The literature contains several decision tree algorithms. The survey Limet al. (2000)

compares twenty-two decision tree algorithms, nine classical and modern statical algo-

rithms, and two neural networks algorithms. These algorithms are compared with respect

to the classification accuracy, the training time, and the number of leaves.

In software engineering several approaches use the decision tree to classify and discover

web services Vasiliuet al. (2004), Chirala (2004), software components Foxet al. (1998)

and objects Olaru et Wehenkel (2003).

2.5.4 Interface type

As a supporting tool for reusable component selection, a reuse repository system has three

constituents: a component repository, a discovery process, and an interface for software

developers to interact with. Most of repositories have a conversational interface which

is implemented either as in command line interpreter or as in graphical user interface

(GUI). To find a reusable component, developers either type command lines or use direct

manipulation to search or browse component repositories.

The Agora system is a web-based search approach that searches only on component in-

terfaces, covering solely the component connectiveness problem. Agora query interface

supports basic operators, + and - , as well as advanced search capabilities with boolean

operators. Users can search for and retrieve components through a web interface.

In Mori et al. (2001) the user issues a search request with a requirement specification

through a web browser. Then the trader passes this information to the inference engine

(called PigNose). PigNose responds with a list of views if signature match is successful.

The trader receives the result and displays it on the user’s web browser.

In Ferreira et Lucena (2001), Ferreira and Lucena propose a GUI for component selection.

The selection is based on the desired application domain name and its respective special-

ization, the automation task to be fulfilled, and the position of the desired functionality in
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the automation hierarchy.

As definedin Group (2006), "browse" means reading superficially or at random. It con-

sists in inspecting candidate components for possible extraction, but without a predefined

criterion.

In general, people who search an information prefer browsing to searching because they

do not need to commit resources at first and can incrementally develop their requirements

after evaluating the information along the way Thompson et Croft (1989). Mili et et al.

(1999) claim that browsing is the predominant pattern of component repository usage

because many software developers often cannot clearly formulate queries.

However, browsing is not scalable; for large repositories, following the right link in a

browsing interface requires developers to have a good understanding of the whole system,

which is hard for less experienced developers.

The work in Pozewaunig et Mittermeir (2000) interests specifically on fine grained search.

The principe is to exploit test cases as initial knowledge source for representing compo-

nent functionalities. Augmented test cases (data points) are then classified using a de-

cision tree algorithm. The resulting hierarchical indexing structure supports interactive

browsing without the need for extensive user training.

Yunwen et Fischer (2001) proposes an agent called code broker that locates software com-

ponents in a given component repository: context-aware browsing. Without any explicit

input from software developers, this approach automatically locates and presents a list of

software components that could be used in the current work.

2.6 Synthesis

In this section, we will summarize the comparison of the main approaches, techniques and

methods (see table I). We will use a tabular like notation. In the first column we present the

different methods of component classification representation. For each method we point

out the search style in the second column, the information aspect in the third column, the

comparison distance in the fourth column and the component specification level in the

fifth column.

For the search styles:

C1 denotes the direct search,
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C2 denotes the manually indexed search,

C3 denotes the automatically indexed search.

For the information aspects:

C4 denotes the functional aspect,

C5 denotes the non functional aspect.

For the comparison distance:

C6 denotes exact comparison,

C7 denotes approximate comparison.

For the specification level:

C8 denotes the external specification,

C9 denotes the interface specification,

C10 denotes the method specification,

C11 denotes the behavior specification,

C12 denotes the protocol specification.

Regarding the search style, the majority of approaches, within each method, use a manu-

ally indexed search. Although this method is slow, it has advantages for developers and

especially for beginners. It allows them to understand the repository structure and to learn

about its content. The search interfaces could provide meaningful messages to explain

search and support progressive refinementShneiderman (1997).

The description of the non-functional aspects is, generally, neglected. Both functional

and non-functional aspects should be considered during the specification, the design, the

implementation, the maintenance and the re-use. In the phase of re-use, and if the search

is based only on the functional aspects, the selected component may not satisfy the non-

functional constraints of the environment. In several cases, the non-functional constraints

play a decisive role in the choice of the most powerful component Rosaet al. (2001).
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Table 2.1: comparison of the main approaches techniques and methods.

Methods Search style Inf. aspect Comp. dist. Specification level
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12

Behavior • • • • •

Semantic
charac-
teristic

• • • • •

Lattice • • • •
Ontology • • • •

Facet • • • • •

The exact distance comparison is the most used to compare the component specified using

a query with the discovered components. This type of comparison decreases the re-use

of the software components. An approximate comparison not only makes it possible to

understand the component functionalities by developers but also to adapt it to the appli-

cation.

In the classification representation methods, there are few approaches that specify the

software components with more than two levels. This allows users to understand many

details, and to have higher probability to find the component matching exactly the desired

functionalities. The specification details complicate the formulation of the research query.

There is a tradeoff between the specification detail of the component and the difficulty of

query formulation.

2.7 Discussion

In summary, we notice a similarity between the facet technique and the semantic charac-

teristics technique except that classification with facets uses a fixed number of facets per

domain and is more flexible. Moreover, one facet can be modified without affecting the

others. The facet technique has also the following advantages:

- The maintenance of classification by facet is not complicated. It is achieved by updating

the list of the facets,

- It has a high level of description,
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- The list of terms for each facet provides a common standard vocabulary for the repository

administrator andthe user.

However, the developer can face problems at the time of the query formulation and in

the classification. Contrarily to the behavior-based technique, it is difficult to specify the

query and to combine the good terms to describe the task in the facet technique. This

technique requires the repository structure understanding, the terms, and the significance

of each facet Curtis (1989). Software components classification problems can appear

when the component has many states. Component behavior depends on its current state,

which multiplies the possibilities of its classification.

These problems are not presented in the ontology-based technique. The latter facilitates

the fusion of the repositories having the same ontology Fenselet al.(2001), as well as the

component insertion. This is not the case for the facet technique where the fusion of two

repositories is done manually by adding component per component from one repository

to another. Moreover, the ontology-based technique needs a heavy and painful process.

Even if the two repositories would use the same terminologies (for example the same

facets and same terms), the user must interpret each facet and each term while making the

"mapping" in the concepts of the other repository.

The comparison in the behavior-based technique is done between the specified behavior

and the behaviors of each component. The search procedure becomes very slow for a

repository having a significant number of components.
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2.8 Conclusion

In this chapter Sofienet al. (2011), we studied different approaches which aim to im-

prove the repository reuse. We identified three key factors that enable the repository reuse

successfulness: the description, the classification and the discovery of components. A

comparison between the approaches was developed. The comparison is based on search

style, information type, comparison distance and specification level. We highlighted the

interest of the non-functional constraints in component description, the advantage of the

approximate comparison and the tradeoff to be achieved between the level of specification

detail and the degree of difficulty to formulate a query.

We can conclude that to have a good search result, one must consider a tradeoff between

the component specification detail and the degree of difficulties to formulate a query. It

is also important to consider the non-functional aspect into component description, to use

an approximate comparison and to follow a manually indexed search.
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Table 2.2: the corresponding numbers to references.

Number Reference Number Reference
[1] [Napoli 1992] [2] [Cheng and Jeng 1997]
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[7] [Daudjee and Toptsis 1994] [8] [Pozewaunig and Mittermeir 2000]
[9] [Llorens et al. 1996] [10] [Carpineto and Romano 1996]
[11] [Carpineto and Romano 1994][12] [Natalya and Deborah 2001]
[13] [Braga et al. 2001] [14] [Paez and Straeten 2002]
[15] [Fensel et al. 2001] [16] [Humphreys and Lindberg 1993]
[17] [Wille 1982] [18] [Granter and wille 1996]
[19] [Davey and Priesly 1990] [20] [Fischer 2000]
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[27] [Ferreira and Lucena 2001] [28] [Zhang et al. 2000]
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[33] [Yunwen and Fischer 2001] [34] [Ostertag et al. 1992]
[35] [Manuel et al. 2000] [36] [D. Eichmann 1992]
[37] [Braga et al. 2001] [38] [Zhiyuan 2000]
[39] [Nakkrasae et al. 2004] [40] [D. Eichmann 1992]
[41] [Fischer 2000] [42] [Seacord et al. 1998]
[43] [Seacord et al. 1998] [44] [Yunwen and Fischer 2001]
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[49] [Vasiliu et al. 2004] [50] [Chirala 2004]
[51] [Fox et al. 1998] [52] [Olaru and Wehenkel 2003]
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[55] [Yao and Etzkorn 2004] [56] [Cheng and Jeng 1997]
[57] [Yunwen and Fischer 2001] [58] [Robertson and Walker 1994]
[59] [Callan et al. 1992] [60] [Khemakhem et al. 2006]
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[65] [Michalewicz 1992] [66] [Chen 1995]
[67] [Callan et al. 1992] [68] [Chen and Kim 1995]
[69] [Quinlan 1986] [70] [Chen and She 1994]
[71] [Utgoff 1989] [72] [Fuhr and Pfeifer 1994]
[73] [Khemakhem et al. 2002] [74] [Zhiyuan 2000]
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Number Reference Number Reference
[75] [Nakkrasae et al. 2004] [76] [Daudjee and Toptsis 1994]
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Ontology survey

3.1 Introduction

In this Chapter, we are going to present respectively the ontology definition, the languages

of representing ontologies and a survey of ontology editors.

3.2 Ontology definition

The term "ontology" comes from the philosophy field which is concerned with the study

of being or existence. In philosophy, one can talk about an ontology as a the nature the-

ory of existence. In computer science, ontology is a technical term denoting an artifact

that is designed for a purpose, which is to enable the modeling of knowledge about some

domain, real or imagined Gruber (2008). Ontology had been adopted by early Artificial

Intelligence (AI) researchers, who recognized the applicability of the work from mathe-

matical logic and argued that AI researchers could create new ontologies as computational

models that enable certain kinds of automated reasoning. In the 1980’s the AI community

came to use the term ontology to refer to both a theory of a modeled world and a com-
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ponent of knowledge systems. Some researchers, drawing inspiration from philosophical

ontologies, viewed computational ontology as a kind of applied philosophy.

In computer sciences, an ontology specifies a set of representational primitives with which

to model a knowledge domain discourse. The representational primitives are: classes (or

sets), attributes (or properties), and relationships (or relations among class members). The

definitions of the representational primitives include information about their meaning and

constraints on their logically consistent application. In the context of database systems,

ontology can be viewed as a level of abstraction of data models, analogous to hierarchical

and relational models, but intended for modeling knowledge about individuals, their at-

tributes, and their relationships to other individuals. Ontologies are typically specified in

languages that allow abstraction away from data structures and implementation strategies;

in practice, the languages of ontologies are closer in expressive power to first-order logic

than languages used to model databases. For this reason, ontologies are said to be at the

"semantic" level, whereas database schema are models of data at the "logical" or "phys-

ical" level. Due to their independence from lower level data models, ontologies are used

for integrating heterogeneous databases, enabling interoperability among disparate sys-

tems, and specifying interfaces to independent, knowledge-based services. In the context

of the Semantic Web standards, ontologies are called out as an explicit layer. There are

now standard languages and a variety of commercial and open source tools for creating

and working with ontologies.

3.3 Langages for representing ontologies

Ontologies are not all built the same way. A number of possible languages can be used, in-

cluding that have evolved specifically to support ontology construction. The Open Knowl-

edge Base Connectivity (OKBC) model and languages like KIF (and its emerging succes-

sor CL – Common Logic) are examples that have become the bases of other ontology lan-

guages. There are also several languages based on a form of logic thought to be especially

computable known as description logics. These include Loom and DAML+OIL, which is

currently being evolved into the Web Ontology Language (OWL) standard. When com-

paring ontology languages, what is given up for computability and simplicity is usually

language expressiveness, which isn’t always a bad deal. A language need only be as rich

and expressive as is necessary to represent the nuance and intricacy of knowledge that the

ontology’s purpose and its developers demand. The wide array of information residing on

the Web has given ontology use an impetus, and ontology languages increasingly rely on

W3C technologies like RDF Schema as a language layer, XML Schema for data typing,
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and RDF to assert data Aranda (2005).

3.3.1 Resource Description Framework

The Resource Description Framework is a framework for representing information in the

Web. RDF is developed by W3C and provides meaning to data in a machine understabd-

able format allowing dor more sophisticated data interchange or searching.

If we look at the W3C web page we can see this definition: "The Resource Description

Framework" (RDF) integrates a variety of applications from library catalogs and world-

wide directories to syndication and aggregations from library catalogs and world-wide

directories to syndication and aggregation of news, software, and content to personal col-

lections of music, photos, and events using XML as an interchange syntax. The RDF

specifications provide a lightweight ontology system to support the exchange of knowl-

edge on the Web.

RDF will allow us to put information and meaning to our data. RDF is extremely flexible

for accomplishing that objective because it will allow us to put the information in one

context with enough extra information that an information agent will be capable to process

understand.

If RDF is a way for describing data the RDF Schema is a domain-neutral way of de-

scribing the metadata that can then be used to describe the data for a domain-specific

vocabulary. RDF Schema provides the ressources necessary to describe the objects and

properties of a domain-specific schema.

3.3.1.1 RDF Core

The core RDF is a set of triples consisting in RDF Subject, RDF Verb or Predicate and

RDF Object. The first principal component of RDF is the subject. The subject can be seen

as a name or an object. The subject is the resource being described and can be identified

by an URI. The second principal component is the verb or property of the subject. The

verb is a characteristic of the subject and for example, it can be color, size or another

property applicable to a resource. Properties can also be multiple resources, values of

properties can be other resources. The third and last component of the RDF triples is the

object. This object is the value associated to this resource, for example can be red, big or

another value applicable to a defined property. In every RDF triple wae can see always:
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Every RDF triple is made of subject, property and object. Every triple represents one

fact. Every RDF triple can be joined with other RDF triples and will not loose their initial

meaning. A subject is an URI

RDF can be represented in a graph way, like in the figure /refRDF graph, a directed

labeled graph and is the way that RDF Core Working Group decided as default method

for describing RDF data models.

There are three different kinds of nodes in a directed graph for representing RDF data

models:

URIref: node consist in Uniform Resource Identifier, that is , an identifier for the node.

Can reference to data, not only to Web resources.

Blank nodes: Nodes that do not have URI

Literals: Formed by three components, a character string, an optional language tag and

data type.

Figure 3.1: RDF graph

3.3.1.2 RDF Schema, RDF(S)

RDF Schemadefines a simple modelling language on top of RDF. In RDF you can repre-

sent the data, with their properties but you can not represent the description of these prop-

erties or describe relationships between these properties and other resources. To solve this

problem W3C specified RDF Schema. It is introduced as a layer on top of the basic RDF

Model

RDF Schema is a domain-neutral way for describing metadata. This metadata can be

used to describe the data for a domain specific vocabulary. RDF(S) helps us to create and

define new objects and properties, With RDF(S) we will define classes and properties that

may be used to describe classes, properties and other resources Manola et Miller (2004)

Resources may be divided into groups called classes. The members of a class are known

as instances of the classes are themselves resources. They are often identified by RDF

URI References and may be described using RDF properties. The rdf:type property may
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be used to state that a reource is an instance of a class.

rdfs:Resource All things described by RDF are called resources, and are instances of

the class rdfs:Resource. This is the class of everything. All other classes are subclasses of

this class. rdfs:Resource is an instance of rdfs:Class.

rdfs:Class This is the class of resources that are RDF classes. rdfs:Class is an instance

of rdfs:Class.

rdfs:Literal rdfs:Literal is an instance of rdfs:Class. rdfs:Literal is a subclass of

rdfs:Resource. 2.4 rdfs:Datatype

rdfs:Datatype This is the class of datatypes. All instances of rdfs:Datatype correspond

to the RDF model of a datatype described in the RDF Concepts specification [RDF-

CONCEPTS]. rdfs:Datatype is both an instance of and a subclass of rdfs:Class. Each

instance of rdfs:Datatype is a subclass of rdfs:Literal.

rdf:XMLLiteral The class rdf:XMLLiteral is the class of XML literal values.

rdf:XMLLiteral is an instance of rdfs:Datatype and a subclass of rdfs:Literal.

rdf:Property rdf:Property is the class of RDF properties. rdf:Property is an instance of

rdfs:Class.

rdfs:range rdfs:range is an instance of rdf:Property that is used to state that the values

of a property are instances of one or more classes.

rdfs:domain rdfs:domain is an instance of rdf:Property that is used to state that any

resource that has a given property is an instance of one or more classes.

A triple of the form: P rdfs:domain C

rdf:type rdf:type is an instance of rdf:Property that is used to state that a resource is an

instance of a class.

A triple of the form: R rdf:type C

states that C is an instance of rdfs:Class and R is an instance of C.

rdfs:subClassOf The property rdfs:subClassOf is an instance of rdf:Property that is

used to state that all the instances of one class are instances of another.

A triple of the form:

C1 rdfs:subClassOf C2

states that C1 is an instance of rdfs:Class, C2 is an instance of rdfs:Class and C1 is a
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subclass of C2. The rdfs:subClassOf property is transitive.

rdfs:subPropertyOf is an instance of rdf:Property that is used to state that all re-

sources related by one property are also related by another.

A triple of the form: P1 rdfs:subPropertyOf P2

states that P1 is an instance of rdf:Property, P2 is an instance of rdf:Property and P1 is a

subproperty of P2. The rdfs:subPropertyOf property is transitive.

rdfs:label This is an instance of rdf:Property that may be used to provide a human-

readable version of a resource’s name.

A triple of the form: R rdfs:label L

states that L is a human readable label for R.

rdfs:comment rdfs:comment is an instance of rdf:Property that may be used to provide

a human-readable description of a resource.

A triple of the form:

R rdfs:comment L

states that L is a human readable description of R.

3.3.1.3 Problems in RDF(S)

When designing a basic ontology with RDF(S) It will make sense of possibility to cre-

ate infinite layers of classes. It is possible to observe thatrdfs:Class is a subclass of

rdfs:Resource andrdfs:Resource is at the same time an instance ofrdfs:Class.

The problem comes when the next layer, the Logical layer, tries to extend the previous

layer, the metamodel layer. These problems are described in Pan et Horrocks (2001) and

the result is that RDF(S) has no clear semantics:

1. The classrdfs:Class is an instance of itself. That means that you can find the Rus-

sell’s paradox. The paradox arises when considering the set of all sets that are not mem-

bers of themselves. Such a set appears o be a member of itself if it is not member of itself,

hence the paradox.

2. The classrdfs:Resource is a super class ans ibstance of rdfs:Class at the same time,

which means that the superset (rdfs:Resource) is a member of the subset (rdfs:Class).

3.The properties rdfs:subClassOf, rdf:type, rdfs:range and rdfs:domain are used to define
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both the other RDF(S) modeling primitives and the ontology, which makes their semantics

unclear andmakes very difficult to formalize RDF(S)

3.3.2 Darpa Agent Markup Language

Unlike RDF and topic maps DAML is not a data model; instead, it is a schema language

that can be used to constrain and describe data following the RDF data model. To put

it another way: DAML is an RDF schema language. RDF already has a schema lan-

guage, called RDF Schema [RDF-Schema], and DAML is an extension of this language.

Note that DAML also extends the RDF syntax, and that DAML files cannot necessarily

be parsed with RDF parsers. DAML strengthens the RDF schema language, and adds a

little bit of semantics on top. The semanics are mainly things topic maps already have,

apart from the ability to specify that a relationship is transitive. This ability is really a

poor man’s inference engine, and any inference engine, for RDF or for topic maps, will

provide capabilities far beyond what this property provides. " " OIL (Ontology Inference

Layer) is an initiative funded by the European Union programme for Information Soci-

ety Technologies as part of some of its reasearch projects. The work has been done by

participants in these projects, and the resulting specification is a specification published

by the reseach project. OIL is obviously a semantic web technology, and according to

the OIL FAQ OIL is intended to solve the findability problem, support e-commerce, and

enable knowledge management. OIL is very similar to DAML in that it, too, is an exten-

sion of RDF Schema, and the capabilities of the two languages are very similar. They are

not entirely the same, however, despite the fact that the latest release of DAML is called

DAML+OIL. The proponents of OIL claim that OIL has some desirable properties and

capabilities that DAML does not, but these are not very relevant to the issue discussed in

this paper, and will therefore not be discussed here. To compare with topic maps, there

is no standardized schema language for topic maps, although one is under development

([TMCL]). As for the semantics added by DAML to RDF, topic maps already have most

of these. Stating that two association types or occurrence types are the same is done by

merging them in topic maps. There is no need for an inverse of relationship, since all

relationships are multidirectional in topic maps. The ability to say that a relationship is

transitive, however, is missing from topic maps, and would make a useful addition.
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3.3.3 Ontology Web Langage

OWL Efforts toward the creation of the Semantic Web are gaining momentum. Soon it

will be possible to access Web resources by content rather than just by keywords. A sig-

nificant force in this movement is the development of a new generation of Web markup

languages such as OWL Deanet al. (2002) and its predecessor DAML+OIL Bragaet al.

(2001). These languages enable the creation of ontologies for any domain and the in-

stantiation of these ontologies in the description of specific Web sites. Among the most

important Web resources are those that provide services. By “service” we mean Web

sites that do not merely provide static information but allow one to effect some action

or change in the world, such as the sale of a product or the control of a physical device.

The Semantic Web should enable users to locate, select, employ, compose, and monitor

Web-based services automatically. To make use of a Web service, a software agent needs

a computer-interpretable description of the service, and the means by which it is accessed.

An important goal for Semantic Web markup languages, then, is to establish a framework

within which these descriptions are made and shared. Web sites should be able to employ

a set of basic classes and properties for declaring and describing services, and the ontol-

ogy structuring mechanisms of OWL provide the appropriate framework within which to

do this.

Comparing to RDF(S) OWL adds more vocabulary for describing properties and classes:

among others, relations between classes (e.g. disjointness), cardinality (e.g. "exactly

one"), equality, richer typing of properties, characteristics of properties (e.g. symmetry),

and enumerated classes.

3.3.3.1 The three sublanguages of OWL

OWL provides three increasingly expressive sublanguages designed for use by specific

communities of implementers and users.

• OWL Lite supports those users primarily needing a classification hierarchy and

simple constraints.For example, while it supports cardinality constraints, it only

permits cardinality values of 0 or 1. It should be simpler to provide tool support

for OWL Lite than its more expressive relatives, and OWL Lite provides a quick

migration path for thesauri and other taxonomies. Owl Lite also has a lower formal

complexity than OWL DL.

• OWL DL supports those users who want the maximum expressiveness while retain-
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ing computational completeness (all conclusions are guaranteed to be computable)

and decidability(all computations will finish in finite time). OWL DL includes all

OWL language constructs, but they can be used only under certain restrictions (for

example, while a class may be a subclass of many classes, a class cannot be an

instance of another class). OWL DL is so named due to its correspondence with de-

scription logics, a field of research that has studied the logics that form the formal

foundation of OWL.

• OWL Full is meant for users who want maximum expressiveness and the syntactic

freedom ofRDF with no computational guarantees. For example, in OWL Full a

class can be treated simultaneously as a collection of individuals and as an individ-

ual in its own right. OWL Full allows an ontology to augment the meaning of the

pre-defined (RDF or OWL) vocabulary. It is unlikely that any reasoning software

will be able to support complete reasoning for every feature of OWL Full.

Each of these sublanguages is an extension of its simpler predecessor, both in what can

be legally expressed and in what can be validly concluded. The following set of relations

hold. Their inverses do not.

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

Ontology developers adopting OWL should consider which sublanguage best suits their

needs. The choice between OWL Lite and OWL DL depends on the extent to which

users require the more-expressive constructs provided by OWL DL. The choice between

OWL DL and OWL Full mainly depends on the extent to which users require the meta-

modeling facilities of RDF Schema (e.g. defining classes of classes, or attaching proper-

ties to classes). When using OWL Full as compared to OWL DL, reasoning support is less

predictable since complete OWL Full implementations do not currently exist. OWL Full

can be viewed as an extension of RDF, while OWL Lite and OWL DL can be viewed as

extensions of a restricted view of RDF. Every OWL (Lite, DL, Full) document is an RDF

document, and every RDF document is an OWL Full document, but only some RDF doc-

uments will be a legal OWL Lite or OWL DL document. Because of this, some care has
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to be taken when a user wants to migrate an RDF document to OWL. When the expres-

siveness of OWL DL or OWL Lite is deemed appropriate, some precautions have to be

taken to ensure that the original RDF document complies with the additional constraints

imposed by OWL DL and OWL Lite. Among others, every URI that is used as a class

name must be explicitly asserted to be of type owl:Class (and similarly for properties),

every individual must be asserted to belong to at least one class (even if only owl:Thing),

the URI’s used for classes, properties and individuals must be mutually disjoint. The de-

tails of these and other constraints on OWL DL and OWL Lite are explained in appendix

E of the OWL Reference.

Figure 3.2: OWL Layer

3.3.3.2 Problems in OWL

One intelligentagent can reason more things in RDF(S) and then obtain more answers

than OWL agent. That implies if using the other layers basis to make new layer, ontology

layer extends the RDF layer. Then is possible also that some problems will be extended.

Classes with the unserlying principles of RDF(S) resulting paradoxes in same syntax and

extended semantics layering of OWL on top of RDF(S)Schneider et Fensel (2002).

We have seen that OWL offers many features for modelling a domain, providing classes,

relationships, properties or it is also possible to apply restrictions to the elements previ-

ously created. It is possible to specify these restrictions with first order predicates that

will provide more elements in order to allow the information agents automatic reasoning

Smithet al. (2004)
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3.3.4 Ontology Web Language for Web Services

OWL-S Lee et al. (2001) is a Web Services ontology that specifies a conceptual frame-

work for describing semantic web services. OWL-S is also a language that enriches Web

Services descriptions with semantic

information from OWL ontologies. OWL-S is characterized by three modules: (1) a Pro-

file that describes capabilities of Web Services as well as additional features (e.g. inputs,

outputs, preconditions and effects) of web services hence crucial in the web service dis-

covery process.; (2) a Process Model that provides a description of the activity of the

Web Service provider from which the Web Service requester can derive the interaction;

(3) a Grounding that is a description of how abstract information exchanges described in

the Process Model are mapped onto actual messages that the provider and the requester

exchange.

In the figure 3.3 is possible to see the architecture of OWL-S. In this figure it is shown the

main modules of the ontology for Web Services. These elements are described in the next

sections.

Figure 3.3: The General Process of Engaging a Web Service

3.4 Survey of ontology editors

This stateof the art covers tools that have ontology editing capabilities. The software

tools may be useful for modeling ontology schemas alone or together with instance data.

Ontology browsers without an editing focus and other types of ontology building tools are
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not included. The editing tools are not necessarily production level development tools,

and someof them may offer only limited functionality and support for user. Concise

descriptions of each software tool were compiled and then reviewed by the organization

currently providing the software for commercial, open, or restricted distribution. The

descriptions are factored into a five different categories covering important functions and

features of the software. These categories appear in Table 3.1 summarizing the results.
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The ontology editor chosen for this thesis is the Protégé ontology editor and acquisition

system. Protégéprovides an intuitive interface for developing ontologies by supporting

multiple design panes for hierarchical design, property design, restriction construction,

comment and definition development, and disjoint function construction. Protégé sup-

ports a number of ontology languages, including OWL. The Protégé OWL plugin allows

for a supported development of OWL ontologies through its use of the rules and syntax

of the OWL language as well as support for reasoning . The ontology interface, includes

OWL Classes, Properties, Forms, Individuals, and Metadata tabs. The OWL Classes tab

provides the basic ontology development interface. This interface includes an Asserted

Hierarchy toolbox for creating hierarchies, a Comment box to include additional descrip-

tions of entities, Asserted Conditions hierarchy which displays the restrictions of each

class, Annotations which include additional annotation development, Properties which

display the properties that are defined in the Properties tab, and Disjoints toolbox which

aids in defining classes as disjoint. This robust and intuitive interface provides an out-

standing tool for creation of ontologies while the backend ontology language rule and

syntax control mechanisms allow for easy development and checking of not only the de-

sign of an ontology, but also the syntax necessary for the ontology to communicate its

knowledge with other systems.

3.5 Conclusion

In this chapter, we have seen different ontology languages. Each language has it purpose

and are more suitable for solving determinate problems. RDF(S) fits better in simples

cases, OWL is better to develop business ontologies. With the OWL-S extension we

have seen a very powerful ontology language that offers tools not only to describe data,

also to describe not only the functional aspects of software components but also the non

functional aspects.

After a comparison between ontology editors we have chosen Protege2000 because it is

very easy to use to develop the discovery ontology and the integration ontology. This is

mainly because of its screen interface and also because it is highly configurable and you

can download many plug-in from the Protege Web site.
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Part II

Contributions





4
Approaches for component discovery and

integration

4.1 Introduction

In this Chapter, we are going to describe our approaches for component discovery, com-

position and integration. We will detail in each approaches the used ontology and process.

The figure 4.1 describes the steps which we use from query specification to component

integration.

4.2 The discovery and the integration approaches

We describe the semantics of components to express knowledge about functional and

non-functional aspects of a component. This knowledge comprises:

• The structural aspects that specify the component’s internal structure. The devel-

oper usesthese aspects to determine if interaction exists between component oper-
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Figure 4.1: Different steps of our approach

ations and other components used to build the current project.

• The functional aspects that identify the functionalities of the component is expected

to provide through many features. These features include methods that are used to

adapt the behavior of the component to his context. The adaptation is made by spe-

cializing and customizing. The other kinds of features are used by the application

specific part of a component-based software.
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Generally this type of information is specified by the component’s methods.

• The non functional aspect specifies the component constraints related to communi-

cation orcomputation. The non functional aspect includes features such as perfor-

mance, availability, reliability, security, adaptability and dependability. We distin-

guish static and dynamic categories of non functional features. Static features, such

as security-related constraints, do not change during component execution. Dy-

namic features, such as performance-related properties, depend on the deployment

environment.

All these features represent different and complementary views of a component. The

feature set used to describe a component, depends on the developer action: discovery and

integration. The discovery of a component is made by sending a query to the repository

manager. Once a set of components has been selected, additional features are specified

to select a component before integration. For the discovery action, the query includes

functional and/or non functional features. For integration action, the structural features

have to be specified.

The underlying approach for SEC+ is based on the following ontologies Sofienet al.

(2006):

• The discovery ontology that specifies functional and non functional features.

• The integration ontology that describes the problem solving method (PSMs) used

to specifythe component’s structural features.

As illustrated in figure 4.2, the main information contained in constraints, interface and

model are respectively the non-functional properties, the functional information (opera-

tion names, input, output, precondition and postcondition) and the internal structure of the

component. We use RDF language to describe the discovery ontology. One step further,

the elements in the discovery ontology link to the corresponding properties in the integra-

tion ontology for example, the interface concept in the discovery ontology corresponds to

Tasks concept in the integration ontology.

4.2.1 Classification of component Non-Functional properties

The non-functional properties of a component cover a wide range of the aspects of the

component, and may have different attributes. The aim of this section is to investigate
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Figure 4.2: Discovery and integration ontologies

these non-functional properties from the angles of the discovery and integration process,

and classifythem into different categories. The classification of the component non-

functional properties provides knowledge on how to treat these properties during the dis-

covery and integration process.
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4.2.1.1 The non functional properties characteristics

The ISO-9126 standard

Characteristics Subcharacteristics Definitions

Functionality

Suitability This is the essential Functionality characteristic and refers to

the appropriateness(to specification) of the functions of the

software.

Accurateness This refers to the correctness of the functions, an ATM may

providea cash dispensing function but is the amount correct?

Interoperability A given software component or system does not typically

function inisolation. This subcharacteristic concerns the abil-

ity of a software component to interact with other components

or systems.

Compliance Where appropriate certain industry (or government) laws and

guidelines needto be complied with, i.e. SOX. This subchar-

acteristic addresses the compliant capability of software.

Security This subcharacteristic relates to unauthorized access to the

softwarefunctions.

Reliability

Maturity This subcharacteristic concerns frequency of failure of the

software.

Fault tolerance The ability of software to withstand (and recover) from com-

ponent, orenvironmental, failure.

Recoverability Ability to bring back a failed system to full operation, includ-

ing dataand network connections.

Usability

Understandability Determines the ease of which the systems functions can be

understood, relatesto user mental models in Human Com-

puter Interaction methods.

Learnability Learning effort for different users, i.e. novice, expert, casual

etc.

Operability Ability of the software to be easily operated by a given user

in agiven environment.

Efficiency
Time behavior Characterizes response times for a given thruput, i.e. transac-

tion rate.

Resource behav-

ior

Characterizes resources used, i.e. memory, cpu, disk and net-

work usage.
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Maintainability

Analyzability Characterizes the ability to identify the root cause of a failure

within thesoftware.

Changeability Characterizes the amount of effort to change a system.

Stability Characterizes the sensitivity to change of a given system that

is thenegative impact that may be caused by system changes.

Testability Characterizes the effort needed to verify (test) a system

change.

Portability

Adaptability Characterizes the ability of the system to change to new spec-

ifications oroperating environments.

Installability Characterizes the effort required to install the software.

Conformance Similar to compliance for functionality, but this characteris-

tic relatesto portability. One example would be Open SQL

conformance which relates to portability of database used.

Replaceability Characterizes the plug and play aspect of software compo-

nents, thatis how easy is it to exchange a given software com-

ponent within a specified environment.

Functionality is the essential purpose of any product or service. For certain items this is

relatively easy to define, for example a ship’s anchor has the function of holding a

ship at a given location. The more functions a product has, e.g. an ATM machine,

then the more complicated it becomes to define it’s functionality. For software a list

of functions can be specified, i.e. a sales order processing systems should be able

to record customer information so that it can be used to reference a sales order. A

sales order system should also provide the following functions:

• Record sales order product, price and quantity.

• Calculate total price.

• Calculate appropriate sales tax.

• Calculate date available to ship, based on inventory.

• Generate purchase orders when stock falls below a given threshold.

The listgoes on and on but the main point to note is that functionality is expressed

as a totality of essential functions that the software product provides. It is also im-

portant to note that the presence or absence of these functions in a software product

can be verified as either existing or not, in that it is a Boolean (either a yes or no

answer). The other software characteristics listed (i.e. usability) are only present

to some degree, i.e. not a simple on or off. Many people get confused between
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overall process functionality (in which software plays a part) and software func-

tionality. This is partly due to the fact that Data Flow Diagrams (DFDs) and other

modeling tools can depict process functionality (as a set of data inout conversions)

and software functionality. Consider a sales order process, that has both manual

and software components. A function of the sales order process could be to record

the sales order but we could implement a hard copy filing cabinet for the actual

orders and only use software for calculating the price, tax and ship date. In this

way the functionality of the software is limited to those calculation functions. SPI,

or Software Process Improvement is different from overall Process Improvement

or Process Re-engineering, ISO 9126-1 and other software quality models do not

help measure overall Process costsbut only the software component. The relation-

ship between software functionality within an overall business process is outside

the scope of ISO 9126 and it is only the software functionality, or essential purpose

of the software component, that is of interest for ISO 9126.

Following functionality, there are 5 other software attributes that characterize the

usefulness of the software in a given environment. Each of the following charac-

teristics can only be measured (and are assumed to exist) when the functionality

of a given system is present. In this way, for example, a system can not possess

usability characteristics if the system does not function correctly (the two just don’t

go together).

Reliability Once a software system is functioning, as specified, and delivered the re-

liability characteristicdefines the capability of the system to maintain its service

provision under defined conditions for defined periods of time. One aspect of this

characteristic is fault tolerance that is the ability of a system to withstand compo-

nent failure. For example if the network goes down for 20 seconds then comes back

the system should be able to recover and continue functioning.

Usability Usability only exists with regard to functionality and refers to the ease of use

for agiven function. For example a function of an ATM machine is to dispense cash

as requested. Placing common amounts on the screen for selection,

Efficiency This characteristic is concerned with the system resources used when provid-

ing the required functionality. The amount of disk space, memory, network etc.

provides a good indication of this characteristic. As with a number of these charac-

teristics, there are overlaps. For example the usability of a system is influenced by

the system’s Performance, in that if a system takes 3 hours to respond the system

would not be easy to use although the essential issue is a performance or efficiency

characteristic.
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Maintainability The ability to identify and fix a fault within a software component is

what themaintainability characteristic addresses. In other software quality models

this characteristic is referenced as supportability. Maintainability is impacted by

code readability or complexity as well as modularization. Anything that helps with

identifying the cause of a fault and then fixing the fault is the concern of maintain-

ability. Also the ability to verify (or test) a system, i.e. testability, is one of the

subcharacteristics of maintainability.

Portability This characteristic refers to how well the software can adopt to changes in

its environment or with its requirements. The subcharacteristics of this character-

istic include adaptability. Object oriented design and implementation practices can

contribute to the extent to which this characteristic is present in a given system.

4.2.1.2 Static/Dynamic Non-Functional Properties

Static non-functional properties can be evaluated by examining the internal structure of

a software component. These properties are stable in different environments provided

the internal structure of component is unchanged. The examples of static non-functional

properties are reliability, maintainability, portability, scalability, reusability, presentation,

usability, security, priority, and parallelism constraints, etc. Dynamic non-functional

properties, on the other hand, can be measured by observing the component behavior

at run-time. These component properties are tightly associated with the deployment en-

vironment. Examples of dynamic properties are throughput, turnaround time, capacity,

availability, result, etc.

From the point of the integration process, static non-functional properties may compose

well as they tend not to change during the system execution. The dynamic non-functional

properties are influenced by the execution environment, which includes computational

resources such as the CPU time, the memory, the disk bandwidth; communication re-

sources such as the network bandwidth; the software resources such as the lock, the pool,

the buffer, the semaphores, and the interactions with other components. Most of these

factors are not known in advance, thereby the composition of these properties becomes

difficult.

4.2.1.3 Non-Functional Properties Domain

Different non-functional properties are emphasized in different application domains. For

example, security is most important in the banking domain, while safety and reliability
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are highly demanded in health care systems. In different application domains, the same

non-functional propertiesmay (domain independent) or may not (domain dependent).

For example, the reusability is an example of a domain independent property, while the

throughput is an example of a domain dependent property. The system reusability depends

on the component with the minimum value of reusability. For a project with two compo-

nents, if the two components are in a sequence, then the system throughput depends on

the component with the minimum throughput; if the two components are in parallel, then

the system throughput is the sum of the throughputs of the two components. Reliability

is another example of domain dependent property. For a system with two components, if

the two components are in serial configuration, the system is reliable if all of these two

components are reliable. On the other hand, if the two components are in parallel or re-

dundant configuration, then the system is reliable if at least one component is reliable.

Obviously, the domain independent system properties are more convenient to deal with

than the domain dependent system properties from the angle of the integration process,

because the latter need further information from the specific application domains.

4.3 The atomic component discovery approach

In this section we will describe the discovery ontology mentioned above and our search

engine SEC (Search Engine for Component based software development). SEC use the

query specification to discover the appropriate component.

4.3.1 The discovery ontology

The ontology describes the subject matter using the notions of concepts, instances, rela-

tions, and axioms Gruber (1993). The discovery ontology contains:

• Concepts are organized in taxonomies through which inheritance mechanisms can

be applied.A concept contains slots which are restricted by facets. In our case, we

specify a component as a concept that contains many slots such as theperformance

slot that describes the component performance using one of the three values(low,

medium, high)

• Relations represent a type of interaction between concepts. They are formally de-

fined assubsets of a cartesian product ofn sets, that is:R : C1×C2 · · · ×Cn. Ex-

amples of binary relations include: subclass-of and connected-to. For example the
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relation between component and method is a connected-to relation. The concept

method containsthe input types, output types, precondition and signature slots.

• Functions constitute a special case of relations in which the n-th element of the

relationship isunique for the n-1 preceding elements. Formally, functions are de-

fined as:F : C1×C2 · · · ×Cn. Examples of functions are father-of and rank-of-a-

component that calculates the rank of a component depending on the "used rate"

and kindness match. The "used rate" computes the rate of the component utiliza-

tion Sofienet al. (2002). The kindness (efficiency) of a matching is related to the

subsumption notion. The subsumption idea has to be related to suitable matching

notions for components provided and query specification in order to refine the se-

lection result.

1

2 ... <rdfs:Class rdf:about="&kb;Component"[3 lines] <rdf:Property

3 rdf:about="&kb;Authors"[5 lines] <rdf:Property

4 rdf:about="&kb;component_model" [4 lines] <rdf:Property

5 rdf:about="&kb;Communicating_ Component"[4 lines] <rdf:Property

6 rdf:about="&kb;Libelle"[4 lines] <rdf:Property

7 rdf:about="&kb;Location"[4 lines] <rdf:Property

8 rdf:about="&kb;Has_Dynamic_NF _Aspect"[4 lines] <rdf:Property

9 rdf:about="&kb;Has_Interface" [4 lines] <rdf:Property

10 rdf:about="&kb;Has_Static_NF _Aspect"[4 lines]

11

12 <rdfs:Class rdf:about="&kb;Dynamic_NF _Aspect"[3 lines]

13 <rdf:Property rdf:about="&kb;Availability" [4 lines] <rdf:Property

14 rdf:about="&kb;Capacity" [4 lines] <rdf:Property

15 rdf:about="&kb;Performance" [4 lines] <rdf:Property

16 rdf:about="&kb;Turnaround_Time" [4 lines] <rdf:Property

17 rdf:about="&kb;Inverse_of_Has_ Dynamic_NF_Aspect"[4 lines]

18

19 <rdfs:Class rdf:about="&kb;Interface"[3 lines] <rdf:Property

20 rdf:about="&kb;Inverse_of_Has_ Interface"[4 lines] <rdf:Property

21 rdf:about="&kb;Method"[4 lines] <rdf:Property

22 rdf:about="&kb;Output"[4 lines] <rdf:Property rdf:about="&kb;Input"

23 a:minCardinality="1"

24 rdfs:label="input">

25 <rdfs:domaine rdf:resource="kb;Interface"/> <rdfs:range

26 rdf:resource="&kb;TYPE"/> </rdf:Property> .... </rdf:RDF>

Listing 4.1: The discovery ontology

• Instances are used to represent elements.

The discovery ontology has been developed using PROTEGE2000 Informatics (2001) and

mapped through the Resource Description Framework which is an XML-based language

Lassila et Swic (1999) and which also represents the component descriptions in the repos-

itory. Our XML document, generally, contains the following key concepts: Component,
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Interface, DynamicNF Aspect that represents the dynamic non functional aspect, and

Static NF Aspect that represents the static non functional aspect. Each Concept contains

manyslots which describe component features. The slot, generally, contains the follow-

ing key elements:mincardinality,maxcardinality,label,domainandrange. As indicated

in the listing 4.1, the slotinput has asmincardinalityvalue "1" and aslabel the value

"input". Thedomainrepresents the concept of the slot, in our case the concept ofinput is

"interface". Therangeindicates the value type of the slot, in our case theinput value(s)

is/are one or more instances of the conceptType. These instances are: integer, double,

float, date, string, class, etc..

4.3.1.1 Definition of the discovery ontology structure

The first stage in the definition of an ontology consists in defining its structure, i.e., the

classes which characterize the ontology. The class root of any ontology isowl :Thing

The figure 4.3 present the RDF ontologie structure. This ontology dose’nt show the rela-

tions between classes.

4.3.1.2 Definition of the discovery ontology properties

The properties in the class are enable to specify the class information. In fact, some of

them can establish relation between classes.

The component class properties has five properties.

Input Describes the input of the method

Output Describes the output of the method

Precondition Describes the preconditions of the method

Effect Describes the expected result of the method

method label Describe the label of the method

Using our search engine, we can discovery software component based on the inputs

and preconditions that need to be satisfied and outputs and effects that need to be pro-

duced. The search process compare also the components methods names and the specified

method name in the query, produces results that closely match a user’s requirement. Also

we use the non-functional aspect to filter the selection. We identify six properties
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Figure 4.3: RDF Graph structure in OWL-S Profil form

Availability Users must be able to access the system twenty fours hours per day

Accuracy This refers to the correctness of the component

Capacity/Performance Is a measure of how quickly the component responds to stimuli,

and how well it utilizes resources in providing that response.

turnaround time Is time between component start execution and completion of output

Exception handling Designed to handle the occurrence of some condition that changes

the normalflow of execution.

Throughput is a measure of how many operations can be performed in a given amount

of timeunder a given operating load.

In our case we specify each non functional properties by one of the three values(low,

medium, high).
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4.3.2 The first version of the search engine: SEC

We implemented the search engine progressively. In a first version, called SEC(Search

Engine for Component based software development), we only discover atomic compo-

nent. The second version SEC+ extends the first one by adding a composition process to

discover a composite component. The last version, SEC++ , introduce the integration pro-

cess. Figure 4.4, shows the architecture of the search engine and the components added

in each step. It also presents the different steps from the query specification until the

component integration.

The SEC component manages locating software components. It executes the specified

query, retrieves and presents relevant components. SEC requires no loading from soft-

ware developers in development environments. In current development practices, the

developer chooses the non-functional features and the functional features that meet his

needs. A query will be formulated and then executed automatically in order to deliver the

appropriate component.

4.3.2.1 The Matching algorithm

The matching algorithm we used in SEC is based on the algorithmmatchComp( see

listing 4.2 )which calculates the similarity degree between component attributes and the

query parameters. The algorithm defines a flexible matching mechanism based on the

subsumption mechanism and a function that calculates the semantic distance in the Word-

Net hierarchy between the component method names and the method name specified in

the query.

1

2 double matchComp (method_name_Comp, method_name _query) maxScore =

3 10; if (method_name_WS is identical to method_name _query)

4 case subsume (Input_Comp[], Output_Comp

5 [ ],Input_query[ ], Output_query[ ]) =

6

7 "Exact" : score = maxScore; "Subsume" : score = 8; "Plugin": score

8 =6;

9

10

11 else if (method_name_Comp and method_ name_query are synonymous)

12 case subsume (Input_Comp[],

13 Output_Comp[ ],

14 Input_query[ ],

15 Output_query[ ]) =

16

17 "Exact" : score = 8; "Subsume" : score = 6; "Plugin": score =4;

18

19 else if (method_name_Comp and method_ name_query have hierarchical
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Figure 4.4: The search engine SEC and its different version

20 relations)

21 case subsume (Input_Comp[],

22 Output_Comp[ ],Input_query[ ],

23 Output_query[ ]) =
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24

25 "Exact" : score=6/(distance between them ) "Subsume" : score = 6/(

26 distance between them )

27 *1.2;

28 "Plugin": score =6/( distance between them )

29 *1.5;

30

31 else score = 0; return score

Listing 4.2: Matching algorithm code

The subsumption mechanism is the degree of correspondence between the inputs/outputs

of thequery and of the component. We consider four degrees of correspondence:

-Exact If Inputs/Outputs of a component are equal (or unified) to the Inputs / Outputs of a

query. Also equal included subsume between respective individual input or output of the

component and the query.

- PlugIn If Inputs/Outputs of a Component is a subset of Inputs / Outputs of a query.

- SubsumeIf Inputs/Outputs of a query is a subset of Inputs / Outputs of a Component .

- Disjoint If Inputs/Outputs of an Advertisement do not match with Inputs/Outputs of a

query.

Intuitively, the term similarity degree is a function of the term semantic distance in the

WordNet hierarchy and is a function of degree of correspondence between the input-

s/outputs of the query and of the component: Components methods names that are lo-

cated close to each other in the WordNet semantic hierarchy have similar meanings and

therefore are assigned a higher similarity degree than others that are further apart in the

WordNet hierarchy. In each case we compare the degree of correspondence between the

inputs/outputs of the query and of the components. In all cases Exact match are clearly

preferable to PlugIn match which are considered the second best, Subsume match are

considered to be third best.

1

2 /* {JWNL initialisation code} */

3

4 public IndexWord ACCO;

5

6 String propsFile = "D:\\workspace\\Test\\file_properties.xml";

7

8 JWNL.initialize(new FileInputStream(propsFile));

9

10 String wn=jTextField.getText();

11

12 ACCO = Dictionary.getInstance().getIndexWord(POS.NOUN, wn);
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Listing 4.3: JWNL initialisation code

1

2 /*extract of the source code that access WordNet}*/

3

4

5 int nbr=word.getSenseCount(); for(int vi=0;vi<nbr;vi++) {

6 PointerTargetNodeList hypernyms =

7

8

9

10 PointerUtils.getInstance().getDirectHypernyms(word.getSense(vi+1));

11

12 if (hypernyms.isEmpty())

13 {

14 System.out.println("empty hypernyms");

15 }

16 else

17 {

18 String var=hypernyms.toArray()[0].toString();

19 ch += position(var)+",";

20

21 }

22 }

23 // Position method

24 public String position (String a)

25 {

26 String b="";

27 int i=a.indexOf(" Words: ");

28 int j=a.indexOf(" -- ");

29 b=a.substring(i+7,j);

30 return b;

31 }

Listing 4.4: Extract of the source code that access WordNet

More specically, if components methods names and the specified method name in the

query areidentical they are assigned respectively 10 if there is Exact match, 8 if there

is a Plugin match and 6 if there is Subsume match. If they are synonymous (regardless

of the words’ senses), their similarity degree is respectively 8 if there is Exact match, 6

if there is a Plugin match and 4 if there is Subsume match. Otherwise, if two words are

in a hierarchically semantic relation, i.e., they are hypernyms, hyponyms or siblings to

each other, their similarity is inversely proportional to the shortest path in the WordNet

hierarchy linking them semantically. The identifier similarity score between two such

terms is calculated by dividing 6 by respectively their (semanticdistance) if there is exact

match, (semanticdistance)*1,25 if there is Plugin match and (semanticdistance)*1,5 if

there isSubsume match.
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The components resulting from the search will be sorted according to the degree of the

similarity with the query.

Once SEC is running, the developer specifies a query by selecting the adequate criteria

as indicated in figure 4.5. To query the model we use the RDQL (RDF Data Query Lan-

guage) which is a query language for RDF models. An approximate comparison between

the specified query and the synonyms description of components in the discovery ontol-

ogy is made by thecomparequery description()function. If there is a positive result,

thesearchcomponent(refcomponent[])function retrieves the appropriate component(s),

whereref component[]is thelist of the component references to retrieve. Then, the de-

veloper uses an application programme interface (API) to integrate the desired component

into the current project. Finally, to facilitate the component integration, the developer uses

the integration ontology.

WordNet JWNL (2003) is used as a thesaurus for synonyms, hyponyms and hypernyms.

However, the thesaurus has to be initialized for each domain for which it is used. If

additional knowledge or a different domain is needed, then the user has to interactively

input the corresponding terminology.

Figure 4.5: Search step

Our search engine SEC uses Jena Clifton et Wen-Syan (1995) to parse and negotiate the

discovery ontology. Jena provides an easy and a robust API and the possibility to be used

remotely following a client-server interface. To create an RDQL query, we put the RDQL

in a string, and pass it to the constructor of the query. It’s usual to explicitly set the model

to use as the source for the query, unless otherwise specified with a FROM clause in the

RDQL itself. Once a Query is prepared, a QueryEngine can be created, and the query

executed. Listing 4.5 is a query to find components name which the turnaroundtime rate
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is less than 0.75 second.

1

2 String queryString= "SELECT ?Libelle WHERE (?Libelle

3 info:Turnaround_Time ?Turnaround_time) AND ?Turnaround_Time <= 0.7

4 USING info FOR <http://somewhere/componentInfo#>";

5

6 Query query = new Query(queryString);

7 //Need to set the source if the query does not.

8 query.setSource(model); QueryExecution qe = new QueryEngine (query);

9

10 QueryResults results = qe.exec(); for (iterator iter = results;

11 iter.hasNext();) {

12 resultBinding res = (ResultBinding) iter.Next();

13 ...Process result here ...

14 } results.close();

Listing 4.5: Query Code extract

4.3.2.2 The semantic Web toolkit: Jena

Jena isa leading Semantic Web toolkit McBride (2002) for Java programmers. Jena1 was

first released in 2000 and has had over 10,000 downloads. Jena2, with a revised internal

architecture and many new features, was released in August 2003, and has had over 7,000

downloads. This section presents Jena2, concentrating on the key architectural. The heart

of the Semantic Web recommendations is the RDF Graph as a universal data structure. An

RDF graph is simply a set of triples (S, P, O), where P names a binary predicate over (S,

O). Jena2 similarly has the Graph as its core interface around which the other components

are built.

The main contribution of Jena1 McBride (2002) was the rich Model API for manipulating

RDF graphs. Around this API, Jena1 provided various tools, including I/O modules for:

RDF/XML, N3, and N-triple; and the query language RDQL refee. Using the API the

user can choose to store RDF graphs in memory or in persistent stores. Jena1 provided an

additional API for manipulating DAML+OIL. User feedback on Jena1 suggested better

integration between the DAML+OIL support and the RDF support to permit, for example,

the storing of DAML models within databases. It also had proved too difficult to add

further implementations of the rich Model API to Jena1. In response to these issues,

Jena2 has a more decoupled architecture than Jena1. The two key architectural goals of

Jena2 are:

• Multiple, flexible presentations of RDF graphs to the application programmer. This

allowsgraph data to be accessed and manipulated through higher-level interfaces.
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• A simple minimalist view of the RDF graph to the system programmer wishing to

manipulate dataas triples. This is particularly useful for RDFS and OWL reasoning.

The first is layered on top of the second: any triple source can back any presentation API.

Both the architectural goals provide extension points for system programmers. The pre-

sentation layer is the basis of both the existing Model API and the new Ontology APIs

for OWL, DAML+OIL and RDFS. The graph layer allows the development of new triple

sources, both materialized triples, for example from database or in-memory triple stores,

and virtual triples generated dynamically as a result of some processing, such as inference

or access to legacy data sources. Jena2 provides inference support for both the RDF se-

mantics and the OWL semantics. Jena supports a Semantic Web query language, RDQL,

that can be used either on top of materialized graphs, or on the virtual results of RDFS

or OWL reasoning. Complete queries can be passed into the underlying graph layers, so

database-backed graphs can take advantage of SQL optimization. A third presentation in-

terface, the RDF WebAPI, provides web clients with query-based access to RDF graphs.

This querybased access is also available at both the system and application programmer

interfaces, and acts as a further unifying theme of the architecture.

The heart of the Jena2 architecture is the RDF graph, a set of triples of nodes. This is

shown in the Graph layer. This layer, following the RDF abstract syntax, is minimal by

design: wherever possible functionality is done in other layers. This permits a range of

implementations of this layer such as inmemory or persistence triple stores.

The EnhGraph layer is the extension point on which to build APIs: within Jena2 the

functionality offered by the EnhGraph layer is used to implement the Jena1 Model1 API

and the new Ontology functionality for OWL and RDFS, upgrading the Jena1 DAML API.

I/O is done in the Model layer, essentially for historical reasons. The Jena2 architecture

supports fast path query that goes all the way through the layers from RDQL at the top

right through to an SQL database at the bottom, allowing user queries to be optimized by

the SQL query optimizer. We give some more detail on the three layers below.

4.4 The composite component discovery approach

This approaches is used there is no atomic component discovered in the discovery ap-

proaches. We tend to discover a composite component that response to developer’s query.

For this we develop a shared ontology and a composition process.
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4.4.1 The shared ontology for composition

This approachexploits the advantages of semantic composition approaches, powered by

ontologies at both component discovery and integration levels. Building on top of that,

we introduce an ontology-based semantic approach. First, the semantic component spec-

ification provides a mechanism to enrich atomic components with more semantics than

the syntactical method. Second, mapping atomic components and other relevant concepts

into a centralized shared ontology offers a knowledge repository for software compo-

nents. The objective of semantic enhancement is to support ontological heuristics in order

to enable automated and dynamic component composition (see Figure 4.6). When our

enhanced search engine SEC+ receives a query from a consumer, it first searches the dis-

covery ontology. Our approach enhances the discovery ontology with a shared ontology.

This centralized ontology represents relevant components and concepts in a specific do-

main, constructed by mapping and integrating individual integration ontologies for soft-

ware components. Here, the ontological heuristics serves as guidelines to respond to a

developer request. After using ontological heuristics on the shared ontology, SEC++ gen-

erates a number of alternative solutions to component composition. These alternatives are

then evaluated by a decision engine using a set of criteria specified by the developer. Such

criteria may include QoS-based optimization of component composition, business rules

and strategies. A selected optimal composition scheme is then executed.

As for the integration ontology, we employ problem solving method to develop a local on-

tology for component. In the integration ontology we try to divide the component process

into tasks. Tasks are either solved directly (by means of primitive methods), or are decom-

posed into subtasks (by means of decomposition methods). We use the Unified Problem-

Solving Method Language (UPML) Fensel et al. (2003) to describe the components of

PSMs (task, method and adapter). Similarly, the component model subclass is especially

beneficial for composition. The proposed approach utilizes the component model class

in two ways. For base components, a component model keeps information about com-

posability, which specifies when the component can be used in a composite component.

For composite components, a component model maintains alternative composite solutions

incrementally for reuse. This semantic enrichment provides a self-learning capability of

component composition.

Local integration ontologies are consolidated in a server by ontology mapping and inte-

gration. As a result, all relevant concepts and components in a domain are in the shared

ontology, local integration ontology for a component is mapped into the shared ontology,

appearing as a node in the ontology tree. How to organize all components into the repos-
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Figure 4.6: An ontology-supported system for component composition

itory depends on domains and application requirements. For example, for calculating

Matrix we can maintain semantic relationships (e.g., hierarchical and sibling relation-

ships) between Matrix operations. The shared ontology also represents other application-

specific concepts for mapping and integrating components. The mapping and integra-

tion not only unite component descriptions and concepts but also add more semantics.

Moreover, the shared ontology enables ontological heuristics, thus facilitating dynamic

component composition. For example, we can study composability of components based

on some generic concepts. As a simple example, when composing component C2 that

calculates the determinant of a real matrix by receiving the output parameters of a compo-

nent C1 that calculates the sum of two matrix which have a natural type. At first glance,

these two components cannot be composed. However, the relationship between real and

natural is revealed in the type ontology: natural is included in real. The RDF+OWL doc-

ument shows how OWL uses unionOf vocabulary to represent this relationship. Similarly

when composing two components which conducted at different periodical levels: annual

and quarterly. These two components cannot be composed if time period is a parameter.

However, the relation between annual and quarterly is revealed in the time ontology (see

Figure 4.8). In an industrial context, a specific team would be responsible for the descrip-

tion of local integration and shared ontologies. This team mainly considers functional
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Figure 4.7: Discovery and integration ontologies: The new version

features should focus more on the analysis part (e.g., determine the domain and scope of

ontologies, andenumerate important terms in ontologies), while the technical part takes

charge of the design and implementation (e.g., define classes and class hierarchy, define

properties of classes, define facets of the slots, and create instances). The developed on-

tologies should be reviewed periodically. Our proposed ontology represents an enhanced

approach to organizational knowledge management. The shared ontology incorporates

systematically relevant knowledge into a centralized repository.
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Figure 4.8: unionOf vocabulary relationship

4.4.2 Shared ontology implementation

As mentionedthe composability property of the component model class can have values

denoting possible ways for component composition. Taking thebinary operationMatrix

component. Theinputs to this component include two matrixM1 andM2. The outputs

are sum, product and determinant. The input and output its composability contains a list

of possible parameter flows (from inputs to outputs):M1 to determinant, (M1andM2)

to product,M2 to determinantand so forth, each of which can be a part of an alternative

path in a composite component. Another way to exploit composability is first to attach

composability to other properties with concrete meanings, then associate composability

with composition rules; for example, assuming composability is a property Another way

to use composability is first to attach composability to other properties with concrete

meanings, then associate composability with rules of composition; for example, assuming

composability is a property of time. If a a componentC1 is time period based, whileC2

is time point based, these two component should not be composed together. As a result,

the value of the composability property for the time ofC1can be¬timepoint.

All designed local integration ontologies are mapped together following Matrix operation

organisation, appearing as nodes or subclasses in the shared ontology, as each compo-

nent described in discovery ontology. After organizing components into a shared knowl-

edge repository, we can adds other concepts relevant to Matrix operations, either domain-

specific or generic, such as Type and operation. The semantics obtained so far are limited
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to hierarchical and sibling relationships. Ontological mapping and linkage supplement a

richer setof semantics, which can be performed through the value type constrained.

4.4.3 The second version of the search engine: SEC+

SEC+ is a novel version of SEC (Search Engine for Component based software devel-

opment) Sofienet al. (2006) which guaranties the composition step. It is an extension

of SEC Sofienet al. (2007) by adding a component composition based on ontological

heuristics. SEC+answer the developer query if no single component can provide all re-

quired information, but composing some of them can fulfill the request ( see figure 4.4).

We developed a persistent component, called SEC+, that contains the search process and

the composition process. It can be loaded in the development environment.

The first screen shot of SEC+ contains two tags. The First contains the different functional

attributes, the second is devoted to the non functional attributes.

For the tag dedicated to the functional aspects (See figure 4.9), the user must specify the

name of the desired services as well as the the inputs/outputs which he considers useful

to this service. The selection of the inputs/outputs is carried out through two listboxes.

Figure 4.9: Functional aspect interface

On the second tag, the user chooses a list of the non functional attributes (See figure

4.10)which heconsiders useful for the desired service. For each selected attribute, the

user must indicate the desired level (High, Meduim, Low) as well as the relative weight.

The weight varies between 1 and 3 (By default = 1). If the user judges that a nonfunctional



4.5 The integration approach 81

attribute is important, it can reinforce the relative weight and rate it at 2 or 3 according to

the degree of importance of the attribute.

Figure 4.10: Non-Functional aspect interface

The discovered components, will be presented in a drop-down list (See figure 4.11), sorted

according totheir weights. When the user selects a component in the list, the functional

and non-functional aspects (Name, Description, inputs, ouputs, Pre-conditions, non func-

tional aspects with their levels) relative to this component will be set up to help him. By

comparing the details of each component in the list, the user can choose the appropriate

component which is near to his need.

4.5 The integration approach

4.5.1 The integration ontology

The integration ontology purpose is to separate component’s functional features from its

internal specification. Many approaches have proposed process-based languages such

as BPEL(Business Process Execution Languages) Andrewset al. (2003) and OWL (On-

tology Web Language) et al. (2002). These languages describe a component’s internal

structure using a predefined set of workflow-like patterns (sequence, parallel split, choice,

etc.). But these languages lack an explicit, declarative decoupling between a component’s

functional features (what) and its structural description (how)Gomez-Perezet al. (2004).
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Figure 4.11: Result interface

In the integration ontology we try to divide the process into tasks ( see figure 4.7). Tasks

are eithersolved directly (by means of primitive methods), or are decomposed into sub-

tasks (by means of decomposition methods) whose interaction can be modelled as a work-

flow pattern Aalstet al. (2003). We use the Unified Problem-Solving Method Language

(UPML)Fensel et al. (2003) to describe the components of PSMs l (1998)(task, method

and adapter).

There are 3 main features that distinguish our approach from others. Firstly, it counts with

a Zero-updating code in the integration process. It enables the construction of application

systems out of existing components independently developed in various domains without

any modification of components. Integration mismatches which will occur can be solved

by automatic mediation. Secondly, it separate component’s functional features from its

internal specification. Finally, it provides a simple Composition Description Language

(CDL), which represents the binary relations among components as output of the integra-

tion process. It is intended as a mechanism to describe the internal connection between

components.

From the process perspective, we believe that a complete integration process should in-
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clude the following activities at least: (1)Composite Component Definition: The activity

for building the composite component schema or an executable composite component. (2)

Component Deployment: The activity for deploying executable composite components in

the component execution engine. (3) Component Execution: The activity for performing

tasks of the composite component in the execution engine. However, only integration-

related activities are not enough. Component’s dynamics nature

must be considered by integrating component discovery activities. We will detail how to

combine component integration and component discovery in the following.

4.5.1.1 Integration type

We identify two type of integration

Static component integration Static integration is the style that components to be inte-

grated aredecided at design phase. If we consider only static integration, compo-

nent discovery will be needed in the "component definition" step(see Figure 4.12)

when the component developer want to obtain constituent components to have a

composite component. functional matching (matching by inputs, outputs , pre-

condition, component name, etc.) and non-functional matching (matching by non-

functional conditions, such as cost, performance, etc..) will both be utilized ac-

cording to the developer’s needs. That is the only difference compared with the

standard component integration process. In static component integration, devel-

opers can produce an executable composite component or an abstract composite

component schema.

Dynamic component integration Dynamic integration is the style that components to

be integrated are decided at run-time. If we want to dynamically discover the best

available components that response the needs of the developer, dynamic integration

process must be ready. All three phases in dynamic integration (See Figure 4.13)

must rely on component discovery:

Composite component DefinitionBefore invoking the composite component, we

need toproduce the abstract composite component flow (i.e. the integration

schema). To construct the flow, interface matching is needed to choose the

interfaces of the constituent components used in this integration.

Component Deployment When we want to deploy the composition, all required

component bindingsmust be ready. Semantic matching is required for select-
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Figure 4.12: Static Composition

ing most suitable concrete constituent components. The concrete component

can bereplaced according to the user’s requirements.

component Execution If some constituent component leaves or malfunctions, in-

terfacematch- ing or semantic matching can be re-performed.

4.5.1.2 Zero-updating code in the integration process

It enables the construction of application out of existing components without any com-

ponents updating. In general, software components are developed in various domains

and heterogeneous for an integration to accommodate their singularities. Moreover inte-

gration is an inter-domain problem that must contain different syntax and semantics of

component knowledge. It seems that integration cannot be solved without modification of

components or wrapping methods used as glue parts. We can conclude that automatic me-

diation of mismatches is possible with knowledge about the specification of components.

This solution can removed the zero-updating code most obstacles in integration process.

4.5.1.3 Composition Description Language

The integration is an independent task or phase of domain-specific
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Figure 4.13: Dynamic Composition

application system where an integrator produces an integration list, and an integration

schematic, asoutcome of the process. To cope with mismatches integrator can automati-

cally insert mediators to solve interpretational difficulties between components. As a re-

sult of this integration list is generated that represents binary relations among components.

For the representation of integration list, a Composition Description Language (CDL) is

used. The CDL is not intended to describe the functional capability of the the integrated

components, but to depict the internal connection between components. An integrator can

use CDL to represent and describe the physical connection of an assembled component.

CDL can describe the internal organization of integrated component effectively because

it is supported by the uniform connection mechanism.

4.5.1.4 Integration as a Generic Problem solving Method

The integration approach presented so far can be easily adapted into UPML since it is

very similar to this framework in the way it conceptualizes generic tasks. In the follow-

ing, we describe the detail formalization of our generic approach to integration based on

UPML. The integration ontology provides the common terminology used by tasks, PSMs
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and domain model. The task requires the terminology to specify integration requirements,

the PSMuses it to specify the integration list, and the domain model makes use of it to

specify component properties and characteristics of the component repository. The spec-

ification of the task integration request consists of description of components. Since all

knowledge constructs are constituted in the unit of a component, it is possible to con-

struct an integration ontology from the unified view of components. In addition to this

feature for ontology description, the inference operations provided in the ontology are

also performed in the unit of a component, which means, that all inference operations for

component discovery, integration and verification are accomplished with the component

description as the arguments of operations. Consequently, the integration ontology can be

shared in other parts of UPML. Domain Model The role of the domain model of UPML is

to provide the specific domain knowledge to the generic task and PSM. The task in UPML

is virtually specified by composition requester in terms of its input and output roles, pre-

conditions and post-conditions, competence, and assumptions. The integration request

specification is the description of overall architectural structure consisting of the concep-

tual components. The method details the control of the reasoning process to achieve a

task. It also describes both the decomposition of the general tasks into subtasks and the

coordination of those subtasks to achieve the required result (control flow)Gomez-Perez

et al. (2004). The UPML, however, doesn’t define a set of program elements to specify a

method’s control flow.

In the following, we describe the detail formalization of our generic approach to integra-

tion based on UPML.

Problem-solving-method Many approaches have traditionally modeled the internal

structure ofsoftware components as a process Grüninger et Menzel (2003) carrying

out a set of actions to execute the process. This idea breaks the process (or service)

into activities whose interactions are modeled as workflow patterns which basically

describe the coordination of those activities during the process execution. Because

of this, some researchers have proposed process-based languages such as BPEL

(Business Process Execution Language ) and OWL-S (for Semantic Web Services).

These languages specify the internal structure of service using a predefined set of

workflow-such as patterns (sequence, choice, parallel split, and so forth). This ap-

proach’s main drawback is its lack of an explicit, declarative decoupling between

its structural description (how) and the process’s functional features (what). In fact

the functional features is linked directly to the parameters used in the process’s

internal structure. So, the process is designed to carry out a particular operation

(for example,to book) in a particular domain (such asflight booking). With
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this approach, reusing processes among domains becomes difficult, and component

or serviceintegration in a project, must be programmatically solved. For exam-

ple, a component that deals withtheater booking shares some operations with a

flight booking component ( check credit card, select seat, confirm booking, and

so forth). Processes that execute such operations should be quasi reusable among

both components, and we must differentiate between the description of those oper-

ations and how they are solved.

Domain Model The domain model consists of three elements: meta-knowlcdge.domain

knowledgeand properties itself. The domain knowledge of the domain model is

the knowledge base of the domain that is necessary not only to define the task in

the given application domain and but also to carry out the inference steps of the

chosen problem solving method. For composition tasks, the component repository

is the knowledge base containing all knowledge about components developed in the

diverse domains. The integration repository is consisted of each integration descrip-

tion using the composition description language based on integration ontology

Adapter The adapter specifies mappings among a PSM’s knowledge components, adapt-

ing a task to a method and refining tasks and methods to generate more specific

components. So, adapters can achieve reusability at the knowledge level because

they bridge the gap between a PSM’s general description and the particular domain

in which it’s applied. All necessary information including the goals of the used

components and their required interconnection can be specified in the integration

request specification.

Task Specification The integration task produces an integration components list, which

represents theassembled composite product, following a job order asstaled in in-

tegration request specification. The integration request specification and the inte-

gration components list are enough to specify input and outputroles of the task

specification. The practical requirements and assumptions are already considered

in the integration ontology and the integration request specification. The integra-

tion request specification as the input role of the task specification is the description

of overall architectural structure, which consists of the conceptual components vir-

tually defined by the integration requester which generally is the developer. As a

simple example of integration request specification, the component integration task

"find a book price and convert it into other currency unit such us Euro according

to the current exchange rate" will be specified as in Figure. The integration request

specification contains not only the conceptual information to discover the consistent

components but also the binding information between components.
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The integration request specification contains thebinding inf ormation among compo-

nents. In order to discover the appropriate components, each component description

must specify locally a domain ontology. This local ontology which is named integra-

tion ontology can be defined as lightweight ontology with simple keyword hierarchy or

heavyweight ontology representing sophisticated axiomatic features to provide sufficient

knowledge about a component. The integration ontology is very useful to understand the

characteristics of components from different domain and provide the essential knowledge

for the reasoning in PSM. From the connection specification, the necessary mediations

are so easily deducible that the mediators are automatically inserted at the proper position

by PSM.

The PSM-based integration component can be defined as Services that are interconnected

using mediators by means of PSMs in astandard independent fashionwith the aim

of offering a solution in the form of functional components, based on its operational re-

quirements. The aim of integrating software components in the PSM-based approach is

to produce a solution in the form of functional components or products, by integrating,

mixing, or connecting components according to its functional description, in a domain

independent fashion, and guaranteeing zero-upadating integration. The PSM-based inte-

gration component represent an initiative towards that understands integration as a generic

PSM. To do so it provides a run-time environment and an UPML based architecture for

integration components. They intend to facilitate the means for the task-driven automatic

discovery, integration and execution of components.

Finally in the production part the different WSDL that represent the integration are gener-

ated together with the wrappers that represents the glue among components, in a standard

language independent way. Later the result of this production can be translated to any

workflow language, i.e. BPEL4WS, BPML/WSCI, etc. Figure 4.15 shows the results of

the production phase for the " matrix sum and calculate it determinant ".

4.5.1.5 Integration ontology construction

Components description ontology is established by extracting semantic information on the

actions and objects of components. Figure 4.16 is the relational of established component

ontology. component ontology is composed of semantic descriptions of components such

as actions and objects, which are domains to which actions are executed, functional and

non-functional descriptions of components such as the precondition on input and the post-

condition of output, and other information required for describing components.

As shown in 4.16, if semantic annotation is provided for an email sending service using
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Figure 4.14: The integration result

ontology, the action is ’send’ and the object is ’email’. The functional description in-

cludes alsoinformation on the location of the email transmission service, service provider

and input/output parameters for the execution of the component. The modeled compo-

nent description ontology is described using RDF and coverted to OWL, and ontology

input is described using Protégé-2000. In Figure 4.16, rectangles are classes and arrows

are properties. Classes which are Extracted and instances are entered as inputs. The in-

stance of ComponentType class, which describes the type of component to be integrated,

should have Atomic, Composite, Output-Matching-Service or Input-Output-convertor as

its value. The Atomic means that the component is not a composite but a single ser-

vice, and the Composite type means a composite component created from the integration

of components. In addition, Output-Matching-Service and Input-Output-convertor are

service types used in matching parameters. Output-Matching-Service is a service that

extracts what it needs from component output parameters, and Input-Output-convertor is
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Figure 4.15: Production result

a service that converts the output parameter type of a selected component to the input

parameter typeof a service to be extracted.
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Figure 4.16: Ontology construction

4.5.2 The third version of the search engine: SEC++

When aselected component will be integrated in the current work, two things should be

considered. One is the type of the collision Salimet al.(2007) in the matching of different

types of data. For example, type collision happens when a ’double’ type output parameter

of a component is matched with a ’string’ type input parameter. The other thing to be con-

sidered is how to extract input parameters when a service has two or more output results.

This problem does not need to be considered if all the results of the component match.

However, if only some of returned output results match, we must use a process to extract
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them. This work implemented Input-Output-convertor for conversion between two differ-

ent typesto solve the type collision problem, and Output-Matching-Service for extracting

necessary output parameters. Figure 4.17 shows the steps of converting ’float’ type out-

put parameterC1O1 of componentC1 to ’double’ type input parameterC2I1 of component

C2 through Input-Output-convertor in matching parameters between two different com-

ponents. For example, when composing exchange componentC2 that exchanges curren-

cies by receiving the output parameters exchange rate (float type), exchange rate (double

type) and exchange amount (double type) of componentC1 that calculates exchange rate

between two currencies, type collision happens as in figure 4.17. Here, the problem is

solved as Input-Output-convertor convertsC1O1 (float type) ofC1 to C2I1 (double type)

of C2. Conversion from string type (not numeric string type) to int or float type is not

allowed, so is considered as an exception.

C1 C2

C1I1(string)

C1I2(string) C2I3(string)

C2I2(double)

C2I1(double)

C1O1( float) C2O1(double)

I/Oconvertor

Figure 4.17: Input-Output Convertor

Figure 4.18 shows the steps of extracting onlyC1O1 andC1O4 of outputparametersC1O1

, C1O2 , C1O3 and C1O4 of componentC1 and matching them with input parameter

C1I1 and C2I3 of componentC2. For example, when integrating exchange serviceC2

that exchanges currencies by receiving exchange rate (double type) and exchange amount

(double type) and ebay book componentC1 that receives input parameters book title as

string type and author name as string type and returns output parameters publisher as

string type, date of publishing as string type and price as float type. This process has

not only parameter extraction problem but also the type collision. In this case, before the

execution of Output-Matching-Service, Input-Output-convertor is executed first to extract

parameters from the outputs ofC1 to be matched with the input parameters ofC2. In

figure 4.18, onlyC1O1 andC1O4 of ebay book discovered componentC1 are matched

with C2I1 andC2I3 of exchange serviceC2. Thus, Output-Matching-Service is executed

to extractC1O1 andC1O4 among the four output parameters. BecauseC1O1 andC2I3

are identical in type they do not need the execution of Input-Output-convertor, butC1O4

(book price:float type) andC2I3 (exchange amount: double type) requires the execution of

Input-Output-convertor for their matching. As mentioned above, Input-Output-convertor

is executed after Output-Matching-Service.
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C1 C2

C1I1(string)

C1I2(string) C2I3(string)

C2I2(double)

C2I1(double)

C1O4( float)

C2O1(double)
OutputMatching

C1O3(string)

C1O2(string)

C1O1(string)

Figure 4.18: Output-Matching-Service

4.5.3 Lifecycle of Constituent Component

The statetransitions of a constituent component(see Figure 4.19)is a standard lifecycle of

a service component. The detailed descriptions of states and state transitions are described

as follows:

• Waiting for Execution: The constituent component is capable of accepting and pro-

cessing requests(i.e. the component is available) in this state. When component

requests are coming, the component will transit to "Component Execution" state.

• Component Execution: In this state, the constituent component will process re-

quests, performtasks, and send back the component results. Generally, if the ex-

ecution is performed successfully, the component will transit back to "Waiting for

Execution" state. Otherwise, the component will transit to "Unable" state if the

event of component termination is received.

• Unable: The component is not capable of accepting any requests (i.e. the service is

not available) in this state.

• If the component reaches "Unable" state, the component will transit to the final state

(dead state)automatically.

4.6 Conclusion

In this chapter we have presented our approach which is divided in three steps. First we

have developed the atomic component discovery process and we have described the dis-

covery ontology that specifies functional and non functional features. Second we have de-

veloped the composite component discovery process and the shared ontology used when

there is not an appropriate atomic component that response to developer’s needs. Finally
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Figure 4.19: State Transition Model of Constituent Component

the integration process which integrate the discovered component into current project.We

used theintegration ontology to describe the problem solving method (PSMs) used to

specify the component’s structural features. Those ontologies deliver re-usable compo-

nents and help the developer to integrate the selected component into the current work.

In fact with the integration ontology we guarantee that the selected component is the best

adaptable which increase the adaptability.



5
Experimental evaluation of SEC+

5.1 Introduction

Now that the details of the implementation have been described, it is time for a proper

test of SEC+. This chapter contains details on the method of evaluation, the selected

components and the results gained from the evaluation. In order to measure the retrieval

performance, a selection of queries and expected responses were created. This enabled

precise measurements of how good the system was at returning the expected results. The

goal of this chapter will be to evaluate the performance of the system by mesuring the

criteriaRecall andPrecision and find out if the problem in chapter 1 has been solved

satisfactory. Retrieval performance experiments were performed both with and without

the semantic distance and the subsumption notion applied respectively on SEC and the

newer version of SEC(SEC+). In this chapter we introduce also three applications sce-

narios illustrating the application of the approach introduced in the previous Chapter. A

first example deals with the case of a mapping an instance of the discovery ontology into

integration ontology. In the second example we considers an individual instance of a dis-

covery ontology into shared ontology. In the last example we describe a shared ontology

implemented in the corporate mathematical services domain.
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5.2 Evaluation

In thissection, we report on two sets of experiments: component discovery with subsump-

tion mechanism only implemented in SEC, and with both the subsumption mechanism and

the semantic distance between components methods names and specified name of method

in the query implemented in SEC+.

Each experimentation is based on three measures of components discovering performance

which are recall, precision and response time of the search engine. These experimenta-

tions are applied on different set of components (62, 125, 500 and 1000). The listing

below 5.1is a part of the used library description (The detail is in the Annex). The test

query set contains 10 queries and applied to three development environments (Delphi,

Eclipse and Jbuilder). Among them, 4 queries were created by us, 6 were chosen from

questions frequently asked in newsgroups for development environments ( see table 1).

1

2 <?xml version=’1.0’ encoding=’UTF-8’?>

3 <!DOCTYPE rdf:RDF [

4 <!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>

5 <!ENTITY rdf_ ’http://protege.stanford.edu/rdf’>

6 <!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>

7 ]>

8 <rdf:RDF xmlns:rdf="&rdf;"

9 xmlns:rdf_="&rdf_;"

10 xmlns:rdfs="&rdfs;">

11 <rdf_:Component rdf:about="&rdf_;Khalil_component"

12 rdf_:Authors="Khalil"

13 rdf_:Location="D:\lib_"

14 rdfs:label="Khalil_component">

15 <rdf_:Comp_Type rdf:resource="&rdf_;Component_type2"/>

16 <rdf_:name rdf:resource="&rdf_;Method1"/>

17 <rdf_:Sta_NF_attributes rdf:resource="&rdf_;Static_NFA1"/>

18 <rdf_:Dyn_NF_attributes rdf:resource="&rdf_;Dynamic_NFA1"/>

19 </rdf_:Component>

20 <rdf_:Level rdf:about="&rdf_;Level2"

21 rdf_:Level_id="Medium"

22 rdfs:label="Level2"/>

23 <rdf_:Level rdf:about="&rdf_;Level3"

24 rdf_:Level_id="Low"

25 rdfs:label="Level3"/>

26 <rdf_:Component_Type rdf:about="&rdf_;Component_type1"

27 rdf_:Type_Comp="Corba"

28 rdfs:label="Component_type1"/>

29 <rdf_:Component_Type rdf:about="&rdf_;Component_type2"

30 rdf_:Type_Comp="COM"

31 rdfs:label="Component_type2"/>

32 ........

33 </rdf_:Component>

34 <rdf_:Dynamic_NF_Aspect rdf:about="&rdf_;Dynamic_NFA1"

35 rdfs:label="Dynamic_NFA1"/>

36 <rdf_:Level rdf:about="&rdf_;Level1"
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37 rdf_:Level_id="High"

38 rdfs:label="Level1"/>

39 </rdf:RDF>

Listing 5.1: library description extract

Qi Description
Q1 Linear system resolution
Q2 Sum of matrix
Q3 Matrix symmetry
Q4 Matrix inverse
Q5 Sorting table
Q6 Resolution of second degree equation
Q7 Matrix determinant
Q8 Electronic payment
Q9 Matrix transposee
Q10 Table fusion

Table 5.1: Queries description

Recall is defined as the ratio of the number of correct solutions retrieved to the number

of correct solutions that exist, indicates the ability of the system to retrieve all relevant

components. Ideally, recall should be high, meaning solutions should not be missed.

Precisionis defined as the ratio of correct solutions retrieved to the total number of results

retrieved. High precision is the result of retrieving few irrelevant or invalid solutions, it

indicates the ability of the system to present only relevant components Morel et Alexander

(2004).

5.2.1 Experiments using SEC

In the experiments that use SEC, we match components descriptions using the subsump-

tion mechanism. We use the used rate and the non functional features to filter the selection.

Table 1 shows the average of the Recall and Precision corresponding to the 10 queries

with different set of number of components. All queries have a matching result, only the

query Q8 has no results because our ontology doesn’t contain the component(s) that feel

exactly or approximately the query specification.

SEC has a good recall in fact there is five queries with a recall higher than 70
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The SEC achieves a precision of 53.78% at 68.44% recall on average on this set of exper-

iments.

Qi Recall Precision
Q1 83% 100%
Q2 40% 100%
Q3 40% 70%
Q4 25% 50%
Q5 80% 100%
Q6 50% 50%
Q7 50% 33%
Q8 0% 0%
Q9 66% 80%
Q10 50% 33%
Average 53.78% 68.44%

Table 5.2: Recall and precision of SEC - Bad query (Q8) filtered

5.2.2 Experiments using SEC+

These experiments use SEC+, we match components descriptions using the subsumption

mechanism and the semantic distance. We enrich the query by adding the pre-condition

and the effect in the functional aspect information and we affect dynamic weight for each

specified non functional features.

Qi Recall Precision
Q1 100% 75%
Q2 85% 83.33%
Q3 100% 100%
Q4 70% 71%
Q5 100% 75%
Q6 75% 100%
Q7 85% 100%
Q8 0% 0%
Q9 66.66% 100%
Q10 100% 66.66%
Average 86.85% 76.41%

Table 5.3: Recall and precision of SEC+ - Bad query (Q8) filtered

We use in these experiments the same queries tested in SEC. All queries have a matching
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Figure 5.1: Comparison between SEC and SEC+

result, only the query Q8 haven’t any results because our ontology doesn’t contain the

component(s) thatfeel exactly or approximately the query specification.

On average, SEC+ that uses both subsumption mechanism and the semantic distance

achieves a precision of 76.14% at 86.85% recall. Compared to performance of experi-

ments that use SEC , precision is increased by 7.97% from 68.44% and recall is increased

by 33.07% from 53.78%. Both precision and recall improved significantly compared to

the results obtained with SEC.

For all the queries, SEC+ was able to maintain very high precision and recall (almost

always 80 percent), see table 5.3. High precision was the result of using an ontology that

describes not only the inputs/outputs and methods names of components but also the pre-

condition and effect. To improve precision in SEC+, we use a weight for each specified

non functional feature. SEC+ has a good precision compared to other search engines like

in Flexible Interface Matching (FIM) Wang et Stroulia (2003) (see table 5.4). FIM was

better than many search engines such Larks Sycaraet al. (2002). High Recall, was the

result of using not only Subsumption mechanism such in SEC but also semantic distance

that use Wordnet hierarchy. The semantic distance retrieve all components which are

synonym, hypernym and hyponym to the specified query. SEC+ improve the reuse

of the set of components and offer more solution for the developers.

SEC+ is not fast compared to SEC. This is du to the fact that SEC does not access to

the Wordnet and does not calculate the semantic distance. The difference between the

response times is about 200 ms. We consider that if the set of components is more than
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Figure 5.2: Comparison between SEC, FIM and SEC+

500, the difference of response time between SEC and SEC+ remains negligible (see

figure 5.1).

Search engine Recall Precision
SEC 53.78% 68.44%
FIM 90% 61,5%
SEC+ 86,85% 76,41%

Table 5.4: The average of the Recall and the precision of SEC,FIM and SEC+

Also SEC+ is a good tool for the beginners, in fact it helps them with the discovery

ontology tohave an idea about the components in the repository and with the integration

ontology to construct a project.
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5.3 Application scenarios

5.3.1 Mappingthe discovery ontology into integration ontology

In this section, we present a prototype system for mapping a discovery ontology of math-

ematical service into integration ontology, which is developed based on the proposed

ontology-supported software component integration Sofienet al. (2010a).

We use the matrix operations as a domain for the discovery ontology. There are many

operations can be applied to matrix such as linear system resolution, Hill cipher,etc. In

the Figure 5.3 we illustrate in the discovery ontology a linear system resolution instance.

A linear system resolution is a general system of m linear equations with n unknowns can

be written as


a11x1 +a12x2 +a13x3 + ...+a1nxn = b1

a21x1 +a22x2 +a23x3 + ...+a2nxn = b2

... = ...

an1x1 +an2x2 +an3x3 + ...+annxn = bn

Here x1,x2,...,x3 are the unknowns, a11,a12,...,amn are the coefficients of the system, and

b1,b2,...,bm are the constant terms.

Often the coefficients and unknowns are real or complex numbers, but integers and ra-

tional numbers are also seen, as are polynomials and elements of an abstract algebraic

structure.

We use RDF language to describe the discovery ontology. One step further, the elements

in the discovery ontology link to the corresponding properties in the integration ontology.

In our example the conceptRessys lin(Matrix, Vector):Vectorin discovery ontology cor-

responds with theResolutionTasks concept in the integration ontology.TheLSRModel

in discovery ontology corresponds with theLSRRegularMethodModel conceptin the

integration ontology.

Given theResolutionTasks that a system should accomplish a PSM is the specification of

the functionality of the problem solving behaviour of the system to be built. It is a descrip-

tion of how the functionality can be achieved and how the requirements can be met. In the

integration ontology we decompose a task into subtasks, theResolutionTasks is decom-

posed into two subtasks: the first isMatrix inverse, the second isMatrix Multiplication.

Weconsiders that A is a regular matrix the result vector X is equal to A−1∗b.
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Figure 5.3: mapping the discovery ontology individual instance into integration ontology

A−1 is the result of theMatrix inversesubtask.

A−1 ∗ b is the result of theMatrix Multiplication subtask. eachsubtasks is generated

into PSMs. each PSMs constitute generic inference patters which describe the dynamic

behaviour of our systems on an abstract level, which abstracts from details concerned with

the implementation of the system. PSMs are independent of the domain they are applied

in, but specific for the task which has to be accomplished by them.

Adapters are used to mediate between problem definitions, domain knowledge, and

problem-solving methods.

5.3.2 How to implement integration ontology

Problem-solving methods provide reusable architectures and components for implement-

ing the reasoning part of knowledge-based systems. The Unified Problem-solving Method

description Language UPML Fenselet al. (1999) has been developed to describe and im-

plement our integration ontology components to facilitate their semiautomatic reuse and

adaptation. In a nutshell, UPML is a framework for developing knowledge-intensive rea-
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soning systems based on libraries of generic problem-solving components.

We used Protégé-2000 which contains the plugin editor for UPML specifications. Pro-

tégé allows developers to create, browse and edit domain ontologies in a frame-based

representation, which is compliant with the OKBC knowledge model. From an ontol-

ogy, Protégé automatically constructs a graphical knowledge-acquisition tool that allows

application specialists to enter the detailed content knowledge required to define specific

applications. Protégé allows developers to custom-tailor this knowledge-acquisition tool

directly by arranging and configuring the graphical entities on forms, that are attached to

each class in the ontology for the acquisition of instances. This allows application special-

ists to enter domain information by filling in the blanks of intuitive forms and by drawing

diagrams composed of selectable icons and connectors. Protégé-2000 allows knowledge

bases to be stored in several formats, among which a CLIPS-based syntax and RDF.

Problem-solving methods TasksEach problem-solving method in an UPML specifica-

tion canbe mapped to a class implementing this problem-solving method. The

subtasks of this problem-solving method are mapped to methods of the problem-

solving method class. A problem-solving method communicates with other compo-

nents via roles which are realized by bridges when configuring the whole problem-

solving method. Our running example provides a specification for a generic search

problem-solving method. This problem-solving method has one input role in-

put, one output role output, and the intermediate roles node, nodes, and succes-

sor nodes.roles are translated into instance variables of the search class. Input-

and output roles communicate with other components using a setRole and getRole-

method, implemented from the general supperclass PSMComponent. The subtasks

of the UPML specification are translated into methods of the PSM class. They also

communicate with other PSMComponents using the methods getSubTaskRole, set-

SubTaskRole and excecuteSubtasks, which are implemented from the supperclass

PSMComponent. Please note, that nothing is said here, how this subtasks are de-

fined. The execution is delegated to adapters and the configuration can be done

while designing the problem-solving method.

Ontologies Domain ModelsOntologies are mapped to an ordinary class hierarchy,

which definesthe basic terminology used in the domain model and the problem-

solving method. In the example above, the PSM ontology has to define node, nodes,

object, objects etc. Notice, that these ontologies can be application-specific and

that details of the actual definition of these classes are not used inside the problem-

solving method. So the details of the data structure definitions can be implemented

in an application dependent manner.
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adapter enable the basic communication infrastructure between several problemsolving

method components(providing the subtask-PSM-mapping) and the domain. Be-

cause it has to be the most flexible part of the specification (it has to handle all

incompatibilities between problem-solving method components) we can only for-

mulate weak requirements. However, a bridge has to at least provide a common

interface, such that problem-solving methods and bridges can be plugged together

in a flexible way. TheAPI provided by this interface can be structured into two

groups: the first set of methods deals with the configuration of a problem-solving

method. The second group of methods handles the execution of subtasks and set

handling of roles. A bridge is usually domain- and problem-specific, a general type

of bridge is often useful and sufficient. This kind of adapter just performs basic

mappings. This adapter can be configured at runtime.

5.3.3 Mapping the discovery ontology into shared ontology

Figure 5.4: mapping the discovery ontology into shared ontology

In this section, we present a prototype system for mapping a discovery ontology of mathe-

matical serviceinto shared ontology, which is developed based on the proposed ontology-

supported software component composition Sofienet al. (2010b).
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Figure 5.5: mapping the discovery ontology individual instances into shared ontology

Our prototype system employs W3C-recommended standards (i.e., RDF+OWL) for se-

mantic descriptionand ontological engineering. The software utilized for this task is

Protégé Protégé 3.4.4. At the discovery ontology description level, the prototype system

translates component descriptions and then adds more semantics in the component model

class. The composability property of the component model class can have values denoting

possible ways for component composition.

Taking the Linear system resolution component as an example, its composability con-

tains a list of possible parameter flows (from inputs to outputs), each of which can

be a part of an alternative path in a composite component (Complex Matrix−→
ComplexMatrix),(ReelMatrix−→ RealMatrix).

Another way to exploit composability is first to attach composability to other properties

with concrete meanings, then associate composability with composition rules.

all individual discovery ontologies are mapped together, appearing as nodes or subclasses
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in the shared ontology (see Figure 5.4). For example, the LSR component is a subclass

of theLS class (see Figure 5.5. The prototype can extract some metadata from individual

discovery ontologies and map into the shared one. After organizing those base Matrix

Operation services into a shared knowledge repository, the prototype adds other concepts

relevant to Matrix operations, either domain-specific or generic, such as Type.

Scenario Calculate the determinant squared of the vector X which is unknown in

linear equation

This question is exploratory in nature and cannot be answered by a single query. There

are many possible method to resolve linear equation, such as Gauss, LU decomposition,

or Cholesky decomposition. The question can be addressed by the ontological heuristics

capability of our system. The starting point is the key word squared. From the shared

ontology, the prototype system learns that determinant is an output of the Det compo-

nent. The prototype can select candidate components based on different criteria, including

query constraints, business rules, component consumption cost, and so forth.

For example, the LSR component guarantees that the Matrix A is regular. Thus, it is

selected first and supplemented with values of input parameters such as the vector b.

As illustrated in the scenario 5.6, an exploratory mathematical question can be investi-

gated through all possible dimensions by performing heuristics along the shared ontology.

According to the results of ontological heuristics, an applicable component composition

solution can be executed to answer the question. The final answer can come from com-

ponent execution results along one or more dimensions. Such an ontological heuristics

procedure is illustrated in Figure 8. The ontological heuristics paths are displayed at the

bottom of the diagram.

The proposed system has theoretical and practical implications for organizational knowl-

edge management. Ontologies are beneficial to knowledge representation, discovery, and

sharing, while components facilitate knowledge integration, delivery, and consumption.

However, caution should be taken when extending the framework to other areas. First,

we assume that the shared ontology is accepted by all parties within an organization or

a community, which is not always the case in a public domain. Similarly, in a situa-

tion where component description and domain knowledge cannot be translated easily into

concepts represented in ontologies or ambiguities may arise from the conceptualization,

task-specific solutions can be undertaken. But the ideal measure of conceptualization

should rely on industry wide standardization.
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Figure 5.6: The scenario

5.4 Conclusion

This chapterintroduced the standard methods for evaluating SEC. In order to assess the

performance of the search engine, a collection of queries with relevant responses were cre-

ated. Our results are encouraging, in fact they are a great improvement over the SEC and

other retrieval systems. Both SEC+ precision and recall improved significantly compared

to the results obtained with SEC due to the the integration of the subsumption mechanism

and the semantic distance in the matching algorithm.

To demonstrate the benefits of the proposed composition and integrated ontology, we have

applied it to the Matrix operations components and provided a solution to component

composition in that domain.
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6
Conclusion

In this thesis, we presented the foundations of our discovery and integration approach

that allows developers to discover and integrate the appropriate component (or compos-

ite component) in the current system engineering. As such, it introduces several features

currently missing in current works in software component description, discovery and in-

tegration:

1. the use of non functional attributes in the query description and in the component

specification.

2. the development of a portable search engine which can be used in several develop-

ment environment, function that calculate the semantic distance between terms.

3. reasoning approach to validate component internal structure Description

4. The development of two components to solve collision problem in the integration

process.

The coreof component discovery process is the discovery ontology and the semantic

matching. The discovery ontology describes the functional and the non functional aspect
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of the software component software. We classify non functional attributes into dynam-

ic/static andindpendant/dependant domain. The non functional attributes serves as a basis

for refining the components selection and as adaptation criteria in the integration setp. The

semantic matching algorithm is based on a function which calculate the semantic distance

between terms and a subsumption notion between components input/ouput data types and

query input/output data types.

This thesis extends the search to components integration of the selected component in the

current developed project by providing an innovative approach to describing the compo-

nents internal structure and a mechanism for types matching.

Another main contribution of this thesis is to improve the reuse by selecting a compos-

ite component if no individual description component is found in the discovery ontology.

We have proposed a shared ontology-supported software component composition. The

semantic enrichment shows superiority for automated and on-the-fly component compo-

sition. As demonstrated in the usage scenario, new lists of candidate components are

generated along the course of problem solving.

We further take advantage of describing the component internal structure by using a Prob-

lem Solving Method to integrate the component which has a flexible method. What flexi-

bility in terms of reconfiguration of the method for modified component required. Meth-

ods that provide clear models for problem solving help method designers to communicate

results, and help developers to understand how methods operate, and how methods can be

configured to perform new tasks. Given a repository of such methods, the developer can

select an appropriate method, configure it to perform current application tasks.

When a selected component having the best flexible method will be integrated in the

current work, two features should be considered. One is the type of the collision in the

matching of different types of data. To alleviate this problem we implement Input-Output-

convertor for conversion between different types to solve the type collision problem, and

Output-Matching-Service for extracting necessary output parameters.

In addition, several benefits are offered by the proposed approach:

• Increased Availability: By means of attaching several candidate components for

future integration.

• Increased Usability: The composite component can bind the best available compo-

nents thatfit the end developers needs by interface and semantic component match-

ing through the SEC++.
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• Increased adaptability: By means of the component result response to the environ-

ment constraintsand the developer request. In fact with the integration ontology we

guarantee that the selected component is the best adaptable.

Finally, our enhanced search engine SEC++, the discovery ontology, the shared ontology

and the integration ontology provide a framework to discover and integrate a component’

or a composite component) that feet the developer needs and the environment constraints,

and resolving several frequently encountered problems, such as component adaptability

and component reuse.

As with all large frameworks, there are a few major difficulties in the implementation of

the integration process. We will discuss them here in the context of potential future work

that would help resolve these difficulties.

Our future research plan will focus on threefold:

In short term we plain to evaluate the newer version SEC++ and specifically the integra-

tion process.

In middle term we plan to develop More efficient ontology structures and searching al-

gorithms. In fact the use of ontological heuristics through the shared ontology tree may

consume substantial computational resources, especially when the ontology tree grows

very large.

In long term we also plain to extend our search engine to discover a components compo-

sition, if no component satisfies the developer query. We plain to design and implement

an assembly technique in creating the composite component which feets the developer

query. The assembly technique will manipulate and select the appropriate set of com-

ponents from components description repository. BPEL can be used to orchestrate the

selected components, and we can hence select the best-assembled component as the com-

posed component. Depending on how many matching components are available many

component assemblies are possible. Therefore, after all the possible assemblies are gen-

erated, the assembled components are ranked based on their non functional attributes and

the flexibility of the corresponding assembled methods in integration ontology.

Our experimentation highlights the main advantages of our approach.

Fist it improve the precision by using an ontology that describes not only the inputs/out-

puts and methods names of components but also the pre-condition/effect and a weight for

each specified non functional feature. The second advantage is the amelioration of the

recall criteria. This amelioration was the result of using not only Subsumption mecha-
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nism such in SEC but also semantic distance that use Wordnet hierarchy. The semantic

distance retrieve all components which are synonym, hypernym and hyponym to the spec-

ified query.

Our future experimentation plan will be applied on a well known components repository
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