International Journal of Advances in Intelligent Informatics
Not a member yet
    234 research outputs found

    Hybrid machine learning model based on feature decomposition and entropy optimization for higher accuracy flood forecasting

    Get PDF
    The advancement of machine learning model has widely been adopted to provide flood forecast. However, the model must deal with the challenges to determine the most important features to be used in in flood forecast with high-dimensional non-linear time series when involving data from various stations. Decomposition of time-series data such as empirical mode decomposition, ensemble empirical mode decomposition and discrete wavelet transform are widely used for optimization of input; however, they have been done for single dimension time-series data which are unable to determine relationships between data in high dimensional time series.ย  In this study, hybrid machine learning models are developed based on this feature decomposition to forecast the monthly water level using monthly rainfall data. Rainfall data from eight stations in Kelantan River Basin are used in the hybrid model. To effectively select the best rainfall data from the multi-stations that provide higher accuracy, these rainfall data are analyzed with entropy called Mutual Information that measure the uncertainty of random variables from various stations. Mutual Information act as optimization method helps the researcher to select the appropriate features to score higher accuracy of the model. The experimental evaluations proved that the hybrid machine learning model based on the feature decomposition and ranked by Mutual Information can increase the accuracy of water level forecasting.ย  This outcome will help the authorities in managing the risk of flood and helping people in the evacuation process as an early warning can be assigned and disseminate to the citizen

    Enhanced personalized learning exercise question recommendation model based on knowledge tracing

    No full text
    Personalized exercise question recommendation is a crucial aspect of smart education used to customize educational exercises and questions to individual students' distinct abilities and learning progress. Integrating cognitive diagnosis with deep learning has shown promising results in personalized exercise recommendations. However, the black-box nature of the deep learning model hinders their interpretability. This makes it challenging for educators and students to understand the reasons behind the model's predictions for the next problem, and this limits their opportunity to take an active role in improving the learning process. To address this limitation, this article presents a novel personalized exercise question recommendation model based on knowledge tracing. The approach incorporates graph convolutional neural networks to model the student's abilities, thus enhancing the interpretability of the model. By employing Bidirectional gate recurrent unit (Bi-GRU), the model effectively traces fluctuations in students' abilities over time and predicts their responses to exercise questions. Experimental results demonstrate the effectiveness of this model, achieving an accuracy of 90.8% and 92.6% on ASSISTment 2009 and ASSISTment 2017 datasets, containing 4218 and 1709 student records, respectively. Moreover, the experiment was also conducted to validate the model's exercise difficulty setting. Results indicate an acceptable level of effectiveness in generating appropriate difficulty-level recommendations for individual students. The proposed model contributes to advancing personalized exercise recommendations by offering valuable insights that can lead to more efficient and effective student learning experiences

    Imputation of missing microclimate data of coffee-pine agroforestry with machine learning

    Get PDF
    This research presents a comprehensive analysis of various imputation methods for addressing missing microclimate data in the context of coffee-pine agroforestry land in UB Forest. Utilizing Big data and Machine learning methods, the research evaluates the effectiveness of imputation missing microclimate data with Interpolation, Shifted Interpolation, K-Nearest Neighbors (KNN), and Linear Regression methods across multiple time frames - 6 hours, daily, weekly, and monthly. The performance of these methods is meticulously assessed using four key evaluation metrics Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The results indicate that Linear Regression consistently outperforms other methods across all time frames, demonstrating the lowest error rates in terms of MAE, MSE, RMSE, and MAPE. This finding underscores the robustness and precision of Linear Regression in handling the variability inherent in microclimate data within agroforestry systems. The research highlights the critical role of accurate data imputation in agroforestry research and points towards the potential of machine learning techniques in advancing environmental data analysis. The insights gained from this research contribute significantly to the field of environmental science, offering a reliable methodological approach for enhancing the accuracy of microclimate models in agroforestry, thereby facilitating informed decision-making for sustainable ecosystem management

    An advanced deep learning model for maneuver prediction in real-time systems using alarming-based hunting optimization

    Get PDF
    The increasing trend of autonomous driving vehicles in smart cities emphasizes the need for safe travel. However, the presence of obstacles, potholes, and complex road environments, such as poor illumination and occlusion, can cause blurred road images that may impact the accuracy of maneuver prediction in visual perception systems. To address these challenges, a novel ensemble model named ABHO-based deep CNN-BiLSTM has been proposed for traffic sign detection. This model combines a hybrid convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) with the alarming-based hunting optimization (ABHO) algorithm to improve maneuver prediction accuracy. Additionally, a modified hough-enabled lane generative adversarial network (ABHO based HoughGAN) has been proposed, which is designed to be robust to blurred images. The ABHO algorithm, inspired by the defending and social characteristics of starling birds and Canis kojot, allows the model to efficiently search for the optimal solution from the available solutions in the search space. The proposed ensemble model has shown significantly improved accuracy, sensitivity, and specificity in maneuver prediction compared to previously utilized methods, with minimal error during lane detection. Overall, the proposed ensemble model addresses the challenges faced by autonomous driving vehicles in complex and obstructed road environments, offering a promising solution for enhancing safety and reliability in smart cities

    Evaluation of sleep stage classification using feature importance of EEG signal for big data healthcare

    No full text
    Sleep analysis is widely and experimentally considered due to its importance to body health care. Since its sufficiency is essential for a healthy life, people often spend almost a third of their lives sleeping. In this case, a similar sleep pattern is not practiced by every individual, regarding pure healthiness or disorders such as insomnia, apnea, bruxism, epilepsy, and narcolepsy. Therefore, this study aims to determine the classification patterns of sleep stages, using big data for health care. This used a high-dimensional FFT extraction algorithm, as well as a feature importance and tuning classifier, to develop accurate classification. The results showed that the proposed method led to more accurate classification than previous techniques. This was because the previous experiments had been conducted with the feature selection model, with accuracy implemented as a performance evaluation. Meanwhile, the EEG Sleep Stages classification model in this present report was composed of the feature selection and importance of the extraction stage. The previous and present experiments also reached the highest values of accuracy, with the Random Forest and SVM models using 2000 and 3000 features (87.19% and 89.19%, respectively. In this article, we proposed an analysis that the feature importance subsequently influenced the model's accuracy. This was because the proposed method was easily fine-tuned and optimized for each subject to improve sensitivity and reduce false negative occurrences

    Enhanced feature clustering method based on ant colony optimization for feature selection

    Get PDF
    The popular modified graph clustering ant colony optimization (ACO) algorithm (MGCACO) performs feature selection (FS) by grouping highly correlated features. However, the MGCACO has problems in local search, thus limiting the search for optimal feature subset. Hence, an enhanced feature clustering with ant colony optimization (ECACO) algorithm is proposed. The improvement constructs an ACO feature clustering method to obtain clusters of highly correlated features. The ACO feature clustering method utilizes the ability of various mechanisms, such as local and global search to provide highly correlated features. The performance of ECACO was evaluated on six benchmark datasets from the University California Irvine (UCI) repository and two deoxyribonucleic acid microarray datasets, and its performance was compared against that of five benchmark metaheuristic algorithms. The classifiers used are random forest, k-nearest neighbors, decision tree, and support vector machine. Experimental results on the UCI dataset show the superior performance of ECACO compared with other algorithms in all classifiers in terms of classification accuracy. Experiments on the microarray datasets, in general, showed that the ECACO algorithm outperforms other algorithms in terms of average classification accuracy. ECACO can be utilized for FS in classification tasks for high-dimensionality datasets in various application domains such as medical diagnosis, biological classification, and health care systems

    Scientific reference style using rule-based machine learning

    Get PDF
    Regular Expressions (RegEx) can be employed as a technique for supervised learning to define and search for specific patterns inside text. This work devised a method that utilizes regular expressions to convert the reference style of academic papers into several styles, dependent on the specific needs of the target publication or conference. Our research aimed to detect distinctive patterns of reference styles using RegEx and compare them with a dataset including various reference styles. We gathered a diverse range of reference format categories, encompassing seven distinct classes, from various sources such as academic papers, journals, conference proceedings, and books. Our approach involves employing RegEx to convert one referencing format to another based on the user's specific preferences. The proposed model demonstrated an accuracy of 57.26% for book references and 57.56% for journal references. We used the similarity ratio and Levenshtein distance to evaluate the dataset's performance. The model achieved a 97.8% similarity ratio with a Levenshtein distance of 2. Notably, the APA style for journal references yielded the best results. However, the effectiveness of the extraction function varies depending on the reference style. For APA style, the model showed a 99.97% similarity ratio with a Levenshtein distance of 1. Overall, our proposed model outperforms baseline machine learning models in this task. This study introduces an automated program that utilizes regular expressions to modify academic reference formats. This will enhance the efficiency, precision, and adaptability of academic publishing

    Fragile watermarking for image authentication using dyadic walsh ordering

    No full text
    A digital image is subjected to the most manipulation. This is driven by the easy manipulating process through image editing software which is growing rapidly. These problems can be solved through the watermarking model as an active authentication system for the image. One of the most popular methods is Singular Value Decomposition (SVD) which has good imperceptibility and detection capabilities. Nevertheless, SVD has high complexity and can only utilize one singular matrix S, and ignore two orthogonal matrices. This paper proposes the use of the Walsh matrix with dyadic ordering to generate a new S matrix without the orthogonal matrices. The experimental results showed that the proposed method was able to reduce computational time by 22% and 13% compared to the SVD-based method and similar methods based on the Hadamard matrix respectively. This research can be used as a reference to speed up the computing time of the watermarking methods without compromising the level of imperceptibility and authentication

    Multi-step CNN forecasting for COVID-19 multivariate time-series

    Get PDF
    The new coronavirus (COVID-19) has spread to over 200 countries, with over 36 million confirmed cases as of October 10, 2020. As a result, numerous machine learning models capable of forecasting the epidemic worldwide have been produced. This paper reviews and summarizes the most relevant machine learning forecasting models for COVID-19. The dataset is derived from the world health organization (WHO) COVID-19 dashboard, and it contains official daily counts of COVID-19 cases, fatalities, and vaccination use reported by countries, territories, and regions. We propose various convolutional neural network (CNN) based models such as CNN, single exponential smoothing CNN (S-CNN), moving average CNN (MA-CNN), smoothed moving average CNN (SMA-CNN), and moving average smoothed CNN (MAS-CNN). Here, MAPE and MSE are used to assess the suggested models. MAPE is frequently used to compare accuracy across time series with different scales. MSE, the model must strive for a total forecast equal to the entire demand. That is, optimizing MSE seeks to create a forecast that is right on average and so unbiased. The final result shows that SMA-CNN outperformed its baselines in both MAPE and MSE. The main contribution of this novel forecasting approach is a more accurate result as a base of the strategy of preventing COVID-19 spreads

    Deep learning mango fruits recognition based on tensorflow lite

    Get PDF
    Agricultural images such as fruits and vegetables have previously been recognised and classified using image analysis and computer vision techniques. Mangoes are currently being classified manually, whereby mango sellers must laboriously identify mangoes by hand. This is time-consuming and tedious. In this work, TensorFlow Lite was used as a transfer learning tool. Transfer learning is a fast approach in resolving classification problems effectively using small datasets. This work involves six categories, where four mango types are classified (Harum Manis, Langra, Dasheri and Sindhri), categories for other types of mangoes, and a non-mango category. Each category dataset comprises 100 images, and is split 70/30 between the training and testing set, respectively. This work was undertaken with a mobile-based application that can be used to distinguish various types of mangoes based on the proposed transfer learning method. The results obtained from the conducted experiment show that adopted transfer learning can achieve an accuracy of 95% for mango recognition. A preliminary user acceptance survey was also carried out to investigate the userโ€™s requirements, the effectiveness of the proposed functionalities, and the ease of use of its proposed interfaces, with promising results

    217

    full texts

    234

    metadata records
    Updated in lastย 30ย days.
    International Journal of Advances in Intelligent Informatics
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! ๐Ÿ‘‡