

A Planning Approach to Migrating

Domain-specific Legacy Systems into

Service Oriented Architecture

Ph.D Thesis

Zhuo Zhang

Software Technology Research Laboratory

De Montfort University

2012

To my husband, Shaochun Zhong

my daughter, Jiayi Zhong

and my parents, Weihua Zhang and Guizhi Li

for their love and support.

Declaration

I

Declaration

I declare that the work described in this thesis was originally carried out by me during

the period of registration for the degree of Doctor of Philosophy at De Montfort

University, U.K., from April 2007 to September 2012. It is submitted for the degree of

Doctor of Philosophy at De Montfort University. Apart from the degree that this thesis

is currently applying for, no other academic degree or award was applied for by me

based on this work.

Acknowledgements

II

Acknowledgements

I want to thank some people who gave me more help during the planning and

development of my thesis. The success of my thesis would be impossible if it was not

for their encouragement and direction.

First, I want to show my great gratitude to my supervisor Prof. Hongji Yang, for his

valuable direction, encouragement and suggestion during the course of my study.

Especially, he taught me more on scientific research methods, which will benefit my

future research work.

Second, many thanks must go to Prof. Dongdai Zhou, for his innovative and valuable

contribution to the thesis, together with his excellent technical support in the working

environment and encouragement in completing this thesis.

Third, many thanks will be given to my classmates at De Montfort University for their

useful discussion and communication during the course of my study.

Finally, I want to express my gratitude to my parents, my husband and my daughter for

their continuous support, encouragement, and love in the years of my study. All my

work is dedicated to them.

Abstract

III

Abstract

The planning work prior to implementing an SOA migration project is very important

for its success. Up to now, most of this kind of work has been manual work. An SOA

migration planning approach based on intelligent information processing methods is

addressed to semi-automate the manual work. This thesis will investigate the principle

research question: “How can we obtain SOA migration planning schemas (semi-)

automatically instead of by traditional manual work in order to determine if legacy

software systems should be migrated to SOA computation environment?”.

The controlled experiment research method has been adopted for directing research

throughout the whole thesis. Data mining methods are used to analyse SOA migration

source and migration targets. The mined information will be the supplementation of

traditional analysis results. Text similarity measurement methods are used to measure

the matching relationship between migration sources and migration targets. It

implements the quantitative analysis of matching relationships instead of common

qualitative analysis. Concretely, an association rule and sequence pattern mining

algorithms are proposed to analyse legacy assets and domain logics for establishing a

Service model and a Component model. These two algorithms can mine all motifs with

any min-support number without assuming any ordering. It is better than the existing

algorithms for establishing Service models and Component models in SOA migration

situations. Two matching strategies based on keyword level and superficial semantic

levels are described, which can calculate the degree of similarity between legacy

components and domain services effectively. Two decision-making methods based on

similarity matrix and hybrid information are investigated, which are for creating SOA

migration planning schemas. Finally a simple evaluation method is depicted.

Two case studies on migrating e-learning legacy systems to SOA have been explored.

The results show the proposed approach is encouraging and applicable. Therefore, the

SOA migration planning schemas can be created semi-automatically instead of by

traditional manual work by using data mining and text similarity measurement methods.

Table of Contents

IV

Table of Contents

Declaration ... I

Acknowledgements .. II

Abstract .. III

Table of Contents ... IV

List of Figures ... IX

List of Tables .. XII

List of Acronyms ... XIV

Chapter 1 Introduction .. 1

1.1 Problem Statement ... 1

1.2 Research Objectives and Research Methods .. 3

1.3 Research Questions and Hypotheses .. 4

1.3.1 Research Questions .. 4

1.3.2 Research Hypotheses .. 6

1.4 Original Contributions ... 6

1.5 Success Criteria .. 7

1.6 Organisation of Thesis ... 8

Chapter 2 Research Background and Related Work .. 10

2.1 Legacy System Analysis .. 10

2.1.1 Software Reengineering ... 10

2.1.2 Legacy Software System Migration ... 12

2.1.3 Legacy Software System Understanding and Decomposition .. 14

2.1.4 Component Identification and Measurement ... 16

2.2 Domain Business Analysis .. 19

2.2.1 Domain Analysis .. 19

2.2.2 Business Process Modelling ... 22

2.3 Service Oriented Architecture (SOA) .. 23

2.3.1 Overview .. 23

2.3.2 SOA Reference Model ... 28

2.3.3 Service Identification and Composition ... 31

2.3.4 SOA Migration Strategies .. 32

Table of Contents

V

2.3.5 SOA Migration Practices .. 35

2.4 Data Mining Techniques for SOA Migration Environment ... 39

2.4.1 Data Mining Techniques and Software Engineering Data ... 39

2.4.2 Application of Data Mining Method in Legacy Migration Situation 41

2.4.3 Analysis of Traditional Data Mining Algorithms ... 41

2.5 Text Retrieval Techniques for SOA Migration Environment .. 45

2.5.1 Vector Space Model (VSM) ... 46

2.5.2 Granularity of Text Similarity Calculation ... 47

2.6 Summary .. 48

Chapter 3 A Proposed SOA Migration Planning Approach .. 50

3.1 Key Factor Analysis ... 50

3.2 The Framework of SOA Migration Planning Approach .. 52

3.2.1 Analysis of Legacy Assets and Domain Requirements with Data Mining Techniques 55

3.2.2 Matching of Legacy Components and Domain Services with Text Retrieval Techniques 55

3.2.3 Decision-making of SOA Migration Planning Schemas .. 56

3.2.4 Evaluation of SOA Migration Planning Schemas .. 57

3.3 SOA Migration Toolkit --- SOAMT .. 58

3.4 Summary .. 59

Chapter 4 Domain Service Model Establishment with Data Mining Techniques......................... 61

4.1 Service Model Establishment... 61

4.1.1 The Process of Establishing a Service Model... 61

4.1.2 Hierarchical Directed Acyclic Graph (HDAG) .. 64

4.1.3 The Representation of a Service Model ... 64

4.2 A Proposed Sequence Pattern Mining Algorithm for Service Composition 65

4.2.1 Concepts and Notations .. 65

4.2.2 Theorems and Algorithms .. 69

4.2.3 Examples .. 74

4.3 Performance Analysis on Proposed Sequence Pattern Mining Algorithm 79

4.3.1 Data Resource .. 80

4.3.2 Experiment Environment ... 80

4.3.3 Experiment Results... 80

4.3.4 Conclusion .. 82

4.4 Supporting Tool: SEquence Pattern Miner (SEPAM) ... 82

4.5 Summary .. 85

Chapter 5 Legacy Component Model Establishment with Data Mining Techniques 86

5.1 Component Model Establishment .. 86

Table of Contents

VI

5.1.1 The Process of Establishing a Component Model .. 86

5.1.2 The Representation of a Component Model ... 88

5.2 A Proposed Association Rule Mining Algorithm for Determining Relationships of Legacy

Components ... 91

5.2.1 Concepts and Notations .. 91

5.2.2 Theorems and Algorithms .. 94

5.2.3 Examples .. 99

5.3 Performance Analysis on the Proposed Association Rule Mining Algorithm 105

5.4 Supporting Tool: Association Rule Miner (ARM) .. 105

5.5 Summary .. 107

Chapter 6 Matching Strategies between Legacy Components and Domain Services with Text

Similarity Measurement Techniques .. 109

6.1 Matching Strategies Based on Text Similarity Measurement Method 110

6.1.1 Keywords-based Level Matching Strategy ... 110

6.1.2 Superficial Semantic-based Level Matching Strategy .. 112

6.2 A Matching Algorithm Based on Keyword Level ... 113

6.2.1 The Weight Calculation Method of Nodes in a HDAG .. 113

6.2.2 Notations Definition ... 113

6.2.3 Algorithm SMA-Keyword ... 115

6.2.4 An Example on Algorithm SMA-Keyword .. 116

6.3 A Matching Algorithm based on Superficial Semantic Level ... 119

6.3.1 Analysis .. 119

6.3.2 Notation Definition... 121

6.3.3 Algorithm SMA-Semantic ... 123

6.3.4 An Example on Algorithm SMA-Semantic .. 126

6.4 Supporting Tool ... 127

6.4.1 Matching Tool .. 127

6.4.2 Indexing Function... 127

6.4.3 Similarity Calculation Function ... 128

6.5 Summary .. 129

Chapter 7 Creation and Evaluation of SOA Migration Planning Schemas 131

7.1 SOA Migration Planning Schemas .. 131

7.1.1 Analysis of SOA Migration Planning Schema ... 131

7.1.2 User’s Direction ... 132

7.1.3 Methods on Creating SOA Migration Planning Schemas .. 133

7.1.4 Architecture of Creation and Evaluation of SOA Migration Planning Schemas 134

Table of Contents

VII

7.2 A Decision-making Method based on Similarity Matrix ... 135

7.2.1 Symbol Definition .. 136

7.2.2 A Proposed Method .. 137

7.2.3 An Example .. 140

7.3 An Optimal Decision-making Method Based on Hybrid Information 142

7.3.1 Analysis .. 142

7.3.2 A Proposed Method .. 143

7.3.3 An Example of the Proposed Method... 143

7.4 Evaluation of SOA Migration Planning Schemas .. 148

7.4.1 Implementation Cost Estimation on SOA Migration Planning Schemas 149

7.4.2 Performance Evaluation of SOA Migration Planning Schemas 150

7.5 Supporting Tools .. 152

7.5.1 Decision-making Tool .. 152

7.5.2 Evaluation Tool .. 153

7.6 Summary .. 154

Chapter 8 Case Studies .. 156

8.1 Case Study I: Improving Service Model and Component Model with SEPAM and ARM 157

8.1.1 Overview .. 157

8.1.2 A Service Composition Method for MELS by Using SEPAM .. 157

8.1.3 Data Pre-process Phase .. 159

8.1.4 Pattern Discovery Phase ... 163

8.1.5 Pattern Analysis Phase ... 164

8.1.6 Evaluation... 164

8.2 Case Study II: Creating SOA Migration Planning Schemas with SOAMT 165

8.2.1 Overview .. 165

8.2.2 Legacy Assets ... 166

8.2.3 A New Service Oriented Architecture .. 170

8.2.4 Creating SOA Migration Planning Schemas .. 174

8.2.5 Evaluation... 178

8.3 Conclusion ... 178

8.4 Summary .. 179

Chapter 9 Conclusions ... 181

9.1 Summary of Thesis .. 181

9.2 Revisiting Original Contributions .. 182

9.3 Evaluation .. 183

9.3.1 Answering Research Questions .. 183

Table of Contents

VIII

9.3.2 Revisiting Research Hypotheses .. 186

9.3.3 Revisiting the Measure of Success Criteria .. 187

9.4 Limitations ... 188

9.5 Future Work ... 189

References ... 191

Appendix A Templates and Examples of Related XML Files .. 206

Appendix B List of Publications.. 223

List of Figures

IX

List of Figures

Figure 2-1. Stages of Domain Analysis [83]. .. 20

Figure 2-2. Information Sources for Domain Analysis [83]. .. 21

Figure 2-3. Domain Analysis Support Software Development [83]. ... 22

Figure 2-4. Correlations of Services, Activities and Business Process [122]. 23

Figure 2-5. The Relationship among Service Providers, Consumers and Brokers [1]. 25

Figure 2-6. Service Composition [71]. .. 26

Figure 2-7. A Basic Service Oriented Architecture ... 27

Figure 2-8. IBM SOA Reference Model [15]. ... 29

Figure 2-9. IBM SOA Solution Stack [15]... 29

Figure 2-10. An Example of Service Definition Hierarchy [102]. .. 31

Figure 2-11. The Apriori Algorithm. ... 42

Figure 2-12. The Apriori-generate Algorithm. .. 42

Figure 2-13. The AprioriAll Algorithm. .. 44

Figure 2-14. The AprioriAll-generate Algorithm. ... 44

Figure 2-15. The AprioriSome Algorithm [110]. .. 45

Figure 3-1. An SOA Migration Planning Approach. ... 54

Figure 3-2. A Main Interface of SOAMT. .. 59

Figure 4-1. The Process of Establishing a Service Model... 62

Figure 4-2. An Example of Hierarchical Directed Acyclic Graph (HDAG). .. 64

Figure 4-3. A Node in a Domain HDAG. .. 65

Figure 4-4. An Example of Service Model Represented by HDAG. .. 65

Figure 4-5. A Transaction Database. .. 67

Figure 4-6. The Motifs Mined by the Proposed Sequence Mining Algorithm. 79

Figure 4-7. The Memory Performance for Finding Frequent Patterns. .. 81

Figure 4-8. The Runtime Performance for Finding Frequent Patterns. .. 81

List of Figures

X

Figure 4-9. The Memory Performance for Finding Motifs.. 81

Figure 4-10. The Runtime Performance for Finding Motifs. .. 82

Figure 4-11. The Main Interface of SEPAM. .. 83

Figure 4-12. Frequent Patterns with Min-support=20% and length=2.. 84

Figure 4-13. The Information on Supporting Group. .. 84

Figure 5-1. The Process of Establishing a Component Model. ... 88

Figure 5-2. A Node in a Legacy HDAG. ... 90

Figure 5-3. An Example of Component Model Represented by HDAG. .. 90

Figure 5-4. The Representation of a Service Model and a Component Model. 90

Figure 5-5. The Application Example of Components’ Association Relations 91

Figure 5-6. The Main Interface of ARM. ... 106

Figure 5-7. Frequent Patterns with Min-support=10% and size=3. ... 107

Figure 5-8. The Information on Supporting Group. .. 107

Figure 6-1. The Corresponding Relationships between SOA Migration and Text Retrieval............... 111

Figure 6-2. An Example of Component model and Service Model. ... 117

Figure 6-3. Similarity Matrix (Ma_Keyword). .. 117

Figure 6-4. An Example of the Combination of Legacy Components. .. 118

Figure 6-5. The Similar Relationship between a Node and a Document. ... 121

Figure 6-6. The Interface of the Indexing Function. ... 128

Figure 6-7. The Interface of Similarity Calculation Function. .. 129

Figure 7-1. The Architecture of Creation and Evaluation of SOA Migration Planning Schemas. 135

Figure 7-2. An Example for the Dimensionality Reduction (k=3) for Similarity Matrix Ma. 136

Figure 7-3. The Interface of Decision-making Tool. ... 153

Figure 7-4. An Evaluation Report on SOA Migration Planning Schemas. ... 154

Figure 8-1. The Framework of a Service Composition Method. ... 158

Figure 8-2. Architecture of an E-learning System. .. 159

Figure 8-3. A Screenshot on Object Relationship Mapping (ORM) Configuration File. 168

Figure 8-4. A Screenshot of Legacy Asset on Component Relationship. .. 169

List of Figures

XI

Figure 8-5. A Screenshot of a Component Model. ... 170

Figure 8-6. Migration Target -- The New Service Oriented Architecture. .. 172

Figure 8-7. A Screenshot of the Service Model. .. 173

Figure 8-8. The Flow Chart of Creating SOA Migration Planning Schemas based on SOAMT. 175

Figure 8-9. The Key Part of SOA Migration Planning Schemas in the Experiment. 176

Figure 8-10. A Screenshot of Service Implementation. ... 177

List of Tables

XII

List of Tables

Table 4-1. A Sequence Database U. .. 67

Table 4-2. Patterns with Length 1 and Min-support 2 over U. .. 75

Table 4-3. Patterns with Length 2 and Min-support 2 over U. .. 75

Table 4-4. Patterns with Length 3 and Min-support 2 over U. .. 76

Table 4-5. Patterns with Length 4 and Min-support 2 over U. .. 76

Table 4-6. Patterns with Min-support 2 over U. .. 77

Table 4-7. Patterns with Min-support 3 over U. .. 78

Table 4-8. Patterns with Min-support 4 over U. .. 78

Table 4-9. Patterns with Min-support 5 over U. .. 78

Table 4-10. maxM(U, 2). ... 79

Table 4-11. maxM(U,3). .. 79

Table 4-12. maxM(U,4). .. 79

Table 4-13. maxM(U,5). .. 79

Table 5-1. Transaction Database U. ... 93

Table 5-2. Patterns with Size 1 and Min-support 1 over U ... 99

Table 5-3. Motifs with Min-support 1 over U .. 100

Table 5-4. Patterns with Size 2 and Min-support 2 over U ... 100

Table 5-5. Patterns with Size 3 and Min-support 2 over U ... 101

Table 5-6. Patterns with Size 4 and Min-support 2 over U.. 101

Table 5-7. Patterns with Min-support 2 over U. .. 102

Table 5-8. Patterns with Min-support 3 over U. .. 103

Table 5-9 Patterns with Min-support 4 over U. .. 103

Table 5-10. Patterns with Min-support 5 over U. .. 103

Table 5-11. Motifs maxM(U,2). ... 104

Table 5-12. Motifs maxM(U,3.) ... 104

List of Tables

XIII

Table 5-13. Motifs maxM(U,4). ... 104

Table 5-14. Motifs maxM(U,5). ... 104

Table 5-15. Association Rules from Motifs maxM(U,2). ... 104

Table 6-1. The Matching Relationships Based on Keyword Level*. ... 118

Table 6-2. The Matching Relationships Based on Keyword and Semantic level*. 126

Table 6-3. The SimItems between S31 and its Matched Objects. .. 127

Table 6-4. The Format of Indexing Files. .. 129

Table 7-1. The Matching Relationship Table of Figure7-2. .. 136

Table 7-2. The Matching Relationships Based on Keyword and Semantic level*. 138

Table 7-3. The Mapping Relation between the Implementation Means and the User’s Direction. ... 139

Table 7-4. An Example on Keyword Level. .. 140

Table 7-5. An Example on Semantic Level. ... 141

Table 7-6. CC-method. .. 145

Table 7-7. CCA-method. .. 145

Table 7-8. CCAQ of the Example Shown in Table 7-5. ... 146

Table 7-9. The Re-ranked Matching Relationships of Target S31. .. 147

Table 7-10. The Final SOA Migration Planning Schemas for Target S31. ... 147

Table 7-11. The Final SOA Migration Planning Schemas of Figure 6-2 (Performance-First). 148

Table 7-12. An SOAMS-EX and An SOAMS-HI. ... 150

Table 7-13. An Evaluation Report. .. 152

Table 8-1. The Collected Original Data. ... 162

Table 8-2. Sequence Database... 163

Table 8-3. Performance Comparison. ... 178

List of Acronyms

XIV

List of Acronyms

BPC Business Process Choreography

BPM Business Process Modelling

CBD Component-Based Development

CIM Computation-Independent Model

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

DM Data Mining

DSKs Domain Specific Kits

EA Enterprise Architecture

ERD Entity-Relationship Diagrams

ESA Enterprise Services Architecture

ESB Enterprise Service Bus

FODA Feature-Oriented Domain Analysis

FORM Feature-Oriented Reuse Method

HDAG Hierarchical Directed Acyclic Graph

MDA Model Driven Architecture

MELS Migrating E-learning Legacy systems to SOA

List of Acronyms

XV

SEPAM SEquence Pattern Miner

SMART Service-oriented MigrAtion and Reuse Technique

SOA Service Oriented Architecture

SOAMA SOA Migration Planning Approach

SOAMS SOA Migration planning Schemas

SOAMT SOA Migration Toolkit

SWA Salvaging & Wrapping Approach

TSM Text Similarity Measurement

UDDI Universal Description Discovery and Integration

UML Unified Modelling Language

VSM Vector Space Model

XML eXtensible Markup Language

Chapter 1. Introduction

1

Chapter 1 Introduction

Objectives

__

 To state the problems on migrating legacy assets to service oriented

architecture.

 To present the research objectives and choose the research method.

 To determine research questions and develop research hypotheses.

 To explain original contributions and determine the success criteria.

 To describe the organisation of the thesis.

__

1.1 Problem Statement

With the rapid development of technology, the software field has been becoming a

much more complex field. Some of the software companies bear more pressures from

marketing and competition. At the same time, it is known that more changes have been

happening in the aspects of business requirements and objectives. In modern society,

current satisfied business solutions will soon become legacy systems. At present, some

kinds of legacy systems exist. It is expensive and difficult to modify them to meet the

user’s demands. Therefore, it may lead to a loss of business opportunities [79]. However,

some legacy systems cannot be discarded directly since they contain a number of

business experiences and valuable business processes. In this case, they should be

reused wholly or partly. It is necessary to find a new approach for solving this situation.

The new approach should be able to design and implement good quality systems, which

are good for reusing maximally the valuable components and systems’ maintenance and

application.

Recently, Service-Oriented Architecture (SOA) has been more and more popular. A

Chapter 1. Introduction

2

service-oriented architecture refers to a collection of services that own a common

communication model and well-described interfaces [2]. SOA can reuse legacy

components to achieve the constantly changing needs of business requirements. The

research on migrating existing legacy systems into SOA environment (in short, SOA

migration) is triggered. The migration of a software system refers to the movement to a

different development platform, architecture, system hardware and software. Some

problems on system application, such as complex degree, non-reused and redundant

code, bad interfaces and some business logic problems, can be solved by doing SOA

migration. SOA migration has been completed in some fields. At present, the earlier

practitioners are reviewing their experiences and the degree of satisfaction runs high.

According to a recent report by Forrester, nearly 70% of SOA users agree to increasing

their use.

Among the existing literatures on SOA migration, most of them pay attention to

questions like “how to do SOA migration?”. There is less attention to the question “is it

worth triggering an SOA migration project?”. The latter question can be answered by

planning schemas of an SOA migration project. It is known, an SOA migration project

is risky. The prediction is important before starting an SOA migration project. If there

are not enough predictions on the project’s function, quality and so on, the SOA

migration projects may fall into failure. Moreover, it may cause a catastrophic loss of

money, time and resources. SOA migration planning schemas are preconditions for

doing predictions in order to avoid undesirable results. It is necessary to create SOA

migration planning schemas before starting an SOA migration project. Up to now, most

of this kind of work is manual work. Therefore, semi-automatically creating an

approach on SOA migration planning schemas should be investigated.

In an SOA migration situation, the function or sub-function of legacy systems can be

wrapped as services. Not only the explicit but also the implicit legacy assets should be

taken into account. Thus, how to reuse legacy assets maximally is one of the most

important questions, such as, “how to understand and decompose legacy assets for

reusing them in the new domain services”, “how to calculate the matching relationships

between domain services and legacy components”, “how to create migration planning

schemas”, etc. Another most important question is how to mine the hidden information

Chapter 1. Introduction

3

from the application data of legacy systems, such as, how to discover the hidden

business process and rules from the user’s usage behaviour log files and user’ feedbacks,

etc.

1.2 Research Objectives and Research Methods

The main goal of this study is to present an SOA migration planning approach to plan

and deploy an SOA migration project, in which questions like “which legacy

component(s) can be reused”, “how to reuse it or them in the new system” and “how

about the cost and performance of this deployment”, etc. can be solved. Concretely, the

research objectives presented in this study are as follows.

 Propose an SOA migration planning approach.

 Apply data mining methods to analyse legacy assets and domain logics for

improving Component/Service model.

 Apply text similarity measurement methods to establish the matching strategies

between legacy components and domain services.

 Apply heuristic decision making methods to create SOA migration planning

schemas.

 Evaluate the proposed approach by two case studies.

The empirical methodology is playing a key role in the software engineering field [39].

According to [121], there are five research methods available for the software

engineering field. They are controlled experiment, case studies, survey research,

ethnography and action research.

A controlled experiment is a study on a hypothesis that can be tested. In a controlled

experiment, some independent variables are created to assess their roles on some

dependent variables. The question “how many variables should be considered in the

study and how to measure them?” will be solved during the process of the experimental

establishment. The experimental design should be directed by the research question and

hypothesis.

In this thesis, the controlled experiment research method has been adopted for directing

Chapter 1. Introduction

4

research throughout the whole study. A research question and a research hypothesis are

established in Chapter 1. A theory involving the research question and hypothesis is

built in Chapter 3. The experimental steps guided by this theory have been detailed in

Chapter 4, 5, 6, 7 and 8. The concrete research methods in the experimental steps are as

follows.

 Mathematical proof method.

It uses formal proofs to reason about the validity of a hypothesis given some

evidence. The proposed theorems on association rule mining algorithm and

sequence pattern mining algorithm are validated by this method.

 Qualitative analysis method.

Is for the collection and analysis of qualitative data. The qualitative data refers

to the data that is not in numeric format such as interview recordings or

transcripts, questionnaires, etc. In this study, the qualitative analysis method

has been used for the key factors analysis, benchmark determination, indicator

selection of component quality, etc.

 Quantitative analysis method.

Is for the collection and analysis of quantitative data, which refers to the data

that is in numeric format. The quantitative analysis method has been used for

the identified key factors measurement, weight assignment scheme, similarity

calculation between legacy components and domain services, decision-making

methods and so on. Normally, a qualitative method is the application base of a

quantitative method.

1.3 Research Questions and Hypotheses

1.3.1 Research Questions

A research question is a statement of the research goal. Research questions should state

what the study will explore. The principal research question in this study is:

How to obtain SOA migration planning schemas

(semi-)automatically instead of by traditional manual work

in order to determine if legacy software systems should be

Chapter 1. Introduction

5

migrated to an SOA computation environment?

For answering the principal question, a collection of research questions is described as

follows.

RQ1: Why SOA migration planning schemas are needed in SOA migration projects?

RQ2: What is a proposed SOA migration planning approach?

 What are the key factors and their relationships in a proposed SOA migration

planning approach?

 What kinds of legacy software system can be processed by the proposed

approach?

 What are the final returned results by the proposed approach?

RQ3: How to analyse legacy systems and domain logics?

 What techniques will be used to analyse legacy assets and domain requirements

from the aspect of application data of legacy systems?

 What are the analysis results?

RQ4: How to measure the matching relationships between legacy components and

domain targets?

 How to represent legacy components and domain targets?

 What techniques can be adopted to calculate the matching degrees between

legacy components and domain targets?

 What are the matching strategies between legacy components and domain

targets?

RQ5: How to create SOA migration planning schemas?

 What is a SOA migration planning schema?

 How many methods can be used to create SOA migration planning schemas?

 How to evaluate SOA migration planning schemas?

RQ6: How to evaluate the proposed approach?

Chapter 1. Introduction

6

1.3.2 Research Hypotheses

After establishing these research questions, a series of research hypotheses based on

them are developed. The underlying hypothesis of this thesis is:

Data mining techniques and text similarity measurement

methods can be used to create migration planning schemas

in SOA migration projects.

This hypothesis can be validated through an SOA migration planning approach, which

mainly consists of the preparation stage, analysis stage (including domain analysis,

legacy analysis and data mining method), matching stage, decision-making stage and

evaluation stage. A set of hypotheses is derived from the underlying one:

RH1: Data mining techniques can be used to analyse legacy assets and domain

requirements from the application data of legacy systems for perfecting the quality

of Component model and Service model. This proposition can be tested by

developing concrete data mining algorithms and applying them to the application

data of legacy systems.

RH2: Text similarity measurement methods can be utilised to calculate matching

degrees between legacy components and domain targets. This proposition can be

tested by establishing the corresponding relationships between the representation

of a document and the representation of a component/service.

RH3: User’s direction is necessary during the process of creating SOA migration

planning schemas. Moreover, the solution is obtained by iteration. This

proposition can be tested by developing a small SOA migration prototype system.

RH4: Not only functional factors but also non-functional factors should be considered

during the process of creating SOA migration planning schemas. This proposition

can be tested by comparing the quality of SOA migration planning schemas

created by these two methods individually.

1.4 Original Contributions

A general SOA migration planning approach is proposed, which can offer planning and

Chapter 1. Introduction

7

implementing directions for decision-makers in both sides of the application domain

and information technology development field. Some domain logic analysis methods,

software reengineering methods and intelligent information process methods (such as

knowledge representation, data mining, information retrieval, etc.) are deployed to

determine migration planning schemas of SOA migration projects. The following are

original contributions.

C1. Data mining algorithms for service identification and composition as well as for

existing legacy assets comprehension and decomposition are developed, which

can be of great benefit to the establishment of a Service model and a Component

model.

C2. Matching strategies based on text similarity measurement methods (from keyword

level to superficial semantic level) between domain targets and legacy

components are investigated, which are the foundation for creating SOA

migration planning schemas.

C3. Decision-making methods for creating SOA migration planning schemas are

explored. Both functional factors and non-functional factors are taken into account

in the decision making stage.

1.5 Success Criteria

The overall success measurement of an SOA migration planning approach is how well it

supports an SOA migration project. The success criteria for the research described in

this thesis are as follows.

1. What kinds of legacy system can be processed by the proposed approach?

2. What type of data mining techniques can be used to analyse legacy assets and

domain logics?

3. How can text similarity measurement methods be applied to establish the matching

strategies between legacy components and domain targets?

4. How is the performance of this proposed approach?

5. How about the implementation of the proposed algorithms, strategies and methods?

Chapter 1. Introduction

8

E.g., is it possible to develop a toolkit according to the proposed approach?

1.6 Organisation of Thesis

In Chapter 1, the research objectives, methods, questions and hypotheses are introduced.

Furthermore, the original contributions and success criteria are presented.

In Chapter2, the research background and related work are presented. First, some

techniques and approaches on legacy system analysis are introduced. Second, domain

analysis and business modelling are described. Third, Service Oriented Architecture

(SOA) and SOA migration situation are shown. Fourth, data mining techniques for SOA

migration environment are presented. Fifth, text retrieval techniques for SOA migration

environment are presented.

In Chapter 3, an SOA migration planning approach has been proposed. This approach

includes 5 stages, which are the preparation stage, analysis stage, matching stage,

decision-making stage and evaluation stage. The main work on each stage is described

in this Chapter. Moreover, the related tools are developed for supporting this proposed

approach.

In Chapter 4, a sequence pattern mining algorithm for service/component identification

and composition is proposed. It can perfect the quality of a Service/Component model.

A SEquence PAttern Miner (SEPAM) has been designed and implemented.

In Chapter 5, an association rule mining algorithm for determining the association

relationships of components/services is proposed. It can perfect the quality of a

Component/Service model. An Association Rule Miner (ARM) has been designed and

implemented.

In Chapter 6, two matching strategies based on text similarity measurement methods are

proposed. Concretely, a keyword-based matching algorithm and a superficial

semantic-based matching algorithm are presented, which can be used to calculate the

similarity degrees between legacy components and domain targets. A matching tool has

been designed and implemented.

In Chapter 7, two methods for creating SOA migration planning schemas have been

Chapter 1. Introduction

9

investigated. One is a similarity matrix-based method. Another one is a method based

on hybrid information. Moreover, a simple evaluation method is proposed. A

decision-making and an evaluation tool have been designed and implemented.

In Chapter 8, two case studies for evaluating the proposed algorithms, strategies and

methods are presented. In case study 1, the proposed data mining algorithms have been

used to improve the Service model and Component model by using SEPAM and ARM.

The performance is promising. In case study 2, the proposed matching strategies and

decision-making methods are used to migrate components in an education

administration legacy system for primary and secondary schools to SOA for completing

the work on student’s management. The performance is acceptable.

In Chapter 9, the work that has been done in this study is concluded. It includes a

summary of the thesis, original contributions, evaluation, limitations and future work.

Appendix A is templates and examples of related XML files.

Appendix B is the author’s publications during the study for PhD.

Chapter 2. Research Background and Related Work

10

Chapter 2 Research Background and

Related Work

Objectives

__

 To introduce legacy software system analysis.

 To introduce domain business analysis.

 To conclude SOA migration strategies and approaches.

 To present data mining techniques for SOA migration environment.

 To present text retrieval techniques for SOA migration environment.

__

2.1 Legacy System Analysis

With the development of information technology, the proportion of legacy software

systems is becoming greater. Legacy software systems [112] refer to old application

programs, which are difficult to integrate, modify or extend with the changes of

business requirements. They reduce the software organisation’s competitive abilities in

the dynamic business world. However, they cannot be discarded simply since they hold

some important business logics and related data [72, 73]. Sometimes, legacy software

systems are worth reusing wholly or partly, such as a legacy system which can be

reused with other business functions to get better performance [112] and some business

reasons drive a legacy system to be integrated into new solutions [65], etc. In this case,

it is necessary to do the work on legacy software reengineering.

2.1.1 Software Reengineering

The existing software systems have to face work on their maintenance, modernisation

and replacement. Software reengineering refers to changing the old software systems to

Chapter 2. Research Background and Related Work

11

meet the new needs on the aspects of maintenance, application and replacement. The

objectives of software reengineering are to facilitate the maintenance of existing

software products, to recover and extract reusable components from the legacy system,

to improve reliability, to establish a base for future software evolution or migration, and

so on.

The software reengineering process is composed of the reverse engineering stage, the

function restructuring stage and the forward engineering stage [60].

 In the reverse engineering stage, the main task is to recover the old requirements,

design, structure, and so on, from the existing system. The concrete method is to

analyse the existing legacy assets, such as, source codes, user usage behaviour log,

requirement specifications and some kinds of documentation. Meanwhile, some

proved information and rules on business logic are also retrieved. The quality of

reverse engineering will affect the performance of the reengineering system.

 In the function restructuring stage, the main work is to rebuild new functions

according to new requirements and delete those unnecessary functions.

 In the forward engineering stage, the main work is to redesign and implement the

new target system. It is actually a forward movement according to the standard

software development process.

The software reengineering approaches include a “big bang” approach, incremental

approach and so on [60].

 “Big bang” approach changes the old system to the target system at one time. For

large systems, this approach may cost too many resources and time before the target

system is produced.

 Incremental approach (also known as “phase-out”) means that the legacy system is

divided into sections. These sections are reengineered and integrated incrementally

to meet the new requirements. In practice, this approach has been applied widely.

The ways of software reengineering include software system extension, transformation,

integration, migration, etc. Nowadays, many software organisations want to migrate

legacy systems to new environments that are good for the maintenance and deployment

Chapter 2. Research Background and Related Work

12

of new domain requirements. Thus, it is important and valuable to investigate the

question of legacy software system migration.

2.1.2 Legacy Software System Migration

Up-to-date software systems can change with the changing of domain business, the

customer requirements, hardware and environment. However, in practice, many

software systems cannot satisfy the ever-changing environments and requirements.

They become the legacy software systems.

Legacy software system migration means that the legacy software system is migrated

into a new operating system, software architecture, hardware equipment or development

platform. Legacy software system migration involves some research fields [19] and it is

not simple work. Usually, it faces a number of challenges [65]:

 Documentations: most legacy systems are facing problems on documentation,

such as, uncompleted or outdated requirements and specifications,

undocumented pre- and post-implementation changes, etc.

 Skills and schedule: developers have little skills in business processes and

technologies that the legacy system is based on. It is difficult to identify what

parts can be cost-effectively reused. In addition, schedule overrun is also a

challenge to be faced.

 Cost and feasibility: the ratio among cost, benefit and the technical feasibility

for migrating the applications to new solutions should be assessed first. After

making sure there are no problems in finance and technology, the project can

be started.

 Management: management becomes a problem when different development

groups are responsible for different applications, technologies or functional

areas. Tools and strategies for maintaining effective cooperation are necessary

factors for a legacy system migration project.

There are five stages in a generic legacy software system migration process [67]:

 Justification stage

Chapter 2. Research Background and Related Work

13

It is the planning stage before triggering some application project.

 Understanding legacy system stages

It is the basis for ensuring the success of a legacy migration project.

 Developing a target system stage

It is a key phase of some migration projects. The selected target environment

should be good enough for the application requirements of domain targets.

 Testing stage

It is a necessary process during the legacy system migration.

 Cutting over stage

It refers to the movement from the old environment to a new environment.

For reducing the migration risk, more attention should be paid to the justification stage

of legacy software system migration. The abundant planning and predicable work [56]

is the foundation of SOA migration success. Otherwise, it may cause a great deal of loss

in money and time.

Some different approaches for migrating legacy systems into new environment exist.

Usually, typical solutions of legacy software system migration [7] include wrapping the

sub-system(s) or function(s) as component(s) of the target system, modifying legacy

assets to adapt to the new requirements, redeveloping a replacement system, etc. These

solutions can be adopted individually or by their combination. The choice of migration

approaches [6, 80] will base on the domain value of the legacy system and software

quality [50].

For evaluating the legacy system’s quality, legacy system analysis must be done.

Legacy system analysis can be implemented through some reverse engineering methods.

The main work includes identifying the legacy components and their relationships with

each other, and establishing abstraction representations for the components in a higher

level [35].

The quality of legacy system analysis is related to the development approach of the

legacy system. If the legacy programs have been implemented by a Component Based

Chapter 2. Research Background and Related Work

14

Development (CBD) approach, it will be easier for legacy software system analysis.

Component-based development [23] is a reuse-based software engineering approach. It

builds loosely coupled and independent software components into systems. CBD owns

advantages such as flexibility, reusability, scalability, high quality, cost savings and

faster time-to-market [46]. Clearly, it is necessary to replace traditional procedural

programming approaches by CBD [23]. The advantages of CBD can be of great benefit

for the software product and its sponsors for a long time.

One of the main purposes of legacy software system migration is to reuse the existing

legacy assets maximally. Sometimes, migrating legacy systems to service-oriented

architecture (for short, SOA migration) is a good choice. SOA provides a mechanism

for reusing legacy assets [150] despite their development environment. Reusability is a

key advantage of SOA. The legacy system’s value is to reuse their functionality or

subsets by the ways of service. Understanding how a legacy system works and how it is

used is essential for reuse. Therefore, the starting point should be to find what exactly

exists in a legacy software system. Two important things have to be done before

identifying legacy components and measuring their quality, namely, legacy system

understanding and decomposition.

2.1.3 Legacy Software System Understanding and Decomposition

Legacy system understanding is necessary for moving an old system to a new

environment. If the quality of the legacy system understanding is poor, it may lead to a

failed migration project.

A verified and effective approach for legacy system understanding has been described

in [72, 124]. Usually, it can be done by reverse engineering based on existing assets. For

doing so, the supporting artefacts include specifications of software, documents of

design and requirements or code comments; user guides, screenshots, test samples,

release notes, defect reports and improvement requests; user’s needs, priorities and

complaints related to the legacy system, as well as ways to improve it [64].

There are some tools available in the legacy system understanding stage [64], such as, a

reverse-engineer can use IBM Rational XDE to understand application code and

Chapter 2. Research Background and Related Work

15

RDBMS functionality, UML models can be generated automatically by using IBM

Rational XDE, etc. These tools can benefit legacy system understanding. Although the

existing tools can help legacy system’s understanding, it is still difficult to complete

understanding of a legacy system’s structure automatically [131].

Another work of legacy system analysis for the purpose of migration is to cut legacy

assets to match the target’s requirements maximally. Legacy systems decomposition is a

preliminary step for legacy migration. The quality of legacy system migration is up to

its decomposability. If the decomposability of the system is less, the migration should

be more difficult [89].

Normally, a software system is composed of database, interface and application

components. According to the components’ separation and identification methods, three

kinds of legacy systems exist, namely, a decomposable legacy system, a

semi-decomposable legacy system or a non-decomposable legacy system. In

non-decomposable legacy systems, the three types of component are inseparable. In

semi-decomposable legacy systems, interface components are isolated from domain

logic and database components. In decomposable legacy systems, the three types of

component are all separable [89].

Each program of legacy systems may consist of three types of components. The purpose

of decomposing a legacy system is to identify and re-organise the different level’s

components for reuse. Some decomposition approaches and techniques should be

investigated. According to [41, 55], there are mainly three types of legacy program

decomposition approaches.

 The procedural approach.

In this approach, a program is regarded as a directed graph. In this graph, nodes are

used to represent decisions and edges are used to represent branches. The complex

graphs are divided into sub-graphs according to the rule of minimum

interconnections. In addition, program slicing techniques are exploited for program

restructuring [52] or for identifying re-usable functions [38].

 The functional approach.

In this approach, a program is decomposed in terms of concrete functions. The

Chapter 2. Research Background and Related Work

16

program is hierarchical, which consists of high-level control nodes and low-level

basic nodes. The matching relationships between each business rule and some

high-level node(s) have been established [3, 53, 86].

 The data type approach.

In this approach, a program is regarded as a collection of objects. Some modules

are established with the collection of operations on the known entity or data type.

In addition, some approaches for the identification of object-oriented architectures from

legacy systems [22, 43, 104] are also contributed. They can benefit the legacy system

decomposition.

2.1.4 Component Identification and Measurement

A component refers to a software or hardware unit. A software component refers to a

web service, a module or a software package that contains some related functions or

data. Hardware components are devices with their software drivers [30].

Reusability and substitutable ability are the key characteristics of a good-quality

component. The developed software components in different systems should have

high reusability. If a new component satisfies the needs of the given component, the

new one may replace the old one without breaking the system where the component

runs. Components communicate with each other via interfaces, which will be regarded

as the component’s signature [139]. The user can reuse it directly even he/she knows

nothing about how to implement it. Components can be regarded as the starting

platform for service-oriented application.

Legacy component identification is necessary for implementing legacy assets reuse.

Components will be identified from some kind of legacy codes, which include

procedural codes, object-oriented codes, component-based codes, etc. [8, 27, 42]. Some

related reverse engineering approaches will be used to do more analysis.

The component granularities include the fine-grained, medium-grained and

coarse-grained [9]. The process of legacy component identification is divided into three

phases: object identification from function-oriented codes [42], IT component

identification from object-oriented codes [8] and business component identification or

Chapter 2. Research Background and Related Work

17

composition (aligning IT with business process) from component-based codes [115,

153]. A business component refers to an IT component that implements some services

in a business domain. Some work on reusing source programs to establish services have

already been explored [4, 54, 61]. A bottom-up method is usually adopted.

A component’s reusability means the degree of reuse of this component. If the

reusability of a component is lower, software engineers have to use more effort to

understand it before it can be reused. Thus, it is necessary to measure legacy

components’ reusabilities [59,101, 85] for reusing them maximally.

According to ISO 9126, usually coupling degree, cohesion degree and adaptability

measurements can be chosen as the key factors of component reusability measurement.

Coupling [126] and cohesion [140] are two important attributes related to decompose a

system into smaller subsystems. Coupling and cohesion always occur together. Low

coupling and high cohesion are often co-occurred and they are desirable characteristics

of a component. Adaptability refers to a system’s ability of adapting to changed

circumstances [140]. High adaptability will be of great benefit to the component’s

deployment in the new target system. Therefore, the metrics on the coupling degree,

cohesion degree and adaptability of migrated legacy software components will be taken

into account when the SOA migration planning schemas are created. The existing

measure methods on these indicators are as follows.

 Coupling degree.

It refers to the dependable degree among modules. A lot of work has been done on

coupling measurement, such as, measures on structural coupling [84,117, 118, 144],

logical and evolutionary coupling [51, 136] and dynamic coupling [34]; coupling

measures based on information entropy approach [33] and information retrieval

approach [18, 29]; coupling measures for knowledge-based systems [123],

aspect-oriented systems [77] and others [45].

Low coupling means that the interactions between any two modules are through a

stable and simple interface and there are no relationships with the implementation

of other modules. This kind of component can always provide high readability and

maintainability. The disadvantage of high coupled systems might be that they are

harder to reuse. Clearly, the lower coupling is preferred for a SOA migration

Chapter 2. Research Background and Related Work

18

situation.

 Cohesion degree.

It refers to a measure of how well the lines of source code within a module work

together. Methods of measuring cohesion include qualitative measures and

quantitative measures. Usually, the qualitative measure is expressed as “high

cohesion” or “low cohesion”; the quantitative measure is to calculate a numerical

value through analysing the contents of the programs. The concrete approaches for

cohesion metric in object-oriented system have been addressed in [93, 117, 118].

The advantages of high cohesion of modules/components include robustness,

reliability, reusability and understandability. The disadvantages of low cohesion

include that they are hard to test, to maintain, to understand and to reuse. Clearly,

the higher cohesion of a single module/component is preferred for a SOA migration

situation.

 Adaptability.

Components generally should be modified to some extent to adapt to a new

application environment. An adaptable component should be able to

cope with both functional and non-functional changes. The adaptability

of a component is not only influenced by internal factors, but

also by the adaptability of the architecture. In [10, 68, 141], some

adaptability evaluation methods (the metric for making quantitative or qualitative

measurement and analysis.) have been concluded to support decision making for

choosing the best targets among candidate components.

An SOA migration solution will always involve reusing high-quality legacy

components through identifying them as services, operations, business processes and

business rules. Concretely, existing components are factored into sets of discrete

services that represent a group of related operations. Normally, a bottom-up analysis

approach is adopted in legacy system analysis. Moreover, business processes and rules

are abstracted from them into a separate Business Process Model (BPM), managed by a

business choreography model [102]. Business modelling plays an important role in

legacy system understanding and reuse. Business modelling can be of great benefit to

understand the behaviour of a legacy system and the relationship of a legacy system to

Chapter 2. Research Background and Related Work

19

the enterprise architecture. Especially, when there are some problems on

reverse-engineering legacy systems or some major components, a business model may

understand the relationship between the system’s functionality and business logic, and

can obtain the change of requirements and communication. Therefore, it is necessary to

do domain analysis and business modelling for SOA migration.

2.2 Domain Business Analysis

A service model is an important part of establishing an SOA system. Service

identification starts with a domain analysis. Moreover, business rules and process logics

are key factors for service identification. Thus, domain analysis and business modelling

are necessary for the success of an SOA system.

2.2.1 Domain Analysis

Domain analysis refers to collection and refinement of domain knowledge [75] to form

a domain model and it is used as a single system development. As software

development techniques advance, the domain analysis task is becoming more complex.

Domain analysis information comes from not only domain knowledge but also other

resources [83]. The roles of domain analysis are to identify common architectures,

design reusable components and determine domain-oriented terminology in the

application domain. And then they are encoded into generic requirement descriptions

and approaches for their implementation. The main output of a domain analysis is a

domain model. In a domain model, the data, objects, functions and their relationships

are defined and they are usually represented in Unified Modelling Language (UML)

format. In SOA, a domain model can be the index of a service registry to make selection

and retrieval easer.

In SOA migration, business modelling can direct legacy system understanding.

Furthermore, legacy system can be leveraged as an information source to derive

business process logics and business rules. Legacy systems are a kind of information

resource for domain analysis. The content and principle of legacy systems can be mined

by analysing legacy artefacts and through consulting with domain experts. However, it

is important to be independent from the legacy systems design and architecture when

Chapter 2. Research Background and Related Work

20

doing a domain analysis. Placing more reliance upon practices obtained from the

development of a legacy system may damage new developments [49].

Generally, three stages exist during the process of domain analysis: the context analysis

stage, domain modelling stage and architecture modelling stage, which are shown in

Figure 2-1.

In the context analysis stage, the structure and context of analysed contents should be

determined. For selecting reasonable analysis scope, the domain’s bounds should be

determined by domain experts, domain analysts, users, professionals and so on. Rather,

information sources used for the analysis are collected by the analyst. Usually, some

kinds of information sources are available for doing domain analysis. Figure 2-2

provides an overview of information sources used in the domain analysis [83].

Figure 2-1. Stages of Domain Analysis [83].

In the domain modelling stage, the domain’s problems which have been exposed by

software will be modelled, such as, entity relationship model, domain terminology

dictionary, etc. A domain model is established by the domain analyst through analysing

information sources and products of the context analysis. The requirement analysts,

domain experts and users will review this model.

In the architecture modelling stage, software architectures for solving the domain’s

problems will be created. The domain analyst will address the architecture model

through referencing the established domain model. The requirement analyst, domain

expert and software engineer will review this model.

Chapter 2. Research Background and Related Work

21

Figure 2-2. Information Sources for Domain Analysis [83].

Domain analysis is a key way for software reuse. Some mature domain analysis

methods exist [37, 82, 83, 124]. The general review of domain analysis methods is

introduced in [83].

Recently, domain analysis methods based on features are becoming valuable such as, a

domain analysis method named Feature-Oriented Domain Analysis (FODA) [83]. This

method is created on real-life experiences and years of expertise by SEI CMU [130]. Its

application to the Army Movement Control Domain is shown in [49]. Another method

is Feature-Oriented Reuse Method (FORM), which creates a reusable and adaptable

domain model through analysing and modelling commonalities and differences in an

application domain [82]. These applications could be good examples when similar work

may be done.

In SOA, the domain analysis process is divided into two steps, namely, the

identification of sub-domain and its analysis. The identification of sub-domain includes

the determination of sub-domains’ scopes and decomposition of problem domains. The

Chapter 2. Research Background and Related Work

22

output of all domain analysis is a set of domain models [146]. Sometimes, the analysis

results are object-oriented models or data models. Usually, the former can be

represented by UML and the latter can be represented by entity-relationship diagrams

(ERD). They are useful for designing and implementing software architectures and

domain applications [32]. The obtained domain models can be used for further software

development. Figure 2-3 illustrates the application of domain analysis products. Clearly,

domain analysis can support software development [83].

Figure 2-3. Domain Analysis Support Software Development [83].

2.2.2 Business Process Modelling

SOA architectural style aims to extend or change enterprise business solutions with the

requirement change. Practice from SOA implementation proves that the abstraction

level should be raised up to the business domains.

A Business Process (BP) is a sequence of activities or tasks that are valuable in this

business domain [63]. Business activities and tasks are elements used to decompose

business processes. Business Process Modelling (BPM) is about modelling, deploying,

optimizing, simulating, monitoring, managing and running business processes [63].

Chapter 2. Research Background and Related Work

23

Figure 2-4. Correlations of Services, Activities and Business Process [122].

Another concept that should be mentioned in business processes is business process

choreography, which means the flow of business processes. Business process flows can

be obtained by choreographing identified services or processes into compound

applications. It includes non-interruptible or interruptible flow. A non-interruptible flow

refers to receiving input and generating output. An interruptible flow refers to taking

some time to complete, or being interrupted for human interaction, or being shut down

or restarted.

Correlations of services, activities and business process are shown in Figure 2-4 [122].

Clearly, business process is about an end-to-end view on functional units of work.

Business processes encompass multiple service invocations.

2.3 Service Oriented Architecture (SOA)

2.3.1 Overview

SOA is to integrate a software system for providing a set of linked services. These

services may be end-user applications or some discoverable and published interfaces

[133]. In the following sections, more descriptions of them will be presented.

ACTIVITY 2
ACTIVITY A (Merged

decision1&Activity 3)
ACTIVITY 4.2ACTIVITY 4.1 ENDACTIVITY 1BEGIN

Svc6

(new)

APPLICATION 1

Svc1 Svc2

APPLICATION 2

Svc3 Svc4

APPLICATION 3

Svc5
Svc7

(new)

Svc8

(composite)

BUSINESS PROCESS

SERVICE LAYER

APPLICATION

LANDSCAPE

Chapter 2. Research Background and Related Work

24

2.3.1.1 Service

The term service is used widely and is the core of SOA. Different organisations have

different opinions on service’s definition, which always leads to a lot of arguments. In

this study, the service definition from IBM is supported. No matter which definition will

be accepted, service is always concerned with the following concepts and

characteristics.

 Service provider.

The maker of a service application is called a service provider. Normally, the interface

signature of a service is published through a Web Services Description Language

(WSDL) [36]. Service providers advertise their services to service registries.

 Service consumer (user, requestor, client).

The user of a published service is called a service consumer. Service consumers

question service registries to find required services.

 Service registry.

Service registry is a specific service provider, which allows service consumers to search

the interfaces of the service provider and the locations of service. Service consumers

invoke services only based on registered information.

 Service broker.

Service broker refers to a specific service provider, which can transfer service requests

to some other service providers, to help services consumers find services supporting

their operations. Broker is optional since consumers can obtain services directly from a

provider. Figure 2-5 shows the relationship among service providers, consumers and

brokers [1].

Chapter 2. Research Background and Related Work

25

Service Consumer Service Description

+invokeService()
+bindToService()

Service Provider

+findService()

Service Broker

<<use>>

<<realise>>

<<described in>><<contains>>

Figure 2-5. The Relationship among Service Providers, Consumers and Brokers [1].

 Service granularity.

The functionality scope exposed by a service is defined as service granularity. Different

granularities exist for services themselves, such as coarse-grained and fine-grained. The

normally recognised granularities consist of technical functions (such as, logon),

business functions (such as, getCustomerInfo), business transactions (such as,

closeAccount) and business processes (such as, processOrder) [12]. Usually, it is

necessary to do service composition among these granularities because an application

can consist of different grained services. Figure 2-6 shows the detailed illustration of

service composition [71].

The main features of service’s application [2] are as follows.

 Coarse-grained.

Coarse-grained services can fulfil more powerful functionality and can be applied on

huge sizes of data sets to meet specific business needs. Thus, the complexity of a

coarse-grained service is higher.

 Discoverable.

Services should be discovered at any time (such as, run and design time) and by any

identity (such as, unique identity, interface identity and service identity).

 Loosely coupled.

It refers to a qualitative measure of the dependency between two components. The

connection methods amongst services, clients and other services are isolated, standard,

Chapter 2. Research Background and Related Work

26

and message-based decoupled methods, such as the exchanging of XML file.

Figure 2-6. Service Composition [71].

 Interface-based design.

The designed interfaces can be developed separately. Its advantage is that a common

interface can be developed by some services and vice versa.

 Asynchronous.

The message transferring data among services is asynchronous. Asynchrony reduces the

dependency between components by allowing a component not to wait for another one.

 Single instance.

Any one of the services is a single instance. Usually, it is a working instance that

communicates to some others.

From an implementation viewpoint, a service should be logical and self-contained.

There are satisfied interfaces and contracts among services. The services communicate

to each other for transferring data or for some coordination of business process. The

services will be mapped into business processes. Web technologies can be regarded as

abundant toolkits for services delivery. Usually, services are delivered as wrappers for

concrete applications.

From an application viewpoint, the establishment of service is up to the business needs

and is not up to IT capabilities. The routing information of service can be obtained from

Chapter 2. Research Background and Related Work

27

business requirements. Business functions can be published by services. Therefore,

services orientation is a good choice to set up enterprise-scale applications.

2.3.1.2 SOA

SOA is not a novelty. The first SOA is introduced in [105]. Different companies or

individuals have a different understanding for SOA. Roughly, an SOA refers to a

framework model. Its core is a collection of services. Figure 2-7 shows a basic SOA.

The interface descriptions of these services can be published and discovered. In SOA,

resources in one network are available to other network members by the means of

independent services. The data transmission or coordinating activities among services

can be completed by communication. The concrete techniques and practices on

component-based systems development will be applied to implement an SOA.

Compared to traditional system architectures, SOA provides a loosely coupled

interoperable structure and independent standard interfaces. SOA becomes more

important with the emergence of web services technology.

Figure 2-7. A Basic Service Oriented Architecture

The SOA’s characteristics are as follows [40].

 In SOA, components have become services, which communicate to each other

through well-defined protocols like SOAP.

 In SOA, communication infrastructures are protocol-independent.

 In SOA, the interdependencies among services are lower.

 In SOA, the service granularity provides flexible and agile business processes.

The coarse-grained business services are preferred.

The advantages of SOA [40] are as follows,

 The location independence is provided. Services are not bound with fixed users

or places. Services can be executed on any consumers and anywhere.

 Protocol-independent communication frameworks enables code reusability.

Chapter 2. Research Background and Related Work

28

 Loosely coupled system architecture makes service composition and business

process choreography easier.

 SOA can benefit run-time deployment and perfect service management and

application development.

 SOA can contribute with a fast response and good adaptability when changes

happen in business requirements.

 It can offer functions on authorisation and authentication, and other security

functionalities through well-defined interfaces, which is better than

closely-coupled situations.

 SOA allows retrieving and linking dynamically to available services.

 SOA can improve an enterprise’s management abilities. By analysing the

communication among services in SOA, when and what business process is

effectively implemented can be captured and this enables administrators, or

analysts, to optimise business process.

It has been over years of history that some large software organisations and institutes

have built and deployed SOA applications successfully. Some SOA development

practices and tools developed by IBM [16, 102], SEI CMU [130], BPTrends [122] and

CBDI [24, 87] are useful for SOA application. In the following sub-section, an SOA

reference model from IBM [15, 17] will be described.

2.3.2 SOA Reference Model

A Reference Model (RM) means abstract definitions of core concepts within an

application domain. Its purpose is to ensure consistency when these concepts are used

elsewhere. The elements and constructs in a RM are non-implemented. A RM might

also be considered an ontology representing the semantics and schema for concepts

within a domain.

An SOA reference model represents the key capabilities needed to support

service-oriented architecture. A clear and unambiguous definition of service concept is

expected in an SOA RM. A reference architecture (RA) is always expected after a

reference model is established [130]. Reference architectures are often regarded as

Chapter 2. Research Background and Related Work

29

scenario specific (addressing a specific requirement). Currently, some SOA reference

models and architectures have been released by IT organisations and institutes. In the

following, some work from IBM [1, 15] will be introduced.

Figure 2-8 shows the IBM SOA reference model. The incremental SOA deployment

method is allowed in this model with the changing of business requirements. It means

that the SOA deployment starts from small size parts, and gradually extends to the

whole project. In this way, the risk will be reduced.

Figure 2-8. IBM SOA Reference Model [15].

Figure 2-9. IBM SOA Solution Stack [15].

Chapter 2. Research Background and Related Work

30

Figure 2-9 introduces the IBM SOA solution stack [15], which is a part of SOA RM. It

is the high-level abstraction from the conceptual viewpoint of an SOA solution. It is

also called layered service oriented architecture. It illustrates five functional layers.

They are defined as follows.

 Operational system layer.

It presents legacy assets, such as CRM and ERP packaged applications, custom

applications, OO applications and business intelligence applications. Furthermore, it

shows that IT investments are wonderful and can be triggered and integrated into an

SOA environment.

 Service component’s layer.

It realises service components by using existing applications in the operational systems

layer. Some of the legacy components can be reused in the SOA environment. The

service components will be elected to realise or manage functionality and maintain the

quality of service. Services can be used to access components by business processes and

consumers.

 Service’s layer.

It exposes the deployed services to the new application environment. The exposed

services can be found, invoked and bound. Moreover, the composite services will be

composed with them.

 Business Process layer.

It shows which processes should be represented as services’ choreographies and

which will be deployed into applications. Services are bound together to form a concrete

application, which can be of great benefit to specific business processes and use cases.

 Consumer’s layer.

It exposes the channels of access and presentation. They can be used to access services,

business processes and applications.

Among these five layers, services layer is the basis of application, which can be

accessed directly. An example of service definition hierarchy [102] is illustrated in

Chapter 2. Research Background and Related Work

31

Figure 2-10.

Figure 2-10. An Example of Service Definition Hierarchy [102].

For ensuring the quality of service, these built services must be supervised and managed.

Thus, non-functional requirements are also attached. They are an Integration layer,

Service quality layer, Information architecture layer and Governance layer.

2.3.3 Service Identification and Composition

Service identification is the key activity of service oriented analysis. The main steps are

as follows,

 Service identification in a service domain.

It includes the business-driven manner for value-chain analysis and uses a case

driven manner for composite applications [122]. A top-down approach, which

decomposes business domains into functional areas, sub-systems, processes,

sub-processes, use cases and so on, is always adopted in this step. High-level

business process and use cases are externalised for large-grained services.

 Service identification through leveraging an existing system.

A bottom-up approach is always adopted in this step. The main work is to analyse

legacy systems for selecting some candidates to form potential service functionality

that can benefit the business process. Usually, fine-grained services are identified in

this step. They are the foundation for implementing the coarse-grained and

composite services.

 Service identification through goal-service modelling.

Chapter 2. Research Background and Related Work

32

A middle-out approach is adopted in this step. The main work is to discover and

verify other services that are not obtained by a bottom-up or top-down approach.

Some granularity’s services exist, such as coarse-grained or fine-grained. Usually,

service composition methods on different granularities will be needed because an

application can be the mixture of varying-grained services. The detailed illustration of

service composition [71] is shown in Figure 2-4.

Nowadays, three main service composition methods exist [120], namely,

workflow-based method, artificial intelligence method and ontology-based method [91].

These normal service composition methods are often applied to the service composition

invoked by service consumers [98]. However, in a SOA migration situation, the

information obtained from traditional business analysis methods is not enough for

service composition. There are a lot of data assets in a legacy system. Currently, the

collected Software Engineering (SE) data has been applied to domain analysis. In order

to utilise this data efficiently, data mining methods have been applied to the software

engineering field [74]. Furthermore, some experienced and practical information on

service composition has been hidden in user’s behaviour data. It is known that the ways

that fine-grained services are discovered, selected, and appended into composite

services are outside the scope of these traditional service composition methods.

Therefore, how to implement service composition in a SOA migration situation by

using the user’s behaviour data is becoming a wonderful research question. Some work

has been done for this research question in this study.

2.3.4 SOA Migration Strategies

For reusing the existing legacy assets, SOA migration is a good choice. SOA provides a

framework for reusing legacy assets despite their development environment [150]. The

higher reusability is a key advantage of SOA. The work on SOA migration is complex.

Up to now, some SOA migration strategies have been proposed and used to direct some

SOA migration projects’ implementation.

SOA migration work is analysed from the following viewpoints: service provider, SOA

architect or service customer [146]. From the viewpoint of the service provider, normal

Chapter 2. Research Background and Related Work

33

SOA migration strategies can be classified into three categories [145],

 Black-box strategy.

This is to wrap the legacy component to the web service. First, the legacy system’s

interfaces are analysed. Afterwards, the analysed results will be compared with the

SOA domain targets. The matched pairs will be wrapped into services by

service-oriented technology. Therefore, services will be composed of the legacy

components and new web service interfaces. It is hard to evolve for the re-built

systems by adopting a black-box strategy. It can satisfy a temporary need.

However, it will complicate the management and maintenance of legacy systems in

the long term.

 Business logic strategy (White-box strategy).

This is to migrate a legacy system to a new environment in terms of business logic

[28]. First, reverse engineering methods are applied to discover the business logic

from legacy assets. Secondly, a new system is designed and developed according

to the recovered business logic. This kind of approach can be of great benefit to the

efficiency of the maintenance process. However, the system comprehension is

costly. Sometimes, it is impossible to discover the business logic correctly and

completely.

 Grey-box strategy.

This is the combination of black-box and white-box strategies. Only some parts of

legacy assets contain valuable business logic. At the same time, many legacy

functions are wrapped as components. Component orientation supports the

implementation of service oriented computation [116]. These components can be

reused by the technologies of SOA and web services. The legacy assets will

provide more benefits to the services.

These strategies have strengths and weaknesses respectively [145]. Currently, the

grey-box strategy is a popular one. Concretely,

 first, top-down analysis of domain requirements;

 second, goal-service modelling;

 third, bottom-up analysis of legacy assets.

Chapter 2. Research Background and Related Work

34

 fourth, the matching relationship of services/business processes and IT

components provides a candidate solution for SOA migration.

In addition, from an enterprise architecture (EA) point of view, a migration strategy

from old enterprise architecture to service oriented enterprise architecture is presented

in [12]. It points out Enterprise Service Bus (ESB) can be used as a mechanism for

routing messages as well as integrating and managing services between service

consumers and providers. ESB provides connectivity among services, service registry

and service choreography. Moreover, the work on publishing, discovering and

triggering services can be implemented through ESB Gateways.

Some progress has been made on migrating legacy systems into an SOA environment.

The details of some existing SOA migration strategies [116] are as follows.

 Software Engineering Institute of Carnige Melon University contributes to the SOA

migration strategy focusing on Service-oriented MigrAtion and Reuse Technique

(SMART) [47]. In SMART, the main work includes identifying and analysing

services for the purpose of SOA migration.

 Harry Sneed proposes the SOA migration strategy focusing on a Salvaging &

Wrapping Approach (SWA) [58]. The main steps in SWA are:

 first, salvaging the existing software programs;

 second, wrapping the salvaged programs [57];

 third, exposing the wrapped programs as Web services.

 Ziemann presents the SOA migration strategy focusing on an Enterprise Model

Driven Migration Approach (EMDMA) [78]. In EMDMA, more attention is paid to

enterprise modelling and SOA migration by adopting a business driven approach.

 SOA migration strategy from IBM [81] describes not only the appropriate practices

with reused legacy assets but also the content on SOA governance.

 Oracle presents an Oracle Modernisation Framework (OMF) [103]. It has set up an

Application Portfolio Analysis (APA). Afterwards, some kind of modernisation

techniques (for example, re-architecting, automated migration, COTS replacement,

enablement, re-hosting, etc.) will be adopted to do the related work.

Chapter 2. Research Background and Related Work

35

 Microsoft [99] suggests that SOA strategy should be designed according to domain

requirement and be implemented by adopting an incremental and iterative

approach.

 SAP provides the Enterprise Services Architecture (ESA) Adoption Program [129].

Customers can use its Web-based development and integration platform to build

their SOA.

Most of these strategies emphasise the role of the migration technique itself and lack of

SOA implementing principles [102]. Moreover, only some work on the architectural

reconstruction or reverse engineering of source program levels have been done.

However, this kind of context-sensitive attempt is not suitable for large scale migration

projects and it is not easier to generalise them [116]. Currently, a holistic method, which

considers both legacy system assets and new business targets, is needed to accomplish

SOA migration systematically.

2.3.5 SOA Migration Practices

Some SOA migration projects have been completed successfully by large IT

organisations and companies such as banking applications [96, 138], electronic payment

applications [76] and development tools [119]. Some detailed approaches and

techniques will be presented in this sub-section.

In [153], it contributes an approach on migrating legacy system to SOA. The details are

as follows.

Step1: Evaluating legacy assets. The main work is to evaluate the quality of the existing

legacy asset and identifying its phase in the lifecycle. This assessment is used to make

reengineering decisions. The evaluated aspects are connected together by a decision tree.

The Options Analysis for Reengineering (OAR) and other techniques are utilised to

direct the decision-making process.

Step 2: Recovering architecture. The main work is applying reverse engineering

methods to discover architecture and design information maximally. The quality of

legacy assets will be used to choose analysis methods, such as the dynamic and static

analysis techniques. Some quality indicators (for example, coupling, cohesion,

Chapter 2. Research Background and Related Work

36

reliability and so on) will be taken into account for identifying hidden components and

connectors. Its output is the input of the next Step.

Step 3: Identifying service. The main work includes: first, identifying the concrete

business functionalities that will be completed by the domain target services; and

second, extracting components from the legacy assets for reusing them in domain target

services.

Step 4: Wrapping Service. The main work is to wrap legacy components to meet the

needs of the identified domain services. The integration process subjects to the

architecture.

Step 5: Publishing and choreographing service. Universal Description Discovery and

Integration (UDDI) will be used to register services.

In [116], an approach named MASHUP is represented. It includes the following six

steps,

Step 1: Business modelling. In order to obtain the target’s requirements, the domain

requirements are modelled.

Step 2: Analysing legacy assets. The valuable data and architecture information can

be recovered through legacy assets analysis. The information can be used to

design Domain Specific Kits (DSKs) and investigate legacy components’

reuse potential.

Step 3: Establishing the mapping relationships. According to the legacy analysis

results and business modelling results, deciding how to obtain services. The

ways for obtaining services include wrapping (match) or improving (part of

match) or implementing (unmatchable).

Step 4: Applying DSKs to design the architecture of a Mashup server. The work on

architecture modelling is subject to architectural aspects and quality targets

for running domain specific kits and choreography rules.

Step 5: Defining Service Level Agreements (SLA). In a service library, SLA is

defined. Usually, SLA includes not only functional but also non-functional

information such as QoS.

Chapter 2. Research Background and Related Work

37

Step 6: Implementing and deploying services. There are four ways for

implementing and deploying services, namely,

 Wrapping: wrapping legacy components as services;

 Reconstruction: modifying legacy components as services;

 Development: implementing new services from scratch;

 COTS: integrating COTS components as services.

In [109], an SOA migration approach is represented in which a top-down analysis

method is applied to SOA design and a bottom-up analysis method is used to legacy

system understanding and application portfolio assessment. Two projects in the finance

industry and in manufacturing have been completed by adopting this approach. A

similar approach is also described in [1].

In [12], it shows some techniques on domain separation. A complex enterprise, which

owns a number of departments, should be divided into some separated domains. The

smaller-size makes it easier to do further processes. The boundaries between domains

can be established by gateways and firewalls. Transparent/Proxy gateways expose

domain services so that consumers can interact with business functions. Meanwhile,

firewalls are good for implementing domain encapsulation.

In [44], a wrapping SOA migration approach is described. Its main work is to migrate

interactive functionalities of legacy systems to SOA. Finite State Machines are

established to do wrapping work. In this approach, a black-box SOA migration strategy

and some reverse engineering techniques are presented for wrapping legacy systems’

interactive functionalities as services.

In [7], an incremental wrapping migration strategy is presented. In order to determine

the migration strategy, the work on evaluating legacy systems from the aspects of

software quality and domain value has been performed. For migrating multi-user

COBOL legacy systems to a multi-tier web-based architecture, the Migration

Environment for Legacy Information System (named MELIS) has been designed and

implemented.

In [13], several opinions on the reuse potential in SOA migration situation are outlined.

A strategic decision model for SOA reengineering projects is depicted. In this model,

Chapter 2. Research Background and Related Work

38

the decision-making method for integration versus migration takes technical and

strategic factors and cost benefit analysis into account. There are four parts in this

model: strategic analysis, architecture analysis, solution development and

implementation. However, it just focuses on the migration techniques themselves and

lacks the detailed implementation schema. It is still a high level paper for planning an

SOA migration project.

SOA migration is a part of legacy system migration. It should follow the generic system

migration process. According to the above reviews, it seems most of related researches

have just focused on the last four stages of a generic legacy system migration process.

Namely, much more research has been done for answering a question like “how to do a

SOA migration project?”, less work has been done for answering a question like “is it

worth triggering an SOA migration project?”.

The current researches did not present details on the justification stage of an SOA

migration project. In fact, this kind of work (planning and prediction) is very important

for avoiding undesired results in the SOA migration situation. Adequate planning and

prediction are important before starting an SOA migration project. Otherwise, once it

fails, it will be an expensive mistake. Some SOA migration details should be explored

to ensure that project decision-makers can obtain comprehensive information and make

a sound decision. It is necessary to explore the feasibility of an SOA migration project.

Therefore, it is necessary to address a general and comprehensive SOA migration

planning approach to supervise the planning and deployment of an SOA migration

project. Furthermore, this approach should pay more attention to the implementation

details instead of just methodological strategies. According to this, some planning and

prediction tasks can be done (semi)-automatically instead of through manual work. In

this study, more research will be done on an SOA migration planning approach. In the

proposed approach, data mining and text retrieval techniques will be adopted to create

SOA migration planning schemas, which is the foundation for planning and prediction

of an SOA migration project.

Chapter 2. Research Background and Related Work

39

2.4 Data Mining Techniques for SOA Migration

Environment

Generally, some intelligent information processing technologies and approaches can be

of great benefit to SOA migration task. Concretely, data mining techniques and text

retrieval techniques can be applied to a SOA migration situation. This research question

has been investigated in this study.

2.4.1 Data Mining Techniques and Software Engineering Data

2.4.1.1 Data Mining Process

Data mining is a field relating to a number of domains, such as database technology,

artificial intelligence, statistics, information retrieval, machine learning, neural networks,

knowledge acquisition and so on [70]. Techniques and methods in artificial intelligence,

machine learning, statistics and database systems can be applied in the data mining

field.

A simply data mining process includes three stages,

 Pre-processing stage.

Pre-processing is the foundation of data mining. Techniques on data integration

and data cleaning can be adopted in this stage for ensuring the mining quality.

 Data mining stage.

It is the core of the data mining process. There are some typical methods and

algorithms available for completing some specific functions, for example,

outlier/change/deviation detection, association analysis, clustering,

classification, evolution, summarisation, etc.

 Results validation stage.

It is to verify the patterns produced by the data mining algorithms. Some

measurements and interactions will be deployed in the data mining process for

keeping the interesting patterns. If the mined patterns go through the validation,

then the final step is to interpret them and represent them into knowledge.

Chapter 2. Research Background and Related Work

40

2.4.1.2 Data Mining Application

With the development of information technology, a great deal of software data has been

collected by some organisations and companies. Some data mining approaches on SE

data [95] have been investigated [137] since the late 90’s.

According to [135], data mining techniques applied on SE data are classification,

clustering, association rules, frequent patterns, matching/searching, abstraction-based

analysis, concept analysis, automaton/grammar learning, template-based analysis and so

on. The mined SE data includes execution traces, software change history, static code

bases, profiled program states, bug reports/natural languages, profiled structural entities,

deployment logs and so on. SE tasks which have benefited from DM techniques include

programming, testing, debugging, static defect detection, maintenance, etc.

SOA is an IT architectural approach that is business-oriented. Moreover, it helps

integrating business logics as iterative business work or services. Reusing legacy assets

is very important for the success of an SOA migration solution. Clearly, legacy system

understanding and reuse is an important part in an SOA migration environment. For

comprehending legacy assets completely, some DM methods can be used for software

engineering data. The purposes of mining software engineering data are to transfer static

record-keeping SE data to active data and make SE data actionable by recovering

hidden patterns and motifs. Mining software engineering data can predict, plan and

understand more details of existing applications and further benefit future management

and development activities [135].

Legacy system understanding approaches by using data mining techniques [14] include

dynamic traces analysis and static traces analysis, etc. Dynamic traces are utilised to

determine service identification and composition as well as migration strategy [132].

Static traces are adopted to validate the program modification in a SOA migration

situation [127]. These two are also utilised to extract the descriptions of service

interface.

Chapter 2. Research Background and Related Work

41

2.4.2 Application of Data Mining Method in Legacy Migration

Situation

In an SOA migration situation, a great deal of data assets is available in a legacy system.

The information coming from domain analysis and superficial legacy assets analysis is

not enough for implementing SOA migration. For reusing existing legacy assets

efficiently and adequately, not only the explicit assets, but also the implicit assets,

should be utilised. Clearly, it is an important task to discover the hidden information

from the legacy assets.

It is known that service identification and composition are the key tasks in an SOA

migration situation. Practical and experienced information on service identification and

composition had been hidden in the usage behaviour data of legacy assets. The usage

behaviour data resource is the collection of real operation sequences requested by users.

The hidden patterns/motifs in this data collection will provide users’ practical

experiences, which can benefit the service identification and composition in the SOA

migration situation. The motif refers to the set of maximal and frequently occurring

patterns. These mined frequent patterns/motifs will be the candidate coarse-grained

services in the target system. In this study, this question is triggered. The investigation

results show the usage behaviour data can be mined to discover the potential concerns

that can provide benefits to SOA migration projects. The mined hidden information can

be used for perfecting service models and component models of a SOA migration

environment.

2.4.3 Analysis of Traditional Data Mining Algorithms

The data mining algorithms include an association rule mining algorithm, sequence

pattern mining algorithm, classification algorithm, clustering algorithm, etc. In this

study, more attention has been paid on the association rule mining algorithm and the

sequence pattern mining algorithm.

2.4.3.1 Association Rule Mining Algorithms

The traditional algorithms on association rule mining include Apriori algorithm and its

variations [108,114] as well as FP-growth algorithm [70]. The former is proposed by

Chapter 2. Research Background and Related Work

42

Agrawal et al. The latter is proposed by Han et al.

The purpose of association rule mining is to mine the patterns/motifs over a transaction

database. Algorithm Apriori is to discover patterns/motifs with a fixed min-support

number over a transaction database. Apriori assumes items in a transaction set are

totally ordered. Furthermore, items within an itemset are sorted in lexicographic order.

Figure 2-11 describes the Apriori Algorithm.

Figure 2-11. The Apriori Algorithm.

The Apriori-generate Algorithm is presented in Figure 2-12.

Figure 2-12. The Apriori-generate Algorithm.

2.4.3.2 Sequence Pattern Mining Algorithms

The purpose of sequence pattern mining is to discover patterns/motifs of a sequence

database. Currently, many sequence pattern mining algorithms have been available for

some kinds of applications. The most famous sequence pattern mining algorithms

include AprioriAll [110] and AprioriSome algorithms [113,114], which are proposed by

Chapter 2. Research Background and Related Work

43

Agrawal and Srikant. Some similar algorithms are also presented in [5, 90, 92]. The

quantities associated with items have not been taken into account in the typical

sequence mining algorithm. At present, this factor has been added into the sequence

mining algorithm. These kinds of methods are named quantitative sequence mining

approaches [21]. Some fuzzy techniques are utilised in this field [142, 143].

AprioriSome and AprioriAll are used to find motifs on a fixed min-support number. The

main work includes generating the set of candidate patterns and doing further inspection

to discover motifs.

There are five phases in the sequence patterns mining process proposed by Rakesh

Agrawal and Ramakrishnan Srikant:

1. Sort Phase.

In this phase, the old transaction database will be changed to a customer sequence

database. In the new database, the major key is the column of customer-id and the minor

key is the column of transaction-time.

2. Large itemset (Litemset) Phase.

In this phase, all large 1-sequences will be found.

3. Transformation Phase.

In this phase, the Litemset will be coded into some contiguous integers. The

transformed 1-sequences will be obtained.

4. Sequence Phase.

In this phase, the sequence pattern mining algorithm is applied to find the desired

sequences. The main work includes: generate candidate set; prune and scan database for

checking support frequency, etc.

5. Maximal Phase.

In this phase, motifs will be found.

Figure 2-13 presents the Algorithm AprioriAll. Figure 2-14 describes the

apriori-generate function of Algorithm AprioriAll/Some.

Chapter 2. Research Background and Related Work

44

Figure 2-13. The AprioriAll Algorithm.

Figure 2-14. The AprioriAll-generate Algorithm.

The Algorithm AprioriSome [110] is shown in Figure 2-15.

Chapter 2. Research Background and Related Work

45

Figure 2-15. The AprioriSome Algorithm [110].

The Apriori and AprioriAll/Some algorithms can be improved in a domain-specific

application. For the e-learning field, some improved algorithms based on them can be

proposed according to the data features of the e-learning field. In Chapter 4 and Chapter

5, two improved algorithms based on Apriori [151] and ApriorAll/Some [152, 154] will

be depicted, which can be utilised in the establishment of a Component model and a

Service model for SOA migration in the e-learning field.

2.5 Text Retrieval Techniques for SOA Migration

Environment

Information retrieval refers to the process of retrieving the relevant information from a

Chapter 2. Research Background and Related Work

46

set of information resources. Text retrieval is a branch of information retrieval where

the information is stored in the form of text.

A document is the unit that will build a retrieval system. The group of documents over

which retrieval work will be performed is named as collection or corpus [26]. A query

refers to the representation of a user’s question for retrieving the wanted information

through a computer.

For accelerating the retrieval speed, it is necessary to establish the index for the

collection of documents in advance. An index refers to the mapping relationships

between terms and its’ positions in documents. An index term is any word that appears

in the text. Usually, an index term is a keyword (or group of related words) which has

some real meaning. A document is a set of index terms.

Three types of models exist in the information retrieval field [111],

 Boolean model.

The set theory is the foundation of the Boolean model. In this model, query and

document are represented as sets of index terms.

 Vector space model.

The algebra theory is the foundation of the vector space model. In this model, query

and document are represented as vectors.

 Probabilistic model.

The probability theory is the foundation of the probabilistic model.

2.5.1 Vector Space Model (VSM)

In VSM, queries and documents are represented as vectors. An index term, which is

usually defined as a single word, keyword or longer phrase, represents a dimension of

vector space. Some methods on assigning term weight have been proposed. tf*idf (tf

means term frequency, idf means inverse document frequency) method is a famous

weight assigning method [111], which has been widely applied in some information

retrieval systems. Similarity is a defined concept applied in an information retrieval

field. Normally, it is used to measure the similarity degree between documents. More

similarity measurement methods in information retrieval field have been concluded in

Chapter 2. Research Background and Related Work

47

[94].

For a document d,

 the frequency of a term t is the occurrence’s number of term t, denoted as tft,d .

 df is the document frequency, dft is the number of documents in the corpus

that contain a term t.

 the idf of a term t is:

 , where N refers to the total number of

documents in a corpus.

 the tf*idf weight of a term t is: tf-idft,d = tft,d* idft .

The general text similarity calculation methods in VSM include dot products (or inner

product) method, cosine similarity method, etc.

The cosine similarity calculation method between documents d1 and d2 is,

 ,

where are the vector representations of

documents d1 and d2. represents the similarity

degree between documents d1 and d2.

2.5.2 Granularity of Text Similarity Calculation

Indexing granularity refers to the document unit for indexing. Each document or

passage can be taken as a mini-document (unit). Normally, the trade-off between recall

and precision should be taken into account. If the text granularity becomes too fine, it

will miss important passages since index terms are cut into mini-documents. However,

if the text granularity becomes too coarse, it is difficult to find the relevant information

[26]. Hence, the granularity of text similarity calculation can be document, passage,

sentence, chunk, phrase, etc.

In this study, the descriptions on legacy components and domain services will be treated

as documents or passages. Text similarity calculation methods will be utilised to

recognise the matching relationship between legacy components and domain services.

These matching relationships are the important parts of SOA migration planning

Chapter 2. Research Background and Related Work

48

schemas.

2.6 Summary

Some research background and literature have been introduced in this Chapter.

 The approaches and process of software reengineering are reviewed simply. The

legacy software system can be improved or transformed through software

reengineering.

 Legacy assets can be reused through extension, transformation, integration and

migration. Legacy system migration means moving legacy assets to a new

operating system, hardware, middleware platform or system architecture. The work

on legacy system analysis includes legacy system understanding and decomposition,

and component identification and measurement.

 Business modelling plays an important role in legacy system understanding and

reuse. Domain analysis and business modelling are necessary for the success of an

SOA migration.

 The concepts and characteristics of service and service-oriented architecture are

introduced. IBM reference model and SOA solution stack are also introduced.

Service identification is the key activity of service-oriented analysis. The main

steps of service identification include: service identification in service domain,

service identification through leveraging an existing system and service

identification through goal-service modelling. Nowadays, three main service

composition methods exist, namely, workflow-based method, artificial intelligence

method and ontology-based method. In fact, the service composition methods in an

SOA migration situation are outside the scope of these traditional service

composition methods. More studies will be done in this thesis.

 Three categories of SOA migration strategies exist: Black-box strategy, White-box

strategy and Grey-box strategy. These strategies have strengths and weaknesses

respectively. Some concrete migration approaches are reviewed. Meanwhile, some

existing problems are pointed out.

Chapter 2. Research Background and Related Work

49

 Data mining is a field relating to a number of domains. Applying data mining

techniques to SE data, the mined software engineering data and software

engineering tasks benefited from data mining techniques have been concluded. The

traditional association rule mining algorithm Apriori and sequence pattern mining

algorithm AprioriAll/Some are reviewed.

 Information retrieval refers to the process of retrieving the relevant information

from a set of information resources. Some related concepts and basic information

retrieval models have been introduced.

Chapter 3. A Proposed SOA Migration Planning Approach

50

Chapter 3 A Proposed SOA Migration

Planning Approach

Objectives

 To analyse key factors that should be contained in an SOA migration planning

approach.

 To address the framework of an SOA migration planning approach.

 To explain each stage in this proposed approach.

 To introduce the implemented support tools.

3.1 Key Factor Analysis

In an SOA migration project, it is necessary to decompose and identify legacy assets

into components and then reuse them to satisfy the new domain requirements maximally.

Obviously, legacy assets are the migration source and domain requirements are the

migration target. In order to ensure the quality of SOA migration, some analysis

methods on legacy assets and domain requirements will be involved. In order to create

SOA migration planning schemas (more details are described in Section 7.1), the

representation on the analysis results of legacy assets and domain requirements should

be addressed. The above information can be concluded into a Service model and a

Component model. In this study, the two models are defined.

Definition 3.1 A Service model is a domain logic model, which consists of the work on

domain analysis, service identification and composition as well as the representation of

final results. A service model is the relationship graph of services in a domain aspect. It

will be denoted as XMLDomain.

Chapter 3. A Proposed SOA Migration Planning Approach

51

Definition 3.2 A Component model is a legacy asset model, which consists of the work

on legacy analysis, component identification and the representation of final results. A

component model is the relationship graph of components in a legacy aspect. It will be

denoted as XMLLegacy.

Clearly, a Service model and a Component model are necessary factors in an SOA

migration planning approach. They are the basis for creating SOA migration planning

schemas.

In different theoretical support frames, there are different representations and

decision-making methods for evaluating the matching relationships between legacy

assets and domain requirements. Thus, the theoretical support frame is a main factor of

an SOA migration planning approach. For example, if the vector space theory is taken

as a theory support frame, this kind of approach can be named as a vector SOA

migration planning approach; if mixed theories are taken as the theory support frame,

this kind of approach can be named as a hybrid SOA migration planning approach, etc.

In order to reuse legacy assets maximally, the matching relationship between legacy

assets and domain requirements should be measured. The concrete matching strategies

should be addressed.

The trade-off between system performances and system cost should be taken into

account. Usually, the more perfect the system performance, the more expensive the

system cost. Thus, a decision-making part for creating SOA migration planning

schemas is necessary.

In addition, one of the goals of an SOA migration project is to meet the users’ new

needs. Thus, the user’s direction should be included in an SOA migration planning

approach.

Finally, the obtained SOA migration planning schemas should be evaluated. Some

evaluation work needs to be done so that the migration planning schemas can give more

directions to the managers and implementers of an SOA migration project.

According to the above-mentioned, an SOA Migration planning Approach (SOAMA) is

concluded to be a 7-tuple, namely,

Chapter 3. A Proposed SOA Migration Planning Approach

52



where, SM refers to a Service model; CM refers to a Component model; TSF refers to

the Theoretical Support Frame; MS refers to Matching Strategy between legacy assets

(sources) and domain requirements (targets); DM refers to Decision-Making method;

UD refers to User’s Direction. MSE refers to the SOA Migration planning Schema

Evaluation.

3.2 The Framework of SOA Migration Planning Approach

The key factors in an SOA migration planning approach have been determined. In this

Section, the relationships amongst these key factors and some related descriptions will

be presented.

The main goal of this proposed planning approach is to create SOA migration planning

schemas for directing the prediction and deployment of SOA migration projects. To

reach this goal, the work can be divided into five stages, namely, preparation stage,

analysis stage, matching stage, decision-making stage and evaluation stage.

Tasks in the preparation stage include calling professional persons (application domain

and development field) together; collecting sources on both sides of the domain and

legacy; double checking the financial state and so on.

In the analysis stage, some work on legacy and domain analysis, service and component

identification, knowledge representation and so on, will be done. In this stage, a Service

model and a Component model will be established.

The legacy components and domain services will meet in the matching stage. The

matching relationships between them will be quantified (calculated) in this stage, which

is the basis for creating SOA migration planning schemas.

SOA migration planning schemas will be created in the decision-making stage. The

factor of “user’s direction” will be embodied in this stage. The means of “user’s

direction” should be detailed.

The created SOA migration planning schemas will be evaluated in the evaluation stage.

The concrete work is to integrate evaluation reports, which include all useful

Chapter 3. A Proposed SOA Migration Planning Approach

53

information for decision-makers and developers. Finally, through analysing the

evaluation reports, it can be determined if the SOA migration project should be

triggered.

According to the order of these five stages, the framework of the proposed SOA

migration planning approach is shown in Figure 3-1. Some descriptions on the main

stages are as follows.

Chapter 3. A Proposed SOA Migration Planning Approach

54

Figure 3-1. An SOA Migration Planning Approach.

Chapter 3. A Proposed SOA Migration Planning Approach

55

3.2.1 Analysis of Legacy Assets and Domain Requirements with Data

Mining Techniques

The purpose of legacy asset analysis and domain requirement analysis is to establish the

Component model and Service model which can change legacy assets and domain

requirements into the computational environment. The Component model (denoted as

XMLLegacy) and Service model (denoted as XMLDomain) are the foundation for measuring

the matching relationships between legacy components and domain services in the

matching stage.

In legacy systems, a usage behaviour data resource can provide more help for legacy

systems comprehension and domain business logic analysis from the angle of

application practice. Thus, it is necessary to discover the hidden information from the

collected usage behaviour data.

In this study, the DM techniques have been adopted to establish the Service model and

Component model. Concretely, a sequence pattern mining algorithm for

service/component identification and composition (see Chapter 4) and an association

rules mining algorithm for determining the association relationships of

components/services (see Chapter 5) are presented in this thesis.

3.2.2 Matching of Legacy Components and Domain Services with

Text Retrieval Techniques

The matching stage is the key stage in this SOA migration planning approach. In this

stage, legacy components in the Component model will meet domain services in the

Service model. In order to decide which service can be implemented by reusing which

components or the combination of them, the similarity between the domain service and

legacy component(s) should be calculated. The concrete theoretical support frames

include a probability theory, algebra theory, evidence theory and so on. In this study, the

similarity between legacy components and services of the domain requirements will be

saved as an XML file, denoted as XMLMatch. The formula 3.1 expresses the relationship

among XMLLegacy (Component model), XMLDomain (Service model), XMLMatch and the

matching algorithm.

 (3.1)

Chapter 3. A Proposed SOA Migration Planning Approach

56

Chapter 6 describes more details on matching strategies based on keyword level and

superficial semantic level by using the text similarity measurement method.

3.2.3 Decision-making of SOA Migration Planning Schemas

The main task in the decision-making stage is to create SOA migration planning

schemas, which describe how to reuse identified components to implement services.

Moreover, SOA migration planning schemas can provide planning and predictable

functions to persons who are facing problems such as whether or not to trigger an SOA

migration project. In order to assure the quality of SOA migration planning schemas, a

decision-making stage is needed.

In this stage, the main solved questions include: should an existing component become a

service? If not, how to integrate them together to compose a service?. There are three

types of migration schemas between legacy components and domain services, namely,

migration in whole, migration in part and migration nothing. The corresponding

solutions are Wrapper, Modification and Redevelopment. The three solutions can work

combinationally or individually. The decision-making method on adopting which

solution or combination of solutions is subject to the matching degree between legacy

components and domain services, as well as the user’s direction.

Both some functional factors and some non-functional factors should be considered

during the decision-making stage. If some conflicts exist among them, then work on

trade-off or negotiations has to be done.

Sometimes, the migration process really needs human involvement although automation

is many researchers’ pursuit. The decision-making process is an uncertainty reasoning

process. For example, what to do in the case of some IT components which match with

the domain services 60% or 70%? The solution can be: integrating them into the new

system or redeveloping them for the new system? Obviously, user’s direction is

necessary. In this study, the user’s directions include functional direction and

non-functional directions. The non-functional directions refer to cost aspect and

performance aspect. Three types of user’s direction are defined in the proposed

approach: cost-first, function-first and performance-first. The cost-first direction means

users prefer the cheapest cost to the others. The function-first direction means users

Chapter 3. A Proposed SOA Migration Planning Approach

57

prefer more functions to the others. The performance-first direction means users prefer

the best performance to the others. According to the user’s direction, the different

thresholds will be determined for creating SOA migration planning schemas. In this

study, the user’s direction will be expressed as XMLDirection.

Information on cost estimation and performance evaluation can be of great benefit to the

user’s direction. In the beginning, user’s direction is experiential and subjective. After

obtaining the related information, user’s direction can be more reasonable and

functional. Therefore, SOA migration is an incremental process.

The output of the decision-making stage is an SOA migration planning schema. It is

denoted as XMLSchema. The formula 3.2 expresses the relation among XMLMatch,

XMLDirection, XMLSchema and decision-making algorithm.

 (3.2)

Some investigations on solving software migration problems by using artificial

intelligence theory and methods will be the key tasks in this stage. Two

decision-making methods will be addressed in Chapter 7.

3.2.4 Evaluation of SOA Migration Planning Schemas

SOA migration planning schemas are created after passing the decision-making stage.

In order to provide all useful information to domain and information technology

decision-makers, further analysis and evaluation work on the created SOA migration

planning schemas should be done. The evaluation approaches on the created SOA

migration planning schemas should be investigated. An evaluation report that combines

all useful information together will be presented. The formula 3.3 shows an example of

the combined contents in an evaluation report.

 (3.3)

A simple evaluation method on SOA migration planning schema will be presented in

Section 7.4.

Up to now, the framework of an SOA migration planning approach has been addressed.

Chapter 3. A Proposed SOA Migration Planning Approach

58

In the following, the question “what kinds of legacy software system can be processed

by the proposed approach?” will be answered.

The proposed approach is suitable for a legacy system that can be decomposed into

different grained components. In this study, the granularities of components are divided

into three categories: fine-grained, medium-grained and coarse-grained. According to

this classification, there are three kinds of components. The application component that

concerns multi-business logics and completes specific functionality is a coarse-grained

component. The business component consists of fine-grained components and logic unit

belongs to a medium-grained component. The atomic component that is with minimum

logic belongs to a fine-grained component.

3.3 SOA Migration Toolkit --- SOAMT

In this thesis, an SOA Migration Toolkit (SOAMT) based on the techniques of data

mining and text similarity measurement has been designed and implemented to support

the SOA migration planning approach.

Figure 3-2 shows the main interface of SOAMT. There are five kinds of tool available

in this toolkit, namely, a sequence mining tool, an association rule mining tool, a

matching tool, a decision-making tool and an evaluation tool. More details on each tool

will be described in the following Chapters.

A sequence mining tool named SEquence PAttern Miner (SEPAM) is introduced in

Chapter 4 for supporting the proposed sequence pattern mining algorithm. In Chapter 5,

an association rule mining tool named Association Rule Miner (ARM) is developed for

supporting the proposed association rule mining algorithm. In Chapter 6, a matching

tool is implemented based on the proposed matching strategies. In Chapter 7, a

decision-making tool is implemented according to the proposed decision-making

methods and an evaluation tool is implemented for evaluating the created SOA

migration planning schemas. How to apply these tools to create SOA migration

planning schemas will be presented in Chapter 8.

Chapter 3. A Proposed SOA Migration Planning Approach

59

Figure 3-2. A Main Interface of SOAMT.

3.4 Summary

A general SOA migration planning approach has been proposed in this Chapter. This

approach includes five stages, which is a preparation stage, an analysis stage, a

matching stage, a decision-making stage and an evaluation stage.

 The main work of the preparation stage includes calling professional persons

(application domain and development field) together; collecting sources on both

sides of domain and legacy, double checking the financial state and so on.

 In the analysis stage, a Service model and a Component model are established. A

Service model includes the work on domain analysis, service identification, final

result’s representation, etc. Some methods on domain analysis are the basis for

establishing a Service model. A Component model includes the work on legacy

analysis, component identification and final result’s representation. Some related

reverse engineering methods will be used to do more analysis. DM techniques are

utilised to perfect the quality of a Service model and a Component model.

 The matching stage is the key stage in this SOA migration planning approach. In

this stage, legacy components in the Component model will meet domain services

in the Service model. The similarity between domain service and legacy

component(s) will be calculated.

 The main work in the decision-making stage is to create SOA migration planning

schemas, which describe how to reuse identified components to implement services.

There are three types of migration schemas between legacy components and

domain services. The corresponding solutions are Wrapper, Modification and

Chapter 3. A Proposed SOA Migration Planning Approach

60

Redevelopment. The three solutions can work combinationally or individually. The

decision-making method on adopting which solution or combination of solutions is

subject to the matching degree between legacy components and domain services as

well as the user’s direction.

 SOA migration planning schemas are created after passing the decision-making

stage. In order to provide more information to domain and information technology

decision-makers, further analysis and evaluation work on the created migration

planning schema will be done in the SOA migration evaluation stage.

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

61

Chapter 4 Domain Service Model

Establishment with Data Mining

Techniques

Objectives

__

 To show the process for establishing a Service model.

 To propose a sequence pattern mining algorithm for service identification and

composition.

 To evaluate the proposed sequence pattern mining algorithm.

 To present a sequence pattern mining tool named SEquence PAttern Miner

(SEPAM).

__

4.1 Service Model Establishment

4.1.1 The Process of Establishing a Service Model

In this study, the establishment of a Service model includes the work on domain

analysis, service identification, the representation of final results, etc. The process of

establishing a Service model consists of three phases: first, collecting the related

information source; secondly, adopting the suitable methods and techniques to solve the

concerns which is the key phase of this process; and finally, selecting a knowledge

representation method for the final results. Some methods on domain analysis are the

foundation for establishing a Service model. Figure 4-1 shows the process for

establishing a Service model.

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

62

Figure 4-1. The Process of Establishing a Service Model.

1. Information source.

Gathering information for the domain analysis is the first step of establishing a Service

model. In this study, the selected information sources for establishing a Service model

include application domain knowledge base, existing application data, domain experts,

etc. The application domain knowledge base consists of domain knowledge, theories,

methods, techniques, models and so on. The existing application data refers to

application requirements, log files and so on.

2. Domain analysis methods.

Domain analysis refers to distinguishing and determining a collection of reusable assets

for domain specific systems. The process of domain analysis includes identifying

sub-domains and analysing the identified sub-domains. Domain experts and a domain

knowledge base are important sources for analysing application requirements. Generally,

the results of domain analysis are domain models with a wider business context, which

are the core for service identification. Some existing domain analysis methods can be

used in this part.

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

63

3. Data mining techniques.

Data mining techniques are utilised to mine the implicit patterns from the application

data (business level). The mined information can be of great benefit to establishing a

Service model. The concrete data mining techniques include sequence pattern mining,

association rules mining, classification, clustering and so on.

4. Service identification and composition.

Service identification in a service domain includes the business-driven manner for

value-chain analysis and a use case driven manner for composite applications. Service

identification can normally be implemented in a top-down manner, which decomposes a

business domain into functional areas, sub-systems, processes, sub-processes, use cases,

etc. The abstract level that services will be defined should be higher than the abstract

level that objects will be defined. In this case, a service definition can be mapped into an

object-oriented system, such as J2EE, .NET, and the like.

Some attention should be paid to service granularity since it is very important for

services’ flexibility and reuse. In this study, the main purpose of service identification

and composition is for SOA migration. Thus, the fine-grain services are preferred since

they are good for matching with legacy components. A lot of different orchestrations

can be implemented by reusing some fine-grain services. In addition, the granularity of

service identification and composition should be cooperated with the granularity of

legacy decomposition for better component-to-service matching.

Some existing methods on service identification and composition can be applied in this

part. Service description is based on XML technology. The data type and structure of

services can be expressed by XML schemas.

5. Knowledge representation methods.

In order to reuse legacy assets maximally, not only qualitative research but also

quantitative research are needed in this study. Thus, the identified services should be

machine-readable. The purpose of establishing knowledge representation is to put the

identified services into the computation environment, which is the foundation for

measuring the matching relationship between services and components.

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

64

4.1.2 Hierarchical Directed Acyclic Graph (HDAG)

Through analysing features of legacy components and domain services, it is found that

the hierarchical representation method is preferred since different granularities in legacy

components and domain services exist; the directed graph representation method is a

better one since some relationships exist among components or among services; the

cyclic graph is not preferred since it is difficult to process. Therefore, in this study, a

Hierarchical Directed Acyclic Graph (HDAG) is adopted to represent domain

components and domain services. Each node in a HDAG is a composite node, which is

composed of some items. This richer representation is extremely useful to improve the

performance of similarity measurement between legacy components and domain

services.

Figure 4-2 presents an example of HDAG. In this example, there are three levels in the

HDAG; there are two nodes in level1; there are four items in each node; there are some

feature descriptions in each item; etc.

Figure 4-2. An Example of Hierarchical Directed Acyclic Graph (HDAG).

4.1.3 The Representation of a Service Model

Domain services are represented as a domain HDAG, which includes three levels;

namely, application level, business process level and service level (fine, medium and

coarse). Each node in a domain HDAG can represent an atomic service, a composite

service, a business process or an application, etc. It should be a composite node. In the

support of algebra theory, a node in a domain HDAG shown in Figure 4-3 is defined as

follows.

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

65

Definition 4.1 Each Node in a domain HDAG is a vector, which is composed of

Itemfather, Itemfunction, Itemdata and Itemson .

where, Itemfather refers to the father node of a node; Itemfunction refers to the information

from functional description; Itemdata refers to the information from data analysis;

Itemson refers to the son node of a node.

Figure 4-3. A Node in a Domain HDAG.

Figure 4-4 presents an example of Service model that are represented by a HDAG. The

nodes S21 and S23 are created by the data mining technique.

Figure 4-4. An Example of Service Model Represented by HDAG.

The representation method of a Service model and a Component model should be

identical since these two models will meet in the matching stage for a further process.

4.2 A Proposed Sequence Pattern Mining Algorithm for

Service Composition

Sequence pattern mining can be utilised for service identification and composition in

SOA migration situation. The mined frequent patterns can be services or composite

services in SOA.

4.2.1 Concepts and Notations

Some useful information can be hidden in sequences data. The common sequence data

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

66

includes web click streams, shopping sequences, DNA sequences and so on. In this

section, some concepts, notations and relations among them are established for further

discussion.

4.2.1.1 Sequences and Items

For a set T, its element number is called its size and denoted by |T|. Given a non-empty

set T, elements in it are called items and set T is called transaction set. A non-empty

subset of transaction set T is called itemset.

A sequence s over T is an ordered list of non-empty subsets (terms) of T, expressed

as , where , for n = 1, 2, ... , N and

 . An item can occur only once in a term of a sequence, but can occur multiple

times in different elements. An itemset is considered to be a sequence with a single term

[69]. Given a sequence , N is called the length of sequence s and

denoted as |s| = N.

The set of sequences over T is denoted by ST and the set of sequences over T with length

N is denoted by . There exist since each

can take one of non-empty subsets of T.

A non-empty set composed of a group of sequences over T is named as sequence

database over T. Sequence pattern mining means to discover knowledge from sequence

database. An example is given to explain the concepts mentioned above.

Suppose that transaction set T = {Service1, Service2, Service3}.

The itemsets of T are 7 non-empty subsets of T, namely, {Service1}, {Service2},

{Service3}, {Service1, Service2}, {Service1, Service3}, {Service2, Service3},

{Service1, Service2, Service3}.

The set of sequences over T with length 2 is:

Namely, {Service1}{Service1}, {Service1,Service2,Service3}{Service1},

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

67

{Service2}{Service3}, {Service1}{Service3}, {Service1,Service2,Service3}

{Service1, Service2,Service3}, etc. Here, an itemset can occur in the same sequence

more than one time.

With the support of information technology, much more original data are collected each

day. After doing pre-process, sequences databases can be obtained. For example, Figure

4-5 presents an original transaction database and its variance (sorting according to

customer Id and Date).

Figure 4-5. A Transaction Database.

Through combination, Table 4-1 shows a sequence database U based on the transaction

database shown in Figure 4-5, where T = {1, 2, 3, 4, 5}.

Table 4-1. A Sequence Database U.

Customers i Sequences ui Length

1 {1,5}{ 2}{3}{4} 4

2 {1}{3}{4}{3,5} 4

3 {1}{2}{3}{4} 4

4 {1}{3}{5} 3

5 {3}{3} 2

In the Sub-section 4.2.3, this sequence database U will be taken as an example to run

the proposed sequence pattern mining algorithms.

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

68

4.2.1.2 Containing Relations between Sequences

Given two sequences a and b, , , it is

said that sequence a is supported by sequence b; or sequence a is a sub-sequence of

sequence b; or sequence b is a super sequence of sequence a if there exist n integers

 such that,

Moreover, it can be denoted by . For example, there exist and

in sequence database U (see Table 4-1), namely,

4.2.1.3 Patterns and Their Support Sequence Groups

Given a sequence of sequence database U, let w be any sub-

sequence of a. Sub-sequence w is called a pattern of sequence a. By the definition of

patterns, it is known that a pattern is also a sequence. Thus, pattern w has length |w|. A

pattern with length 1 is called as an itemset of U.

Given a non-empty sequence database , the

pattern of any sequence in U are called patterns of U. Let L be the maximal length of

sequences of U, namely, . For any pattern w, there

is .

A particular pattern can be contained (or can “co-occur”) in many sequences of a

sequence database as their common sub-sequence. For a pattern w of U, it needs to

know which sequences in U containing w. The set of sequences in U containing w is

 , denoted by w
U
. Subset w

U
 consists of sequences in group U in

which sequence w is contained, and is called the support or occurrence group of pattern

w.

The set of patterns over U with support number being not less than h is denoted by,

 .

The set of patterns over U with length l and support number being not less than h is

denoted by,

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

69

 .

The set of patterns over U with support number h is denoted by,

 .

The set of patterns over U with length l and support number h is denoted by,

 .

There are,

 .

Given a non-empty sequence database , the set

of maximal patterns with support number being not less than min-support number h is

called motifs over U.

4.2.2 Theorems and Algorithms

In this Sub-section, some theorems and algorithm are established for finding motifs with

any min-support number h from sequence databases.

4.2.2.1 Motifs with Min-support ()

1-length patterns are called units or unit patterns. Notice that a 1-length pattern

 is in if and only if . This fact can be used to

find , which is useful for finding .

In fact, there is a simple way to find motifs with min-support . Motifs with

min-support 1 are the maximal sequences of , denoted by .

Theorem 4.1 Given a sequence database U, motifs with min-support 1 are the maximal

sequences of U, and vice versa. That is, .

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

70

Proof.

1. ; suppose to prove .

Let , there is according to the definition of containing relation

between patterns. Moreover, according to the definition of support group, there

exist and . Thus, .

2. ; suppose to prove .

(2.1)

 From , there is ; by (1), there is .

(2.2)

Suppose , there exists and ; there is

 such that and ; there exists such that

 ; there is such that . This is contrary to assumption

 . Thus, .

3. . Assume to prove .

(3.1)

From , there is) and there exists such

that . It can prove that and so . Otherwise, , by (1)

there is . It is contrary to assumption .

(3.2)

If , there exists such that . This is contrary to

assumption . Thus, .

The proof is completed.

By theorem 4.1, the motifs over sequence database U can be found

immediately by finding from U itself.

4.2.2.2 Patterns with Min-support ()

The set of patterns with support number being not less than 2 over U is denoted by

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

71

 . Generally, there are the following theorems.

Theorem 4.2 Every subsequence of h-pattern is also an h-pattern. That is, if

 and then .

Proof.

(1) If then . Suppose to prove .

Since , there is ; since and u , there is ; since

 , there is .

(2) By (1), there is .

(3) Since), can be proved. By (2), there is , and,

).

The proof is completed.

Theorem 4.3 If and then w can be expressed as a concatenation

of two patterns x and z, where x has min-support h and length and z has

min-support h and length 1. That is, w= xz, where and

 .

Proof.

Since , a pattern z with length 1 can be cut from the right, such that w = xz,

where , and . By theorem 4.2 and , there

are , more precisely, and .

The proof is completed.

Now, considering a case of min-support 2 and discussing how to find . Then

theorem 4.3 can be expressed as follows:

Therefore, has a set of candidates , which is called

the set of right candidates and denoted as:

Similarly, there is,

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

72

Therefore, has a set of candidates , which is called

the set of left candidates and denoted as:

In the following, the set of candidates will be improved and reduced.

For length =2 or l = 2, there are,

The set of right candidates is the same as the set of left candidates.

For length >2 or l > 2, since

There is,

 by

enlarging to concatenation

 .

However, the terms in concatenation as

the first term candidates of , have support being no less than 2 by

theorem 5.5 and should be in . Thus, the following theorem can be proved.

Theorem 4.4 If l > 2, then .

Theorem 4.4 can be used to find pattern by concatenation

 and Here the set of unit patterns

 changes as length l. The candidate set generated from pattern

where and is called the set of dynamic

candidates and denoted by:

Notice that changing the unit pattern candidate term in to

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

73

 reduces the candidate set since .

The detailed algorithm for finding the set of patterns with min-support 2 is as

follows:

Algorithm SH2A for finding // Sequence pattern with h=2 Algorithm

SH2A1. Find all 1-length (or unit) patterns from sequence database U by

checking its occurring or support number . //find

SH2A2. For each do // Find from

For each do

x right concatenates z to generate w = xz, and put w to the candidate set

// obtain candidate set with length 2

if) then //check support number of the candidate

patterns and get

SH2A3. For () do // Find from

 , .

For each do

For each do

x right concatenates z to generate w = xz, and put w to the candidate set

// obtain candidate set with length l

if () then //check the support number of the

candidate patterns and get

SH2A4. Output the set of patterns with min-support 2. //Answer

The algorithm SH2A is completed.

4.2.2.3 Patterns with Min-support ()

Patterns can be found by the following formula,

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

74

Therefore, the following algorithm can be concluded for finding patterns with

min-support h > 2.

Algorithm // Sequence pattern with h Greater than 2 Algorithm

 1. Call algorithm SH2A.

 2. For do

4.2.2.4 Algorithm for Finding Motifs ()

Let V be a non-empty partially ordered set by less than (<) relation. An element w of set

V is a maximum in V if there exist no such that .

Algorithm SMX for finding maxV from V

For each

For each

{ counter=0

 If then counter++}

If counter==0, then //there exist no such

that . So w is a maximum in V and put .

The algorithm SMX is completed.

4.2.3 Examples

In order to understand well the proposed theorems and algorithms, a sequence database

U shown in Table 4-1 is taken as an example to run them.

4.2.3.1 For Finding

Taking sequence database U (see Table 4-1) as an example, there are

 Patterns with length 1 and min-support 2 over U shown in

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

75

Table 4-2 is useful for finding .

Table 4-2. Patterns with Length 1 and Min-support 2 over U.

1-length patterns w Support Group w
U
 Support Number |w

U
|

{1} {u1, u2,u3, u4} 4

{2} {u1, u3} 2

{3} { u1, u2,u3, u4,u5} 5

{4}

{ u1, u2,u3} 3

{5} { u1, u2,u4} 3

According to theorem 4.1, it is easier to find . Since

 , there is .

4.2.3.2 For Finding

Taking sequence database U as an example to run algorithm SH2A.

1. Finding .

 shown in Table 4-2 can be obtained from by running step

SH2A1 of algorithm SH2A. shown in Table 4-3 can be obtained from

 by running step SH2A2 of algorithm SH2A.

Table 4-3. Patterns with Length 2 and Min-support 2 over U.

2-length patterns w Support Group w
U
 Support Number |w

U
|

{1}{2} {u1, u3} 2

{1}{3} {u1, u2,u3, u4} 4

{1}{4} {u1, u2,u3} 3

{1}{5} {u2, u4} 2

{2}{3} {u1, u3} 2

{2}{4} {u1, u3} 2

{3}{3} { u2,u5} 2

{3}{4} {u1, u2,u3} 3

{3}{5} { u2,u4} 2

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

76

2. Finding .

According to , there is . Then,

 shown in Table 4-4 can be obtained by running step SH2A3 of

algorithm SH2A at .

Table 4-4. Patterns with Length 3 and Min-support 2 over U.

3-length patterns w Support Group w
U
 Support Number |w

U
|

{1}{2}{3} {u1, u3} 2

{1}{2}{4} {u1,u3} 2

{1}{3}{4} {u1, u2,u3} 3

{1}{3}{5} {u2, u4} 2

{2}{3}{4} {u1, u3} 2

3. Finding .

According to , there are candidate set with

length 4,namely, C4,

and shown in Table 4-5 by running step SH2A3 of algorithm SH2A

at .

Table 4-5. Patterns with Length 4 and Min-support 2 over U.

4-length patterns w Support Group w
U
 Support Number |w

U
|

{1}{2}{3}{4} {u1, u3} 2

4. Finding

From , there are

 by running step SH2A3 of algorithm SH2A at . Finally, step

SH2A3 of algorithm SH2A terminates at .

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

77

5. Finding

 can be found by running step SH2A4 of algorithm SH2A. Namely,

The result is shown in Table 4-6.

Table 4-6. Patterns with Min-support 2 over U.

2-length patterns w Support Group w
U
 Support Number |w

U
|

{1} {u1, u2,u3, u4} 4

{2} {u1, u3} 2

{3} { u1, u2,u3, u4,u5} 5

{4}

{ u1, u2,u3} 3

{5} { u1, u2,u4} 3

{1}{2}

{1}{2}{3} {u1, u3} 2

{1}{2}{4} {u1,u3} 2

{1}{3}{4} {u1, u2,u3} 3

{1}{3}{5} {u2, u4} 2

{2}{3}{4} {u1, u3} 2

{u1, u3} 2

{1}{3} {u1, u2,u3, u4} 4

{1}{4} {u1, u2,u3} 3

{1}{5} {u2, u4} 2

{2}{3} {u1, u3} 2

{2}{4} {u1, u3} 2

{3}{3} { u2,u5} 2

{3}{4} {u1, u2,u3} 3

{3}{5} { u2,u4} 2

{1}{2}{3} {u1, u3} 2

{1}{2}{4} {u1,u3} 2

{1}{3}{4} {u1, u2,u3} 3

{1}{3}{5} {u2, u4} 2

{2}{3}{4} {u1, u3} 2

{1}{2}{3}{4} {u1, u3} 2

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

78

4.2.3.3 For Finding

 shown in Table 4-7, shown in Table 4-8, and shown in

Table 4-9 can be obtained by running step of algorithm

Table 4-7. Patterns with Min-support 3 over U.

 patterns w Support Group w
U
 Support Number |w

U
|

{1} {u1, u2,u3, u4} 4

{3} {u1, u2,u3, u4, u5} 5

{4} {u1, u2,u3} 3

{5} {u1, u2, u4} 3

{1}{3} {u1, u2,u3, u4} 4

{1}{4} {u1, u2,u3} 3

{3}{4} { u1,u2, u3} 3

{1}{3}{4} { u1,u2, u3} 3

Table 4-8. Patterns with Min-support 4 over U.

patterns w Support Group w
U
 Support Number |w

U
|

{1} {u1, u2,u3, u4} 4

{3} {u1, u2,u3, u4, u5} 5

{1}{3} {u1, u2,u3, u4} 4

Table 4-9. Patterns with Min-support 5 over U.

patterns w Support Group w
U
 Support Number |w

U
|

{3} {u1, u2,u3, u4, u5} 5

4.2.3.4 For Finding Motifs

By running algorithm SMX, shown in Table 4-10, shown

in Table 4-11, shown in Table 4-12 and shown in Table

4-13 can be found.

For example, by running the proposed sequence mining algorithm on the legacy system

application data, the composite services and business processes shown in Figure 4-6 can

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

79

be discovered.

Table 4-10. maxM(U, 2).

patterns w Support Group w
U
 Support Number |w

U
|

{3}{3} {u2, u5} 2

{1}{3}{5} {u2,u4} 2

{1}{2}{3}{4} {u1, u3} 2

Table 4-11. maxM(U,3).

patterns w Support Group w
U
 Support Number |w

U
|

{5} { u1,u2,u4} 3

{1}{3}{4} {u1, u2,u3} 3

Table 4-12. maxM(U,4).

patterns w Support Group w
U
 Support Number |w

U
|

{1}{3} {u1, u2,u3,u4} 4

Table 4-13. maxM(U,5).

patterns w Support Group w
U
 Support Number |w

U
|

{3} {u1, u2,u3,u4,u5} 5

Figure 4-6. The Motifs Mined by the Proposed Sequence Mining Algorithm.

4.3 Performance Analysis on Proposed Sequence Pattern

Mining Algorithm

The performance analysis on proposed algorithms includes the correctness and the

applicability. In order to analyse them, some experiments by applying the AprioriAll

algorithm and proposed sequence pattern mining algorithm SM-AprioriAll should be

done. The performance comparisons on AprioriAll algorithm and SM-AprioriAll

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

80

algorithm will be presented in this Section.

4.3.1 Data Resource

These algorithms will be applied to two kinds of data resource: one is artificial data

from a data generator and another one is practical data from a real legacy system.

First, artificial data will be generated. The hidden association rules or sequence patterns

in artificial data will be defined. The defined information can be regarded as an answer

key. The mined results by applying the proposed algorithms can be compared with this

answer key. The correctness can be proved.

If the correctness obtained from the artificial data is accepted, the proposed algorithms

can be applied to the practical (real) data, which is collected from the real application

system.

4.3.2 Experiment Environment

In order to prove the correctness and applicability of the proposed sequence pattern

mining algorithm (SM-AprioriAll, for short), the following experiments were designed

and implemented. The system was developed under the following hard and software

environment:

CPU is Pentium4 2.0GHz; memory is 2G; Window XP operating system; programming

language is Visual Basic.

4.3.3 Experiment Results

4.3.3.1 Artificial Data

The following sequence data was generated by IBM Quest Market-Basket Synthetic

Data Generator [62]:

Number of transactions in database = 200000

Average transaction length = 10

Number of items = 9

Number of patterns = 10000

Average length of pattern = 4

The experiment results returned by SM-AprioriAll meet the answer key from artificial

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

81

data. Thus, the correctness of SM-AprioriAll is proved.

The performance comparisons on Memory and Runtime between SM-AprioriAll and

traditional AprioriAll are as follows:

The Memory performance for finding frequent patterns with min-support is equal to

0.02%, 0.03%, 0.04% and 0.05% is shown in Figure 4-7.

Figure 4-7. The Memory Performance for Finding Frequent Patterns.

The Runtime performance for finding frequent patterns with min-support is equal to

0.02%, 0.03%, 0.04% and 0.05% is shown in Figure 4-8.

Figure 4-8. The Runtime Performance for Finding Frequent Patterns.

Figure 4-9. The Memory Performance for Finding Motifs.

0

5

10

15

20

0.02% 0.03% 0.04% 0.05%

M
e

m
o

ry
/M

B

Support/%

SM_AprioriAll

AprioriAll

0
10
20
30
40
50
60
70
80
90

100
110
120

0.02% 0.03% 0.04% 0.05%

R
u

n
ti

m
e

/s
e

c

Support/%

SM_AprioriAll

AprioriAll

0

5

10

15

20

0.02% 0.03% 0.04% 0.05%

M
e

m
o

ry
/M

B

Support/%

SM_AprioriAll

AprioriAll

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

82

The Memory performance for finding Motifs with min-support is equal to 0.02%,

0.03%, 0.04% and 0.05% is shown in Figure 4-9.

The Runtime performance for finding Motifs with min-support is equal to 0.02%,

0.03%, 0.04% and 0.05% is shown in Figure 4-10.

Figure 4-10. The Runtime Performance for Finding Motifs.

4.3.3.2 Practical Data

The practical data is collected from the usage’s log files of an e-learning system. The

performance comparisons on Memory and Runtime between the proposed sequence

pattern mining algorithm SM-AprioriAll and traditional AprioriAll are similar to the case

of artificial data. More details are shown in Section 8.1.

4.3.4 Conclusion

On artificial data, the experimental data shows the Memory performance of the

proposed algorithm SM-AprioriAll is better than traditional AprioriAll algorithm.

Moreover, the experimental data shows the Runtime performance of the proposed

algorithm SM-AprioriAll is similar to (a little bit better) traditional AprioriAll algorithm.

On practical data, the results are similar to the artificial data. Therefore, the proposed

sequence pattern mining algorithm SM-AprioriAll is applicable.

4.4 Supporting Tool: SEquence Pattern Miner (SEPAM)

To support the method on applying data mining method to improve Service model and

Component model, a SEquence PAttern Miner (SEPAM) based on the proposed

0
10
20
30
40
50
60
70
80
90

100
110
120

0.02% 0.03% 0.04% 0.05%

R
u

n
ti

m
e

/s
e

c

Support/%

SM_AprioriAll

AprioriAll

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

83

sequence pattern mining algorithm has been designed and implemented.

There are three functions in SEPAM, namely, mining function, searching function and

displaying function. Figure 4-11 presents the main interface of SEPAM.

Figure 4-11. The Main Interface of SEPAM.

Mining function is the key function, which reflects the performance of the proposed

algorithm. The time complexity of this algorithm is subject to the length of each

sequence, the number of items and the size of records in sequence database.

The “saved as” item in mining function is to save the useful data (some middle and final

results) onto the hard disk for utilising in the searching and displaying functions.

The searching function and displaying function are the auxiliary functions, which can

contribute to the analysis and process of the mined patterns. The searching function can

browse frequent patterns, supporting group and supporting number/degree at any level.

For example, the min-support number/degree is denoted as min-support and pattern’s

length is denoted as length. The frequent patterns with min-support=20% and length=2

is shown in Figure 4-12. Figure 4-13 shows the information on supporting group.

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

84

Figure 4-12. Frequent Patterns with Min-support=20% and length=2.

Figure 4-13. The Information on Supporting Group.

Chapter 4. Domain Service Model Establishment with Data Mining Techniques

85

4.5 Summary

Sequence mining techniques are used to software engineering data. The investigation

results show the usage behaviour data can be mined to discover the potential concerns

that can benefit SOA migration. The mined hidden information can be used for

improving Service model and Component model.

 The process of establishing a Service model is presented. The hierarchical directed

acyclic graph is adopted to represent a Service model.

 A sequence pattern mining algorithm for service composition is proposed for

migrating e-learning legacy systems to SOA environment. First, some concepts and

notations are defined. Then, some theorems and algorithms are described. Finally,

some examples are presented for a better understanding of the proposed theorems

and algorithms.

 The performance of proposed algorithm is analysed. The experimental data shows

this sequence pattern mining algorithm is applicable.

 A sequence pattern mining tool (SEPAM) has been developed based on the proposed

algorithm. It is good for improving the quality of Service model and Component

model.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

86

Chapter 5 Legacy Component Model

Establishment with Data Mining

Techniques

Objectives

__

 To show the process of establishing a Component model.

 To propose an association rule mining algorithm for determining relationships

of legacy components.

 To evaluate the proposed association rule mining algorithm.

 To build an association rule miner based on the proposed algorithm.

5.1 Component Model Establishment

5.1.1 The Process of Establishing a Component Model

The work on the establishment of a Component model includes legacy asset analysis,

component identification and the representation of final results. The process of

establishing a Component model also consists of three phases. The first phase is to

collect the related information source. The second phase is to apply the reasonable

methods and techniques to solve the concerns (it is the key phase of this process). The

third phase is to select knowledge representation method for the analysis results. Figure

5-1 describes the process of establishing a Component model.

1. Information source.

In this study, the selected information sources for establishing a Component model

include legacy source codes, legacy application data, IT professionals and so on.

2. Legacy system analysis.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

87

To establish a most reasonable Component model, an assessment of the legacy systems

will be performed. Legacy systems should be decomposed into some sub-modules and

then into some smaller and manageable components. Usually, there are three types of

legacy systems: decomposable legacy system, semi-decomposable legacy system and

non-decomposable legacy system. In this study, the non-decomposable legacy systems

will be put aside. The other two will be processed further.

Domain application data and knowledge base are useful for analysing legacy systems.

Such as, services, rules and business processes can be extracted from development

documentation, source code, domain experts, UML files, user feedbacks and system

logs. Some existing legacy system analysis methods can be applied in this part.

3. Data mining techniques.

Data mining techniques are utilised to mine the implicit patterns from application data

(implementation level). The mined information can be of great benefit to establishing a

Component model. The concrete data mining techniques include sequence pattern

mining, association rules mining, classification, clustering and so on.

4. Component identification.

Legacy component identification is necessary for implementing new services. The

granularity of component identification should be coincided with services’ identification

granularity since the two will meet for component-to-service matching later.

5. Knowledge representation methods.

The purpose of establishing knowledge representation is to put the identified

components into the computation environment, which is the foundation for measuring

the matching relationship between services and components. The representation method

for services and components should be identical since they will meet in the matching

stage for a further process.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

88

Figure 5-1. The Process of Establishing a Component Model.

5.1.2 The Representation of a Component Model

Legacy components are represented as a legacy HDAG, which also includes three levels:

atomic component level, business component level and application component level.

Each node in a legacy HDAG can represent an atomic component, a business

component and an application component. It should be a composite node.

In this study, the legacy system is analysed from five levels, namely, text level

(specification files), data level, code level, practical level (usage behaviour logs) and

logic level (UML files).

 Text level – Analysing specification (Function) information written in natural

language.

The concerned factors include: domain knowledge base, domain thesaurus,

similarity calculation between documents, etc.

 Data level -- Analysing database information.

The concerned factors include: Relation (data, service), Relation (data, Function),

Relation (data, Class), Relation (data, Component), business rules, etc.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

89

 Code level – Analysing source code information.

Component and sub-function are a relatively atomic level of abstraction. The

concerned factors include: the name of Class, Component, Sub-function and

Function; the number and type of Parameter and Statement, etc.

 Practical level –Analysing users’ usage behaviour information.

Some potential service composition and business process information can be found.

The data mining techniques can be applied.

 Logic level –Analysing UML information.

The concerned factors include: Class graph, Use case, a hierarchical tree or graph

structure, etc.

In the support of algebra theory, each node in a legacy HDAG shown in Figure 5-2 is

defined as follows.

Definition 5.1 Each Node in a legacy HDAG is a vector, which is composed of Itemfather,

Itemfunction, Itemdata, Itemcode, Itemmining, Itemuml, Itemson .

where, Itemfather refers to the father node of this node; Itemfunction refers to the

information from specification analysis; Itemdata refers to the information from data

analysis; Itemcode refers to the information from code analysis; Itemmining refers to the

information from usage’s log analysis by using data mining techniques; Itemuml refers to

the information from UML analysis; Itemson refers to the son node of this node.

Node information is similar to the semantic interface of an atomic service/component or

a composite service (component) or a business process (function), etc. For domain

requirement analysis, normally, a top-down analysis approach will be applied. For

legacy system analysis, a bottom-up approach may be adopted.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

90

Figure 5-2. A Node in a Legacy HDAG.

Figure 5-3 presents an example of Component model represented by a hierarchical

directed acyclic graph (see Section 4.1.2).

Figure 5-3. An Example of Component Model Represented by HDAG.

Figure 5-4 shows an example of a Component model and a Service model represented

by the hierarchical directed acyclic graph.

Figure 5-4. The Representation of a Service Model and a Component Model.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

91

5.2 A Proposed Association Rule Mining Algorithm for

Determining Relationships of Legacy Components

According to the application data features, an association rule mining algorithm is

proposed. The proposed algorithm is suitable for the data set whose size is medium and

whose number of items is less than 20. In addition, Apriori algorithm assumes that

items in a transaction set are totally ordered. Normally, items within an itemset are

sorted in lexicographic order in Apriori algorithm. The proposed algorithm can find all

motifs with any min-support number without assuming any ordering.

The mined association relations can be utilised to determine the relationships of legacy

components or the relationships of domain services. If the components (For example, C1,

C2, C3 in Figure 5-5) have a close association relation, they will be organised into the

same unit in the relationship graph of legacy components. Sometimes, they may

construct a new composite component (e.g., C123 in Figure 5-5).

In this Section, first, some related concepts and notations are described. Then, the

proposed theorems and algorithm will be presented. Finally, for the best understanding

of the theorems and algorithm, some small examples will be shown.

Figure 5-5. The Application Example of Components’ Association Relations

5.2.1 Concepts and Notations

Investigation of item sets is based on the containing relation between itemsets. In this

Sub-section, some concepts, notations and relations are established for further

discussion.

5.2.1.1 Transaction Sets and Items

For a finite set T, the number of elements is named its size and denoted by . Suppose

a non-empty set T, its elements is named items and the set T is called transaction set. A

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

92

non-empty subset of transaction set T is called itemset.

A transaction u over T refers to a non-empty subset of T, where ,

 T and , namely, a transaction is an itemset. Thus, there are itemsets

over transaction set T.

A non-empty set composed of a group of itemsets {u1, u2, …, un} over T is named as

a transaction database over T . Association rules mining means to discover association

rules from transaction database and . An

example is given to explain the concepts mentioned above.

Example:

Suppose that transaction set T = {Component1, Component2, Component3}. Then,

‘Component1’, ‘Component2’ and ‘Component3’ are called items in transaction set T.

The item number or element number is |T| = 3.

The elements of powerset 2
|T|

 are the subsets of T, its element number is 2
|T|

= 2
3
= 8,

namely,

Thus, the itemsets of T are 7 non-empty subsets of T as follows:

 .

The set of itemsets over T with size is:

namely,

 .

With the support of information technology, some original data are collected each day.

After doing pre-process, Table 5-1 presents a transaction database U. In the following

Sub-section, this transaction database U, where , will be taken as an

example to run the proposed association rule mining algorithms.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

93

Table 5-1. Transaction Database U.

Database U Transaction ui Size

u1 {A, B, C, D} 4

u2 { B, C, E} 3

u3 { A, B, C, E } 4

u4 { B, D, E } 3

u5 { A, B, C, D } 2

5.2.1.2 Containing Relations between Items

Given two itemsets u and v, (),

(), itemset u is said to be contained in itemset v, or occurring in itemset v,

or supported by itemset v, or u is a sub-itemset of v, or v is a super itemset or an

extension of u when u v. For example, in transaction database U (see Table 5-1), there

exist,

 and .

5.2.1.3 Patterns and Their Support Transaction Groups

Given a transaction of transaction database U, let w be any

sub-transaction of u. Sub-itemset w is called a pattern (supported by or occurring in)

transaction u. By the definition of patterns, it is known that a pattern is also a transaction.

Thus, pattern w has size|w|. A pattern with size 1 is an item of T. Given a non-empty

transaction database , , the pattern of any

transaction in U are called patterns of U. Let L be the maximal size of transactions of U,

namely, L =max(|, |,…, |). For any pattern w, having 0 < |w| L.

A particular pattern can be contained (or can “co-occur”) in many transactions of a

transaction database as their common sub-itemset. For a pattern w of U, it needs to

know which transactions in U containing w. The set of transactions in U containing w is

 , denoted by w
U
. Subset w

U
 consists of transactions in group U in

which sequence w is contained, and is called the support or occurrence group of pattern

w. The set of patterns over U with support number being not less than h is denoted by,

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

94

 .

The set of patterns over U with size l and support number being not less than h is

denoted by,

 and .

The set of patterns over U with support number h is denoted by,

 .

The set of patterns over U with size l and support number h is denoted by,

 and .

There are,

 .

Given a non-empty transaction database , the set maxM(U, h)

of maximal patterns with support number being not less than min-support number h is

called motifs over U.

5.2.2 Theorems and Algorithms

In this Sub-section, some theorems are established for finding patterns and a new

algorithm is introduced for finding motifs with any min-support number h.

5.2.2.1 Motifs with Min-support ()

1-size patterns are called units or unit patterns. Notice that a 1-size pattern

 is in if and only if . This fact can be used to find ,

namely, units or unit patterns, which is useful for finding .

The same way can be used to find the other size patterns, such as 2-size, 3-size, etc. A

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

95

lot of work should be done in this way. In fact, there is a simple way to find motifs with

min-support .

Motifs with min-support 1 are the maximal transactions of , denoted by

maxM(U,1). Theorem 5.1, which shows a simple way for finding , is

shown as follows.

Theorem 5.1 Given a transaction database U, motifs with min-support 1 are the

maximal transactions of U, and vice versa. That is maxM(U, 1) = maxU.

Proof.

(1) ; suppose to prove .

Let , there is ; also, according to the definition of support group, there

exist and . Thus, .

(2) ; suppose to prove .

(2.1)

 From , there is ; by (1), there is .

(2.2)

Suppose , there exists and ; there is

 such that and ; there exists such that

 ; there is such that . This is contrary to assumption

 . Thus, .

(3) ; assume to prove .

(3.1)

From , there is); there exists such that

 . It can prove that and so . Otherwise, , by (1)

there is . This is contrary to assumption .

(3.2)

If , there exists such that . This is contrary to

assumption . Thus, .

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

96

The proof is completed.

5.2.2.2 Patterns with Min-support ()

The set of patterns with support number being not less than 2 over U is denoted by

). Generally, there are the following theorems.

Theorem 5.2 Every sub-itemset of an h-pattern is also an h-pattern. That is, if

) and then).

Proof.

(1) If then . Suppose to prove .

Since , there is ; since and u , there is ; since

 , there is .

(2) By (1), there is .

(3) Since), can be proved. By (2), there is , thus,

).

The proof is completed.

Theorem 5.3 If) and then w can be expressed as an union of two

patterns x and z, where x has min-support h and length and z has min-support h

and length . That is, , where and .

Proof.

Since , a pattern z with size 1 from w can be separated such that ,

where , and . By theorem 5.2 and), there

is), more precisely, and .

The proof is completed.

Now, considering a case of min-support 2 and discussing how to find). Then

theorem 5.3 can be expressed as follows:

 when

Therefore, has a set of candidates .

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

97

For size=2 or l=2, there is candidate set,

For size > 2 or l >2, there is,

The following is the detailed algorithm for finding the set of patterns with

min-support .

Algorithm AH2A for finding //Association rules with h=2 Algorithm

AH2A1. Find all 1-size (or unit) patterns from sequence database U by

checking its occurring or support number . //finding

AH2A2. Find from

for each do

for each do

union of x and z to generate , and put w to the candidate set

//obtain candidate set with size2

if() then //check support number of the candidate

patterns and get .

AH2A3. Find from ,

for () do

for each do

for each do

union of x and z to generate , and put w to the

candidate set //obtain candidate set with size l

if() then //check support number of the candidate

patterns and get .

AH2A4. Output the set of patterns with min-support 2.

 //answer

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

98

The algorithm AH2A is completed.

5.2.2.3 Patterns with Min-support ()

After having found over transaction database U, the others, such as ,

 , …, , can be found by the following formula,

 for h = 2,3,…,|U|-1

Therefore, the algorithm AHG2A for finding patterns with min-support h>2 is shown in

the following.

Algorithm AHG2A for finding patterns with min-support h>2 //Association rules with

h Greater than 2 Algorithm

AHG2A1. Call algorithm AH2A //find

AHG2A 2. For () do

 //delete pattern w with

from , the remainder belongs to

 .

5.2.2.4 Motifs with (

Let V be a non-empty partially ordered set by less than (<) relation. An element w of set

V is a maximum in V if there exist no such that .

Algorithm AMX for finding maxV from V

For each

For each

{ counter=0

 If then counter++}

If counter==0, then //there exist no such

that . So w is a maximum in V and put .

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

99

The algorithm AMX is completed.

5.2.2.5 Association Rules from Motifs

After having found Motifs, association rules can be found from motifs. An association

rule is , which means if x co-occurs then y co-occurs. And the rule has

confidence. An example is shown in Sub-section 5.2.3.6.

5.2.3 Examples

In order to describe the proposed theorem and algorithms clearly, transaction database

U (see Table 5-1) is taken as an example to run them.

5.2.3.1 For Finding Unit Patterns (Units)

Table 5-2 shows the results of . The same way can be used to find other size

patterns, such as 2-size, 3-size, etc.

Table 5-2. Patterns with Size 1 and Min-support 1 over U

1-size patterns w Support Group w
U
 Support Number |w

U
|

{A} {u1, u3, u5} 3

{B} {u1, u2, u3, u4, u5} 5

{C} { u1, u2, u3, u5} 4

{D} { u1, u4, u5} 3

{E} { u1, u3, u4 } 3

5.2.3.2 For Finding

By theorem 5.1, the motifs maxM (U, 1) with min-support 1 over transaction database U

can be found immediately by finding maxU from U itself. Since , there is

maxM(U, 1) = maxU =max{u1, u2, u3, u4, u5} ={ u1, u3, u4, u5}. Table 5-3 represents

deailed results.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

100

Table 5-3. Motifs with Min-support 1 over U

 Patterns w Support Group w
U
 Support Number |w

U
|

{A, B, C, D } {u1, u5} 2

{ A, B, C, E } {u3} 1

{ B, D, E } { u4} 1

5.2.3.3 For Finding

Running the proposed algorithm AH2A on the transaction database U, there are the

following results,

1. Finding

 can be obtained from in Table 5-2 by running step AH2A1 of

algorithm AH2A. It is the same as since all support numbers in

are more than 2.

2. Finding

 , which is shown in Table 5-4, can be obtained from by running

steps AH2A2 and AH2A3 of algorithm AH2A.

Table 5-4. Patterns with Size 2 and Min-support 2 over U

2-size patterns w Support Group w
U
 Support Number |w

U
|

{A,B}

{u1, u3, u5} 3

{A,C} {u1, u3, u5} 3

{A,D} {u1,u5} 2

{B,C} {u1, u2,u3,u5} 4

{B,D} { u1,u4,u5} 3

{B,E} {u2,u3,u4} 3

{C,D} { u1,u5} 2

{C,E} { u2,u3} 2

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

101

3. Finding

 shown in Table 5-5 can be found by running step AH2A3 of algorithm AH2A

at l = 3.

Table 5-5. Patterns with Size 3 and Min-support 2 over U

3-size patterns w Support Group w
U
 Support Number |w

U
|

{A,B,C}

{u1, u3, u5} 3

{A,B,D} {u1,u5} 2

{A,C,D} {u1,u5} 2

{B,C,D} { u1,u5} 2

{B,C,E} {u2,u3} 2

4. Finding

 shown in Table 5-6 by running step AH2A3 of algorithm AH2A at l = 4.

Table 5-6. Patterns with Size 4 and Min-support 2 over U

4-size patterns w Support Group w
U
 Support Number |w

U
|

{A,B,C,D} {u1, u5} 2

5. Finding

 can be found by running step AH2A3 of algorithm AH2A at l = 5. Since

 , thus, .

6. Finding

 can be found by running step AH2A4 of algorithm AH2A. Namely,

The result is shown in Table 5-7.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

102

Table 5-7. Patterns with Min-support 2 over U.

Patterns w Support Group w
U
 Support Number |w

U
|

{A} {u1, u3, u5} 3

{B} {u1, u2,u3, u4,u5} 5

{C} { u1, u2,u3,u5} 4

{D} { u1,u4,u5} 3

{E} { u1, u3,u4 } 3

{A,B}

{u1, u3, u5} 3

{A,C} {u1, u3, u5} 3

{A,D} {u1,u5} 2

{B,C} {u1, u2,u3,u5} 4

{B,D} { u1,u4,u5} 3

{B,E} {u2,u3,u4} 3

{C,D} { u1,u5} 2

{C,E} { u2,u3} 2

{A,B,C}

{u1, u3, u5} 3

{A,B,D} {u1,u5} 2

{A,C,D} {u1,u5} 2

{B,C,D} {u1,u5} 2

{B,C,E} { u2,u3} 2

{A,B,C,D} {u1,u5} 2

5.2.3.4 For Finding

By running algorithm AHG2A on transaction database U shown in Table 5-1,

shown in Table 5-8, shown in Table 5-9 and shown in Table 5-10

(until) can be found.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

103

Table 5-8. Patterns with Min-support 3 over U.

Patterns w Support Group w
U
 Support Number |w

U
|

{A} {u1, u3, u5} 3

{B} {u1, u2,u3, u4,u5} 5

{C} { u1, u2,u3,u5} 4

{D} { u1,u4,u5} 3

{E} { u1, u3,u4 } 3

{A,B}

{u1, u3, u5} 3

{A,C} {u1, u3, u5} 3

{B,C} {u1, u2,u3,u5} 4

{B,D} { u1,u4,u5} 3

{B,E} {u2,u3,u4} 3

{A,B,C} {u1, u3, u5} 3

Table 5-9 Patterns with Min-support 4 over U.

Patterns w Support Group w
U
 Support Number |w

U
|

{B } {u1,,u2,u3, u4,u5} 5

{ C } { u1,,u2,u3, u5} 4

{ B, C } { u1,,u2,u3, u5} 4

Table 5-10. Patterns with Min-support 5 over U.

Patterns w Support Group w
U
 Support Number |w

U
|

{B } {u1,,u2,u3, u4,u5} 5

5.2.3.5 For Finding

By running Algorithm AMX on , , and ,

 shown in Table 5-11, shown in Table 5-12,

shown in Table 5-13 and shown in Table 5-14 can be found.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

104

Table 5-11. Motifs maxM(U,2).

Patterns w Support Group w
U
 Support Number |w

U
|

{B,C,E } {u2,u3} 2

{A,B,C,D} {u1,u5} 2

Table 5-12. Motifs maxM(U,3.)

Patterns w Support Group w
U
 Support Number |w

U
|

{B,D} {u1, u4,u5} 3

{B,E} {u2,u3, u4} 3

{A,B,C} {u1,,u3,u5} 3

Table 5-13. Motifs maxM(U,4).

Patterns w Support Group w
U
 Support Number |w

U
|

{B,C} {u1, u2,u3,u5} 4

Table 5-14. Motifs maxM(U,5).

Patterns w Support Group w
U
 Support Number |w

U
|

{B} {u1, u2,u3, u4,u5} 5

5.2.3.6 For Finding Association Rules from Motifs

Motif from can be taken as an example.

Table 5-15. Association Rules from Motifs maxM(U,2).

Patterns x xy

{B,C} {u1, u2,u3, u5} 4 {B,C}{E} 1/2

{B} {u1, u2,u3, u4,u5} 5 {B}{C, E} 2/5

{C} {u1, u2,u3, u5} 4 {C}{B, E} 1/2

{B,E}

{u2,u3, u4} 3 {B, E}{C} 2/3

{E}

{u2,u3, u4} 3 {E}{B, C} 2/3

{C,E}

{u2,u3} 2 { C, E}{B} 1

Note: -- Support Group; --Support Number; -- Confidence.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

105

An association rule is , where , and with

confidence (

.

Thus, there are -2=6 association rules for

shown in Table 5-15.

5.3 Performance Analysis on the Proposed Association Rule

Mining Algorithm

The performance analysis on the proposed association rule mining algorithm includes

the correctness and the applicability. In order to analyse them, some experiments by

running the Apriori algorithm and the proposed algorithm should be done.

The work on collecting data resource (artificial and practical data) and setting up the

experiment environment is similar to the work on the proposed sequence mining

algorithm.

The experiment’s results on the proposed association rule mining algorithm are better

than the Apriori algorithm from the two aspects of runtime and memory. Therefore, the

proposed association rule mining algorithm is available.

5.4 Supporting Tool: Association Rule Miner (ARM)

To support the method on applying data mining method to improve Component model

and Service model, an Association Rule Miner (ARM) has been designed and

implemented.

There are three functions in ARM, namely, mining function, searching function and

displaying function. Figure 5-6 presents the main interface of ARM.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

106

Figure 5-6. The Main Interface of ARM.

Mining function is the key function, which reflects the performance of the proposed

algorithm. The time complexity of this algorithm is subject to the size of each itemset,

the number of items and the size of records in the itemset database. The “saved as”

sub-function in the mining function is to save the useful data (some middle and final

results) into the hard disk for utilising in the searching and displaying functions.

The searching function and displaying function are the auxiliary functions, which can

contribute to the analysis and process of the mined patterns. The searching function can

browse frequent patterns, supporting group and supporting number/degree at any level.

For example, supposing the min-support number/degree is denoted as min-support and

the element number of each pattern is denoted as size. Figure 5-7 shows the information

on frequent patterns with min-support = 10% and size = 3. Figure 5-8 shows the

information on supporting group.

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

107

Figure 5-7. Frequent Patterns with Min-support=10% and size=3.

Figure 5-8. The Information on Supporting Group.

5.5 Summary

The usage behaviour data can be mined to discover the potential concerns that can

Chapter 5. Legacy Component Model Establishment with Data Mining Techniques

108

benefit SOA migration. The mined hidden information can be used for improving the

Service model and Component model.

 The process of establishing a Component model is presented. The hierarchical

directed acyclic graph is adopted to represent a Component model.

 An association rule mining algorithm is proposed for migrating e-learning legacy

systems to an SOA environment. First, some concepts and notations are defined.

Then, some theorems and algorithms are described. Finally, some examples are

presented for the better understanding of the proposed theorems and algorithms.

 The performance of proposed algorithm is analysed. The experimental data shows

that this association rule mining algorithm is applicable.

 An association rule miner has been developed based on the proposed association

rule mining algorithm. It can be used to improve Service and Component model.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

109

Chapter 6 Matching Strategies between

Legacy Components and Domain

Services with Text Similarity

Measurement Techniques

Objectives

__

 To present matching strategy on keyword level.

 To present matching strategy on superficial semantic level.

 To propose a matching algorithm based on keyword level.

 To propose a matching algorithm based on superficial semantic level.

__

In related SOA migration literatures, little work has been done on how to measure

(semi-) automatically the matching relationship between domain services and legacy

components. No suitable method or algorithm can be adopted in this study. Thus, two

matching algorithms are contributed in this Chapter. The text similarity measurement

methods are used for similarity calculation between domain services and legacy

components.

After passing the analysis stage, the Service model and Component model have been

established. The process will go to the matching stage. In this Chapter, the matching

strategies will be described. Concretely, they include weight assignment methods,

matching algorithms and its’ applications.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

110

6.1 Matching Strategies Based on Text Similarity

Measurement Method

In order to create SOA migration planning schemas, the similarity between any node(s)

in legacy HDAG and leaf nodes in domain HDAG should be measured. Normally, the

SOA migration planning schema includes which node(s) in Component model should

be migrated to which node(s) in Service model and the related implementation means

(Redevelopment, Modification and Wrapper). Two matching strategies are contributed

in this Section.

6.1.1 Keywords-based Level Matching Strategy

The matching relationship between services and components can be measured by

adopting text similarity measurement methods of text retrieval. A legacy HDAG is

corresponding to a document set (corpus). A domain HDAG is corresponding to a query

set. A node of a HDAG is corresponding to a document. Each item in a node of HDAG,

such as Itemdata,, Itemson, etc, is corresponding to a passage of a document. Therefore,

the problem on the matching relationship measurements between services and

components has been changed to the problem on document similarity calculation.

For calculating the documents’ similarity, the representation of documents should be

established. Normally, a document is represented as a set of keywords.

For improving the quality of keyword representation, some domain thesaurus and

domain knowledge base are needed for solving problems on synonym, near-synonym,

polysemy (lexical ambiguity), etc. If a document is in Chinese language, word cutting is

needed for choosing keywords. Clearly, some pre-process work should be done before

applying this strategy. Figure 6-1 diagrams the corresponding relationships between

SOA migration and text retrieval.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

111

Figure 6-1. The Corresponding Relationships between SOA Migration and Text Retrieval.

6.1.1.1 Similarity Calculation Method Based on Set Operation

Since each node can be represented as a set of keywords, thus, set operation can be used

to calculate similarity between nodes.

Set operation refers to any operation with sets, which includes Union operator,

Intersection operator and Complementation operator.

Let
be the i

th
 node in a domain HDAG; let

be the j
th

 node in a legacy

HDAG; Similarity calculation formula based on set operation is as follows,

For example,

Suppose
 ,

 , then,

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

112

Usually, the similarity calculation method on set operation is suitable for the keyword

number in each node of a HDAG is less than 20. If the keyword number in each node of

a HDAG is more than 20, the similarity calculation method on vector space model will

be adopted.

6.1.1.2 Similarity Calculation Method Based on Vector Space Model

There are several ways to calculate terms’ weights. One of them is tf*idf method.

Normally, index terms are keywords and phrases. In vector space model, in order to

calculate matching relationships, the weight assignment method for each node

(document) should be established. Assigning weights for each node (document) refers to

assigning weights to keywords consisted in each node (document) since each node

(document) is represented as the set of keywords.

In this study, a keyword-based matching algorithm by using set operation method and

tf*idf method will be investigated. More details will be presented in Section 6.2.

6.1.2 Superficial Semantic-based Level Matching Strategy

Some problems exist in the keyword level, such as it ignores models’ and nodes’

syntactic information; the semantic information in nodes’ items (Itemdata,, Itemson , etc.)

cannot be used efficiently. In this case, some migration rules and experiences cannot

provide directions during the course of SOA migration. Therefore, some syntactic and

semantic information should be considered into matching strategies. A matching

strategy on superficial semantic matching level will be presented in this study. More

details will be presented in Section 6.3.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

113

6.2 A Matching Algorithm Based on Keyword Level

The functionality or its subsets of legacy system can be exposed as services. For doing

so, the matching algorithm between domain services and legacy components should be

proposed. In this Section, the algebra theory will be taken as a theoretical support frame

and the matching algorithm by using text similarity measurement method will be

addressed.

6.2.1 The Weight Calculation Method of Nodes in a HDAG

The concrete weight method for nodes in representation of domain logics and legacy

assets subjects to the theoretical support frame. In this study, the algebra theory will be

taken as the theoretical support frame for describing the weight method of each node.

Some information retrieval methods and techniques [111, 48] can be used to calculate

the weight of each node in legacy and domain HDAG. A nodei in a HDAG can be

represented as a documenti , which is represented as a set of relevant keywords.

The set of nodes in atomic component level, business component level and application

component level of a legacy HDAG and nodes in service or composite service level of a

domain HDAG can be regarded as a document set. For this document set,

keyword-based indexing method and tf*idf weight strategy can be adopted for the

weight calculation of each node in a domain HDAG and a legacy HDAG. The weight

matrix between keyword and node (document) can be obtained. Each node in a HDAG

is a vector, which can be denoted as

 .

In addition, if the frequencies of keywords in each node of a HDAG are very low,

weight value 0 or 1 can be assigned to keywords, namely, if a keyword appears in a

node , then assign value 1 as its weight, if not, assign 0 as its weight.

6.2.2 Notations Definition

In order to describe the proposed algorithm clearly, some notations are defined as

follows:

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

114

 Application component level.

 Let S be a set of all nodes of application component level in a legacy HDAG,

S = {L1, L2, …, Lt}.

 Let T be the element number of SL, T=| S |.

 For example, in Figure 6-2, S = {L1, L2, L3}; T=| S |= 3.

 Business component level.

 Let S(Li) be a set of all son nodes of node Li ,

S(Li)={ Li1, Li2, …, Lil }.

 Let Sj(Li) be the j
th

 element of the set S(Li).

 Let NPS(S(Li)) be the set of all nonvoid proper subsets of set S(Li).

 Let NPSk(S(Li)) be the k
th

 nonvoid proper subset of set S(Li).

 For example, in Figure 6-2, S(L1)={ L21, L22, L23}.

S1(L1)= L21; S2(L1)= L22; S3(L1)= L23.

NPS(S(L1)) ={{L21},{L22},{L23},{L21, L22},{L22, L23},{L21, L23}}.

NPS2(S(L1)) ={L22}.

 Let Sb be a set of all nodes of business component level in a legacy HDAG,

Sb={Lb1, Lb2, … Lbj, Lbk}.

 Let K be the element number of Sb, K =| Sb |.

 In Figure 6-2, Sb= {L21, L22, L23, L24, L25}; K =| Sb |= 5.

 Atomic component level.

 Let A(Sj(Li)) be a set of all son nodes of set Sj(Li).

 Let Ak(Sj(Li)) be the k
th

 element of the set A(Sj(Li)).

 NPS(A(Sj(Li))) be the set of all nonvoid proper subsets of set A(Sj(Li)).

 NPSt(A(Sj(Li))) be the t
th

 nonvoid proper subset of set NPS(A(Sj(Li))).

 In Figure 6-2, A(S1(L1)) = { }; A(S2(L1)) = {L31, L32}; A(S3(L1)) = {L32, L34}.

A1(S2(L1))= L31; A2 (S2(L1))= L32.

NPS(A(S2(L1)))={{L31},{L32}}.

 Service or composite service level.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

115

 Let SD be a set of all leaf nodes in a domain HDAG. The nodes established by

using data mining techniques are excluded.

SD ={S1, S2, …, Sm}

 Let M be the element number of SD, M =| SD |.

 In Figure 6-2, SD ={ S31, S32, S33, S25}; M =| SD |= 4 .

 Output.

 Let Ma be a similarity matrix, Ma=M*N.

 Let N be the number of legacy nodes and some of their combination.

 In Figure 6-2, Ma=4*(3+8+10).

6.2.3 Algorithm SMA-Keyword

Similarity calculation is used to identify the matching relation between the existing

components and domain services. This matching relation bridges the gap between

domain and legacy through a set of the business processes aligned with legacy

components.

According to the above analysis, a Similarity Matching Algorithm based on Keyword

level (SMA-Keyword) by using CosSim method is addressed. There are five steps in

SMA-Keyword algorithm [149],

Input: a domain HDAG, a legacy HDAG, threshold

Output: Similarity Matrix (M*N)

Step1: Calculate similarity (for short,
1
AppSimi-j) between a leaf node (Si) in a Domain

HDAG and a node (Lj) of application component level in a Legacy HDAG. //

Calculate similarity between each target node and nodes in application

component level.

Step2: if AppSimi-j , then calculate similarity (for short,
2
BusSimi-jNPSk) between

the target node (Si) and each nonvoid proper subset (NPSk(S(Lj))) of the set of

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

116

son nodes of the node Lj. // Calculate similarity between target nodes and nodes

in business component level.

Step3: if BusSimi-jNPSk , then calculate similarity (for short,
3
AtoSimi-jNPStSk)

between target nodes (Si) and the t
th

 nonvoid proper subset (for short,

NPSt(A(Sk(Lj)))) of the set of son nodes of the k
th

 son node of the node Lj. in

atomic component level. // Calculate similarity between target nodes and

nodes in atomic component level

Step4: output AppSimi-j, BusSimi-jNPSk, and AtoSimi-jNPSt.

Step5: go to Step1 until all target nodes have been processed.

Notes:

1
AppSimi- j= cosSim(Si, Lj); // Si is a set of keywords; Lj is a set of keywords.

2
BusSimi-jNPSk = cosSim(Si, NPSk(S(Lj))).

3
AtoSimi-jNPSt Sk = cosSim(Si, NPSt(A(Sk(Lj)))).

In Algorithm SMA-Keyword, if the similarity between a target node and a node in

application component level is less than , the similarity between this target node

and all son nodes of the node in business component level do not need be calculated, and

assign value 0.0 to it directly. Some examples are shown in Sub-section 6.2.4.

Normally, this similarity matrix (Ma= M* N) is a sparse matrix. For further processing,

this obtained similarity matrix should be reorganised to a matching relationship Table

(for example, Table 6-1) by deleting some legacy parts whose similarities are smaller

than the new threshold . Sub-section 7.2.2 shows more details.

6.2.4 An Example on Algorithm SMA-Keyword

By running the proposed algorithm on the Component model and Service model shown

in Figure 6-2, the similarity matrix (Ma_Keyword=4*21) is obtained.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

117

Figure 6-2. An Example of Component model and Service Model.

Similarity matrix (Ma_Keyword) on algorithm SMA-Keyword, suppose :

Notes:

 L4=L21+L22; L5=L21+L23; L6=L22+L23;

 L7=L33+L34; L8=L34+L35; L9=L33+L35

Figure 6-3. Similarity Matrix (Ma_Keyword).

 In this example,

 There exist combinations of legacy components. Then, how to calculate the

similarity in this case? The solution is to combine the keywords in the

corresponding item of each node together and generate “a suppositional node”.

For example, calculate Similarity(S31, L23+L24):

 First, combine L23+L24 to a suppositional node L23_24 (shown in Figure 6-3),

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

118

which is also a set of keywords.

 And then, cosSim() method is still available for calculating Similarity(S31,

L23_24).

Figure 6-4. An Example of the Combination of Legacy Components.

Table 6-1. The Matching Relationships Based on Keyword Level*.

Domain Legacy1 Sim_Keyword

S31 L21+L22 0.9

L1 0.7

L22 0.6

L25 0.6

L3 0.5

L21 0.5

L31 0.5

S32 L33+L34 0.9

L24 0.8

L33 0.8

L2 0.7

L34 0.7

L23 0.5

L34+L35 0.5

S25 L3 0.6

L25 0.6

L36 0.5

*Note: suppose .
 Table 6-1 presents the matching relationships between domain services and

legacy components based on Keyword level.

 Since BusSim31-1NPS2 = cosSim (S31, L22) = 0.6, then, calculate

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

119

AtoSim31-1S2NPS2 = cosSim(S31, L32) =0.3; since BusSim31-1NPS3 = cosSim (S31,

L23) = 0.2< , then, cosSim(S31, L32)=0.0, cosSim(S31, L34)=0.0; in this case,

two values (0.0, 0.3) are assigned to cosSim(S31, L32), the bigger one will be

chosen.

 Since AppSim31-2= cosSim(S31, L2) =0.1< , similarities between S31 and all

L2’s son nodes and sub-son nodes are assigned to “0.0”, i.e., L23, L24, L33, L34

and L35.

 For target S33, the highest similarity is just 0.3. It seems there is no component(s)

matching with it.

6.3 A Matching Algorithm based on Superficial Semantic

Level

For improving the measurement quality of matching relationship, a matching algorithm

based on superficial semantic level will be discussed.

6.3.1 Analysis

Node information is consisted of information from Data item, Function item, UML item,

Data Mining item, etc. Among these items, their roles for calculating matching

relationship are different. Some of them are necessary conditions (items), which mean

any two nodes of a HDAG are similar if and only if the necessary items in these two

nodes are similar. For necessary items in nodes of a HDAG, they should be able to

control the matching relationships. Thus, these factors should be separated from the

others and processed in another ways. The heavy weights should be assigned to them. In

keyword level, they are processed in the same ways.

In superficial semantic level, a nodei of a HDAG is represented as a set of items,

where, refers to the l
th

 item (passage) in i
th

 node (document)

An item is represented as a set of keywords,

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

120

where, refers to the t
th

 keyword in i
th

 item (passage).

Thus, a nodei can be represented as a set of the sets of keywords.

where, refers to the v
th

 keyword in l
th

 item (passage) in i
th

 node (document).

Each item in a node of HDAG, such as Itemdata,, Itemson, etc, is corresponding to a

passage of a document. In a domain node and a legacy node, put the necessary items in

the front positions. Figure 6-4 shows the corresponding relationship between a node and

a document.

As for which items are necessary factors (items), there are no unified standards.

Normally, Data item and Function item are necessary items for determining matching

relationships. Thus, these two items can be regarded as necessary conditions.

In superficial semantic level, the weight of each passage is different. Especially, Itemdata

is very important. If the similarity between Itemdata in Legacy and Itemdata in Domain is

very low, then, the similarity between the node containing Itemdata in a legacy HDAG

and the node containing Itemdata in a domain HDAG will be zero. According to keyword

matching level, in this case, the similarity between these two kinds of nodes may be

high since the other items (such as Itemdoc, Itemfunction, etc.) contain some identical

keywords. In fact, the former is reasonable. Thus, the granularity of the similarity

calculation should be a passage instead of a document. Furthermore, some semantic

annotations should be attached for automatic semantic matching. For improving the

quality of semantic annotations, some domain thesaurus and domain knowledge base

are needed. Meanwhile, naming conventions in programming design are preferred to be

obeyed during code development and domain requirement establishment. Especially,

the names of data sources and main functions should be unified by manual work before

adopting this strategy.

Semantic analysis is complex work, which can be applied in a superficial or a deep

ways. In this study, a superficial semantic-based strategy will be investigated.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

121

Figure 6-5. The Similar Relationship between a Node and a Document.

6.3.2 Notation Definition

In order to describe the proposed algorithm clearly, some notations are defined as

follows.

 Similarity.

 Let SimItem() be the similarity calculation function on necessary item(s) of the

matched pairs between Domain and Legacy; let SimItem be the returned

similarity value, namely, SimItem = SimItem().

 Let SimKeyword() be the similarity calculation function by using document

similarity approach (keyword level) on the necessary items between Domain

and Legacy; let SimKey be the returned similarity value, namely, SimKey =

SimKeyword().

 Let SimSet() be the similarity calculation function by using set operation

approach on the necessary items between Domain and Legacy; let SimSet be

the returned similarity value, namely, SimSet= SimSet().

 Let SmaKeyword be the returned similarity value by running algorithm

SMA-Keyword described in section 6.3.3, namely, SmaKeyword =

SMA-Keyword().

 Let SMA-Semantic() be the similarity calculation function on superficial

semantic level between Domain and Legacy; let SmaSemantic be the returned

similarity value, namely, SmaSemantic = SMA-Semantic().

 Constant.

 Let XMLlegacy be a legacy HDAG; let XMLdomain be a domain HDAG.

 Let XMLmatch be a matching relationship Table returned by SMA-Keyword

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

122

algorithm.

 Let be the weight coefficient of SimItem; Let be the weight coefficient of

SmaKeyword.

 Let be the threshold of SimItem.

 Node and Keyword.

 Let NumD be the number of domain targets in a XMLmatch; Let NumDi be the i
th

domain target in a XMLmatch.

 Let NumLi be the number of matched pairs between NumDi and legacy

component(s) in a XMLmatch; let NumLij be the j
th

 matched object between

NumDi and legacy component(s) in a XMLmatch.

 For example, in Table 6-2,

NumD=3; NumD1=S31; NumD2=S32; NumD3=S25;

NumL1=7; NumL3=3; NumL1_3= L22; NumL3_2= L25.

 Item and Keyword.

 Let
be the number of necessary item of NumDi; Let

be

the number of necessary item of NumLij.

 Let DItemi be the necessary items of NumDi; let LItemj be the necessary items

of NumLij.

 Let DItemil be the l
th

 necessary item of DItemi; Let LItemjl be the l
th

 necessary

item of LItemj.

 Let Kwt-DItemil be the t
th

 keyword in DItemil; Let Kws-LItemjl be the s
th

keyword in LItemjl.

 Let Set-DItemil be the set of keywords in DItemil; Let Set- LItemjl be the set of

keywords in LItemjl.

 Matrix.

Let SM be a similarity matrix between a XMLdomain and a XMLlegacy.

According to the above notation definitions, normally, there exist,

SimItem = SimItem(DItemi, LItemj).

SimKey = SimKeyword(DItemij, LItemlj).

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

123

SimSet = SimSet(DItemij, LItemlj).

SmaSemantic = * SimItem + * SmaKeyword.

SM(i,j) = SMA-Semantic(, , , XMLlegacy, XMLdomain, XMLmatch).

6.3.3 Algorithm SMA-Semantic

According to above analysis, in superficial semantic level, similarity calculation process

can be divided into four steps:

Setp1: calculate similarity between each necessary item in domain services and the

matched legacy components, namely, SimItem(DItemi, LItemj). Usually, the set

operation approach (SimSet) can be utilised for the items that the number of their

keywords is less than 20. A new keyword similarity approach (SimKey) is used

for the others.

Step2: obtain the similarity returned by using keyword based level approach described

in Sub-section 6.2.3, namely, SmaKeyword = sim_Keyword in Table 6-1.

Step3: combine these two similarities together, namely,

SmaSemantic = SMA-Semantic() = * SimItem + * SmaKeyword .

Tuning coefficients can be determined by experiments.

Step4: output the similarity matrix Ma_Semantic.

In the following, a concrete Similarity Matching Algorithm based on superficial

Semantic level (SMA-Semantic) is addressed.

Algorithm SMA-Semantic

Input: , , , , XMLlegacy, XMLdomain, XMLmatch

Output: Similarity Matrix SM-Semantic

Begin

{ for (i=1 to NumD) do

 for (j=1 to NumLi) do

 { SM(i,j)=0 //initial similarity matrix

if (

) then

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

124

 { SimItem = SimItem(DItemi, LItemj) //calculate item similarity

 If (SimItem>) then

 {

SmaKeyword =Sim_Keyword //keyword level

 SmaSemantic = * SimItem + * SmaKeyword //combination

 SM(i,j)= SmaSemantic //output SM

}

 Else

 SM(i,j)=0.0

}

 }

Return SM

}

End

Sub-algorithm SimItem(DItemi, LItemj)

Input: the necessary items in the i
th

 node in a XMLdomain (DItemi) and the j
th

 node in a

XMLlegacy (LItemj).

Output: the similarity on necessary items between DItemi and LItemj

Begin

{

 Sim=0

For (s=1 to
) do

 { if (|Set-DItemis |<20 or | Set- LItemjs |<20) then

 SimItem = SimSet(Set-DItemis, Set-LItemjs) //set operation approach

 else

 SimItem = SimKeyword(Set-DItemis, Set-LItemjs)

 Sim = Sim+SimItem

}

Sim = Sim/

Return Sim

}

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

125

End

Sub-algorithm SimKeyword(Set-DItemis, Set-LItemjs)

Input: Set-DItemis; Set-LItemjs; the weight of each keyword appeared in Set-DItemis is

“1”, otherwise , it is “0”; the weight of each keyword appeared in Set-LItemjs is

“1”, otherwise , it is “0”.

Output: the similarity between DItemis and LItemjs

Begin

{

 m=| Set-DItemis Set-LItemjs |

 Return SimKey

}

End

Sub-algorithm SimSet(Set-DItemis, Set-LItemjs))

Input: Set-DItemis; Set-LItemjs

Output: the similarity between DItemis and LItemjs

Begin

{

SimSet =

 Return SimSet

}

End

For explaining the algorithm SMA-Semantic clearly, an example is depicted in the

following Sub-section.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

126

6.3.4 An Example on Algorithm SMA-Semantic

By running the proposed algorithm SMA-Semantic on the Component model and Service

model shown in Figure 6-2, a matching relationship Table shown in Table 6-1, and

suppose , , , the new matching relationship Table shown

in Table 6-2 is obtained.

Table 6-2. The Matching Relationships Based on Keyword and Semantic level*.

Domain Legacy1 Sim_Keyword Sim_Semantic

S31 L21+L22 0.9 0.96

L1 0.7 0.81

L22 0.6 0.73

L25 0.6 0.0

L3 0.5 0.0

L21 0.5 0.68

L31 0.5 0.0

S32 L33+L34 0.9 0.8

L24 0.8 0.73

L33 0.8 0.87

L2 0.7 0.63

L34 0.7 0.0

L23 0.5 0.0

L34+L35 0.5 0.0

S25 L3 0.6 0.6

L25 0.6 0.81

L36 0.5 0.64

*Note: .

In this example,

 For target S31, the simItem between S31 and its matched objects is shown in

Table 6-3. The simItems of L25, L3 and L31 are less than , their

Sim_Semantic =0.0. Therefore, after passing SMA-Semantic algorithm, the size

of matching relationship Table is reduced again. The rank in the order of

Sim_Semantic is the same with the order of Sim_Keyword.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

127

Table 6-3. The SimItems between S31 and its Matched Objects.

Domain Legacy SimItem

S31 L21+L22 0.98

L1 0.85

L22 0.78

L25 0.2

L3 0.22

L21 0.75

L31 0.3

 For target S32, Sim_Semantic(S32, L33) is more than Sim_Semantic(S32, L33+L34)

since simItem(S32, L33) is greater than simItem(S32, L33+L34). The rank in the

order of Sim_Semantic is different from the order of Sim_Keyword.

 Table 6-3 presents the matching relationships between domain services and

legacy components based on Semantic level.

6.4 Supporting Tool

6.4.1 Matching Tool

A matching tool is developed based on the proposed matching strategies and algorithms.

The matching tool is developed under the support of Lucene software package [88],

which is a Java full-text search engine. However, it is not a complete application and

just API can be used to add search capabilities to applications.

In matching tool, there are two functions available: indexing function and similarity

calculation function.

6.4.2 Indexing Function

The main interface of this indexing function is shown in Figure 6-5. Users can choose

weight methods of indexing terms and invert the indexing files into the inverted

indexing files.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

128

Figure 6-6. The Interface of the Indexing Function.

6.4.3 Similarity Calculation Function

Three similarity calculation methods (dot/inner product method, cosine similarity

method and set operation method) and two weight assignment methods (tf method and

tf*idf method) of indexing terms have been implemented in this function. The

interface of similarity calculation function is shown in Figure 6-6.

The categories of saved indexing files include: indexing document with frequency

number (for short, DocIndex), indexing file with tf weight method (for short,

DocIndex (tf)), indexing file with tf*idf weight method (for short, DocIndex (tfidf)),

inverted indexing file with tf weight method (for short, DocInvert (tf)) and inverted

indexing file with tf*idf weight method (for short, DocInvert (tfidf)). The format of

saved indexing files is shown in Table 6-4.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

129

Figure 6-7. The Interface of Similarity Calculation Function.

Table 6-4. The Format of Indexing Files.

Files Formats

DocIndex DocID Frequency Number Term/Word

DocIndex(tf) DocID Weight(tf) Term/Word

DocIndex(tfidf) DocID Weight(tfidf) Term/Word

DocInvert(tf) Term/Word Weight(tf) DocID

DocInvert(tfidf) Term/Word Weight(tfidf) DocID

6.5 Summary

Two matching strategies are described, which include weight assignment methods,

matching algorithms and its’ applications.

Chapter 6. Matching Strategies between Legacy Components and Domain Services with

Text Similarity Measurement Techniques

130

 Two matching strategies are described: one is keyword- based level, two similarity

calculation methods (set operation method and vector space model method) are

presented in this matching strategy; another one is superficial semantic-based level,

necessary items are taken into account in this matching strategy.

 A matching algorithm based on keyword level is presented. Document similarity

calculation method (CosSim) based on vector space model has been adopted to

calculate the similarity between each node in a Legacy and in a domain HDAG.

 A matching algorithm based on superficial semantic level is presented. The

corresponding relationships between a node in a domain or a legacy HDAG and a

document in text retrieval are established. The concept of necessary item has been

defined. The granulation of similarity calculation is cut to “passage”. The final

similarity is the combination of similarity on necessary item and similarity on

keywords.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

131

Chapter 7 Creation and Evaluation of

SOA Migration Planning Schemas

Objectives

__

 To define the SOA migration planning schema.

 To propose a decision-making method based on similarity matrix for SOA

migration planning schemas.

 To propose a decision-making method based on hybrid information for SOA

migration planning schemas.

 To propose evaluation methods on the SOA migration planning schemas.

 To represent an example for further described the proposed methods.

__

The returned results of the proposed SOA migration approach are SOA migration

planning schemas, which can provide planning and predictable functions to persons who

are facing problems such as whether or not to trigger an SOA migration project. In the

above Chapters, a lot of preparation work has been done for creating SOA migration

planning schemas. In this Chapter, the methods of creating and evaluating SOA

migration planning schemas will be proposed.

7.1 SOA Migration Planning Schemas

7.1.1 Analysis of SOA Migration Planning Schema

In this Section, the questions, such as “what should be included in an SOA migration

planning schema?” and “how can SOA migration planning schemas be created?”, will

be answered.

For doing predictions, the SOA migration planning schemas should include a migration

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

132

source object, a migration target object, a matching degree and implementation means.

Migration source object refers to legacy components in the Component model; and

migration target object refers to services in the Service model. Matching degree refers to

the similarity that is similar to each other. Implementation means refers to how to

implement this migration. Normally, there are three kinds of implementation means,

namely, Wrapper means, Modification means and Redevelopment means. The choice of

implementation means is subject to the user’s directions and matching degree:

 Wrapper means

It refers to the higher matching degree, normally, named “match”. It requires

developers to comprehend the components’ interfaces instead of their internals.

 Modification means

It refers to the medium matching degree, normally, named “part of match”.

Normally, it requires developers to reuse components by changing some part(s)

of their internals.

 Redevelopment means

It refers to the lower matching degree, normally, named “no match”. This part

needs to be developed from scratch.

The creation of SOA migration planning schemas is complex work. Decision-making

amongst user’s requirements, implementation cost, system performance, system

functions, and so on, should be concerned. For the different users’ requirements, there

are different SOA migration planning schemas even though they are in the same project.

The creation of SOA migration planning schemas is similar to service orchestration. In

practice, most of them require user’s direction.

7.1.2 User’s Direction

From the user's perspective, the user’s direction is a task assigned to users and it

presents the users’ requirements. The users can express what they wish to acquire

through the user’s direction. User’s direction can be used for determining SOA

migration implementation means. In an SOA migration situation, normally, users pay

most attention on cost aspects, function aspects, performance aspects, etc.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

133

In this study, user’s direction includes function-first, cost-first and performance-first.

The function-first means users prefer more functions to the others. The cost-first means

users prefer the cheapest cost to the others. The performance-first means users prefer the

best performance to the others. SOA migration implementation means refer to Wrapper

means, Modification means and Redevelopment means.

7.1.3 Methods on Creating SOA Migration Planning Schemas

In related SOA migration literature, little work has been done on how to draft the SOA

migration planning schemas. No concrete method and algorithm is available for this

research. Thus, three proposed methods for creating SOA migration planning schemas

based on the analysis and descriptions in Chapters 4, 5 and 6 are presented in this

Sub-section. One is a data mining method. The second one is the decision-making

method based on similarity matrix. The third one is the decision-making method based

on hybrid information. These methods are established from the practical, functional and

reusable (non-functional) viewpoints respectively. The final SOA migration planning

schemas are created by the combination of these three methods under the users’

directions. There are still some other viewpoints which are also important for SOA

migration projects. However, due to time restrictions they are not considered in this

study.

7.1.3.1 Data Mining Method

Data mining techniques can be used to discover the hidden information. The mined

information can perfect the establishment of a Service model and a Component model.

For those services and business processes that are established by using the mined

information, they themselves are SOA migration planning schemas from the viewpoint

of users’ practices. This kind of SOA migration planning schemas can be named

practical SOA migration planning schemas.

For example, Nodes S21 and S23 in the Service model shown in Figure 4-4 have been

established by the sequence pattern mining method. Thus, the SOA migration planning

schemas for them can consist of sequence pattern mining results and wrapper means

directly. In this way, the number of leaf nodes in a domain HDAG is reduced. In this

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

134

example, just nodes S31, S32, S33 and S25 (S21 and S23 are excluded) should be processed

by using decision-making methods. Clearly, the efficiency for creating SOA migration

planning schemas will be improved.

7.1.3.2 Similarity Matrix Method

Similarity matrix method is to use text retrieval techniques for determining functional

matching relationships between domain services and legacy components. The SOA

migration planning schemas are created from the viewpoint of the functional factors.

This kind of SOA migration planning schemas can be named functional SOA migration

planning schemas.

7.1.3.3 Hybrid Information Method

Hybrid information method is to create SOA migration planning schemas from the

hybrid information, such as legacy software quality and so on. In this study, just the

reusability attribute is considered. This kind of SOA migration planning schemas can be

named hybrid SOA migration planning schemas.

In the following Sections, more descriptions on the last two methods will be presented.

7.1.4 Architecture of Creation and Evaluation of SOA Migration

Planning Schemas

In order to validate the proposed methods, evaluation work on SOA migration planning

schemas is also necessary. Figure 7-1 shows the architecture of creation and evaluation

of SOA migration planning schemas.

The main work in this architecture includes:

 data mining method, which is described in Chapter 4 and Chapter 5;

 similarity matrix method, which is presented in Chapter 6 and Section 7.2;

 hybrid information method, which is presented in Section 7.3;

 user’s direction, which is introduced in Section 7.1.2;

 evaluation method, which is shown in Section 7.4.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

135

Figure 7-1. The Architecture of Creation and Evaluation of SOA Migration Planning Schemas.

7.2 A Decision-making Method based on Similarity Matrix

After obtaining the matching relation between legacy components and domain services,

the SOA migration planning schema will be created according to the user’s directions.

The decision-making process is an uncertainty reasoning process. Some uncertainty

reasoning methods and heuristic search algorithms can be adopted in this stage.

Through running a matching algorithm, the similarity matrix Ma between components

and domain services has been obtained. In order to determine migration schemas

accurately, this similarity matrix Ma should be analysed further. Ma is a M* N matrix

where M is the set of services in a domain HDAG and N is the set of components and

their kinds of combination in a legacy HDAG. In this Section, a Decision-Making (DM)

method based on similarity matrix will be presented.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

136

7.2.1 Symbol Definition

First, some symbols will be defined for describing the DM method.

 Let Descend-rank (Ei) represent the ranked elements in the i
th

 row of the matrix Ma

in descendant order and output a 1*N matrix (denoted as Ei).

 Let Cut (Ei, k) represent cutting 1*N matrix Ei to a 1*k matrix, Ei = Cut (Ei, k),

where parameter k is subject to .

 Let Ei(t) represent the returned value in the t
th

 column of the matrix Ei.

In order to explain these symbols clearly, an example is provided. Figure 7-2 illustrates

the dimensionality reduction process (k=3). The left hand side of Figure 7-2 is the

original similarity matrix; the right hand side of Figure 7-2 is the result of

dimensionality reduction, which can be reorganised into a matching relationship Table

(e.g., Table 7-1).

Figure 7-2. An Example for the Dimensionality Reduction (k=3) for Similarity Matrix Ma.

Table 7-1. The Matching Relationship Table of Figure7-2.

Domain Legacy Sim_Keyword

E1 L3 0.4

L4 0.3

L1 0.2

E2 L3 0.9

L1 0.8

L2 0.7

E3 L2 0.8

L3 0.6

L4 0.4

Ma =

D1

D2

D3

L1 L2 L3 L4

0.2 0.1 0.4 0.3

0.8 0.7 0.9 0.5

0.3 0.8 0.6 0.4

E1:

E2:

E3:

L3 L4 L1

D1 0.4 0.3 0.2

L3 L1 L2

D2 0.9 0.8 0.7

L2 L3 L4

D3 0.8 0.6 0.4

Ma =

D1

D2

D3

L1 L2 L3 L4

0.2 0.1 0.4 0.3

0.8 0.7 0.9 0.5

0.3 0.8 0.6 0.4

Ma =

D1

D2

D3

L1 L2 L3 L4

0.2 0.1 0.4 0.3

0.8 0.7 0.9 0.5

0.3 0.8 0.6 0.4

E1:

E2:

E3:

L3 L4 L1

D1 0.4 0.3 0.2

L3 L1 L2

D2 0.9 0.8 0.7

L2 L3 L4

D3 0.8 0.6 0.4

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

137

7.2.2 A Proposed Method

The steps of a DM method based on similarity matrix are as follows [148]:

Step1: The dimensionality reduction will be done to matrix Ma. Just continue to have

the first k matched legacy components that have the high similarities with

domain services. The others will be neglected. Thus, matrix Ma (M* N) can be

changed to M matrices (1*k), in which each matrix (denoted as Mai) is a 1*k

matrix. For the Ma_Keyword matrix shown in Figure 6-3, there are,

 Rank

 Dimensionality reduction

 , where k=7.

 Value

Ma1(2) = 0.7 .

Step2: Reorganising these matrices into a matching relationship table (see Table 6-2).

Moreover, adding the equivalent parts for those remaining in legacy aspect into

the matching relationship table. As for the equivalent part, in Figure 6-2,

AppSim31-1 = cosSim(S31, L1) = cosSim(S31, L21+L22+L23); “L21+L22+L23” is the

equivalent part of “L1”. These two parts own the same similarity with the

matched target in the keyword level. However, these two may be different in the

hybrid information level. In creating migration schemas, these two parts are

alternative in the keyword level. The one that has the higher value of hybrid

information is the better one in the hybrid information level (see Section 7.3).

An example shown in Table 6-2 is changed to Table 7-2 by adding Legacy2

Column.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

138

Table 7-2. The Matching Relationships Based on Keyword and Semantic level*.

Domain Legacy1 Legacy2 Sim_Keyword Sim_Semantic

S31 L21+L22 L21+L31+ L32 0.9 0.96

L1 L21+L22+ L23 0.7 0.81

L22 L31+ L32 0.6 0.73

L25 L36+ L37 0.6 0.0

L3 L36+ L37 0.5 0.0

L21 0.5 0.68

L31 0.5 0.0

S32 L33+L34 0.9 0.8

L24 L33+L34+ L35 0.8 0.73

L33 0.8 0.87

L2 L23+ L24 0.7 0.63

L34 0.7 0.0

L23 L32+ L34 0.5 0.0

L34+L35 0.5 0.0

S25 L3 L25+ L35 0.6 0.6

L25 L36+ L37 0.6 0.81

L36 0.5 0.64

*Note: Column legacy2 is the equivalent part of Column legacy1;

 .

Step3: Obtaining the available matching relationships. For each domain target, the

remaining matched objects in Legacy1 or Legacy2 Column will be the candidate

SOA migration sources. The matching relationship with the highest similarity

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

139

(keyword or semantic) will be the most wanted from the view of comprehensive

considerations.

Step4: Determining the implementation means. The implementation means of an SOA

migration planning schema is classified into three categories: wrapper, which

provides the new interface for the existing data, programs, applications and

interfaces; modification, which moves the modified assets (with fewer changes)

to a new architecture; and re-development, which develops requirements from

scratch. The user’s directions (cost-first, function-first and performance-first)

include three thresholds (). At first, the matching relationship

between the implementation means and the user’s direction can be decided by

experienced professionals. After obtaining the evaluation results on cost aspects

and performance aspects of the proposed SOA migration planning schemas, this

matching relationship can be revised again. Table 7-3 shows an example of the

mapping relations between the implementation means and the user’s directions.

Table 7-3. The Mapping Relation between the Implementation Means and the User’s

Direction.

User’s direction Similarity of a matching

relationship (denoted as

Sim)

Implementation means

Cost-first
2Sim Wrapper

32   Sim Modification

Others Re-development

Function-first
3Sim Wrapper

Others Re-development

Performance-first
1Sim Wrapper

21   Sim Modification

2Sim Re-development

Step5: Integrating SOA migration planning schemas. The candidate SOA migration

planning schemas should be created according to the user’s direction.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

140

7.2.3 An Example

According to the Sim_Keyword, suppose , , and , the SOA

migration planning schemas for the matching relationships shown in Table 7-2 and the

user’s directions shown in Table 7-3 are shown in Table 7-4.

Table 7-4. An Example on Keyword Level.

Matching Relationships
3
Implementation

means 1
Domain 2Legacy1 Legacy2 Sim_Keyword User’s

directions 4
CF PF FF

S31 L21+L22 L21+L31+

L32

0.9 W W W

L1 L21+L22+

L23

0.7 W M W

L22 L31+ L32 0.6 W M W

L25 L36+ L37 0.6 W M W

L3 L36+ L37 0.5 M R W

S32 L33+L34 0.9 W W W

L24 L33+L34+

L35

0.8 W W W

L33 0.8 W W W

L2 L23+ L24 0.7 W M W

L34 0.7 W M W

S 25 L3 L25+ L35 0.6 W M W

L25 L36+ L37 0.6 W M W

L36 0.5 M R W

Note:
1
for the targets that do not appear in the Domain Column, its implementation means are

“Re-development”, e.g., target S33 in Figure 6-2.

2
for each target, just first five candidate SOA migration planning schemas are listed in this Table.

3
W--Wrapper; R-- Re-development; M—Modification.

4
CF--Cost-First; PF-- Performance-First; FF--Function-First.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

141

According to the Sim_Semantic, suppose , , and , the SOA

migration planning schemas for the matching relationships shown in Table 7-2 and the

user’s directions shown in Table 7-3 are shown in Table 7-5.

Table 7-5. An Example on Semantic Level.

Matching Relationships
3
Migration

means 1
Domain 2Legacy1 Legacy2 Sim_Semantic User’s

directions 4
CF PF FF

S31 L21+L22 L21+L31+

L32

0.96 W W W

L1 L21+L22+

L23

0.81 W W W

L22 L31+ L32 0.73 W M W

L25 L36+ L37 0.68 M R W

S32 L33 0.87 W W W

L33+L34 0.8 W W W

L24 L33+L34+

L35

0.73 W M W

L2 L23+ L24 0.63 M R W

S 25 L25 L36+ L37 0.81 W W W

L36 0.64 M R W

L3 L25+ L35 0.6 M R W

Note:
1
for the targets that do not appear in the Domain Column, its implementation means are

“Re-development”, e.g., target S33 in Figure 6-2.

2
for each target, just first five candidate SOA migration planning schemas are listed in this Table.

3
W--Wrapper; R-- Re-development; M—Modification.

4
CF--Cost-First; PF-- Performance-First; FF--Function-First.

In this example,

 In the keyword and semantic level, the candidate migration schemas for some

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

142

targets are different. The migration source objects of most targets are not changed,

but, the similarities and the implementation means are different for some of them.

For example, target S32, its matched object is L2; in keyword level, its similarity is

0.7, and implementation means in “Cost-first” is “Wrapper”; in semantic level, its

similarity is 0.63, and implementation means in “Cost-first” is “Modification”.

 The number of candidate migration schemas in the semantic level is less than in the

keyword level.

Therefore, it seems the constraints in a semantic level are stricter than in a keyword

level.

7.3 An Optimal Decision-making Method Based on Hybrid

Information

7.3.1 Analysis

Through analysing the candidate migration planning schemas created on the above

proposed algorithm, some problems are exposed. It seems that the items (factors)

contained in each node of a HDAG, which are from the angle of logical and relevant

functional information, are not enough for ensuring the migration implementation. They

are still the high-level descriptions of components. In fact, it is impossible to implement

some of the proposed SOA migration planning schemas because of the poor quality of

legacy software components. More attention should also be paid to the implementation

of proposed migration planning schemas. More information from the angle of

component quality should be considered because the high quality software component

can benefit the SOA migration implementation. Therefore, the creation of final SOA

migration planning schemas should consider both functional factors (such as functional

similarity) and non-functional factors (such as quality of legacy software components).

In this study, the proposed approach is suited for the legacy software system that can be

decomposed into components. Obviously, qualitative analysis and quantitative

calculation on component quality should be concerned. The questions of “what

indicators should be measured for the purpose of component reuse?”, “how to measure

each one?”, “how to combine these indicators together for choosing the best target?”

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

143

and the like should be considered. An optimal method based on hybrid information will

be described.

7.3.2 A Proposed Method

An optimal decision-making method based on hybrid information is as follows:

Step1: collecting the hybrid information for candidate SOA migration planning schemas

1.1 identify the evaluation indicators (factors specified in ISO 9126 can be

candidates) for legacy software components from the point of view of reuse;

1.2 determine the methods to measure each indicator;

1.3 present a new evaluation method by combining these indicators together.

Step2: for each matched legacy component in the candidate SOA migration planning

schemas, measure the hybrid information according to the established methods in

Step1.

Step3: input the first n candidate SOA migration planning schemas ranked by

descending order for a domain target; combine the hybrid information method and

the original similarity matrix method together.

Step4: determine the implementation means according to the new ranking value; and

output the re-ranked n optimal SOA migration planning schemas for the domain

target. For Legacy1 and Legacy2 Column, the one that has the higher value of

hybrid information (VHI) is the better one in the hybrid information level.

Step5: go to Step2 until all domain targets have been processed.

According to the proposed method, an example will be presented and each step

(instantiation) is detailed.

7.3.3 An Example of the Proposed Method

The information on indicators of component quality measurement (such as reusability,

adaptability, compose-ability, performance, maintainability, security, etc.) should be

saved in each node of Component models (legacy HDAG). For the convenience of the

proposed method’s description and instantiation (illustration), the coupling degree,

cohesion degree and adaptability will be chosen as indicators in this example. Generally,

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

144

in SOA migration situation, the higher internal cohesion, the lower external coupling

and high adaptability in the legacy software components are desired.

The details of the main steps in the proposed method will be presented in this part. The

candidate SOA migration planning schemas shown in Table 7-5 will be taken as an

example.

Step1: collecting the hybrid information for SOA migration planning schemas.

1.1 The component coupling degree measure (COUM), cohesion degree measure

(COHM) and adaptability measure (ADAM) will be chosen as evaluation

indicators because it is available to analyse source codes in the case study.

1.2 Little work has been done on cohesion, coupling and adaptability measurement

methods since it is not the main research question in this study. In addition, it is

time-consuming and costly to obtain some attributes of legacy components. Thus, a

cost-effective problem-solving strategy is adopted for estimating these indicators.

In this study, the estimation results in the case study are obtained from some

developers of the legacy software system (some developers are still available). For

simplifying processing, the estimation results of them are roughly divided into

three levels: low, average and high; or, bad, average and good.

1.3 Table 7-6 shows the combination method of COUM results and COHM results

(named CC-method). The combination method of CC-method results and the

ADAM results is named CCA-method. For ranking the SOA migration planning

schemas, the CCA-method results should be proposed as a numeric measurement.

For doing this, the CC-method results and ADAM results should be assigned

numeric values. They can be quantified in different ways, such as maximum and

minimum values, or statistical values, etc. A simple method is adopted in this

example: the range of measured degrees is from “0” to “2” with three degrees,

namely, assign “2” to “good”; assign “1” to “average” and assign “0” to “bad”. Let

CCQ be the CC-method quantitative results; let ADAMQ be quantitative ADAM

results; let CCAQ be the CCA-method quantitative results; let MaxCC be the

maximum number in CC-method quantitative results; let MaxADAM be the

maximum number in ADAM quantitative results. The calculation formula for

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

145

CCAQ is as follows,

Table 7-6. CC-method.

COUM

Results

COHM

Results
CC-method

Results

High(Bad)

High(Bad)

High(Bad)

Average

Average

Average

Low(Good)

Low(Good)

Low(Good)

High(Good)

Average

Low (Bad)

High(Good)

Average

Low (Bad)

High(Good)

Average

Low (Bad)

Average

Bad

Bad

Average

Average

Bad

Good

Good

Average

According to this simple assignment scheme, Table 7-7 shows the CCAQ results.

CCAQ is from “0” to “1” with totally five degrees.

Table 7-7. CCA-method.

CC-method

Results
ADAM

Results
CCAQ

Good

Good

Good

Average

Average

Average

Bad

Bad

Bad

High (Good)

Average

Low (Bad)

High (Good)

Average

Low (Bad)

High (Good)

Average

Low (Bad)

1

3/4

1/2

3/4

2/4

1/4

2/4

1/4

0

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

146

Step2: for each matched legacy component in the candidate SOA migration planning

schemas, measure the hybrid information according to the established

approaches in Step 1.

In this example, the “component cohesion”, “component coupling”, and

“component adaptability” are chosen to be indicators; Table 7-8 presents the

measured result on hybrid information (take target S31 as an example).

Table 7-8. CCAQ of the Example Shown in Table 7-5.

Domain Number Legacy CCAQ Note*

S31 1 L21+L22 1/2 Legacy1

L21+L31+ L32 3/4 Legacy2

2 L1 3/4 Legacy1

L21+L22+ L23 1/2 Legacy2

3 L22 1/4 Legacy1

L31+ L32 1/2 Legacy2

4 L25 3/4 Legacy1

L36+ L37 1/2 Legacy2

Note*: legacy1 and legacy2 are alternative in an SOA migration planning schema.

Step3: input the first n candidate SOA migration planning schemas ranked by

descending order for a domain target; and, combine CCA-method and the original

similarity matrix method together.

 In this example, choose n=4. The combination formula for ranking SOA

migration planning schemas is,

 are tuning coefficients, usually, .

 For target S31, the re-ranked matching relationships according to their Value of

Hybrid Information (VHI) are shown in Table 7-9, in which it is supposed

 =0.5.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

147

Table 7-9. The Re-ranked Matching Relationships of Target S31.

Domain Rank Legacy Sim_semantic CCAQ VHI Re-rank

S31 1 L21+L31+ L32 0.96 1 0.98 1

2 L1 0.81 3/4 0.79 2

3 L31+ L32 0.73 1/2 0.62 4

4 L25 0.68 3/4 0.72 3

Step4: determine the implementation means according to the new ranking value; output

the re-ranked n optimal SOA migration planning schemas for the domain target.

For Legacy1 and Legacy2 Column, the one that has the higher value of hybrid

information is the better one in the hybrid information level. The final SOA

migration planning schemas for target S31 are shown in Table 7-10, where user’s

direction is Performance-First.

Table 7-10. The Final SOA Migration Planning Schemas for Target S31.

Domain Rank Legacy VHI Implementation

Means

S31 1 L21+L31+ L32 0.98 Wrapper

2 L1 0.79 Modification

3 L25 0.72 Modification

4 L31+ L32 0.62 Redevelopment

Step5: go to Step2 until all domain targets have been processed.

 In this example, continue to do for target S32, and S25.

Finally, the final SOA migration planning schemas based on hybrid information are

created. Table 7-11 shows an example of final SOA migration planning schemas for

Figure 6-2 (take Performance-First as an example).

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

148

Table 7-11. The Final SOA Migration Planning Schemas of Figure 6-2 (Performance-First).

DT Proposed Migration Schemas (PMS)

Rank LS IM

S31 1 L21+L31+L32 Wrapper

2 L1 Modification

3 L25 Modification

4 L31+ L32 Redevelopment

S32 1 L33+L34 Modification

2 L33+L34+ L35 Modification

3 L2 Modification

4 L33 Modification

S33 1 Redevelopment

S25 1 L36 Modification

2 L3 Modification

3 L36+ L37 Modification

DT: Domain Target LS: Legacy Source

IM: Implementation Means MS: Migration Schema
 W: Wrapper M: Modification R: Redevelopment

7.4 Evaluation of SOA Migration Planning Schemas

To show the detailed and comprehensive SOA migration planning schemas, the

evaluation methods on the recommended SOA migration planning schemas should be

investigated. One of the evaluation goals is to pursue the ideal SOA migration planning

schemas according to the system’s requirements and user’s directions. The evaluation

results can provide better predictions and planning on the SOA migration project for

ensuring the success of this SOA migration project. In this study, evaluation work is

done from the perspective of “function-first” (concerned with functional requirements),

“performance-first” (concerned with non-functional requirements), and “cost-first”

(concerned with non-functional requirements). The evaluation aspects include the cost

aspect and the performance aspect of SOA migration planning schemas.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

149

7.4.1 Implementation Cost Estimation on SOA Migration Planning

Schemas

The migration source, migration target and concrete implementation means are

described in the recommended SOA migration planning schemas. After doing more

investigations, it is found that this information is not enough for users to predict the

SOA migration project. Sometimes, prior implementation cost estimation should be

investigated since some tradeoffs between cost and quality of components will occur in

terms of the users’ directions. The purpose of estimation is to provide a better

comprehension on final SOA migration planning schemas in these aspects for

facilitating the decision-making and implementation.

In the recommended SOA migration planning schemas, usually, there is no single

legacy component matched with a domain migration target. In many cases, a migration

schema is to integrate two or more components into a migration target. When combined,

there are still some implementation efforts needed to be done, especially, for

Modification implementation means and Redevelopment implementation means.

Obviously, it is not enough that SOA migration planning schemas creation is just for the

high level descriptions. Sometimes, the implementation costs for implementing the

migration schemas should also be taken into account. If the similarities of two candidate

migration schemas for the same migration target are approximate, the one having the

lower implementation costs will be the ideal schema. For example, if the component

implementation models, such as COMBA, COM, JavaBeans and so on, differ too much,

the migration cost will be too expensive. The migration project may be cancelled due to

budge overrun. In this way, the implementation costs for candidate SOA migration

planning schemas should be estimated for obtaining the ideal schemas.

Nowadays, some models [107, 106, 134] exist for cost estimation, such as, neural

network models, regression model, cost models (SLIM, COCOMO, etc.), probabilistic

model, vector prediction models, etc. The cost estimation on a component based system

is different from the conventional software system. Some concrete methods have been

introduced in References [11, 125].

In this study, no new method for implementation cost estimation is addressed since it is

not the key part of this study. A method using combination of empirical/ historical

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

150

data (the measurement of past projects can be of great benefit to similar problem solving)

and subjective expert estimations is adopted for this example. The cost estimation on

SOA migration planning schemas shown in Table 7-11 is shown in Table 7-13.

7.4.2 Performance Evaluation of SOA Migration Planning Schemas

In this study, two decision-making methods on SOA migration planning schemas are

addressed. For validating these two methods, the performance evaluation on created

SOA migration planning schemas should be investigated.

In order to evaluate the created SOA Migration planning Schemas (for short, SOAMS),

SOAMS created by human judges will be needed. Thus, totally, there are three kinds of

SOAMS for a domain target, namely, SOAMS created by domain EXperts (in short,

SOAMS-EX), SOAMS created by a Similarity Matrix method (SOAMS-SM) and

SOAMS created by a Hybrid Information method (SOAMS-HI). The SOAMS-EX is

taken as a baseline. The correlation between the SOAMS-EX and SOAMS-SM or

SOAMS-HI will be measured. If the two schemas have a high positive similarity, the

performance of proposed schemas will be regard as high performance, and vice versa.

In the similarity measurement, the key factors include the set of legacy components and

implementation means. To quantify the similarity measurement, some set operation

method will be involved.

A SOAMS-EX for Figure 6-2 is shown in Table 7-12. In the following, the similarity

calculation between a SOAMS-EX (shown in Table 7-12) and a SOAMS-HI (shown in

Table 7-11) will be exemplified.

Table 7-12. An SOAMS-EX and An SOAMS-HI.

DT Expert’s MS

LS IM

S31 L21+L31+L32 Wrapper

S32 L33+L34+ L35 Modification

S33 L24 Modification

S25 L36+ L37 Modification

DT: Domain Target LS: Legacy Source MS: Migration Schema IM: Implementation Means

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

151

In this example,

 the similarity calculation method is as follows:

 calculate the similarity between each migration planning schema in

SOAMS-HI and in SOAMS-EX for each target; then, take the biggest one as

being the similarity for this target;

 calculate the average similarity of all targets;

 return this average similarity as the evaluation result.

 For target S31, set operation method described in Sub-section 6.1.1.1 is used to

calculate the similarity.

Sim(Ex, HI1)=(L21+L31+L32+Wrapper)/(L21+L31+L32+Wrapper)=1;

Sim(Ex, HI2)= 0 ;

Sim(Ex, HI3)= 0 ;

Sim(Ex, HI4)=(L31+L32)/(L21+L31+L32+Redevelopment+Wrapper)= 2/5.

 Thus, the similarity for target S31 is 1 (the biggest one).

 In the same way for target S32, the similarity is 1; for target S33, the similarity is 0;

for target S25, the similarity is 1. The average similarity is 3/4.

 The evaluation result for SOAMS-HI is 3/4.

After passing the evaluation stage of SOA migration planning schemas, the final

returned result will be an SOA migration evaluation report. The evaluation report can

guide the migration process for avoiding undesirable results. An evaluation report on

this example (shown in Figure6-2) is summarised in Table 7-13.

Information on cost estimation and performance evaluation can be of great benefit to

user’s direction. In the beginning, user’s direction is experiential and subjective. After

analysing this information, user’s direction can be more reasonable and functional. The

SOA migration process is a cyclic process. Usually, an iterative and incremental

development method will be adopted.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

152

Table 7-13. An Evaluation Report.

DT Proposed Migration Schemas (PMS) Expert’s MS Evaluation on PMS

Rank LS SSM SHI IM LS Cost Performance

S31 1 L21+L31+L32 0.96 0.98 W L21+L31+L32 Average 1

2 L1 0.81 0.79 M Average

3 L25 0.68 0.72 M Less

4 L31+ L32 0.73 0.62 M Less

S32 1 L33+L34 0.8 0.78 M L33+L34+ L35 Average 1

2 L33+L34+ L35 0.73 0.75 M Average

3 L2 0.63 0.70 M More

4 L33 0.87 0.69 M Less

S33 R L24 0

S25 1 L36 0.64 0.70 M L36+ L37 Less 1

2 L3 0.6 0.68 M Average

3 L36+ L37 0.81 0.66 M Average

Total Average 3/4

DT: Domain Target LS: Legacy Source SSM: Similarity on Similarity Matrix
VHI: Value on Hybrid Information IM: Implementation Means MS: Migration Schema

W: Wrapper M: Modification R: Redevelopment

7.5 Supporting Tools

Two kinds of tools are developed in the decision-making and evaluation stages, namely,

a decision-making tool and an evaluation tool.

7.5.1 Decision-making Tool

A decision-making tool has been developed based on the proposed decision-making

methods. In this tool, users can choose the decision-making factors and can tune the

coefficient of each factor. Moreover, the user’s direction can also be chosen in this tool.

Figure 7-3 presents the interface of the decision-making tool.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

153

Figure 7-3. The Interface of Decision-making Tool.

7.5.2 Evaluation Tool

In this thesis, a simple evaluation tool is adopted. First, cost assessment on SOA

migration planning schemas has been done. Second, performance evaluation on SOA

migration planning schemas has been done. Third, an evaluation report is summarised to

show abundant information for users. Figure 7-4 presents an example of an evaluation

report on SOA migration planning schemas.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

154

Figure 7-4. An Evaluation Report on SOA Migration Planning Schemas.

7.6 Summary

Some work on creation and evaluation of SOA migration planning schemas has been

done in this Chapter:

 The SOA migration planning schema is defined, which includes migration source

object, migration target object, matching degree and implementation means.

 A decision-making method based on a similarity matrix for creating SOA migration

planning schemas is proposed. The dimensionality reduction has been done to the

matrix: just continue to have the first k matched legacy objects that have high

similarities with domain targets; reorganising them into a matching relationship table,

and, adding the equivalent parts for the remainder of the legacy aspect into the

matching relationship table; obtaining the available matching relationships;

determining the implementation means; integrating SOA migration planning

schemas.

Chapter 7. Creation and Evaluation of SOA Migration Planning Schemas

155

 A decision-making method based on hybrid information for creating SOA migration

planning schemas is proposed. The hybrid information for candidate SOA migration

planning schemas is collected. For each matched legacy object in the candidate SOA

migration planning schemas, measure the hybrid information according to the

proposed method; input the first n candidate SOA migration planning schemas

ranked by descending order for a domain target; and, combine the hybrid information

method and the original similarity matrix method (SIM-method) together; determine

the implementation means according to the new ranking value; and output the

re-ranked n optimal SOA migration planning schemas for the domain target.

 Evaluation methods on the SOA migration planning schemas are proposed.

Implementation cost estimation and performance evaluation on SOA migration

planning schemas have been done.

 An example has been presented for further describing the proposed methods. In this

study, the same example runs through all proposed matching strategies and decision

making methods, which is of great benefit to the reader.

 Two types of tools, namely, a decision-making tool and an evaluation tool, have been

developed in SOAMT. In the decision-making tool, there are two functions available:

the function based on similarity matrix and the function based on hybrid information.

In the evaluation tool, there are three functions available: cost evaluation function,

performance evaluation function and evaluation report function.

Chapter 8. Case Studies

156

Chapter 8 Case Studies

Objectives

__

 To evaluate applying a data mining method to improve Service model and

Component model in an e-learning field.

 To evaluate matching strategies between legacy components and domain

targets in an e-learning field.

 To evaluate decision-making methods on SOA migration planning schemas in

an e-learning field.

 To evaluate the SOA migration planning approach.

Two case studies for evaluating the main contributions of this thesis will be presented in

this Chapter. The key contribution of this thesis is the proposed SOA migration

planning approach. There are six core algorithms, strategies and methods in this

proposed approach for the planning and prediction of SOA migration projects: an

association rule mining algorithm for determining the relationships of legacy

components [151]; a sequence pattern mining algorithm for service identification and

composition [152, 154]; applying a data mining method to improve Service/Component

model in SOA migration environment [147]; matching strategies between legacy

components and domain targets [149]; decision-making methods on SOA migration

planning schemas [148]; evaluation method on SOA migration planning schemas. Case

studies will evaluate the reliability and availability of the proposed approach in an

e-learning field. In case study I, the work on how to use the developed tools SEPAM

and ARM to improve the Service model and Component model will be presented. In

case study II, the work on creating SOA migration planning schemas of an e-learning

legacy system by using a developed SOA migration toolkit will be presented.

Chapter 8. Case Studies

157

8.1 Case Study I: Improving Service Model and Component

Model with SEPAM and ARM

8.1.1 Overview

At present, most of middle and primary schools can access the Internet. This is the base

for implementing e-education. Moreover, with the development of computer network

technology, people are trying to make information technology become a kind of

teaching and learning tool. Meanwhile, information technology is utilised during the

process of teaching and learning. Thus, a great deal of education resources and software

have been developed and applied in the education field.

With the rapid development of science and technology, some application systems have

become legacy systems. They need to be reengineered. In this case study, a service

composition method based on the sequence pattern mining technique for Migrating

E-learning Legacy systems to a SOA (MELS) environment will be presented. This

method will be applied to the practical data collected from an e-learning legacy system

[66]. For evaluating this method, some investigation questionnaires are set up to collect

satisfaction data. By adopting these two methods the returned results will be compared.

If the two results have high positive similarity, the performance of the proposed method

will be regarded as high performance, and vice versa.

8.1.2 A Service Composition Method for MELS by Using SEPAM

In this study, two data mining algorithms have been proposed. Then, how can these

kinds of algorithms be used in an SOA migration situation? This question will be solved

in this Sub-section. A service composition method for MELS by using SEPAM will be

depicted. The mined sequence patterns are the supplementation of results of traditional

domain analysis and legacy system analysis. They can be of great benefit to the

establishment of a Service model (Section 4.1) and a Component model (Section 5.1).

For example, the nodes S21 and S23 in Figure 4-4 are established by a sequence pattern

mining technique (Section 4.2). Furthermore, they can benefit the creation of SOA

migration planning schemas (Section 7.1.3). Figure 8-1 shows the framework of this

proposed method.

Chapter 8. Case Studies

158

Figure 8-1. The Framework of a Service Composition Method.

There are three phases in this method:

 Data pre-process phase.

The main work is to collect, clean, extract and transform the appropriate

software engineering data for the pattern discovery.

 Pattern discovery phase.

The main work is applying data mining tools to discover frequent

patterns/motifs.

 Pattern analysis phase.

Chapter 8. Case Studies

159

The main work is to analyse and conclude the results mined by data mining tools. The

useful information will be used for service composition.

The key phase of this method is developing reasonable data mining tools to mine related

legacy data. In the following, more details of this method will be presented.

8.1.3 Data Pre-process Phase

8.1.3.1 An E-learning Legacy System

An e–learning system for middle school students is shown in Figure 8-2 which has been

developed by Ideal Information Technology Institute of Northeast Normal University in

China [66, 100]. This e-learning system consists of well-designed object-oriented

programs. However, the structure of this system cannot meet the user’s needs. This

system will be migrated to SOA, shown in Figure 8-6 [31].

Figure 8-2. Architecture of an E-learning System.

An e-learning system must provide complete support for different teaching and learning

Chapter 8. Case Studies

160

modes. Normally, different teachers will provide different teaching strategies for the

same learners. Different learners will adopt different learning schemes for the same

content. In this case, during the design and development of an e-learning system, it is

necessary to provide a learner with the appropriate learning support environment

according to the learner’s preference. Therefore, the composition of learning schemes is

a key task for MELS.

In MELS, service composition can be improved by mining execution trace data on

usage behaviour of this e-learning legacy system. The usage behaviour data resource is

the set of practical operation sequences requested by all users. The practical operation

sequence represents a specific learning sequence which can be of great benefit to the

service composition in MELS. Namely, these discovered patterns will be the candidate

composite services (coarse-grained) in the SOA target system.

According to the theory of education, a learning process mainly includes the following

learning modes: demonstration, read and analysis, interaction, exercise, learn by heart,

review, test, feedback, etc. A learning process is a sequence composed of these learning

modes. They will be different sequences for different learners for the same learning

content. Therefore, the appropriate learning support environment for each learner means

a specific learning sequence (coarse–grained service) composed of existing learning

contents and learning modes (fine-grained service).

In this experiment, the composition of learning schemes in the SOA target system will

be taken as examples. According to the suggestions of educational experts and excellent

teachers, eight learning modes (items) are selected, such as demonstration (denoted by

{1}), read and analysis (denoted by {2}), interaction (denoted by {3}), exercise

(denoted by {4}), learn by heart (denoted by {5}), review (denoted by {6}), test

(denoted by {7}) and feedback (denoted by {8}). An ordered list of these learning

modes is named as a learning scheme, which can be regarded as a sequence. For

example, the sequence of {read and analysis} {interaction}{exercise} (for short,

{2}{3}{4}) is a learning scheme, which means a learner first reads and analyses related

learning materials; and then communicates with the system to get more detailed

explanations on his/her questions; and then does some exercises to strengthen his/her

learning. The users can organise a learning scheme by themselves in this e-learning

Chapter 8. Case Studies

161

legacy system. Some learning schemes are collected from different learners to form a

sequences database. In order to discover which learning patterns (supported by most

learning schemes) are popular for most learners, the proposed algorithms are applied to

mine this learning scheme sequences database. The mined frequent and maximal

learning patterns (motifs) can be the candidates of coarse-grained services or business

processes of the learning scheme aspect in the SOA target system.

8.1.3.2 Sequence Database

The preparation, collection and extraction of execution traces data are the basis for the

application of the proposed method. Development and application of education software

and resources [128] have made it possible for educational institutes to collect and store

huge amounts of teaching and learning execution trace data [20].

Execution scenario refers to the functionality that the program gets executed. It is very

important since it influences the results of the technique [14]. Thus, an execution

scenario should be established for collecting trace data according to the purpose of

application. For example, in order to discover popular learning patterns, the learning

scheme module in the legacy system should be taken as an execution scenario to collect

and extract the related trace data.

For ensuring the quality of mined results, the execution traces will be collected in a real

operational environment and for a long time. In this case study, the related data from 20

middle schools that are using this e-learning system has been collected. In each school,

5 classes of 50 students were chosen as test objects. 48 tests were organised during four

months. The students will adopt a learning scheme during one test, namely, each student

can provide one record in one test. Totally, about 240,000 records can be obtained. The

size of each record is about 0.1k. Thus, the data volume is about 24M, that is,

20 *5 *50 *48 *0.1k=24000k=24M

The log sub-system of this e-learning system collected these records and stored them in

Table format of an SQL Server database. The collected original data with the main

columns is shown in Table 8-1.

Chapter 8. Case Studies

162

Table 8-1. The Collected Original Data.

ID Learning

Content

Starting Time Knowledge

Node Code

Learning

Scheme

Learning Source Code Score

… … … … … … … … … … … … … …

7021 Math in

Grade 7

2007-05-04，

14：03

2.2.3 1,2,3,4,7,8,37 172020,172118,172002

,172010, 172102, ……

B

… … … … … … … … … … … … … …

7043 Math in

Grade 7

2007-05-04，

14：10

2.2.2 1,4,3,5, 7,8 172031,172118,172015

,172011, 172112, ……

A

… … … … … … … … … … … … … …

7101 Math in

Grade 7

2007-05-04，

14：05

2.2.1 2,5,3,4,6,7,8 172020,172118,172002

,172036, 172108, ……

C

… … … … … … … … … … … … … …

Notation: learning mode “demonstration” is denoted as 1, “read and analysis” is denoted as 2, “interaction” is

denoted as 3, “exercise” is denoted as 4, “learn by heart” is denoted as 5, “review” is denoted as 6, “test” is denoted

as 7 and “feedback” is denoted as 8.

In order to reduce the data volume, the related columns should be extracted from the

original data for mining purposes. The related columns will be extracted and stored in a

new structural file. For example, in order to discover popular learning patterns, the ID

column and learning scheme column were extracted from Table 8-1. A sequence

database on trace data of learning schemes can be obtained, which is shown in Table 8-2.

This database can be expressed as a group of software trace sequences. The size of one

record in this structural file is about 14bytes. Thus, the data volume of the mined

sequence data is 3.2M, that is,

20 *5 *50 *48 *14/1024=3281k=3.2M

This sequence data of 3.2M is the input of the proposed sequence mining algorithm

described in Section 4.2.

Chapter 8. Case Studies

163

Table 8-2. Sequence Database.

ID Sequences si Length | si |

1 {1}{2}{3}{4}{7}{8}{3}{7} 8

2 {1}{4}{3}{5} {7}{8} 6

3 {5}{1}{2}{4}{3}{7}{5}{8} 8

4 {1}{2}{4}{3}{7}{8}{5} 7

5 {3}{2}{4}{3}{1}{6}{7}{8} 8

6 {7}{8}{3}{5}{4}{6}{7}{8} 8

7 {2}{1}{2}{4}{3}{7}{8} 7

8 {4}{3}{2}{7}{8} 5

9 {2}{1}{2}{4}{3}{7}{8} 7

10 {4}{3}{2}{3}{7}{8} 6

… … … … … …

8.1.4 Pattern Discovery Phase

Through analysing the existing sequence mining algorithms, it is found that they cannot

meet the needs of the e-learning data. For example, these algorithms are used to find

motifs on the fixed min-support number. In order to further analyse the mined patterns

in the pattern analysis phase, it is not enough to just obtain motifs in a fixed min-support

number. In addition, the data in an e-learning domain should consider the repeatable

number associated with items to some extent. Moreover, the repeatable number of each

item in e-learning data is small (normally, it is less than 5, for example, a learner can

review some learning content 3 times or 4 times, but it is exceptional if he reviews them

10 times). Thus, if the existing quantitative sequence mining algorithms are applied, it

will increase the costs of time and space greatly. Furthermore, it will affect the

practicability of this method. In this case, according to the features of execution trace

data on usage behaviour and the needs of further pattern analysis, a sequential pattern

Chapter 8. Case Studies

164

mining algorithm is proposed (more details are shown in Section 4.2) to mine execution

traces of the e-learning legacy system.

In this experiment, the average length of all records is about 12 since the elements of

each sequence can be repeated such as {2}{1}{4}{4}{2}{4}; the number of items is 8;

the size of records in the structural file is 3.2M. In a system implementation aspect, a

hash-tree data structure is adopted. In this case, the time cost of this algorithm is about

one minute. Clearly, the performance of this algorithm is acceptable.

8.1.5 Pattern Analysis Phase

After obtaining the frequent patterns and middle results returned from the pattern

discovery phase, the results should be analysed and refined. Normally, this kind of work

will be done with the direction of project architects together with domain experts. The

analysed results will form service composition schemes, which are the complementation

of business logic analysis results. These complementary services can provide

information for further improving this e-learning system, such as, some services can

become the recommended e-learning patterns to learners; some services can direct the

adding, deleting, updating or combining of some classes or functionality; etc.

For example, through analysing the results, it is found that 68% of the users like to

adopt a learning scheme like {demonstration}{analysis and read}{exercise}

{interaction} {test}{feedback}, namely, sequence {1}{2}{4}{3}{7}{8} which is a

motif of the sequence database shown in Table 8-2. However, in the existing system,

this pattern wasn’t included in the recommended learning patterns. In the new system,

this pattern has been composed into a composite service and stored in the service library

in the SOA system.

8.1.6 Evaluation

For this execution scenario, some investigation questionnaires were set up to collect

satisfaction data. This method includes an online survey of 20 middle schools (the users

of this e-learning system) and in-depth interviews with 30 education experts and

excellent teachers. The investigation result is 90% the same as the result returned by

applying this method. Clearly, this service composition method is available and

Chapter 8. Case Studies

165

applicable.

The similar experiments show that this method can also be used for component

composition if sequential relationships exist among components. In addition, if

association relationships exist among services or among components, similar

experiments can be done to improve the Service model and the Component model by

applying the association rule miner (ARM). The experiment results prove that the

method on applying data mining techniques to improve the Service model and the

Component model is available and applicable.

8.2 Case Study II: Creating SOA Migration Planning

Schemas with SOAMT

8.2.1 Overview

An SOA migration planning approach is proposed in this study. There are five stages in

this approach. The detailed descriptions of each stage are addressed. Especially, the

concrete matching strategies and decision-making methods of creating SOA migration

planning schemas are provided. The proposed approach can be of great benefit to the

planning and deployment of SOA migration projects.

In this Section, a case study on creating SOA migration planning schemas is described

to further evaluate the proposed approach. The migration resource is legacy components

in an educational administration system for primary and secondary schools. The

migration target is the new service oriented architecture for doing the work on student’s

management. Concretely,

 An e-learning legacy system and its existing problems will be described.

 For solving the existing problems, the new service oriented architecture will be

designed and developed.

 The matching relationship between legacy components and domain targets will

be established by adopting the proposed matching strategies. Some concrete

work is presented. The algebra theory is regarded as the theoretical support

frame. The text similarity measurement method in the vector space model will

Chapter 8. Case Studies

166

be adopted to measure the similarity between legacy components and domain

services.

 The SOA migration planning schemas will be created by adopting the proposed

decision-making methods.

 Evaluation is done finally in this case study.

8.2.2 Legacy Assets

In China, Education Informatisation refers to the process that accelerates educational

reformation and development, whose key parts include teaching and learning, teaching

and scientific research, and education administration. The roles of education

administration are related to communication, cooperation and sharing of information.

The concrete tasks in the education administration aspect include human resource

management, teaching and learning affairs management, official document management,

general affairs management, home-school interaction management, etc. [128].

 Human resource management consists of personal information. The teacher’s

information includes take or leave office, position change, assessment, etc.; the

student’s information includes natural information, registration, awards, etc.

 Teaching and learning affairs management consists of examination

management, curricula-variable management, social activity management,

students’ comprehensive quality evaluation, etc.

 Official document management includes drafting, examining and approving,

dispatching, receiving, classifying, etc. of official documents.

 General affairs management includes office supplies management, school

building management, facilities management, etc.

 Home-school interaction management consists of the teacher’s functions, the

student’s functions and the parents’ functions. The teacher’s functions include

management of message, assignment, score, phase evaluation, etc. The

student’s functions include management of assignment, message, score, school

timetable, etc. the parents’ functions include management of message,

assignment, notice, score, etc.

Chapter 8. Case Studies

167

According to the above requirements, an education administration system has been

developed under the environment of Java, Eclipse and Tomcat (middleware) [66]. In

this system, there are a human resource management sub-system, a teaching and

learning affairs management sub-system, an official document management sub-system,

a general affairs management sub-system, and a home-school interaction management

sub-system.

However, in this system, each function has been developed without thinking about the

case that some business processes have to pass several sub-systems. The flexibility and

adaptability of this legacy system are poor. It cannot meet the user’s needs. For example,

taking the work on students’ management from the role of a teacher in charge of a class.

For completing work on the students’ management, the teacher involves logging in to

three sub-systems and processing five function modules:

 Login human resource management sub-system for editing and retrieving

student’s basic information.

 Login teaching and learning affairs management sub-system for completing

curriculum selection and score edition.

 Login home-school interaction management sub-system for completing

attendance checking.

 Login teaching and learning affairs management sub-system for analysing and

evaluating student’s social activities.

 Login teaching and learning affairs management sub-system for doing students’

comprehensive quality evaluation.

Clearly, this educational management system for primary and secondary schools has

become a legacy system. It cannot meet the new requirements. The service-oriented

architecture and web service technique can solve these kinds of problems.

For establishing a Component model, the e-learning legacy assets should be collected

and processed. Figure 8-3 shows a screenshot of a legacy asset on object relationship

mapping (ORM) configuration file. Figure 8-4 presents a screenshot of a legacy asset on

component relationship.

Chapter 8. Case Studies

168

Figure 8-3. A Screenshot on Object Relationship Mapping (ORM) Configuration File.

Chapter 8. Case Studies

169

Figure 8-4. A Screenshot of Legacy Asset on Component Relationship.

Chapter 8. Case Studies

170

After passing the legacy analysis stage, a Component model (migration sources) is

established. An example of a Component model is shown in Figure 8-5.

Figure 8-5. A Screenshot of a Component Model.

8.2.3 A New Service Oriented Architecture

The new SOA [31] the legacy system that will be migrated to is shown in Figure 8-6.

This architecture is a hierarchical and flexible reusable architecture based on

domain-specific software architecture (DSA). By using this software architecture, the

customised application software can be built in a visual studio just like a building block.

There are five layers in this new architecture, namely, the portal layer, the application

layer, the business logical/service provider layer, the component layer and the platform

Chapter 8. Case Studies

171

supporting layer.

 The portal layer.

This layer supplies a unified service access entrance and provides unified

integrating and releasing information.

 The application layer.

This layer supports the composure and choreography of customised services based

on the user's specific role, such as students, teachers, parents and administrative

staff, etc. Meanwhile, this application layer provides the functions of customising

content and page style.

 The service providing layer.

This layer provides some services to support various activities in a virtual digital

campus, such as, management services, the teaching and learning services, teacher

education and teaching research services.

 The management services.

This kind of service provides a full range of support services for the

management of administrative, exam, academic affairs, personnel, and

school property.

 The teaching and learning services.

It provide services to support the teaching process and teaching content,

such as interaction services (interactions between the learner and other

learners, between the learner and the instructor, and between the learner

and experts), the digital resource sharing management services, and the test

and evaluation services , etc.

 The teacher education and teaching research services.

It provides support services for improving teachers' ability to meet the

needs of teaching and research. It mainly consists of a teacher remote

training service, and the interactive teaching and research service, etc.

 The component layer.

This layer is the foundation of the platform software architecture. It is a reusable

collection of software units that is already validated by other projects. It mainly

Chapter 8. Case Studies

172

includes data management components, process control components, cache control

components, report generation components, information retrieval components and

other components. It provides common functions for some kinds of business

systems. Moreover, it includes a domain component library that involves

educational resources development, educational resources management, teaching &

learning environment building, and educational information management, etc.

 The platform supporting layer.

This layer is an application support system that consists of user authentication and

authorisation, data exchange and operation management.

Figure 8-6. Migration Target -- The New Service Oriented Architecture.

After passing the domain analysis stage, a Service model (migration target) is

Chapter 8. Case Studies

173

established. It describes details of the Service Providing Layer shown in Figure 8-6. A

screenshot of the Service model is shown in Figure 8-7.

Figure 8-7. A Screenshot of the Service Model.

In this new architecture, the functions can be composed according to the user’s needs.

The management software of different versions (for primary school, high school, bureau

of education, etc.) can be built quickly. The main feature of this architecture is to

customise application software in a visual environment, such as, business process

Chapter 8. Case Studies

174

customisation, functional module customisation, login portal customisation, system

message customisation, etc. The advantages of this new architecture can be embodied

from the example on students’ management described in Sub-section 8.2.2. The teacher

can customise the work for completing student’s management in a visual environment. It

provides more convenience for the users.

In this new architecture, the modules and functions in the legacy system have been

transformed into services that range from fine-grained to coarse-grained. The concrete

tranformance means include Wrapper means, Modification means and Redevelopment

means (Sub-section 7.1.1). Namely, some legacy components have been reused in whole;

some legacy components have been reused in part; and, some components have been

discarded.

Clearly, the new architecture is better than the former. Hence, it is necessary to migrate

the legacy system to this new SOA architecture.

8.2.4 Creating SOA Migration Planning Schemas

After obtaining the Service model (migration targets, XMLDomain) and the Component

model (migration sources, XMLLegacy), the processes on MELS based on TSM are as

follows.

 First, establish indexing for the Service model and the Component model, and

calculate the similarity between domain services and legacy components by

using the matching tool.

 Second, according to the matching strategies described in Section 6.1, 6.2 and

6.3 to determine the matching relationships between migration sources and

targets.

 Based on these matching relationships, according to proposed decision-making

methods described in Section 7.1, 7.2 and 7.3 to create SOA migration

planning schemas.

 According to the proposed evaluation method described in Section 7.4 to

evaluate the created SOA migration planning schemas and output an evaluation

report.

According to the above-mentioned processes, the flow chart of creating the SOA

Chapter 8. Case Studies

175

migrating planning schemas based on SOA Migration Toolkit is shown in Figure 8-8.

Figure 8-8. The Flow Chart of Creating SOA Migration Planning Schemas based on SOAMT.

The key part of SOA migration planning schemas refers to the corresponding

relationships between domain services and legacy components. Figure 8-9 is a reduced

(folded) screenshot that presents the key part of SOA migration planning schemas for

migrating legacy components in an education administration legacy system to the new

SOA architecture for completing the work on students’ management. The detailed

information will be presented in an evaluation report. The example of an evaluation

report is shown in Figure 7-4.

Chapter 8. Case Studies

176

Figure 8-9. The Key Part of SOA Migration Planning Schemas in the Experiment.

A screenshot of service implementation is shown in Figure 8-10.

Chapter 8. Case Studies

177

Figure 8-10. A Screenshot of Service Implementation.

Chapter 8. Case Studies

178

8.2.5 Evaluation

In this case study, the migration planning schemas based on the functional information

(Similarity Matrix) produced by the proposed approach are about 80% the same as the

schemas determined by experts. Through analysing the differences between these two

results, it is found the main reasons for the differences are not in this approach itself. The

main reasons are that the keyword-based similarity calculation lost some information

between legacy components and domain targets. Just functional information is not

enough for ensuring the quality of SOA migration planning schemas.

For improving the performance of this approach, some non-functional information

should be taken into account. An improved decision-making method based on functional

and non-functional information (named Hybrid Information) is also evaluated. The

performance is 86% the same as the schemas determined by experts. Clearly, the

performance is improved. The decision making method based on both functional and

non-functional factors is better than the one based on functional factors only. Table 8-3

shows the performance comparison of these two methods.

Table 8-3. Performance Comparison.

 DM on Similarity Matrix DM on Hybrid Information

Performance 80% 86%

8.3 Conclusion

Two case studies are described to support and evaluate the proposed approach. The

application field is e-learning field, which is a large scale application field of

information technology. It is known that IT can provide robust help in the education

field. Educational software plays an important role in the software industry. The cases

in the education field are complex enough. If some approaches and strategies can be

supported and validated in the education field, they can be applied in most other fields.

To some extent, the application scope of the proposed approach can be expanded.

Hence, the proposed SOA migration planning approach is available and applicable.

Chapter 8. Case Studies

179

8.4 Summary

Two case studies are presented in this Chapter to evaluate the proposed approach.

First, improving the Service model and the Component model with SEPAM and ARM.

 The proposed method is applied in an e-learning legacy system. Its architecture

cannot satisfy the user’s requirements. Thus, this system will be migrated to a

service-oriented architecture.

 In order to discover the coarse-grained services in MELS, a service composition

method based on a sequence mining algorithm is proposed. The prototype system

has been developed. Some data collection and pre-process methods are

introduced.

 For evaluating this method, some questionnaire investigations were done. The

questionnaire investigation result is 90% the same as the result obtained by

adopting the proposed method. After doing many similar evaluations, it is

concluded that the proposed method is promising.

Second, creating SOA migration planning schemas with SOAMT.

 Legacy assets and the new service oriented architecture are introduced. A

legacy asset is an education administration system, which consists of a human

resource management sub-system, teaching and learning affairs management

sub-system, official document management sub-system, general affairs

management sub-system and home-school interaction management sub-system.

The legacy system has been developed under the environment of Java, Eclipse

and Tomcat (middleware). However, in this system, each function has been

developed without thinking about the case that some business processes have to

pass several sub-systems. The flexibility and adaptability of this legacy system

are poor. The new architecture is a hierarchical and flexible reusable

architecture, based on domain-specific software architecture (DSA). By using

this software architecture, the customised application software can be built in a

visual environment.

 The SOA migration planning schemas based on functional factors are 80% the

same as the planning schemas determined by experts. The SOA migration

Chapter 8. Case Studies

180

planning schemas based on functional and non-functional factors are 86% the

same as the planning schemas determined by experts. Clearly, the performance

is improved. The decision making method based on both functional and

non-functional factors is better than the one based on functional factors.

 The proposed approach has been applied in an e-learning field. The cases in the

education field are complex. If some approaches and strategies can be supported

and validated in the education field, they can be applied in most other fields. To

some extent, the application scope of the proposed approach can be expanded.

Hence, the proposed SOA migration planning approach is available and

applicable.

Chapter 9. Conclusions

181

Chapter 9 Conclusions

Objectives

__

 To summarise the thesis and draw conclusions

 To revisit original contributions

 To evaluate the research by answering the research questions, reviewing the

research hypotheses and revisiting the success criteria

 To illustrate the limitations of the work

 To propose future work

__

9.1 Summary of Thesis

The principal research question in this thesis is: “How to obtain SOA migration

planning schemas in order to determine if legacy software systems should be migrated

to a SOA computation environment?”. To answer this question, the following work has

been done.

An SOA migration approach has been proposed, which includes 5 stages, namely, a

preparation stage, analysis stage (domain analysis, legacy analysis and data mining

method), matching stage, decision-making stage and an evaluation stage.

In the domain analysis sub-stage, a Service model has been established according to

domain analysis results; in the legacy analysis sub-stage, a Component model has been

established according to legacy analysis results. In the data mining sub-stage, an

association rule mining algorithm is proposed for determining the association

relationships among legacy components or among domain services. Moreover, a

sequence pattern mining algorithm is proposed for service or component identification

and composition. These proposed algorithms can perfect the Component model and the

Chapter 9. Conclusions

182

Service model.

In the matching stage, two matching strategies based on text similarity measurement

methods are proposed: one is a keyword-based matching strategy, another one is

superficial semantic-based matching strategy. Concretely, a keyword-based matching

algorithm and a superficial semantic-based matching algorithm are presented for

calculating the matching degrees between legacy components and domain targets.

In the decision-making stage, two methods for creating SOA migration planning

schemas are investigated. One is a similarity matrix-based method, in which just

functional factors are taken into account. Another one is a method based on hybrid

information, in which both functional factors and non-functional factors are taken into

account.

In the evaluation stage, some simple methods on cost estimation and performance

evaluation have been presented. Finally, an evaluation report is summarised according

to the user’s direction.

For validating the proposed approach, two case studies have been described. One is

improving the Service model and the Component model with SEPAM and ARM. The

proposed algorithms have been evaluated by using the real data of an e-learning legacy

system and the performance is promising. Another one is creating SOA migration

planning schemas with SOAMT. This performance is also encouraging. Therefore, the

proposed SOA migration planning approach is available and applicable.

9.2 Revisiting Original Contributions

A general SOA migration planning approach has been proposed in Chapter 3. In this

Section, the three original contributions described in Chapter 1 will be revisited.

C1. In Chapter 4, a sequence pattern mining algorithm for service/component

identification and composition is described and evaluated. In Chapter 5, an

association rule mining algorithm for determining the association relationships

among legacy components or among domain services has been addressed and

evaluated. These two algorithms can be of great benefit to the establishment of

Chapter 9. Conclusions

183

Component model and Service model.

C2. In Chapter 6, the matching strategies based on a keyword level and a superficial

semantic level have been investigated. They can be used for measuring the

matching relationship between legacy components and domain services. The

performance of the matching strategy based on superficial semantic level is better

than the one based on keyword level.

C3. In Chapter 7, the decision-making methods based on a similarity matrix and hybrid

information have been explored, in which not only the functional factors but also

the non-functional factors are taken into account. The experimental results show

that the method based on hybrid information is better than the method based on the

similarity matrix.

9.3 Evaluation

9.3.1 Answering Research Questions

The evaluation of this study starts by answering the proposed research questions. The

global research question presented in Chapter 1 was:

How to obtain SOA migration planning schemas

(semi-)automatically instead of by traditional manual work

in order to determine if legacy software systems should be

migrated to a SOA computation environment?

This question has been answered by proposing an SOA migration planning approach. In

this approach, the data mining techniques have been adopted to discover the hidden

information from the application data of legacy systems; a text similarity measurement

method has been deployed to quantify the matching relationships between legacy

components and domain targets. Some heuristic decision making methods have been

used to create SOA migration planning schemas. Moreover, the proposed approach has

been deployed in two case studies for validation.

A set of research questions is defined follows to refine this global question in detail.

RQ1: why is there a need for migration planning schemas in SOA migration projects?

Chapter 9. Conclusions

184

SOA migration is a complicated task. It is necessary to create SOA migration planning

schemas before starting a migration project. Otherwise, once it fails, it will be an

expensive mistake. Moreover, it may cause a catastrophic loss of money, time, and

resources. Up to now, most of this kind of work is manual work. Therefore, a

semi-automatic creating method on SOA migration planning schemas should be

investigated. More details are shown in Section 1.1.

RQ2: What is a proposed SOA migration planning approach?

The definition and framework of an SOA migration planning approach are shown in

Chapter 3. Moreover, the descriptions on each part of this approach are presented in

Chapter 3.

 What are the key factors and their relationships in a proposed SOA migration

planning approach?

An SOA migration planning approach is defined as a 7-tuple : a service model,

a Component model, theoretical support frame, matching strategy,

decision-making method, user’s direction, and SOA migration planning schema

evaluation. Their relationships are shown in Figure 3.1.

 What kinds of legacy software system can be processed by the proposed

approach?

The proposed approach can deal with the legacy system that can be

decomposed into components. Software components include procedures,

modules, objects, files, etc.

 What is the final returned result by the proposed approach?

The final returned result is an evaluation report, which is created according to

the user’s directions. More details are shown in Section 7.4.

RQ3: How to analyse legacy systems and domain logics in this approach?

The general methods for legacy analysis and domain analysis are available in this

proposed approach. Data mining methods can be used to improve the analysis results

returned by general methods.

Chapter 9. Conclusions

185

 What techniques can be used to analyse legacy assets and domain requirements

from the angle of application data of legacy systems?

Data mining techniques can be used to analyse legacy assets and domain

requirements from the angle of application data of legacy systems (Chapter 4

and Chapter 5).

 What are the results of domain analysis and legacy analysis in this approach?

In this proposed approach, the result of domain analysis is a Service model

(Section 4.1); the result of legacy analysis is a Component model (Section 5.1).

RQ4: How to measure the matching relationships between legacy components and

domain services?

Some matching strategies and algorithms have been shown in Chapter 6.

 How to represent legacy components and domain services?

A hierarchical directed acyclic graph (HDGA) is adopted to represent legacy

components and domain services (Sub-section 4.1.2).

 What techniques can be used to calculate the matching degree between legacy

components and domain services?

Text similarity measurement methods can be used to calculate the matching

degree between legacy components and domain services (Section 6.1).

 What are the matching strategies between legacy components and domain

services?

In this thesis, two matching strategies have been explored: one is based on a

keyword level (Section 6.2); another one is based on a superficial semantic

level (Section 6.3).

RQ5: How to create the SOA migration planning schemas?

The related work is described in Chapter 7.

 What is an SOA migration planning schema?

An SOA migration planning schema consists of a migration source object,

Chapter 9. Conclusions

186

migration target object, matching degree and implementation means

(Sub-section 7.1.1).

 How many methods can be used to create SOA migration planning schemas?

Three methods have been developed to create SOA migration planning

schemas: the first is a data mining method; the second is based on a functional

factor (similarity matrix); the third is based on a non-functional factor (hybrid

information, such as component quality). More details are presented in

Sub-section 7.1.3, Section 7.2 and Section 7.3.

 How to evaluate the SOA migration planning schemas?

A simple evaluation method is shown in Section 7.4.

RQ6: How to validate the proposed approach?

Two case studies have been designed and implemented for validating the proposed

approach. More details can be found in Chapter 8.

9.3.2 Revisiting Research Hypotheses

After establishing these research questions, a series of research hypotheses based on

them are developed. The underlying hypothesis of this thesis is:

Data mining techniques and text similarity measurement

methods in vector space can be used to create migration

planning schemas in SOA migration projects.

This hypothesis can be validated through an SOA migration planning approach, which

mainly consists of an analysis stage, a matching stage, a decision-making stage and an

evaluation stage. A set of hypotheses is derived from the underlying one:

RH1: Data mining techniques can be used to analyse legacy assets and domain

requirements from the angle of application data in legacy systems.

A sequence pattern mining algorithm has been used to discover the hidden

composite services and business processes from the user’s usage behaviour data of

legacy systems. It shows that this hypothesis is sound.

Chapter 9. Conclusions

187

RH2: Text similarity measurement methods can be used to calculate the matching

degree between legacy components and domain targets.

The corresponding relationships between SOA migration and text retrieval, as well

as some developed matching strategies and algorithms, show that this hypothesis is

sound.

RH3: User’s direction is necessary during the process of creating SOA migration

planning schemas. Moreover, the solution is obtained by iteration.

The creation process of the SOA migration planning schemas shown in case study

II shows that this hypothesis is sound.

RH4: Not only functional factors but also non-functional factors should be taken into

account during the process of creating SOA migration planning schemas.

The quality of SOA migration planning schemas based on both functional factors

and non-functional factors is better than the one based on functional factors only.

This comparison shows that this hypothesis is sound.

9.3.3 Revisiting the Measure of Success Criteria

In Chapter 1, five success criteria are defined to validate the success of the proposed

research described in this thesis. This section will revisit the predefined measure of

success.

 What kind of legacy systems can the proposed approach deal with?

The proposed approach can deal with legacy systems that can be decomposed into

components. Software components include procedures, modules, objects, files, etc.

This approach cannot deal with non-decomposable legacy systems.

 What types of data mining techniques can be used to analyse legacy assets and

domain logics?

The association rule mining technique and sequence pattern mining technique can

be used to analyse legacy assets and domain logics. An association rule mining

algorithm and a sequence pattern mining algorithm have been developed and

applied to improve the Service model, Component model and SOA migration

Chapter 9. Conclusions

188

planning schemas.

 How can a text similarity measurement method be applied to establish the matching

strategies between legacy components and domain services?

The corresponding relationships between SOA migration and text retrieval have

been established. Some developed matching strategies and algorithms are also able

to prove this.

 How about the performance of this approach?

Two case studies have shown that the performance of the proposed approach is

promising and encouraging.

 How about the implementation of the proposed methods and strategies? For

example, is it possible to build a practical tool based on a proposed method?

The answer is yes. An SOA Migration Toolkit (SOAMT) based on a Data Mining

(DM) technique and a Text Similarity Measurement (TSM) method have been

designed and implemented for creating SOA migration planning schemas in the case

studies shown in Chapter 8.

9.4 Limitations

After discussing the original contributions and success criteria, the limitations of the

proposed research described in this thesis are discussed as follows:

 The pattern analysis stage is important in a service composition method based on a

sequence pattern mining technique.

After passing the pattern discovery phase, a great number of frequent patterns will

be discovered. Some of them are already known, some of them are ridiculous, and

some of them are disguised. If some bad patterns are taken for good ones, then, the

performance of the proposed approach will be worse.

 The poor decomposition method of legacy system may reduce the effectiveness of

the proposed approach.

The understanding and decomposition of a legacy system are the foundation for

establishing a Component model. If the decomposition method is poor, the legacy

Chapter 9. Conclusions

189

analysis results (a Component model) will be inadequate and error prone. It may

lead to create some mistaken SOA migration planning schemas. Moreover, it may

cause loss of money, time, and resources. If the quality of the Component model is

higher, the proposed approach will be more powerful.

9.5 Future Work

Based on the above discussions, it can be concluded that the proposed approach

described in this thesis is a systematic and effective means for predicting and planning

SOA migration projects. Meanwhile, the two case studies have further supported and

verified the success of this study. In a SOA migration situation, this semi-automatic

approach can instead of the traditional manual work. It will be of great benefit to

decision makers and developers.

The research presented in this thesis is not the terminus. There is some future work that

can be pursued based on the present work:

 After doing some practice by following this proposed approach, lot of data can be

collected on SOA migration planning schemas. Some data mining techniques (such

as, the mining method of classification rules based on Rough Set Theory) can be

used with this data for discovering the hidden knowledge and rules for a SOA

migration situation. The mined results can be used to direct similar cases instead of

passing on the whole proposed SOA migration planning approach. Clearly, it can

save time, money and resources. For example, the collected data of SOA migration

planning schemas can be reorganised into an information table. Some condition

attributes and a decision attribute are available in this information table. Some

classification methods can be adopted to classify each new created SOA migration

planning schema into two categories: realisable and unrealistic. In this situation, the

proposed approach will be self-adaptive.

 More attention will be paid to the user’s direction part. It should be more perfect.

Evaluation information of SOA migration planning schemas can be of great benefit

to the user’s direction. After analysing the evaluation information, the user’s

direction can be more reasonable and functional. More factors may be taken into

Chapter 9. Conclusions

190

account. The threshold in User’ direction should be determined through hybrid

information.

 If the numbers of legacy components and domain services are huge, the proposed

approach may be time consuming or inefficient. In this case, the pre-process stage

will be needed. Some classification or clustering methods can be utilised for

dividing them into different categories or clusters. And then, re-establishing the

corresponding relationships between legacy categories/clusters and domain

categories/clusters. The proposed approach will be applied to these small-size

matching pairs.

References

191

References

[1] A. Arsanjani, "Service-Oriented Modeling and Architecture: How to Identify,

Specify, and Realize Services for your SOA",

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/,

November 2004.

[2] A. Brown, S. Johnston and K. Kelly, “Using Service-Oriented Architecture and

Component-Based Development to Build Web Service Applications”. Cupertino,

CA: Rational Software Corporation. A Rational Software White Paper from IBM,

2002, pp.11-15.

[3] A. Cimitile and G. Visaggio, "Software Salvaging and the Call Dominance Tree".

The Journal of Systems and Software, Vol. 28(2), 1995, pp.117–127.

[4] A. Fuhr, T. Horn and V. Riediger, “Using Dynamic Analysis and Clustering for

Implementing Services by Reusing Legacy Code”. IEEE 18th Working Conference

on Reverse Engineering, 2011.

[5] A. Hamou-Lhadj and T. Lethbridge, “An Efficient Algorithm for Detecting Patterns

in Traces of Procedure Calls,” ICSE Workshop on Dynamic Analysis (WODA 2003),

(Portland, OR, USA), May 2003.

[6] A. Lucia, A. Fasolino and E. Pompella, "A Decisional Framework for Legacy

System Management". Proceedings of the International Conference on Software

Maintenance, IEEE CS Press, 2001, pp. 642–651.

[7] A. Lucia, R. Francese, G. Scanniello and G. Tortora, "Developing Legacy System

Migration Methods and Tools for Technology Transfer". Software-Practice and

Experience. Vol. 38, 2008, pp. 1333–1364.

[8] A. Marchetto and F. Ricca, “From Objects to Services: toward a Stepwise Migration

Approach for Java Applications,” Int J Softw Tools Technol Transfer, Vol.11(6),

2009, pp. 427–440.

References

192

[9] A. Mehta and G. Heineman, "Evolving Legacy System Features into Fine-Grained

Components". ICSE’02, Buenos-Aires, Argentina, May 2002.

[10] A. Meng, “On Evaluating Self-Adaptive Software”, First International Workshop,

IWSAS 2000, Oxford, UK, Apr. 2000, pp.67-73.

[11] A. Mili, S. Chmiel and R. Gottumukkala et al., "Integrated Cost Model for

Software Reuse", ICSE 2000.

[12] A. Papkov, "Develop a Migration Strategy from a Legacy Enterprise IT

Infrastructure to an SOA-based Enterprise Architecture", IBM Developer works,

http://www.ibm.com/developerworks/library/ws-migrate2soa/index.html?S_TACT

=105AGX20&S_CMP=EDU, last visited in November, 2007.

[13] A. Umar and A. Zordan, "Reengineering for Service Oriented Architectures: A

Strategic Decision Model for Integration versus Migration", The Journal of Systems

and Software, Vol. 82, 2009, pp. 448–462.

[14] A. Zaidman, T. Calders and S. Demeyer et al., “Applying Webmining Techniques

to Execution Traces to Support the Program Comprehension Process”, CSMR 2005.

[15] B. Portier, "SOA terminology overview Part 1: Service, Architecture,Governance,

and Business Terms”, IBM Developer Works,

http://www.ibm.com/developerworks/library/ws-soa-term1/index.html, May, 2007.

Last visited in November, 2007.

[16] B. Portier, "SOA Terminology Overview Part 2: Development Processes, Models,

and Assets", IBM Developer works, May, 2007.

http://www.ibm.com/developerworks/webservices/library/ws-soa-term2/index.html,

Last visited in November, 2007.

[17] B. Portier, "SOA Terminology Overview Part 3: Analysis and Design", IBM

Developer works,

http://www.ibm.com/developerworks/webservices/library/ws-soa-term3/index.html,

May, 2007. Last visited in November, 2007.

[18] B. Újházi, R. Ferenc and D. Poshyvanyk et al., "New Conceptual Coupling and

Cohesion Metrics for Object Oriented System", Working Conference on Source

References

193

Code Analysis and Manipulation, 2010.

[19] B. Wu, D. Lawless, J. Bisbal and J. Grimson, "Legacy System Migration: A

Legacy Data Migration Engine", Proceeding of the 17th International Conference

(DATASEM '97), Brno, Czech Republic, Oct., 1997, pp 129-138.

[20] C. Dai, S. Yang and R. Knott, “Data Transfer Over the Internet for Real Time

Applications”, International Journal of Automation and Computing, Vol. 3(4),

2006, pp. 414-424.

[21] C. Kim, J. Lim and R. Ng et al. "SQUIRE: Sequential Pattern Mining with

Quantities", Journal of system and software, Vol.80(10), 2007, pp.1726-1745.

[22] C. Lindig and G. Snelting, "Assessing Modular Structure of Legacy Code based on

Mathematical Concept Analysis". Proceedings of the 19th International Conference

on Software Engineering, ACM Press. Boston, MA, 1997, pp. 349–359.

[23] C. Szyperski, "Component Software: Beyond Object-Oriented Programming",

Addison-Wesley Professional, 2002.

[24] CBDI Forum, Enterprise Framework for SOA,

http://www.cbdiforum.com/secure/interact/2005-03/eng_frame_soa.php.

[25] D. Champeaux, D. Lea and P. Faure, "Object Oriented System Development",

Addison-Wesley, Reading Mass, 1993.

[26] D. Christopher, P. Manning and R. Schutze, "Introduction to Information

Retrieval", Cambridge University Press, 2008.

[27] D. Grosso, D. Penta and D. Guzman et al., "An Approach for Mining Services in

Database-oriented Applications ". 11TH European Conference on Software

Maintenance and Reengineering (CSMR’07).

[28] D. Linthicum, “Next Generation Application Integration: From Simple Information

to Web Services”, Addison Wesley Press, 2003.

[29] D. Poshyvanyk and A. Marcus, "The Conceptual Coupling Metrics for

Object-Oriented Systems, Software Maintenance", ICSM’06, pp. 469-478.

[30] D. Yakimovich, "Dissertation: A Comprehensive Reuse Model For COTS

Software Products".

References

194

[31] D. Zhou, Z. Zhang and S. Zhong et al., “The Design of Software Architecture for

e-Learning Platforms”, 3rd International Conference on E-Learning and Games,

Nanjing, China, Jun. 2008, pp.32-40.

[32] Domain Analysis, http://en.wikipedia.org/wiki/Domain_analysis. From Wikipedia,

the free encyclopedia . Available online in May, 2012.

[33] E. Allen, T. Khoshgoftaar and Y. Chen, "Measuring Coupling and Cohesion of

Software Modules: an Information-theory Approach", in Proceedings of 7th

International Software Metrics Symposium (METRICS'01), Apr. 2001, pp. 124-134.

[34] E. Arisholm, L. Briand and A. Foyen, "Dynamic Coupling Measurement for

Object-Oriented Software", IEEE Transactions on Software Engineering, Vol.

30(8), Aug. 2004, pp. 491-506.

[35] E. Chikofsty and J. Cross, "Reverse Engineering and Design Recovery: A

Taxonomy", IEEE Software, Vol.7(1), Jan. 1990, pp. 13-17.

[36] E. Newcomer, "Understanding Web Services: XML, WSDL, SOAP, and UDDI,

Independent Technology Guides". 2006.

[37] F. Chen., S. Li, and H. Yang et al., “Feature Analysis for Service-Oriented

Reengineering”, IEEE 12th ASIA-PACIFIC Software Engineering Conference

(APSEC 2005), Taipei, Taiwan.

[38] F. Lanubile and G. Visaggio, "Extracting Reusable Functions by Flow Graph-based

Program Slicing". IEEE Transactions on Software Engineering, Vol.23(4), 1997,

pp.246–259.

[39] F. Shull, J. Singer and D. Sjøberg, "Guide to Advanced Empirical Software

Engineering". Springer Verlag, London. 2008.

[40] F. Zulkernine, "Service-Oriented Architecture (SOA)".

http://www.cs.queensu.ca/home/cords/soa.ppt

[41] G. Canfora, A. Cimitile and A. Lucia et al., "Decomposing Legacy Programs: A

First Step towards Migrating to Client–server Platforms". The Journal of Systems

and Software, Vol. 54, 2000, pp.99–110.

[42] G. Canfora, A. Cimitile and A. Lucia et al., "Decomposing Legacy Systems into

References

195

Objects: an Eclectic Approach", Information & Software Technology, 2001,

pp.401-412.

[43] G. Canfora, A. Cimitile and M. Munro, "An Improved Algorithm for Identifying

Reusable Objects in Code". Software Practice and Experiences, Vol. 26(1), 1996,

pp. 24–48.

[44] G. Canfora, A. Fasolino and G. Frattolillo et al., "A Wrapping Approach for

Migrating Legacy System Interactive Functionalities to Service Oriented

Architectures", The Journal of Systems and Software, Vol. 81, 2008, pp. 463–480.

[45] G. Gui and P. Scott, "New Coupling and Cohesion Metrics for Evaluation of

Software Component Reusability", The 9th International Conference for Young

Computer Scientists, IEEE, 2008.

[46] G. Heineman and W. Councill, "Component-Based Software Engineering: Putting

the Pieces Together", Addison-Wesley Professional, 2001.

[47] G. Lewis, E. Morris and D. Smith, “SMART: The Service-Oriented Migration and

Reuse Technique” (CMU/SEI-05-TN-029). Software Engineering Institute.

September 2005.

[48] G. Salton, Automatic Text Processing, Adison-Wesley, 1989.

[49] G. Sholom et al. “Application of Feature-Oriented Domain Analysis to the Army

Movement Control Domain” (CMU/SEI-91-TR-28, ADA 256590). Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University, 1992.

[50] G. Visaggio, "Value-based Decision Model for Renewal Processes in Software

Maintenance". Annals of Software Engineering. Vol. 9(1–2), 2000, pp.215–233.

[51] H. Gall, M. Jazayeri, and J. Krajewski, "CVS Release History Data for Detecting

Logical Couplings", 6th International Workshop on Principles of Software

Evolution (IWPSE'03). Sept. 2003, pp. 13 - 23.

[52] H. Kim and Y. Kwon, "Restructuring Programs through Program Slicing".

International Journal of Software Engineering and Knowledge Engineering,

Vol.4(3), 1994, pp. 349–368.

[53] H. Muller, M. Orgun and S. Tilley et al., "A Reverse-engineering Approach to

References

196

Subsystem Structure Identification". Journal of Software Maintenance: Research

and Practice, Vol. 5, 1993, pp.181–204.

[54] H. Shirazi, N. Fareghzadeh and A. Seyyedi, “A Combinational Approach to

Service Identification in SOA”, Journal of Applied Sciences Research, Vol. 5(10),

2009, pp. 1390-1397.

[55] H. Sneed and E. Nyary, "Downsizing Large Application Programs". Journal of

Software Maintenance: Research and Practice, Vol. 6(5), 1994, pp.105–116.

[56] H. Sneed, "Planning the Reengineering of Legacy Systems". IEEE Software, Vol.

12(1), 1995, pp. 24–34.

[57] H. Sneed, “Program Interface Reengineering for Wrapping”, Proceeding of 4th

WCRE, IEEE Computer Society Press, Amsterdam, Oct. 1997, pp. 206

[58] H. Sneed. "Integrating Legacy Software into a Service Oriented Architecture",

Proceedings of the Conference on Software Maintenance and Reengineering

(CSMR'06). IEEE Computer Society, 2006.

[59] H. Washizaki, H. Yamamoto and Y. Fukazawa, "A Metrics Suite for Measuring

Reusability of Software Components", Proceedings of the Ninth International

Software Metrics Symposium (METRICS’03).

[60] H. Yang and M. Ward, "Successful Evolution of Software Systems", Artech House,

2003.

[61] I. Ronen, N. Aizenbud and K. Kveler, “Service Identification in Legacy Code using

Structured and Unstructured Analysis,” IBM Programming Languages and

Development Environments Seminar, Haifa, 2007.

[62] IBM Quest Market-Basket Synthetic Data Generator,

http://www.almaden.ibm.com/cs/quest/

[63] IBM SOA terms,

http://www.ibm.com/developerworks/library/ws-soa-term1/index.html

[64] IBM,http://download.boulder.ibm.com/ibmdl/pub/software/rational/web/

whitepapers/2003/legacy.pdf.

References

197

[65] IBM, Managing Legacy Integration with IBM Rational Software, Technical

discussion, Rational Software, IBM Software Group, July, 2003.

[66] Ideal Information Technology Institute of Northeast Normal University in China.

http://www.dsideal.net/.

[67] J. Bisbal and R. Richardson, "A Survey of Research into Legacy System

Migration", Technique report.

https://www.scss.tcd.ie/publications/tech-reports/reports.97/TCD-CS-1997-01.pdf

[68] J. Bosch, "Superimposition: a Component Adaptation Technique", Information and

Software Technology, Vol. 41, 1999, pp. 257–273.

[69] J. Guan, D. Bell and D. Liu, “Data Mining for Maximal Frequent Patterns,

Intelligent Data Mining: Techniques and Applications", Springer, New York, 2005,

pp. 137-162.

[70] J. Han and M. Kamber, “Data Mining: Concepts and Techniques”, China Machine

Press, 2006.

[71] J. Hanson, "Coarse-grained Interfaces Enable Service Composition in SOA",

JavaOne, Aug. 2003.

[72] J. Heumann, “Requirements Discovery for Legacy Systems”, Technical discussion,

Rational Software, IBM Software Group, July, 2003.

[73] J. Lavery, B. Boldyreff and B. Ling et al., “Modelling the Evolution of Legacy

Systems to Web-based Systems”, Journal of Software Maintenance and Evolution,

Vol.16(1), 2004, p.5

[74] J. Li, Z. Zhang and B.Qiao et al., “A Component Mining Approach to Incubate

Grid Services in Object-Oriented Legacy Systems”, International Journal of

Automation and Computing, Vol.3(1), 2006, pp. 47-55.

[75] J. Pu, R. Millham and H. Yang, “Acquiring Domain Knowledge in Reverse

Engineering the Web-based system into UML”, Conference of IASTED Software

Engineering and Application, 2003.

[76] J. Zhang, J. Chung and C. Chang, “Migration to Web Services Oriented

Architecture – A Case Study”. Proceedings of the 2004 ACM Symposium of

References

198

Applied Computing, ACM Press, Nicosia, Cyprus, Mar. 2004.

[77] J. Zhao, "Measuring Coupling in Aspect-Oriented Systems", in Proceeding of 10th

IEEE International Soft. Metrics Symposium (METRICS'04), Chicago, USA, 2004.

[78] J. Ziemann, K. Leyking and T. Kahl et al., "Enterprise Model driven Migration

from Legacy to SOA", Software Reengineering and Services Workshop, 2006.

[79] K. Bennett, “Legacy Systems: Copying with Success”, IEEE Software, Vol. 12(1),

Jan. 1995, pp 19-23.

[80] K. Bennett, M. Ramage and M. Munro, "Decision Model for Legacy Systems".

IEEE Proceedings Software, Vol. 146(3), 1999, pp. 153–159.

[81] K. Channabasavaiah, K. Holley and E. Tuggle, "Migrating to a Service-Oriented

Architecture". White paper, G224-7298, IBM, 2004.

[82] K. Kang, J. Lee and K. Kim et al., “FORM: A Feature-Oriented Reuse Method

with Domain-Specific Reference Architectures”, Annals of Software Engineering,

Springer Netherlands. Vol. 5, 1998, pp.143–168.

[83] K. Kang, S. Cohen and J.Hess et al., “Feature-Oriented Domain Analysis(FODA)

Feasibility Study”, Technical Report (Approved for public release),

CMU/SEI-90-TR-21, ESD-90-TR-222, Nov. 1990.

[84] L. Briand, P. Devanbu and W. Melo, "An Investigation into Coupling Measures for

C++", in Proceeding of International Conference on Software engineering

(ICSE'97), Boston, MA, May1997, pp. 412 - 421.

[85] L. Etzkorn, W. Hughes and C. Davis, "Automated Reusability Quality Analysis of

OO Legacy Software". Information and Software Technology, Vol. 43, 2001, pp.

295-308.

[86] L. Markosian, P. Newcomb, and R.Brand et al. "Using an Enabling Technology to

Reengineer Legacy Systems". Communications of the ACM, Vol. 37(5), 1994, pp.

58–70.

[87] L. Wilkes, "CBDI Report: SOA Reference Models. IT Strategic Office of the

Danish Ministry of Science, Technology and Innovation". Version 1.0. October

2005.

References

199

[88] Lucene, http://lucene.apache.org.

[89] M. Brodie and M. Stonebraker, "Migrating Legacy Systems: Gateways, Interfaces

& the Incremental Approach". Morgan Kaufmann, San Francisco, 1995.

[90] M. Christodorescu, S. Jha and C. Kruegel, “Mining Specifications of Malicious

Behaviour”, 6th joint meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE 2007), Dubrovnik, Croatia, Sep. 2007, pp.5-14.

[91] M. DiBernardo, R. Pottinger and M. Wilkinson, "Semi-automatic Web Service

Composition for the Life Sciences Using the BioMoby Semantic Web Framework",

Journal of Biomedical Informatics, Vol. 41(5), Oct. 2008, pp. 837-847.

[92] M. El-Ramly, E. Stroulia and P. Sorenson, “From Run-time Behaviour to Usage

Scenarios: an Interaction-Pattern Mining Approach”, 8th ACM SIGKDD

international conference on Knowledge discovery and data mining, ACM Press,

2002, pp. 315–324.

[93] M. Hitz and B. Montazeri, "Measuring Coupling and Cohesion In Object-Oriented

Systems". Proceeding Int. Symposium on Applied Corporate Computing, Oct. 1995,

Monterrey, Mexico, pp. 78-84.

http://www.isys.uni-klu.ac.at/PDF/1995-0043-MHBM.pdf

[94] M. McGill, "An evaluation of factors affecting document ranking by information

retrieval systems". Project report, Syracuse University, School of Information

Studies, 1979.

[95] M. Mendonca and N. Sunderhaft, “Mining Software Engineering Data: A

Survey”,1999. https://www.dacs.dtic.mil/techs/datamining/index.php, last visited in

October, 2008.

[96] M. Pohlmann and M. Schonefeld, “An Evolutionary Integration Approach using

Dynamic CORBA in a Typical Banking Environment”, presented at the Case

Studies Workshop of the Sixth European Conference on Software Maintenance and

Reengineering, Mar.2002. Budapest, Hungary.

[97] M. Shaw, "Architectural Issues in Software Reuse: It's Not Just The Functionality,

References

200

It's the Packaging", Proceeding of IEEE Symposium on Software Reusability, Apr.

1995.

[98] M. Zakaria, B. Djamal and T. Philippe et al., "Service Composition”, in Data and

Knowledge Engineering, Vol. 62(2), Aug. 2007, pp. 327-351.

[99] Microsoft Corporation, “Enabling Real World SOA through the Microsoft

Platform”, 2006.

[100] NorthEast Normal University (NENU) in China. http://www.nenu.edu.cn/

[101] O. Rotaru and M. Dobre, "Reusability Metrics for Software Components", 2005

IEEE.

[102] O. Zimmermann, P. Krogdahl and C. Gee, “Elements of Service-Oriented

Analysis and Design”, IBM Developer Work, 2006. Last visited in Dec.2007.

http://www.ibm.com/developerworks/webservices/library/ws-soad1/

[103] Oracle, "Oracle IT Modernization Series: The Types of Modernization", Oracle

White Paper, 2006.

[104] P. Breuer, H. Haughton and K. Lano, "Reverse-engineering COBOL via Formal

Methods". Journal of Software Maintenance: Research and Practice, Vol. 5, 1993,

pp. 13–35.

[105] P. Chung, Y. Huang and S. Yajnik et al, " DCOM and CORBA Side by Side, Step

By Step, and Layer by Layer," C++ Report, Vol. 10(1), Jan. 1998, pp. 18-29.

[106] P. Pendharkar and G.Subramanian, “Connectionist Models for Learning,

Discovering, and Forecasting Software Effort: An Empirical Study”, Computer

Information Systems, Vol. 43(1), 2002, pp. 7-14.

[107] P. Pendharkar, G. Subramanian and J. Rodger, "A Probabilistic Model for

Predicting Software Development Effort"， IEEE Transactions on Software

Engineering, Vol. 31(7), July 2005.

[108] R Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules”.

Proceedings of the 20th International Conference on Very Large Database (VLDB),

Morgan Kaufmann, Santiago, Chile, Sep. 1994, pp.487-499.

References

201

[109] R. Gimnich, "SOA Migration – Approaches and Experience", IBM Software

Group, SOA Advanced Technology / Enterprise Integration Solutions,

Wikhelm-Fay-Str.30-34, D-65936 Frankfurt.

[110] R. Agrawal and R.Srikant, “IBM Research Report RJ9910: Mining Sequential

Patterns”, IBM research division, Almaden research center, CA. 1994.

[111] R. Baeza-Yates and B. Ribeiro-Neto, "Modern Information Retrieval",

Addison-Wesley, 1999.

[112] R. Seacord, D. Plakosh and G. Lewis, “Modernizing Legacy Systems: Software

Technologies”, Engineering Processes and Business Practices, Addison Wesley

Press, 2003.

[113] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations and

Performance Improvements”. Proceedings of the Fifth International Conference on

Extending Database Technology (EDBT), Springer-Verlag Avignon, France, Mar.

1996, pp. 3-17.

[114] R. Srikant, “Fast Algorithms for Mining Association Rules and Sequential

Patterns” [DB/OL], http://www.rsrikant.com/ Srikant’s

Publications.htm.Dissertations, University of Wisconsin, Madison. 1996.

[115] S. Alahmari, E. Zaluska and D. De Roure, “A Service Identification Framework

for Legacy System Migration into SOA,” in IEEE Seventh International

Conference on Services Computing. IEEE Computer Society, 2010, pp. 614–617.

[116] S. Cetin, N. Altintas and H. Oguztuzun et al., “Legacy Migration to

Service-Oriented Computing with Mashups”, International Conference on Software

Engineering Advances(ICSEA 2007).

[117] S. Chidamber and C. F. Kemerer. "Towards a Metrics Suite for object-oriented

Design". In Proceeding of OOPSLA '91, ACM ,1991, pp.197-211.

[118] S. Chidamber and C. Kemerer. "A Metrics Suite for Object-oriented Design".

IEEE Trans. Software Eng., Vol. 20(6), Jun.1994, pp.476-493.

[119] S. Chung, P. Young and J. Nelson, "Service-Oriented Software Reengineering:

Bertie3 as Web Services". Proceedings of the 2005 IEEE International Conference

References

202

on Web Services (ICWS'05), IEEE Computer Society, Orlando, FL, USA, July

2005.

[120] S. Deng, J. Wu et al., "Automatic Web Service Composition Based on Backward

Tree". Journal of Software, Vol.18(8), 2007, pp.1896—1910.

[121] S. Easterbrook, J. Singer, M. Storey and D. Damian, "Selecting empirical methods

for software engineering research", Chapter 11 in Guide to Advanced Empirical

Software Engineering. Springer Verlag: London, 2008, pp.282-311.

[122] S. Inaganti and G. Behara, "Service Identification: BPM and SOA Handshake",

www.bptrends.com. Mar. 2007.

[123] S. Kramer and H. Kaindl, "Coupling and Cohesion Metrics for Knowledge-based

Systems using Frames and Rules", ACM Trans. on Soft. Engineering and

Methodology (TOSEM), Vol. 13(3), July 2004, pp. 332-358.

[124] S. Li, F. Chen, Z. Liang and H. Yang, "Using Feature-Oriented Analysis to

Recover Legacy Software Design for Software Evolution", International

Conference on Software Engineering and Knowledge Engineering (SEKE’05),

Taipei, Taiwan.

[125] S. Mahmood , R. Lai and Y. Kim et al., "A Survey of Component based System

Quality Assurance and Assessment", Information and Software Technology, Vol.

47, 2005, pp. 693–707.

[126] S. Pressman, "Software Engineering - A Practitioner's Approach" - Fourth Edition.

ISBN 0-07-052182-4, 1982.

[127] S. Thummalapenta and T. Xie, “PARSEWeb: A Programmer Assistant for

Reusing Open Source Code on the Web”, ASE’07, Atlanta, Georgia, USA. Nov.

2007, pp. 204-213.

[128] S. Zhong, J. Li and Z. Zhang et al., “Methods on Educational Resource

Development and Application”, 3rd International Conference on E-Learning and

Games, Nanjing, China, Jun. 2008, pp.290-301.

[129] SAP, “NetWeaver Open Integration Platform”,

https://www.sdn.sap.com/irj/sdn/developerareas/netweaver.

References

203

[130] Software Engineering Institute, Camegie Mellon University, Pittsburgh,

Pennsylvania 15213, USA. http://www.sei.cmu.edu.

[131] T. Biggerstaff, "Design Recovery for Maintenance and Reuse", IEEE Software,

July 1989, pp. 36-49.

[132] T. Denmat, M. Ducassé and O. Ridoux, “Data Mining and Cross-checking of

Execution Traces : A Re-interpretation of Jones, Harrold and Stasko Test

Information Visualization”, 20th IEEE/ACM International Conference on

Automated Software Engineering, Long Beach, California, USA, Nov. 2005,

pp.396-399.

[133] T. Erl, "Service-Oriented Architecture (SOA): Concepts, Technology, and

Design", the Prentice Hall, Service-Oriented Computing Series. 2007.

[134] T. Hastings and A. Sajeev, “A Vector-Based Approach to Software Size

Measurement and Effort Estimation,” IEEE Trans. Software Eng., Vol. 27(4), 2001,

pp. 337-350.

[135] T. Xie and A. Hassan, “Mining Software Engineering Data”,

http://ase.csc.ncsu.edu/dmse/dmse-icse07-tutorial.ppt#256,1,Mining Software

Engineering Data, last visit August 30, 2008.

[136] T. Zimmermann, A. Zeller and P. Weissgerber et al., "Mining Version Histories to

Guide Software Changes", IEEE Transactions on Software Engineering, Vol. 31(6),

Jun. 2005, pp. 429-445.

[137] T. Xie, "Mining Software Engineering Data Bibliography", [Online],

available: http://ase.csc.ncsu.edu/dmse/setasks, Sep., 2010.

[138] V. Radha, V. Gulati and R. Thapar, “Evolution of Web Services Approach in

SFMS – A Case Study”. Proceedings of the IEEE International Conference on Web

Services (ICWS'04), IEEE Computer Society, San Diego, CA,USA. Jul. 2004.

[139] Wikipedia, Component-based software engineering, Retrieved 2012-08-12,

http://en.wikipedia.org/wiki/Component-based_software_engineering.

[140] Wikipedia, http://en.wikipedia.org/wiki/Cohesion_(computer_science), last

visited on 01-07-2012.

References

204

[141] X.Liu and Q. Wang, "Study on Application of a Quantitative Evaluation

Approach for Software Architecture Adaptability", Proceedings of the Fifth

International Conference on Quality Software (QSIC’05).

[142] Y. Chen and T. Huang. "A Novel Knowledge Discovering Model for Mining

Fuzzy Multi-level Sequential Patterns in Sequence Databases". Data & Knowledge

Engineering, Vol. 66(3), Sep. 2008, pp. 349-367.

[143] Y. Chen and T. Huang. A New Approach for Discovering Fuzzy Quantitative

Sequential Patterns in Sequence Databases. Fuzzy Sets and Systems, Vol. 157(12),

Jun. 2006, pp. 1641-1661.

[144] Y. Lee, B. Liang and S. Wu et al., "Measuring the Coupling and Cohesion of an

Object-Oriented Program Based on Information Flow", in Proceedings of

International Conference on Software Quality, Maribor, Slovenia, 1995.

[145] Z. Zhang and H. Yang, "One-Stone-Two-Birds: Legacy System Re-engineering

and Web Services Development - - A Component-Based and Service-Oriented

Approach" in Proceedings of Postgraduate Research Conference in Electronics,

Photonics, Communications & Networks, and Computing Science (PREP 2004),

Hatfield, UK, 2004.

[146] Z. Zhang and H. Yang, “Incubating Services in Legacy Systems for Architectural

Migration”, IEEE Computer Society, Proceedings of the 11th Asia-Pacific Software

Engineering Conference (APSEC’04).

[147] Z. Zhang, D. Zhou and H. Yang et al., "A Service Composition Approach Based

on Sequence Mining for Migrating E-learning Legacy System to SOA",

International Journal of Automation and Computing, Vol. 7(4), Nov. 2010, pp.

584-595.

[148] Z. Zhang, D. Zhou and S. Zhong et al., "Researches on the Decision-making

Algorithm in an SOA migration Model"，in the proceeding of the 9th international

FLINS Conference on Foundations and Applications of Computational

Intelligence (FLINS2010), Chengdu (EMei), China, Aug. 2010, pp.917-922.

[149] Z. Zhang, H. Yang and D. Zhou et al., "An SOA Based Approach to

References

205

User-Oriented System Migration"， in the proceeding of 10th IEEE international

conference on computer and information technology(CIT2010), International

symposium on advanced topics on information technologies and applications

(ITA2010), in Bradford, UK, Jun. 2010.

[150] Z. Zhang, H. Yang and W. Chu, “Extracting Reusable Object-Oriented Legacy

Code Segments with Combined Formal Concept Analysis and Slicing Techniques

for Service Integration”, Proceedings of the Sixth International Conference on

Quality Software (QSIC'06).

[151] Z. Zhang, L. Zhang and S. Zhong et al.,

“Improving Algorithm Apriori for Data Mining”, 8
th

 International FLINs

Conference on Computational Intelligence in Decision and Control, Madrid , Spain,

Sep. 2008, pp.17-22.

[152] Z. Zhang, L. Zhang and S. Zhong et al.,“A New Algorithm for Mining Sequential

Patterns”, 5th International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD’08), Jinan, China. Oct. 2008, pp.625-629.

[153] Z. Zhang, R. Liu and H. Yang, “Service Identification and Packaging in Service

Oriented Reengineering,” in Proceedings of the 7th International Conference on

Software Engineering and Knowledge Engineering (SEKE), 2005, pp. 241–249.

[154] Z. Zhang, S. Zhong and J. Guan, "Improving Algorithm AprioriAll/Some for

Mining Sequential Patterns", Journal of Northeast Normal University (Natural

Science Edition), Vol.39(4), Dec. 2007, pp.46-53.

Appendix A Templates and Examples of Related XML Files

206

Appendix A Templates and Examples of Related XML

Files

This section presents some templates or examples of related XML files, which are

defined in this study.

1. XMLDomain

<?xml version="1.0" encoding="UTF-8"?>
<dsideal>
 <domains>
 <application-level>
 <application-node id="appNode1">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-son></item-son>
 </application-node>
 <application-node id="appNode2">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-son></item-son>
 </application-node>
 </application-level>
 <business-process-level>
 <business-node id="busNode1">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-son></item-son>
 </business-node>
 <business-node id="busNode2">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-son></item-son>
 </business-node>
 </business-process-level>
 <service-or-composite-service-level>
 <service-node id="serNode1">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-son></item-son>

Appendix A Templates and Examples of Related XML Files

207

 </service-node>
 <service-node id="serNode2">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-son></item-son>
 </service-node>
 </service-or-composite-service-level>
 </domains>
 <domain-corrs>
 <application-business-corr>
 <corr>
 <application-node>appNode1</application-node>
 <business-nodes>
 <business-node>busNode1</business-node>
 <business-node>busNode2</business-node>
 </business-nodes>
 </corr>
 <corr>
 <application-node>appNode2</application-node>
 <business-nodes>
 <business-node>busNode1</business-node>
 <business-node>busNode2</business-node>
 </business-nodes>
 </corr>
 </application-business-corr>
 <business-service-corr>
 <corr>
 <business-node>busNode2</business-node>
 <service-nodes>
 <service-node>serNode1</service-node>
 <service-node>serNode2</service-node>
 </service-nodes>
 </corr>
 <corr>
 <business-node>busNode2</business-node>
 <service-nodes>
 <service-node>serNode1</service-node>
 <service-node>serNode2</service-node>
 </service-nodes>
 </corr>
 </business-service-corr>
 </domain-corrs>
</dsideal>

Appendix A Templates and Examples of Related XML Files

208

2. XMLLegacy

<?xml version="1.0" encoding="UTF-8"?>
<domains>
 <application-component-level>
 <application-node id="appNode1">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-code></item-code>
 <item-mining></item-mining>
 <item-uml></item-uml>
 <item-son></item-son>
 </application-node>
 <application-node id="appNode2">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-code></item-code>
 <item-mining></item-mining>
 <item-uml></item-uml>
 <item-son></item-son>
 </application-node>
 </application-component-level>
 <business-component-level>
 <business-node id="busNode1">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-code></item-code>
 <item-mining></item-mining>
 <item-uml></item-uml>
 <item-son></item-son>
 </business-node>
 <business-node id="busNode2">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-code></item-code>
 <item-mining></item-mining>
 <item-uml></item-uml>
 <item-son></item-son>
 </business-node>
 </business-component-level>
 <atomic-component-level>
 <service-node id="atoNode1">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-code></item-code>
 <item-mining></item-mining>

Appendix A Templates and Examples of Related XML Files

209

 <item-uml></item-uml>
 <item-son></item-son>
 </service-node>
 <service-node id="atoNode2">
 <item-father></item-father>
 <item-function></item-function>
 <item-data></item-data>
 <item-code></item-code>
 <item-mining></item-mining>
 <item-uml></item-uml>
 <item-son></item-son>
 </service-node>
 </atomic-component-level>
</domains>
<domain-corrs>
 <application-business-corr>
 <corr>
 <business-node>busNode2</business-node>
 <application-nodes>
 <application-node>appNode1</application-node>
 <application-node>appNode2</application-node>
 </application-nodes>
 </corr>
 <corr>
 <business-node>busNode1</business-node>
 <application-nodes>
 <application-node>appNode21</application-node>
 <application-node>appNode2</application-node>
 </application-nodes>
 </corr>
 </application-business-corr>
 <business-atomic-corr>
 <corr>
 <atomic-node>atoNode1</atomic-node>
 <business-nodes>
 <business-node>busNode1</business-node>
 <business-node>busNode2</business-node>
 </business-nodes>
 </corr>
 <corr>
 <atomic-node>atoNode2</atomic-node>
 <business-nodes>
 <business-node>busNode1</business-node>
 <business-node>busNode2</business-node>
 </business-nodes>
 </corr>
 </business-atomic-corr>
</domain-corrs>

Appendix A Templates and Examples of Related XML Files

210

3. XMLMatch

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="7.2.xsl"?>
<!--
 The matching relationships between domain targets and legacy components based on

Keyword and Semantic level
-->
<dsideal>
<domain-item domain="S31">
 <item>
 <Legacy1>L21+L22</Legacy1>
 <Legacy2>L21+L31+L32</Legacy2>
 <Sim_Keyword>0.9</Sim_Keyword>
 <Sim_Semantic>0.96</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L1</Legacy1>
 <Legacy2>L21+L22+L23</Legacy2>
 <Sim_Keyword>0.7</Sim_Keyword>
 <Sim_Semantic>0.81</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L22</Legacy1>
 <Legacy2>L31+L32</Legacy2>
 <Sim_Keyword>0.6</Sim_Keyword>
 <Sim_Semantic>0.73</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L25</Legacy1>
 <Legacy2>L36+L37</Legacy2>
 <Sim_Keyword>0.6</Sim_Keyword>
 <Sim_Semantic>0.0</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L3</Legacy1>
 <Legacy2>L36+L37</Legacy2>
 <Sim_Keyword>0.5</Sim_Keyword>
 <Sim_Semantic>0.0</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L21</Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyword>0.5</Sim_Keyword>
 <Sim_Semantic>0.68</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L31</Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyword>0.5</Sim_Keyword>
 <Sim_Semantic>0.0</Sim_Semantic>

Appendix A Templates and Examples of Related XML Files

211

 </item>
</domain-item>
<domain-item domain="S32">
 <item>
 <Legacy1>L33+L34</Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyword>0.9</Sim_Keyword>
 <Sim_Semantic>0.8</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L24</Legacy1>
 <Legacy2>L33+L34+L35</Legacy2>
 <Sim_Keyword>0.8</Sim_Keyword>
 <Sim_Semantic>0.73</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L33</Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyword>0.8</Sim_Keyword>
 <Sim_Semantic>0.87</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L2</Legacy1>
 <Legacy2>L23+L24</Legacy2>
 <Sim_Keyword>0.7</Sim_Keyword>
 <Sim_Semantic>0.63</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L34</Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyword>0.7</Sim_Keyword>
 <Sim_Semantic>0.0</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L23</Legacy1>
 <Legacy2>L32+L34</Legacy2>
 <Sim_Keyword>0.5</Sim_Keyword>
 <Sim_Semantic>0.0</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L34+L35</Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyword>0.5</Sim_Keyword>
 <Sim_Semantic>0.0</Sim_Semantic>
 </item>
</domain-item>
<domain-item domain="S25">
 <item>
 <Legacy1>L3</Legacy1>
 <Legacy2>L25+L35</Legacy2>
 <Sim_Keyword>0.6</Sim_Keyword>

Appendix A Templates and Examples of Related XML Files

212

 <Sim_Semantic>0.6</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L25</Legacy1>
 <Legacy2>L36+L37</Legacy2>
 <Sim_Keyword>0.6</Sim_Keyword>
 <Sim_Semantic>0.81</Sim_Semantic>
 </item>
 <item>
 <Legacy1>L36</Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyword>0.5</Sim_Keyword>
 <Sim_Semantic>0.64</Sim_Semantic>
 </item>
</domain-item>
</dsideal>

4. XMLDirection

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="7.3.xsl"?>
<!--
 The mapping relation between the implementation means and the user’s direction
-->
<dsideal>
<pram S1="0.9" S2="0.8" S3="0.7"/>
<domain-item ud="cost-first(CF)">
 <item>

 <SIM>Sim≥λ 2</SIM>
 <RM>Wrapper</RM>
 </item>
 <item>
 <SIM>Others</SIM>
 <RM>Re-development</RM>
 </item>
</domain-item>
<domain-item ud="function-first(FF)">
 <item>

 <SIM>Sim≥λ 3</SIM>
 <RM>Wrapper</RM>
 </item>
 <item>
 <SIM>Others</SIM>
 <RM>Re-development</RM>
 </item>
</domain-item>
<domain-item ud="Performance-first(PF)">
 <item>

 <SIM>Sim≥λ 1</SIM>
 <RM>Wrapper</RM>
 </item>

Appendix A Templates and Examples of Related XML Files

213

 <item>

 <SIM>λ 1>Sim≥λ 2</SIM>
 <RM>Modification</RM>
 </item>
 <item>
 <SIM>Sim< 2</SIM>
 <RM>Re-development</RM>
 </item>
</domain-item>
</dsideal>

5. XMLCandidateSchema

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="CandidateSchema7-2.xsl"?>
<!--
 A template of Candidate SOA migration planning schemas
-->
<dsideal>
 <domain-item domain="">
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Legacy1><PF></PF></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>

Appendix A Templates and Examples of Related XML Files

214

 </item>
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 </domain-item>
 <domain-item domain="">
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>

Appendix A Templates and Examples of Related XML Files

215

 </domain-item>
 <domain-item domain="">
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Legacy1></Legacy1>
 <Legacy2></Legacy2>
 <Sim_Keyord></Sim_Keyord>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 </domain-item>
</dsideal>

6. XMLFinalSchema

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="7.7.xsl"?>
<!--
 A template of final SOA migration schemas
-->
<dsideal>
 <domain-item>
 <item>
 <Num></Num>
 <DT></DT>
 <LS></LS>
 <SSM></SSM>
 <VHI></VHI>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Num></Num>
 <DT></DT>

Appendix A Templates and Examples of Related XML Files

216

 <LS></LS>
 <SSM></SSM>
 <VHI></VHI>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Num></Num>
 <DT></DT>
 <LS></LS>
 <SSM></SSM>
 <VHI></VHI>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 <item>
 <Num></Num>
 <DT></DT>
 <LS></LS>
 <SSM></SSM>
 <VHI></VHI>
 <CF></CF>
 <PF></PF>
 <FF></FF>
 </item>
 </domain-item>
</dsideal>

7. XMLExpert Schemas

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="7.8.xsl"?>
<!--
Expert Migration Schema
-->
<dsideal>
<Expert-item>
 <item>
 <Num></Num>
 <DT></DT>
 <LS></LS>
 </item>
 <item>
 <Num></Num>
 <DT></DT>
 <LS></LS>
 </item>
 <item>

Appendix A Templates and Examples of Related XML Files

217

 <Num></Num>
 <DT></DT>
 <LS></LS>
 </item>
</Expert-item>
</dsideal>

8. XMLPerformance

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="performance.xsl" type="text/xsl" ?>
<dsideal>
 <performance-item dt="S31">
 <item>
 <PLS>L21+L31+L32</PLS>
 <ELS>L21+L31+L32</ELS>
 <Performance>1</Performance>
 </item>
 <item>
 <PLS>L1</PLS>
 <ELS></ELS>
 <Performance></Performance>
 </item>
 <item>
 <PLS>L25</PLS>
 <ELS></ELS>
 <Performance></Performance>
 </item>
 <item>
 <PLS>L31+L32</PLS>
 <ELS></ELS>
 <Performance></Performance>
 </item>
 </performance-item>
 <performance-item dt="S32">
 <item>
 <PLS>L33+l34</PLS>
 <ELS>L33+L34+L35</ELS>
 <Performance>1</Performance>
 </item>
 <item>
 <PLS>L33+L34+L35</PLS>
 <ELS></ELS>
 <Performance></Performance>
 </item>
 <item>
 <PLS>L2</PLS>
 <ELS></ELS>
 <Performance></Performance>
 </item>

Appendix A Templates and Examples of Related XML Files

218

 <item>
 <PLS>L33</PLS>
 <ELS></ELS>
 <Performance></Performance>
 </item>
 </performance-item>
 <performance-item dt="S33">
 <item>
 <PLS></PLS>
 <ELS>L24</ELS>
 <Performance>0</Performance>
 </item>
 </performance-item>
 <performance-item dt="S25">
 <item>
 <PLS>L36</PLS>
 <ELS>L36+L37</ELS>
 <Performance>1</Performance>
 </item>
 <item>
 <PLS>L3</PLS>
 <ELS></ELS>
 <Performance></Performance>
 </item>
 <item>
 <PLS>L36+L37</PLS>
 <ELS></ELS>
 <Performance></Performance>
 </item>
 </performance-item>

</dsideal>

9. XMLEvaluationReport

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="7.13.xsl"?>
<!--
 An evaluation report
-->
<dsideal>
<domains>
 <domain-item domain="S31" performance="1">
 <item>
 <pms-rank>1</pms-rank>
 <pms-ls>L21+L31+L32</pms-ls>
 <pms-ssm>0.96</pms-ssm>
 <pms-shi>0.98</pms-shi>
 <pms-rm>W</pms-rm>
 <ls>L21+L31+l32</ls>

Appendix A Templates and Examples of Related XML Files

219

 <cost>Average</cost>
 </item>
 <item>
 <pms-rank>2</pms-rank>
 <pms-ls>L1</pms-ls>
 <pms-ssm>0.81</pms-ssm>
 <pms-shi>0.79</pms-shi>
 <pms-rm>M</pms-rm>
 <ls></ls>
 <cost>Average</cost>
 </item>
 <item>
 <pms-rank>3</pms-rank>
 <pms-ls>L25</pms-ls>
 <pms-ssm>0.68</pms-ssm>
 <pms-shi>0.72</pms-shi>
 <pms-rm>M</pms-rm>
 <ls></ls>
 <cost>Less</cost>
 </item>
 <item>
 <pms-rank>4</pms-rank>
 <pms-ls>L31+L32</pms-ls>
 <pms-ssm>0.73</pms-ssm>
 <pms-shi>0.62</pms-shi>
 <pms-rm>M</pms-rm>
 <ls></ls>
 <cost>Less</cost>
 </item>
 </domain-item>
 <domain-item domain="S32" performance="1">
 <item>
 <pms-rank>1</pms-rank>
 <pms-ls>L33+L34</pms-ls>
 <pms-ssm>0.8</pms-ssm>
 <pms-shi>0.78</pms-shi>
 <pms-rm>M</pms-rm>
 <ls>L33+L34+L35</ls>
 <cost>Average</cost>
 </item>
 <item>
 <pms-rank>2</pms-rank>
 <pms-ls>L33+L34+L35</pms-ls>
 <pms-ssm>0.73</pms-ssm>
 <pms-shi>0.75</pms-shi>
 <pms-rm>M</pms-rm>
 <ls></ls>
 <cost>Average</cost>
 </item>
 <item>
 <pms-rank>3</pms-rank>

Appendix A Templates and Examples of Related XML Files

220

 <pms-ls>L2</pms-ls>
 <pms-ssm>0.63</pms-ssm>
 <pms-shi>0.70</pms-shi>
 <pms-rm>M</pms-rm>
 <ls></ls>
 <cost>More</cost>
 </item>
 <item>
 <pms-rank>4</pms-rank>
 <pms-ls>L33</pms-ls>
 <pms-ssm>0.87</pms-ssm>
 <pms-shi>0.69</pms-shi>
 <pms-rm>M</pms-rm>
 <ls></ls>
 <cost>Less</cost>
 </item>
 </domain-item>
 <domain-item domain="S33" performance="0">
 <item>
 <pms-rank></pms-rank>
 <pms-ls></pms-ls>
 <pms-ssm></pms-ssm>
 <pms-shi></pms-shi>
 <pms-rm>R</pms-rm>
 <ls>L24</ls>
 <cost></cost>
 </item>
 </domain-item>
 <domain-item domain="S25" performance="1">
 <item>
 <pms-rank>1</pms-rank>
 <pms-ls>L36</pms-ls>
 <pms-ssm>0.64</pms-ssm>
 <pms-shi>0.70</pms-shi>
 <pms-rm>M</pms-rm>
 <ls>L36+L37</ls>
 <cost>Less</cost>
 </item>
 <item>
 <pms-rank>2</pms-rank>
 <pms-ls>L3</pms-ls>
 <pms-ssm>0.6</pms-ssm>
 <pms-shi>0.68</pms-shi>
 <pms-rm>M</pms-rm>
 <ls></ls>
 <cost>Average</cost>
 </item>
 <item>
 <pms-rank>3</pms-rank>
 <pms-ls>L36+L37</pms-ls>
 <pms-ssm>0.81</pms-ssm>

Appendix A Templates and Examples of Related XML Files

221

 <pms-shi>0.66</pms-shi>
 <pms-rm>M</pms-rm>
 <ls></ls>
 <cost>Average</cost>
 </item>
 </domain-item>
</domains>
<total>
 <cost>Average</cost>
 <performance>3/4</performance>
</total>
</dsideal>

10. XMLCost

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="7.2.xsl"?>
<dsideal>
 <cost-item dt="S31">
 <item>
 <ProposeLs>L21+L31+L32</ProposeLs>
 <Cost>Average</Cost>
 </item>
 <item>
 <ProposeLs>L1</ProposeLs>
 <Cost>Average</Cost>
 </item>
 <item>
 <ProposeLs>L25</ProposeLs>
 <Cost>Less></Cost>
 </item>
 <item>
 <ProposeLs>L31+L32</ProposeLs>
 <Cost>Less</Cost>
 </item>
 </cost-item>
 <cost-item dt="S32">
 <item>
 <ProposeLs>L33+L34</ProposeLs>
 <Cost>Average</Cost>
 </item>
 <item>
 <ProposeLs>L33+L34+L35</ProposeLs>
 <Cost>Average</Cost>
 </item>
 <item>
 <ProposeLs>L2</ProposeLs>
 <Cost>More</Cost>
 </item>
 <item>
 <ProposeLs>L33</ProposeLs>

Appendix A Templates and Examples of Related XML Files

222

 <Cost>Less</Cost>
 </item>
 </cost-item>
 <cost-item dt="S33">
 <item>
 <ProposeLs/>
 <Cost/>
 </item>
 </cost-item>
 <cost-item dt="S25">
 <item>
 <ProposeLs>L36</ProposeLs>
 <Cost>Less</Cost>
 </item>
 <item>
 <ProposeLs>L3</ProposeLs>
 <Cost>Average</Cost>
 </item>
 <item>
 <ProposeLs>L36+L37</ProposeLs>
 <Cost>Average</Cost>
 </item>
 </cost-item>

</dsideal>

Appendix C List of Publications

223

Appendix B List of Publications

[1] Z. Zhang, D. Zhou, H. Yang and S. Zhong, “A Service Composition Approach

Based on Sequence Mining for Migrating E-learning Legacy System to SOA”,

International Journal of Automation and Computing, Vol.7(4), Nov. 2010, pp.

584-595.

[2] Z. Zhang, H. Yang, D. Zhou and S. Zhong, “An SOA Based Approach to

User-Oriented System Migration”， in the proceeding of International symposium

on advanced topics on information technologies and applications (ITA2010), in

Bradford, UK, Jun. 2010.

[3] Z. Zhang, D. Zhou, S. Zhong and H. Yang, “Researches on the Decision-making

Algorithm in an SOA migration Model” ，in the proceeding of the 9th international

FLINS Conference on Foundations and Applications of Computational

Intelligence (FLINS2010), Chengdu (EMei), China, Aug. 2010, pp. 917-922.

[4] Z. Zhang, W. Wang, Z. Zhou and Y. Chen, “Reasearch on the Establishment of

Structural E-learning Resources”, Edutainment2010, Changchun, China, Aug. 2010,

pp. 92-99.

[5] Z. Zhang, L. Zhang, S. Zhong and J. Guan, “A New Algorithm for Mining

Sequential Patterns”, 5th International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD’08), Jinan, China. Oct. 2008, pp. 625-629.

[6] Z. Zhang, L. Zhang, S. Zhong, and J. Guan,

“Improving Algorithm Apriori for Data Mining”, 8th International FLINs

Appendix C List of Publications

224

Conference on Computational Intelligence in Decision and Control, Madrid , Spain,

Sep. 2008, pp.17-22.

[7] Z. Zhang, S. Zhong and J. Guan, “Improving Algorithm AprioriAll/Some for

Mining Sequential Patterns, Journal of Northeast Normal University (Natural

Science Edition), Vol.39(4), Dec. 2007, pp.46-53.

[8] D. Zhou, Z. Zhang, S. Zhong and P. Xie, “The Design of Software Architecture

for E-learning Platforms”, 3rd International Conference on E-Learning and Games,

Nanjing, China, Jun. 2008.

[9] S. Zhong and Z. Zhang, “Researches on the Integration of Information and

Curriculum”, Journal of China Educational Technology. Oct. 2007.

[10] Y. Chen, Z. Zhang and T. Zhang, “A Searching Strategy in Topic Crawler by

Using Ant Colony Algorithm”. Microcomputer &Its Application, Vol.30(321), Jan.

2011, pp. 53-56.

[11] Y. Chen and Z. Zhang, “An Application of Intelligent Single Particle Optimizer in

Cluster Analysis”. Journal of Nanjing University, Vol.47(5), Sep. 2011, pp.

578-584.

[12] Y. Chen, Z. Zhang and L. Xu, “Analysis and Design of Recommender Model for

Learning Resources Based on Data Warehouse”, 2010 Third International

Conference on Education Technology and Training, pp. 548-552.

[13] S. Zhong, J. Li, Z. Zhang, Y. Zhong and J. Shang, “Methods on Educational

Resource Development and Application”, 3rd International Conference on

E-Learning and Games, Nanjing, China, Jun. 2008.

[14] W. Wang, S. Zhong, Z. Zhang, S. Lv and L. Wang, “Empirical Research and

Appendix C List of Publications

225

Design of M-learning System for College English”, 4rd International Conference

on E-Learning and Games, Banff, Canada, Aug. 2009.

[15] P. Xie, D. Zhou, S. Zhong, Z. Zhang and S. Li, “An Ontology-based Service

Composition Approach for Integrating E-Government Systems”. 2009 International

Conference on Web Information Systems and Mining (WISM2009), pp. 570-574.

[16] D. Zhou, L. Qin, P. Xie, Z. Zhang and H. Tao, “SOA-Based Education

Information System Interoperability Model”, Journal of Information &

Computational Science, Vol.7(5), May 2010, pp. 1165-1174.

