383 research outputs found

    Scalable statistical learning for relation prediction on structured data

    Get PDF
    Relation prediction seeks to predict unknown but potentially true relations by revealing missing relations in available data, by predicting future events based on historical data, and by making predicted relations retrievable by query. The approach developed in this thesis can be used for a wide variety of purposes, including to predict likely new friends on social networks, attractive points of interest for an individual visiting an unfamiliar city, and associations between genes and particular diseases. In recent years, relation prediction has attracted significant interest in both research and application domains, partially due to the increasing volume of published structured data and background knowledge. In the Linked Open Data initiative of the Semantic Web, for instance, entities are uniquely identified such that the published information can be integrated into applications and services, and the rapid increase in the availability of such structured data creates excellent opportunities as well as challenges for relation prediction. This thesis focuses on the prediction of potential relations by exploiting regularities in data using statistical relational learning algorithms and applying these methods to relational knowledge bases, in particular in Linked Open Data in particular. We review representative statistical relational learning approaches, e.g., Inductive Logic Programming and Probabilistic Relational Models. While logic-based reasoning can infer and include new relations via deduction by using ontologies, machine learning can be exploited to predict new relations (with some degree of certainty) via induction, purely based on the data. Because the application of machine learning approaches to relation prediction usually requires handling large datasets, we also discuss the scalability of machine learning as a solution to relation prediction, as well as the significant challenge posed by incomplete relational data (such as social network data, which is often much more extensive for some users than others). The main contribution of this thesis is to develop a learning framework called the Statistical Unit Node Set (SUNS) and to propose a multivariate prediction approach used in the framework. We argue that multivariate prediction approaches are most suitable for dealing with large, sparse data matrices. According to the characteristics and intended application of the data, the approach can be extended in different ways. We discuss and test two extensions of the approach--kernelization and a probabilistic method of handling complex n-ary relationships--in empirical studies based on real-world data sets. Additionally, this thesis contributes to the field of relation prediction by applying the SUNS framework to various domains. We focus on three applications: 1. In social network analysis, we present a combined approach of inductive and deductive reasoning for recommending movies to users. 2. In the life sciences, we address the disease gene prioritization problem. 3. In the recommendation system, we describe and investigate the back-end of a mobile app called BOTTARI, which provides personalized location-based recommendations of restaurants.Die Beziehungsvorhersage strebt an, unbekannte aber potenziell wahre Beziehungen vorherzusagen, indem fehlende Relationen in verfügbaren Daten aufgedeckt, zukünftige Ereignisse auf der Grundlage historischer Daten prognostiziert und vorhergesagte Relationen durch Anfragen abrufbar gemacht werden. Der in dieser Arbeit entwickelte Ansatz lässt sich für eine Vielzahl von Zwecken einschließlich der Vorhersage wahrscheinlicher neuer Freunde in sozialen Netzen, der Empfehlung attraktiver Sehenswürdigkeiten für Touristen in fremden Städten und der Priorisierung möglicher Assoziationen zwischen Genen und bestimmten Krankheiten, verwenden. In den letzten Jahren hat die Beziehungsvorhersage sowohl in Forschungs- als auch in Anwendungsbereichen eine enorme Aufmerksamkeit erregt, aufgrund des Zuwachses veröffentlichter strukturierter Daten und von Hintergrundwissen. In der Linked Open Data-Initiative des Semantischen Web werden beispielsweise Entitäten eindeutig identifiziert, sodass die veröffentlichten Informationen in Anwendungen und Dienste integriert werden können. Diese rapide Erhöhung der Verfügbarkeit strukturierter Daten bietet hervorragende Gelegenheiten sowie Herausforderungen für die Beziehungsvorhersage. Diese Arbeit fokussiert sich auf die Vorhersage potenzieller Beziehungen durch Ausnutzung von Regelmäßigkeiten in Daten unter der Verwendung statistischer relationaler Lernalgorithmen und durch Einsatz dieser Methoden in relationale Wissensbasen, insbesondere in den Linked Open Daten. Wir geben einen Überblick über repräsentative statistische relationale Lernansätze, z.B. die Induktive Logikprogrammierung und Probabilistische Relationale Modelle. Während das logikbasierte Reasoning neue Beziehungen unter der Nutzung von Ontologien ableiten und diese einbeziehen kann, kann maschinelles Lernen neue Beziehungen (mit gewisser Wahrscheinlichkeit) durch Induktion ausschließlich auf der Basis der vorliegenden Daten vorhersagen. Da die Verarbeitung von massiven Datenmengen in der Regel erforderlich ist, wenn maschinelle Lernmethoden in die Beziehungsvorhersage eingesetzt werden, diskutieren wir auch die Skalierbarkeit des maschinellen Lernens sowie die erhebliche Herausforderung, die sich aus unvollständigen relationalen Daten ergibt (z. B. Daten aus sozialen Netzen, die oft für manche Benutzer wesentlich umfangreicher sind als für Anderen). Der Hauptbeitrag der vorliegenden Arbeit besteht darin, ein Lernframework namens Statistical Unit Node Set (SUNS) zu entwickeln und einen im Framework angewendeten multivariaten Prädiktionsansatz einzubringen. Wir argumentieren, dass multivariate Vorhersageansätze am besten für die Bearbeitung von großen und dünnbesetzten Datenmatrizen geeignet sind. Je nach den Eigenschaften und der beabsichtigten Anwendung der Daten kann der Ansatz auf verschiedene Weise erweitert werden. In empirischen Studien werden zwei Erweiterungen des Ansatzes--ein kernelisierter Ansatz sowie ein probabilistischer Ansatz zur Behandlung komplexer n-stelliger Beziehungen-- diskutiert und auf realen Datensätzen untersucht. Ein weiterer Beitrag dieser Arbeit ist die Anwendung des SUNS Frameworks auf verschiedene Bereiche. Wir konzentrieren uns auf drei Anwendungen: 1. In der Analyse sozialer Netze stellen wir einen kombinierten Ansatz von induktivem und deduktivem Reasoning vor, um Benutzern Filme zu empfehlen. 2. In den Biowissenschaften befassen wir uns mit dem Problem der Priorisierung von Krankheitsgenen. 3. In den Empfehlungssystemen beschreiben und untersuchen wir das Backend einer mobilen App "BOTTARI", das personalisierte ortsbezogene Empfehlungen von Restaurants bietet

    Scalable statistical learning for relation prediction on structured data

    Get PDF
    Relation prediction seeks to predict unknown but potentially true relations by revealing missing relations in available data, by predicting future events based on historical data, and by making predicted relations retrievable by query. The approach developed in this thesis can be used for a wide variety of purposes, including to predict likely new friends on social networks, attractive points of interest for an individual visiting an unfamiliar city, and associations between genes and particular diseases. In recent years, relation prediction has attracted significant interest in both research and application domains, partially due to the increasing volume of published structured data and background knowledge. In the Linked Open Data initiative of the Semantic Web, for instance, entities are uniquely identified such that the published information can be integrated into applications and services, and the rapid increase in the availability of such structured data creates excellent opportunities as well as challenges for relation prediction. This thesis focuses on the prediction of potential relations by exploiting regularities in data using statistical relational learning algorithms and applying these methods to relational knowledge bases, in particular in Linked Open Data in particular. We review representative statistical relational learning approaches, e.g., Inductive Logic Programming and Probabilistic Relational Models. While logic-based reasoning can infer and include new relations via deduction by using ontologies, machine learning can be exploited to predict new relations (with some degree of certainty) via induction, purely based on the data. Because the application of machine learning approaches to relation prediction usually requires handling large datasets, we also discuss the scalability of machine learning as a solution to relation prediction, as well as the significant challenge posed by incomplete relational data (such as social network data, which is often much more extensive for some users than others). The main contribution of this thesis is to develop a learning framework called the Statistical Unit Node Set (SUNS) and to propose a multivariate prediction approach used in the framework. We argue that multivariate prediction approaches are most suitable for dealing with large, sparse data matrices. According to the characteristics and intended application of the data, the approach can be extended in different ways. We discuss and test two extensions of the approach--kernelization and a probabilistic method of handling complex n-ary relationships--in empirical studies based on real-world data sets. Additionally, this thesis contributes to the field of relation prediction by applying the SUNS framework to various domains. We focus on three applications: 1. In social network analysis, we present a combined approach of inductive and deductive reasoning for recommending movies to users. 2. In the life sciences, we address the disease gene prioritization problem. 3. In the recommendation system, we describe and investigate the back-end of a mobile app called BOTTARI, which provides personalized location-based recommendations of restaurants.Die Beziehungsvorhersage strebt an, unbekannte aber potenziell wahre Beziehungen vorherzusagen, indem fehlende Relationen in verfügbaren Daten aufgedeckt, zukünftige Ereignisse auf der Grundlage historischer Daten prognostiziert und vorhergesagte Relationen durch Anfragen abrufbar gemacht werden. Der in dieser Arbeit entwickelte Ansatz lässt sich für eine Vielzahl von Zwecken einschließlich der Vorhersage wahrscheinlicher neuer Freunde in sozialen Netzen, der Empfehlung attraktiver Sehenswürdigkeiten für Touristen in fremden Städten und der Priorisierung möglicher Assoziationen zwischen Genen und bestimmten Krankheiten, verwenden. In den letzten Jahren hat die Beziehungsvorhersage sowohl in Forschungs- als auch in Anwendungsbereichen eine enorme Aufmerksamkeit erregt, aufgrund des Zuwachses veröffentlichter strukturierter Daten und von Hintergrundwissen. In der Linked Open Data-Initiative des Semantischen Web werden beispielsweise Entitäten eindeutig identifiziert, sodass die veröffentlichten Informationen in Anwendungen und Dienste integriert werden können. Diese rapide Erhöhung der Verfügbarkeit strukturierter Daten bietet hervorragende Gelegenheiten sowie Herausforderungen für die Beziehungsvorhersage. Diese Arbeit fokussiert sich auf die Vorhersage potenzieller Beziehungen durch Ausnutzung von Regelmäßigkeiten in Daten unter der Verwendung statistischer relationaler Lernalgorithmen und durch Einsatz dieser Methoden in relationale Wissensbasen, insbesondere in den Linked Open Daten. Wir geben einen Überblick über repräsentative statistische relationale Lernansätze, z.B. die Induktive Logikprogrammierung und Probabilistische Relationale Modelle. Während das logikbasierte Reasoning neue Beziehungen unter der Nutzung von Ontologien ableiten und diese einbeziehen kann, kann maschinelles Lernen neue Beziehungen (mit gewisser Wahrscheinlichkeit) durch Induktion ausschließlich auf der Basis der vorliegenden Daten vorhersagen. Da die Verarbeitung von massiven Datenmengen in der Regel erforderlich ist, wenn maschinelle Lernmethoden in die Beziehungsvorhersage eingesetzt werden, diskutieren wir auch die Skalierbarkeit des maschinellen Lernens sowie die erhebliche Herausforderung, die sich aus unvollständigen relationalen Daten ergibt (z. B. Daten aus sozialen Netzen, die oft für manche Benutzer wesentlich umfangreicher sind als für Anderen). Der Hauptbeitrag der vorliegenden Arbeit besteht darin, ein Lernframework namens Statistical Unit Node Set (SUNS) zu entwickeln und einen im Framework angewendeten multivariaten Prädiktionsansatz einzubringen. Wir argumentieren, dass multivariate Vorhersageansätze am besten für die Bearbeitung von großen und dünnbesetzten Datenmatrizen geeignet sind. Je nach den Eigenschaften und der beabsichtigten Anwendung der Daten kann der Ansatz auf verschiedene Weise erweitert werden. In empirischen Studien werden zwei Erweiterungen des Ansatzes--ein kernelisierter Ansatz sowie ein probabilistischer Ansatz zur Behandlung komplexer n-stelliger Beziehungen-- diskutiert und auf realen Datensätzen untersucht. Ein weiterer Beitrag dieser Arbeit ist die Anwendung des SUNS Frameworks auf verschiedene Bereiche. Wir konzentrieren uns auf drei Anwendungen: 1. In der Analyse sozialer Netze stellen wir einen kombinierten Ansatz von induktivem und deduktivem Reasoning vor, um Benutzern Filme zu empfehlen. 2. In den Biowissenschaften befassen wir uns mit dem Problem der Priorisierung von Krankheitsgenen. 3. In den Empfehlungssystemen beschreiben und untersuchen wir das Backend einer mobilen App "BOTTARI", das personalisierte ortsbezogene Empfehlungen von Restaurants bietet

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    Predicting the Effectiveness of Self-Training: Application to Sentiment Classification

    Full text link
    The goal of this paper is to investigate the connection between the performance gain that can be obtained by selftraining and the similarity between the corpora used in this approach. Self-training is a semi-supervised technique designed to increase the performance of machine learning algorithms by automatically classifying instances of a task and adding these as additional training material to the same classifier. In the context of language processing tasks, this training material is mostly an (annotated) corpus. Unfortunately self-training does not always lead to a performance increase and whether it will is largely unpredictable. We show that the similarity between corpora can be used to identify those setups for which self-training can be beneficial. We consider this research as a step in the process of developing a classifier that is able to adapt itself to each new test corpus that it is presented with

    Extracting Implicit Social Relation for Social Recommendation Techniques in User Rating Prediction

    Full text link
    Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest items to users that might be interesting for them. Recent studies illustrate that incorporating social trust in Matrix Factorization methods demonstrably improves accuracy of rating prediction. Such approaches mainly use the trust scores explicitly expressed by users. However, it is often challenging to have users provide explicit trust scores of each other. There exist quite a few works, which propose Trust Metrics to compute and predict trust scores between users based on their interactions. In this paper, first we present how social relation can be extracted from users' ratings to items by describing Hellinger distance between users in recommender systems. Then, we propose to incorporate the predicted trust scores into social matrix factorization models. By analyzing social relation extraction from three well-known real-world datasets, which both: trust and recommendation data available, we conclude that using the implicit social relation in social recommendation techniques has almost the same performance compared to the actual trust scores explicitly expressed by users. Hence, we build our method, called Hell-TrustSVD, on top of the state-of-the-art social recommendation technique to incorporate both the extracted implicit social relations and ratings given by users on the prediction of items for an active user. To the best of our knowledge, this is the first work to extend TrustSVD with extracted social trust information. The experimental results support the idea of employing implicit trust into matrix factorization whenever explicit trust is not available, can perform much better than the state-of-the-art approaches in user rating prediction

    Causal Discovery from Temporal Data: An Overview and New Perspectives

    Full text link
    Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing casual discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series casual discovery, and event sequence casual discovery. However, most previous surveys are only focused on the time series casual discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data casual discovery.Comment: 52 pages, 6 figure

    Menetelmiä mielenkiintoisten solmujen löytämiseen verkostoista

    Get PDF
    With the increasing amount of graph-structured data available, finding interesting objects, i.e., nodes in graphs, becomes more and more important. In this thesis we focus on finding interesting nodes and sets of nodes in graphs or networks. We propose several definitions of node interestingness as well as different methods to find such nodes. Specifically, we propose to consider nodes as interesting based on their relevance and non-redundancy or representativeness w.r.t. the graph topology, as well as based on their characterisation for a class, such as a given node attribute value. Identifying nodes that are relevant, but non-redundant to each other is motivated by the need to get an overview of different pieces of information related to a set of given nodes. Finding representative nodes is of interest, e.g. when the user needs or wants to select a few nodes that abstract the large set of nodes. Discovering nodes characteristic for a class helps to understand the causes behind that class. Next, four methods are proposed to find a representative set of interesting nodes. The first one incrementally picks one interesting node after another. The second iteratively changes the set of nodes to improve its overall interestingness. The third method clusters nodes and picks a medoid node as a representative for each cluster. Finally, the fourth method contrasts diverse sets of nodes in order to select nodes characteristic for their class, even if the classes are not identical across the selected nodes. The first three methods are relatively simple and are based on the graph topology and a similarity or distance function for nodes. For the second and third, the user needs to specify one parameter, either an initial set of k nodes or k, the size of the set. The fourth method assumes attributes and class attributes for each node, a class-related interesting measure, and possible sets of nodes which the user wants to contrast, such as sets of nodes that represent different time points. All four methods are flexible and generic. They can, in principle, be applied on any weighted graph or network regardless of what nodes, edges, weights, or attributes represent. Application areas for the methods developed in this thesis include word co-occurrence networks, biological networks, social networks, data traffic networks, and the World Wide Web. As an illustrating example, consider a word co-occurrence network. There, finding terms (nodes in the graph) that are relevant to some given nodes, e.g. branch and root, may help to identify different, shared contexts such as botanics, mathematics, and linguistics. A real life application lies in biology where finding nodes (biological entities, e.g. biological processes or pathways) that are relevant to other, given nodes (e.g. some genes or proteins) may help in identifying biological mechanisms that are possibly shared by both the genes and proteins.Väitöskirja käsittelee verkostojen louhinnan menetelmiä. Sen tavoitteena on löytää mielenkiintoisia tietoja painotetuista verkoista. Painotettuna verkkona voi tarkastella esim. tekstiainestoja, biologisia ainestoja, ihmisten välisiä yhteyksiä tai internettiä. Tällaisissa verkoissa solmut edustavat käsitteitä (esim. sanoja, geenejä, ihmisiä tai internetsivuja) ja kaaret niiden välisiä suhteita (esim. kaksi sanaa esiintyy samassa lauseessa, geeni koodaa proteiinia, ihmisten ystävyyksiä tai internetsivu viittaa toiseen internetsivuun). Kaarten painot voivat vastata esimerkiksi yhteyden voimakuutta tai luotettavuutta. Väitöskirjassa esitetään erilaisia verkon rakenteeseen tai solmujen attribuutteihin perustuvia määritelmiä solmujen mielenkiintoisuudelle sekä useita menetelmiä mielenkiintoisten solmujen löytämiseksi. Mielenkiintoisuuden voi määritellä esim. merkityksellisyytenä suhteessa joihinkin annettuihin solmuihin ja toisaalta mielenkiintoisten solmujen keskinäisenä erilaisuutena. Esimerkiksi ns. ahneella menetelmällä voidaan löytää keskenään erilaisia solmuja yksi kerrallaan. Väitöskirjan tuloksia voidaan soveltaa esimerkiksi tekstiaineistoa käsittelemällä saatuun sanojen väliseen verkostoon, jossa kahden sanan välillä on sitä voimakkaampi yhteys mitä useammin ne tapaavat esiintyä keskenään samoissa lauseissa. Sanojen erilaisia käyttöyhteyksiä ja jopa merkityksiä voidaan nyt löytää automaattisesti. Jos kohdesanaksi otetaan vaikkapa "juuri", niin siihen liittyviä mutta keskenään toisiinsa liittymättömiä sanoja ovat "puu" (biologinen merkitys: kasvin juuri), "yhtälö" (matemaattinen merkitys: yhtälön ratkaisu eli juuri) sekä "indoeurooppalainen" (kielitieteellinen merkitys: sanan vartalo eli juuri). Tällaisia menetelmiä voidaan soveltaa esimerkiksi hakukoneessa: sanalla "juuri" tehtyihin hakutuloksiin sisällytetään tuloksia mahdollisimman erilaisista käyttöyhteyksistä, jotta käyttäjän tarkoittama merkitys tulisi todennäköisemmin katetuksi hakutuloksissa. Merkittävä sovelluskohde väitöskirjan menetelmille ovat biologiset verkot, joissa solmut edustavat biologisia käsitteitä (esim. geenejä, proteiineja tai sairauksia) ja kaaret niiden välisiä suhteita (esim. geeni koodaa proteiinia tai proteiini on aktiivinen tietyssä sairauksessa). Menetelmillä voidaan etsiä esimerkiksi sairauksiin vaikuttavia biologisia mekanismeja paikantamalla edustava joukko sairauteen ja siihen mahdollisesti liittyviin geeneihin verkostossa kytkeytyviä muita solmuja. Nämä voivat auttaa biologeja ymmärtämään geenien ja sairauden mahdollisia kytköksiä ja siten kohdentamaan jatkotutkimustaan lupaavimpiin geeneihin, proteiineihin tms. Väitöskirjassa esitetyt solmujen mielenkiintoisuuden määritelmät sekä niiden löytämiseen ehdotetut menetelmät ovat yleispäteviä ja niitä voi soveltaa periaatteessa mihin tahansa verkkoon riippumatta siitä, mitä solmut, kaaret tai painot edustavat. Kokeet erilaisilla verkoilla osoittavat että ne löytävät mielenkiintoisia solmuja

    A Comprehensive Survey on Graph Summarization with Graph Neural Networks

    Full text link
    As large-scale graphs become more widespread, more and more computational challenges with extracting, processing, and interpreting large graph data are being exposed. It is therefore natural to search for ways to summarize these expansive graphs while preserving their key characteristics. In the past, most graph summarization techniques sought to capture the most important part of a graph statistically. However, today, the high dimensionality and complexity of modern graph data are making deep learning techniques more popular. Hence, this paper presents a comprehensive survey of progress in deep learning summarization techniques that rely on graph neural networks (GNNs). Our investigation includes a review of the current state-of-the-art approaches, including recurrent GNNs, convolutional GNNs, graph autoencoders, and graph attention networks. A new burgeoning line of research is also discussed where graph reinforcement learning is being used to evaluate and improve the quality of graph summaries. Additionally, the survey provides details of benchmark datasets, evaluation metrics, and open-source tools that are often employed in experimentation settings, along with a discussion on the practical uses of graph summarization in different fields. Finally, the survey concludes with a number of open research challenges to motivate further study in this area.Comment: 20 pages, 4 figures, 3 tables, Journal of IEEE Transactions on Artificial Intelligenc
    corecore