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Abstract

With the increasing amount of graph-structured data available, finding in-
teresting objects, i.e., nodes in graphs, becomes more and more important.
In this thesis we focus on finding interesting nodes and sets of nodes in
graphs or networks. We propose several definitions of node interestingness
as well as different methods to find such nodes.

Specifically, we propose to consider nodes as interesting based on their rele-
vance and non-redundancy or representativeness w.r.t. the graph topology,
as well as based on their characterisation for a class, such as a given node
attribute value. Identifying nodes that are relevant, but non-redundant to
each other is motivated by the need to get an overview of different pieces
of information related to a set of given nodes. Finding representative nodes
is of interest, e.g. when the user needs or wants to select a few nodes that
abstract the large set of nodes. Discovering nodes characteristic for a class
helps to understand the causes behind that class.

Next, four methods are proposed to find a representative set of interesting
nodes. The first one incrementally picks one interesting node after another.
The second iteratively changes the set of nodes to improve its overall in-
terestingness. The third method clusters nodes and picks a medoid node
as a representative for each cluster. Finally, the fourth method contrasts
diverse sets of nodes in order to select nodes characteristic for their class,
even if the classes are not identical across the selected nodes. The first three
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methods are relatively simple and are based on the graph topology and a
similarity or distance function for nodes. For the second and third, the user
needs to specify one parameter, either an initial set of k nodes or k, the size
of the set. The fourth method assumes attributes and class attributes for
each node, a class-related interesting measure, and possible sets of nodes
which the user wants to contrast, such as sets of nodes that represent dif-
ferent time points. All four methods are flexible and generic. They can, in
principle, be applied on any weighted graph or network regardless of what
nodes, edges, weights, or attributes represent.

Application areas for the methods developed in this thesis include word
co-occurrence networks, biological networks, social networks, data traffic
networks, and the World Wide Web. As an illustrating example, consider a
word co-occurrence network. There, finding terms (nodes in the graph) that
are relevant to some given nodes, e.g. branch and root, may help to identify
different, shared contexts such as botanics, mathematics, and linguistics. A
real life application lies in biology where finding nodes (biological entities,
e.g. biological processes or pathways) that are relevant to other, given nodes
(e.g. some genes or proteins) may help in identifying biological mechanisms
that are possibly shared by both the genes and proteins.
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Chapter 1

Introduction

This thesis is about graph mining methods that discover useful information
from weighted graphs where nodes represent objects or concepts and edges
relations between them. Specifically, this thesis addresses the following re-
search questions:

1. What kind of nodes are interesting for the user?

2. How to find such interesting nodes in weighted graphs?

One first has to define what kind of nodes are considered to be interesting,
or in other words, worth to explore by the user. How interestingness of
nodes is defined and which method is used to find interesting nodes may
depend on the application at hand. If no method exists yet for finding such
nodes, an appropriate graph mining method has to be developed.

Graph mining refers to methods that search a graph in order to find
some information [35]. It often denotes finding interesting patterns, such as
frequent subgraphs, within a graph. We focus on mining nodes and sets of
nodes from graphs or networks instead. The terms graph, weighted graph
and network are considered to be synonyms in this thesis.

An application area for such methods is biology. Biological networks can
represent such diverse information as protein-protein interactions [101], bi-
ological pathways [80], metabolic networks [46], food webs [145], biological
neural networks [140], and they can span multiple types of relationships [43].
In general, in a biological network nodes represent biological entities (e.g.
genes, proteins, or pathways) and edges represent biological relations be-
tween them (e.g. a gene codes a protein, or a protein is active in a pathway).
Edge weights can state, e.g., the reliability of the relationship that the edge
represents (e.g. how confident is the data source, from which one obtained
the relation) [43].
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4 1 Introduction

Given a biological network, a user might want to understand how a set
of genes (nodes in the graph) is related to a specific disease (another node).
Finding biological processes or pathways (other nodes in the graph) that are
relevant to both, the disease and the genes, may help in identifying possible
shared biological mechanisms. Another user might need to select a few genes
(nodes) from a large set of genes (nodes) for further study, or want to gain
some insight about the set of genes without looking at all of them. Then,
finding a few genes (nodes) that are representative for the large set of genes
might meet his desire. A user who wants to discover mechanisms behind
the course of a disease, might need to understand which gene expression
patterns are characteristic for one time point, but not for the other time
points. Contrasting different time points and finding genes characteristic
for a class, such as a given time point, may reveal new research hypotheses.

Further application areas include social networks where nodes represent
individuals, edges relationships between them, such as friendship or col-
laboration, and edge weights, e.g., the strength of social relationships [54].
Graphs can also represent data traffic, such as in peer-to-peer (P2P) net-
works, where nodes represent computers, edges communication channels,
and edge weights, e.g., the available bandwith of a channel [91]. Even the
World Wide Web can be modelled as a huge graph in which nodes repre-
sent web pages, edges hyperlinks between them, and edge weights, e.g., the
rarity w.r.t. other edges orginating from the same node [39]. Throughout
the introductory part of this thesis we will use, for illustrating purposes,
examples of a word co-occurrence network where nodes represent terms,
edges pairwise term co-occurrences, and edge weights the intensity of the
relationship, i.e. how often two terms co-occur [129].

In this thesis, we are interested in finding interesting nodes among those
present in the given graph. Nodes are considered to be interesting if they
are either

• relevant and non-redundant based on the graph topology,

• representative based on the graph topology, or

• characteristic for a class, such as a given node attribute value.

Identifying nodes that are relevant, but non-redundant to each other is
motivated by the need to get an overview of different pieces of information
related to a set of given nodes. As an illustrating example, consider a word
co-occurrence network. Suppose a user wants to understand how the terms
branch and root (two nodes) are related to each other. Finding other terms
(other nodes in the graph) that are relevant to both may help to identify
their shared contexts. For instance, the terms tree, equation, and indo-
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european language represent such contexts (such as botanics, mathematics,
and linguistics, respectively). These terms are relevant as each of them
co-occurs with both, branch and root. They are non-redundant, because
they represent different contexts. Hence, these terms may be considered
interesting.

Finding representative nodes is of interest, e.g. when the user needs to
select a few nodes which abstract a large given set of nodes. For instance,
in the word co-occurrence network, given the terms maple, birch, aspen, and
pine, the term birch is representative as it is a typical example among them.

Discovering nodes characteristic for a class might give the user new
insights about that class. Consider again nodes representing terms. It may
be the case that nouns describing organisation units such as branch, section,
and division are characteristic for texts written by managers. Further, nouns
in general might be characteristic for different groups of authors as different
groups of authors tend to use different sets of nouns.

This thesis defines the tasks of finding nodes that are relevant and non-
redundant, or representative based on the graph topology (i.e. nodes, edges,
and edge weights), or characteristic for a class based on their node at-
tributes; proposes definitions for interestingness of such nodes; and gives
relatively simple methods for identifying such nodes.

The graph mining methods presented here find interesting nodes in one
of the following four ways:

• by incrementally picking one interesting node after another,

• by iteratively changing the set of nodes to improve its overall interest-
ingness,

• by clustering nodes and picking a medoid node as representative for
each cluster, or

• by contrasting diverse sets of nodes in order to find nodes characteristic
for a class, even if that class is not identical across the selected nodes.

All four presented methods are flexible and generic. They can in prin-
ciple be applied on a weighted graph or network regardless of what nodes,
edges or weights represent. The first three methods are relatively simple
and are based on a similarity or distance function for nodes. For the sec-
ond and third, the user needs to specify one parameter, either an initial
set of k nodes or k, the size of the set. The fourth method assumes more
information about the nodes such as attributes for each of them.

This introductory part of the thesis is not a review of our research work.
It rather gives the background and context of the research work presented
in Articles I-IV by describing the scientific field and placing the articles’



6 1 Introduction

contents within it. Further, it depicts the problems addressed in Articles
I-IV and describes how they propose to solve these, i.e. summarises the
scientific contributions of those articles.

The rest of this thesis is structured as follows. In Chapter 2, we de-
scribe graphs and how interestingness of nodes can be defined within them,
followed by a review on methods for finding interesting nodes. Afterwards,
we discuss our contributions in Chapter 3. Chapter 4 concludes the intro-
ductory part with answers to the research questions and some notes about
future work, followed by the body of the thesis, the four original publica-
tions.



Chapter 2

Background

In this chapter we first give an overview of how graphs can be used to model
various types of information, including basic notations as well as different
measures for node similarity and distance based on the graph topology. We
then describe different ways of defining what interesting nodes are. After
that we briefly review existing methods for finding such nodes in graphs.
A full review of graph mining, interestingness measures, and methods for
finding interesting nodes is outside the scope of this thesis.

2.1 Graphs as an information model

Information is often modelled as a graph of objects: think of social networks,
biological networks, word co-occurrence networks, or the World Wide Web,
for instance. Next we give some basic notations of graphs and related prop-
erties. Afterwards, we show how node similarity and distance can be defined.

2.1.1 Basic graph notations

Formally a graph is denoted as G = (V,E) where V is the set of nodes (or
vertices) and E ⊆ V ×V is the set of edges. Each edge links two nodes and
is said to be incident to those two nodes.

Graphs can be directed or undirected. In a directed graph each edge
e ∈ E connecting two nodes u and v is an ordered pair (u, v), whereas in
an undirected graph it is an unordered pair {u, v}. For example, the World
Wide Web is often modelled as a directed graph as the hyperlinks point
from one web page to another. Word co-occurrence networks again are in
many models undirected, because if term u co-occurs with term v in the
same sentence, then also term v co-occurs with term u in that sentence.

7



8 2 Background

Biological networks can be directed (a gene codes a protein) or undirected
(a protein interacts with another protein).

A heterogeneous graph is a graph where nodes and/or edges are of mul-
tiple types [124]. For example, biological networks often are heterogeneous:
nodes can represent genes, proteins, pathways, etc. and edges different rela-
tions between them such as coding, participation, interactions, etc. A bio-
logical network can also be homogeneous as in the case of protein interaction
networks [66], where nodes represent only proteins and edges only interac-
tions between two proteins.

A graph is called weighted if a weight w(e), w : E → R+ is assigned
to each edge e ∈ E. Edge weights often represent the intensity of the
relationship (e.g. how often two terms co-occur) [129], or the length of the
edge (e.g. the length of a road between two intersections) [35]. They can
also state the reliability of the relationship that the edge represents (e.g.
how confident is the data source, from which one obtained the relation) [43].

A graph is called probabilistic if the edge weights w(e), w : E → [0, 1]
represent probabilities (or uncertain relations), such as the probability that
the relationship exists [120]. These can be used, e.g. to model the infor-
mativeness and reliability of the relationships in a biological network [43].
Further, such settings arise in probabilistic or uncertain databases [29, 37].

A graph G′ = (V ′, E′) is a subgraph of graph G = (V,E) if V ′ ⊆ V and
E′ ⊆ E.

Given a node u ∈ V the set of its neighbouring or adjacent nodes is
defined as Γ(u) = {v : {u, v} ∈ E}. The size of that set |Γ(u)| is the
degree of node u, which is equal to the number of edges connected to u.
Similarly, on a directed graph the set of neighbouring nodes, which node u
is pointing to and pointed by, can be defined as Γout(u) = {v : (u, v) ∈ E}
and Γin(u) = {v : (v, u) ∈ E} respectively. The number of nodes in these
sets are the outdegree |Γout(u)| and the indegree |Γin(u)| of node u.

A (undirected) path P between two nodes u1 and uk consists of subse-
quent nodes and edges and can be specified by its edges: P = {e1, . . . , ek}
= {{u1, u2}, {u2, u3}, . . . , {uk−1, uk}} ⊆ E.

Two nodes are connected if there exists a path between them. A graph
is connected if every two nodes of the graph are connected.

The length len(P ) of a path P is the number of edges along the path.
The shortest path sp(u, v) between two nodes u and v is then the path

with the minimum number of edges from node u to node v [35]. Alterna-
tively, the path from node u to node v which minimises the sum of the edge
lengths along that path can be considered as the shortest path [76].

Given a probabilistic graph, the probability prob(P ) of a path is the
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product of the probabilistic edge weights w : E → [0, 1] along that path [88]:

prob(P ) =
∏

e∈P
w(e).

The best path bp(u, v) between two nodes u and v is then the most probable
path among all paths from node u to node v.

We can now provide definitions of typical node similarity and distance
measures, which are based on the graph topology.

2.1.2 Node similarity and distance

Similarity and distance of nodes based on the graph topology can be defined
in various ways. For example, the similarity between two nodes might be
considered to be high and the distance between them to be low, if there is
an edge adjacent to both of them; if both nodes occur in the same cluster;
or if their neighbourhoods are identical, equivalent, or similar [21, 127].

Whether we consider distance or similarity between nodes is not a crucial
issue. In general, if the similarity between two nodes is high, then the
distance between them is low and vice versa. Hence, if a similarity function
s : V ×V → R+ or distance function d : V ×V → R+ is given, the other one
can be identified, e.g. with the inverse s(u, v) = 1/d(u, v) for all u, v ∈ V ,
with the exception that s(u, v) =∞ if d(u, v) = 0.

A simple definition of distance d(u, v) between two nodes is the length
len(sp(u, v)) of the shortest path sp(u, v) between them:

d(u, v) =





0 if u = v
len(sp(u, v)) if u 6= v and they are connected
∞ else.

(2.1)

Alternatively, in a probabilistic graph the similarity of two nodes u and
v can be defined as the probability of the best path:

s(u, v) =





1 if u = v
prob(bp(u, v)) if u 6= v and they are connected
0 else.

(2.2)

This is a simple but relatively efficient lower bound of the probability that
u and v are connected, a measure known as network reliability [34].

Node similarity measures can also be based on node neighbourhoods.
Such similarity measures include e.g. the relative number of common neigh-
bours [62, 87], Adamic/Adar [1, 87] and preferential attachment [13, 87].
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More complex distance or similarity measures are based, e.g. on maxi-
mum flow between nodes [56, 35], or random walk [106, 131]. In particular,
random walk with restart (RWR) provides a score for how closely two nodes
are related to each other in a weighted graph [131]. The standard random
walk starts from a node u and then iteratively moves from the current node
to a neighbouring one. The (transition) probability of choosing any par-
ticular edge to follow is proportional to the edge weight [133]. In a RWR,
the random walker will at each step return to the original node u with a
probability d. The similarity of two nodes u and v can then be defined as
the steady-state probability that the random walker who started from u will
be at node v. Formally, it can be calculated by

s(u, v) = (1− d)
∑

x∈Γ(u)

s(x, v)

|Γ(x)| + d p(u), (2.3)

where d is the probability to return to node u, p(v) = 1, and p(u) = 0 for
u ∈ V, u 6= v. This is a special case of the personalised PageRank [58, 133]
which we will describe later (Equation 2.9 in Section 2.2.1).

Next we describe various ways of defining interestingness of nodes in
graphs, which are often based on pairwise node similarities or distances.
We also briefly comment on interestingness of edges and subgraphs.

2.2 Interesting nodes

Given data represented as a graph, a user might want to find interesting
nodes or sets of interesting nodes. Interestingness of nodes can be defined
in various ways. In this thesis we are interested in finding nodes that are
relevant and non-redundant, or representative based on the graph topology,
or characteristic for a class, e.g. a given node attribute value. To look
in particular at these types of interestingness is a choice we made for this
thesis.

In the following sections we review existing definitions for each of these
separately. Thereby we unify the terminology and equations to make them
easily comparable. In addition we briefly review related problems, where
the aim is to find interesting objects, but which are not modelled as graph
mining problems.

2.2.1 Relevance

Some nodes in a given graph might be more relevant than others. This is
the case, e.g. when a user is interested only in some parts of the information
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represented by the graph. Consider a word co-occurrence network of mil-
lions of terms (nodes) and a user who wants to understand how the terms
branch and root are related to each other. Then, the terms tree, maple and
birch represent a set of relevant terms as each of them may connect the two
given terms, whereas other terms such as cow, walk and fun are not.

The definition of node, edge, or subgraph relevance might be based on
the graph topology alone (global relevance), or alternatively, on the graph
topology w.r.t. some given nodes (relative relevance).

Next we describe global relevance in more detail and present typical
measures for it, followed by a review of relative relevance and its measures.

Global relevance of nodes. The global relevance of a node is defined by
the topology of a given graph alone. For example, one might be interested
in finding nodes in a graph which are relevant w.r.t. all other nodes [142].

Consider again the word co-occurrence network of terms. There, the
terms tree and indo-european language might be connected to many other
terms and hence be considered as relevant terms w.r.t. the whole graph. In
contrast, the terms birch or English might be connected to few other terms
and considered as less relevant.

In biological networks central genes or proteins are those that are evo-
lutionarily well conserved [148] and whose removal or disruption causes
lethality [44, 53]. Finding central proteins offers to identify which proteins
serve as the evolutionary backbone within all proteins of an organism [148].

In general, the centrality of a node is a typical measure for its global
relevance [48, 67] and various definitions of node centrality exist (for an
overview see, e.g. [36]). Centrality can be viewed to measure the influence
of the node [142]. Identifying influential persons in social networks is of
interest, e.g. if a company wants to sell a new product, but can address the
advertisement only to a limited amount of people.

The centrality of a node is often defined by its degree (degree central-
ity) [48]:

rel(u) = |Γ(u)|, (2.4)

which can be normalised by the number of nodes in the graph not including
u in order to rescale the centrality values such that rel(u) ∈ [0, 1]. Thus,
nodes with many edges are considered more central.

Alternatively, one can define the centrality of a node as the number
of the shortest paths between any other two nodes in the graph that go
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through this node (betweenness centrality) [47, 20]:

rel(u) =
∑

v,w∈V
u6=v 6=w

|{sp(v, w) : sp(v, w) passes through u}|
|sp(v, w)| , (2.5)

which can be normalised by the number of pairs of nodes not including u.
That is, a node that lies on a high fraction of shortest paths connecting
pairs of nodes is considered more central. A node which has few neighbours
(low degree centrality) can still be crucial for many pairwise connections
between nodes (high betweenness centrality).

The centrality of a node can also be defined as the inverse sum of shortest
distances from the node to all other nodes (closeness centrality) [117, 20]:

rel(u) = (
∑

v∈V
d(u, v))−1, (2.6)

which can be normalised by the number of nodes. That is, a node which in
average is close to many other nodes in the graph is considered more central.
A node can have a low degree centrality, but high closeness centrality, e.g.
if its neighbours have high degree centrality. The betweenness centrality of
such a node is high, if it is in a crucial position w.r.t. many shortest paths,
and it is low, if many alternative shortest paths exist.

These centrality measures have been generalised for weighted and di-
rected graphs [14, 20, 36, 103, 141].

The PageRank [22] of a node is a measure of importance in the setting
of directed graphs such as the World Wide Web. A node u has a high
PageRank if the sum of the ranks of the nodes v, (v, u) ∈ E is high. That
is, either u has many nodes that link to it, it has a few, but highly ranked
nodes linking to it, or something between these two extreme cases [22, 106].
The PageRank of a node u is defined as

rel(u) = (1− d)
∑

v∈Γin(u)

rel(v)

|Γout(v)| + d
1

|V | , (2.7)

where d ∈ [0, 1] is a damping factor. If PageRank is thought of as random
walk, then the PageRank of a node u is the steady-state probability that the
random walker will be at node u and the damping factor d is the probability
that the random walker jumps from a node to another random node. Hence,
the PageRank of a node is influenced by the PageRank of nodes which point
to it. The PageRank has also been generalised for weighted graphs [109].

In the context of web page ranking, another well known approach is
Hypertext Induced Topic Selection (HITS) [73]. There, the aim is to find
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authority nodes (web pages) relevant to a specific (search) topic. Authorities
are those nodes that are pointed to by several hub nodes, and hubs are those
nodes that link to several authority nodes. Formally, the authority and hub
scores of a node u can be defined as

relaut(u) =
∑

v∈Γin(u)

relhub(v)

relhub(u) =
∑

v∈Γin(u)

relaut(v),
(2.8)

which are normalised such that their squares sum up to one, i.e.∑
v∈V relhub(v)2 = 1 and

∑
v∈V relaut(v)2 = 1. Then, the web pages

(nodes) with a high authority score can be defined to be the most rele-
vant web pages (nodes). Authorities can also be of interest in the task of
understanding information propagation in a social network [8]. There, one
might distinguish between peers (e.g. friends) and authorities (e.g. movie
stars) that influence an individual differently. In general, node rankings pro-
duced by PageRank as well as HITS correlate with ranking nodes by their
in-degree [39]. Further, both methods can be generalised and combined into
a unified framework.

In a heterogeneous network nodes of different types can be ranked dif-
ferently [124]. This is of interest, e.g. in a co-authorship network, where
authors (nodes) are relevant if they published many papers in highly ranked
conferences (nodes of another type) or if they co-authored papers with many
highly ranked authors. Conferences again are relevant if many papers from
highly ranked authors are published there.

Related problems outside the scope of this thesis include finding all
missing or future nodes and edges [87, 72], finding anomalous nodes [123, 7],
edges [25] or subgraphs [105], or finding relevant edges or subgraphs [51, 130,
38] in a given graph. In contrast, we are interested in finding interesting
nodes among those present in the given graph.

Relative relevance of nodes. The relative relevance of nodes is defined
by the topology of the given graph as well as some given nodes. These nodes
can be used to indicate subjective interestingness in the objects the nodes
represent, the connections between them, and much more.

Consider again the word co-occurrence network as an example. Then, a
single term such as root might be given by the user. The relevance of other
terms might depend on whether they often co-occur with the term root or
not. The terms tree, maple and birch, e.g. might constitute a set of relevant
terms w.r.t. the term root.

In biology a common problem is that high-throughput techniques asso-
ciate several genes with a disease or trait. Given a heterogeneous biological
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network, finding biological processes or pathways (nodes in the graph) that
are relevant both to the disease and the given genes (nodes obtained by the
high-throughput techniques) helps to understand how they are related and
may help identify possible shared biological mechanisms.

From now on, we will refer to the given nodes as (positive) query nodes,
or depending on the example at hand, as query terms, query genes, and so
on. Note that we refer to these as query nodes specified by the user though
they might have come from somewhere else than a query, such as a data
mining step or a program.

Formally, relative relevance of nodes can be based on node similarity.
That is, one can be interested in finding nodes with high similarity to the
given query nodes. (We discussed node similarities in Section 2.1.2.)

Further, relative relevance of a node u w.r.t. a (positive) query node q
might be defined by a set of paths connecting u with q (e.g. all of them, or
the k shortest paths) [142]. There, longer paths contribute less than shorter
ones to the relevance. Formally, such a relevance can be defined by

relP (u, q) =
∑

P∈P(u,q)

α−len(P ).

That is, a node u is highly relevant to q if there exist many paths (α = 1)
or many short paths (α > 1) between u and q. The relative relevance of a
node u w.r.t. a set of (positive) query nodes Qp can then be defined as the
average relevance relative to that set Qp

relP (u,Qp) =
1

|Qp|
∑

q∈Qp
relP (u, q)

or, alternatively, in order to require node u to have high relevance to each
query node q ∈ Qp, as the minimum relevance

relP (u,Qp) = min{relP (u, q) | q ∈ Qp}.

Personalised PageRank (PPR) [58, 65] and personalised HITS [27, 142]
rank Web pages not only according to the graph topology of the World
Wide Web, but in addition take the query terms into account. Specifically,
the personalised PageRank can be defined as:

rel(u) = (1− d)
∑

v∈Γ(u)

rel(v)

|Γ(v)| + d p(u), (2.9)

where p(u) ≥ 0,
∑

u∈V p(u) = 1 is the personalised score of node u [58].
The damping factor d specifies how strongly the personalised PageRank is
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biased towards the personalised scores. In the special case where p(x) = 1
for a node x ∈ V and p(u) = 0 for all other nodes u ∈ V, u 6= x, the
personalised PageRank rel(u) gives the similarity between nodes u and x
(as described before in Equation 2.3 in Section 2.1.2).

There are some settings which are closely related to, but slightly differ
from our setting. For instance, in the setting of recommendation systems the
aim is to identify new products that are either similar to products currently
liked by the user (content-based recommendation) [64] or have been liked by
similar users (collaborative recommendation) [12]. In information retrieval
(IR) a classical problem is to identify a set of relevant objects (typically
documents) w.r.t. some query entities (typically terms) [99, 93]. In both
problems, the selection of objects is typically based on the information
contents of objects. Hence, they differ from the setting we consider in this
thesis, where relevance is based on the graph topology. Further, we specify
queries by nodes, not by keywords.

Related problems outside the scope of this thesis include finding rele-
vant edges or subgraphs w.r.t. some given nodes. For instance, one can be
interested in finding unusual relationships [89], or in capturing the relation-
ship or the connectivity between given nodes [45, 61, 6]. In contrast, we are
interested in finding interesting nodes w.r.t. some given nodes.

2.2.2 Non-redundancy

Given a set of relevant nodes, these nodes can be very similar or redundant
to each other based on the graph topology. To ensure diversity within the
resulting set of nodes, these nodes should not only be relevant, but they
should also be mutually non-redundant or complementary to each other.

Consider again the word co-occurrence network. Given the term root,
the terms tree, maple and birch constitute a set of relevant terms w.r.t. root,
but they are redundant to each other as they all represent trees. On the
other hand, the terms tree, equation, and indo-european language constitute
a set of terms that are relevant w.r.t. root, but represent a diverse set of
contexts (botany, mathematics, and linguistics, respectively).

Given a biological network, finding biological processes or pathways that
are non-redundant, i.e. finding a more varied result, is probably more useful
for the biologist as it can represent several different hypotheses.

A variant of random walk with restart has been proposed to directly
address non-redundancy [132]. There, relevance is measured by the per-
sonalised PageRank, and non-redundancy by the adjacency matrix (or the
personalised adjacency matrix, which is biased towards the query vector)
weighted by the personalised PageRank vector. Specifically, the overall rel-
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evance and non-redundancy of a set of (retrieved) nodes R ⊆ V is measured
by the difference of its relevance and redundancy:

REL(R) = relP (R)− red(R), (2.10)

where relP (R) and red(R) are defined as follows. The relevance of the set
R of nodes is the sum of the individual relevances of nodes u ∈ R:

relP (R) = 2
∑

u∈R
relP (u,Qp), (2.11)

where the relevance relp(u,Qp) is the personalised PageRank of node u.
That is, a set R of nodes has high relevance if the nodes within R have a
high PageRank which was biased by QP . The redundancy of the set R is

red(R) =
∑

u,v∈R
α(u, v) relP (v,Qp) (2.12)

where α(u, v) is the element at the uth row and vth column of the row-
normalised adjacency matrix of the graph. That is, the redundancy of a set
R of nodes is low if edges (u, v) that link nodes u, v ∈ R have low weight
and the terminal nodes v of such edges have a low personalised PageRank.

In IR the aim is to retrieve documents from various categories where
queries and documents may belong to more than one category [52, 19, 3].
Finding documents that are relevant (e.g. similar) w.r.t. query terms, but
at the same time non-redundant to each other, can be achieved, e.g. by
balancing the similarity (relevance) between documents and the query and
the inverse similarity (non-redundancy) among documents [23]. These rel-
evance and non-redundancy measure have been adapted for the setting of
query nodes in a graph [96] as follows. The relevance and non-redundancy
are balanced by their difference:

REL(u,QP , R) = relP (u,QP )− red(u,R), (2.13)

where the relevance of a node u w.r.t. to the set of positive query nodes QP
is measured by their similarity:

relP (u,QP ) = α s(u,QP )

and the redundancy of a node u w.r.t. the set of previously retrieved nodes
R is measured by the similarity of the most similar node within R:

red(u,R) = (1− α) max
v∈R

s(u, v).
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Several subsequent IR approaches find relevant and non-redundant doc-
uments by preferring documents that cover most categories of a query over
those that cover only a few [150, 32, 3]; by generating related queries [114];
by learning an ordering of search results from a diverse set of orderings
based on user feedback [115]; or by maximising the probability of retrieving
at least one relevant document among the top k documents [28, 3].

Graph-based approaches for word sense disambiguation identify the dif-
ferent senses (or meanings) of a term based on a word co-occurrence net-
work [100]. For example, the term bank can denote a building or a sloping
land amongst other meanings. Typically terms (nodes) adjacent to each
other are considered to be redundant [139, 2]. Non-redundancy can also
be addressed indirectly when terms in the word co-occurrence network are
clustered and terms within a cluster are considered to be redundant [42].

Non-redundancy has also been defined in recommendation systems [121].
As stated in Section 2.2.1, the setting differs from the one we consider here.
Interestingness in these problems is defined on the information contents of
objects (products) and not on the graph topology. We next briefly describe
how non-redundancy is defined in this setting based on a pairwise similarity
measure, an idea that can be used also in graphs. The aim is to find a set of
recommendations that are relevant (e.g. similar) to a given product or set of
products QP , but at the same time non-redundant to each other. Then, the
overall relevance of a product can be defined as the product of its relevance
to QP and its non-redundancy to a set of recommended products R [121]:

REL(u,QP , R) = relP (u,QP ) (1− red(u,R)), (2.14)

as their difference:

REL(u,QP , R) = α relP (u,QP ) + (1− α) (1− red(u,R)), (2.15)

where the parameter α is again used to weight either the relevance or non-
redundancy more strongly, or as their harmonic mean (i.e. the reciprocal of
the arithmetic mean of the reciprocals):

REL(u,QP , R) = 2 (relP (u,QP )−1 + (1− red(u,R))−1)−1. (2.16)

The relevance of a node u w.r.t. to the set of given products QP is measured,
independently of which overall relevance is chosen, by their similarity:

relP (u,QP ) = s(u,QP ).

The redundancy of a node u w.r.t. the set of previously retrieved nodes R
is measured by the average similarity to the nodes in R:

red(u,R) =
1

|R|
∑

v∈R
s(u, v). (2.17)
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The redundancy of a set of products has also been defined as the sum
of pairwise similarities among products in the set [153]:

red(R) =
1

2

∑

u∈R

∑

v∈R
s(u, v). (2.18)

Further, non-redundancy has been addressed in various other settings.
It can be used, e.g. in drug discovery in order to find a set of diverse chemical
compounds [119], in automated planning in order to find a diverse set of
solutions (or plans) [122], and for simplifying a given graph [130].

2.2.3 Irrelevance

Some nodes in a given graph might be uninteresting or irrelevant to the
user. This is the case, e.g. when a user is interested only in some parts of
the information represented by the graph. Remember that in the setting of
relative relevance the user can specify positive query nodes to indicate what
she is interested in and other nodes are then considered less relevant. Here
we consider the case where the user can explicitly specify some negative
query nodes to indicate what she is not interested in.

Consider again the word co-occurrence network and a user who is not
interested in mathematics. When the term mathematics is specified as a
negative query term the terms equation and formula are quite irrelevant.

Given a biological network, the user might specify well-known results as
negative query nodes, and thus guide the mining process towards novel and
therefore more interesting results.

In general, the desirable effect of irrelevance is similar to non-redundancy:
a node close to a negative query node is irrelevant, just like a node close to
another node is mutually redundant.

A variant of random walk considers positive as well as negative query
nodes [133]. There, the user can specify one positive query node, a set of
favourable nodes, and a set of negative query nodes. Then, the original
graph structure is refined as follows. Edges are added from the positive
query node to each favourable node, and their weights are determined by
the number of neighbouring nodes as well as by the number of positive
query nodes. Further, edges are added from each negative query node and
k neighbouring nodes to a newly introduced sink node. The k neighbouring
nodes as well as the edge weights for all edges incident to the sink node are
determined by a random walk with restart on the original graph. Then,
a random walk of restart is performed on the refined graph in order to
determine the relevances from the positive query node to all other nodes
in the graph. Such a random walk of restart on the refined graph will
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more likely visit favourable nodes and their neighbours, and less likely visit
negative query nodes and their neighbours, than a random walk of restart
on the original graph. Hence, node relevances w.r.t. the positive query node
are increased for favourable nodes and their neighbours, and decreased for
negative query nodes and their neighbours.

Negative (query) objects have been addressed in various other settings
as well. For instance, in IR documents containing a negative query term are
often assumed to be least interesting for the user [79]. Though, remember
that this problem differs from the problem considered in this thesis (as
stated before in Sections 2.2.1 and 2.2.2). In IR, queries are specified by
terms, whereas we assume queries are specified by query nodes in a graph.

In the setting of automated planning, a user might prefer to specify not
only positive, but also negative query constraints in order to state what has
to be rejected rather than what has to be accepted [136]. However, this is
typically not viewed as a graph mining problem.

In the setting of link prediction, it has been proposed to assign edges a
negative weight if they represent foes or distrust in social networks [85]. In
contrast to link prediction which aims to predict missing or future edges,
we are interested in finding interesting nodes present in the given graph.
Further, we assume only positive edge weights.

2.2.4 Representativeness

A node is representative, e.g. if it is a typical example in a large set of nodes.
Consider again the word co-occurrence network. Given the terms maple,

birch, aspen and pine, the term birch is representative as it is a typical
example among them.

In a biological network a gene might be representative for a set of genes
if it is a typical instance of those genes. It can give the biologist some insight
about the set of genes without looking at all of them.

The representative for a subset Vi of nodes can be defined to be the
medoid, i.e. the node of the subset for which the sum of distances to all
other nodes in the subset is the smallest [68]. That is, it can be defined to
be the node that maximises either the closeness centrality (see Equation 2.6)
or, the sum of similarities to all other nodes in the subset:

rep(u, Vi) =
∑

v∈Vi
s(u, v) =

∑

v∈Vi
d(u, v)−1. (2.19)

Alternatively, the representativeness of a node for a given subset of
nodes can be measured by its degree (Equation 2.4), betweenness central-
ity (Equation 2.5), its HITS score (Equation 2.8) [147], or by the relative
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number of neighbours which also belong to that subset [77]:

rep(u, Vi) =
|{v : v ∈ Γ(u), v ∈ Vi}|

|Γ(u)| . (2.20)

Further, a node can be defined to be representative for a subset of nodes
if it is close to that subset, but far away from other subsets on average [134].
Formally, given a partition V1 ∪ . . . ∪ Vk = V of the nodes in a graph, the
representativeness of node u for a subset Vi can be measured by

rep(u, Vi) =
1

|Vi|
∑

v∈Vi
s(u, v) ·

∏

j=1...n
i6=j

(
1− 1

|Vj |
∑

v∈Vj
s(u, v)

)
, (2.21)

where s(·) ∈ [0, 1]. That is, the first multiplicand is the normalised variant
of Equation 2.19 and measures how central node u is for the subset Vi. The
second multiplicand measures how discentral node u is to all other subset
Vj , and is large if u is not central to any other subset.

This representativeness measure (Equation 2.21) has been used, e.g. to
find authors (nodes) and scientific articles (nodes of another type) represen-
tative for sets of years (sets of nodes of yet another type) [134]. Then, the
titles of the representative articles of different periods of times may reveal
that there was a topic shift in between.

Neither do typical settings of two related problems, finding representa-
tive objects and finding representative features, consider data in the form
of graphs, but assume a data set of objects associated with a set of fea-
tures [16, 108]. Then, representativeness may be measured based on infor-
mation gain [108], or a correlation coefficient [55]. Alternatively, features
are grouped into sets of similar features and for each set one feature (e.g.
the medoid) is identified as a representative for that set [68].

Objects can also be selected as representatives such that they are uni-
formly distributed over the space [70]. In addition, various other measures
exist that depend not only on features associated to the objects, but also
assume that class attributes are specified [16, 63]. The quality of a subset
of features is often measured by its performance on a classification task,
i.e. representativeness is measured only indirectly [55]. Alternatively, the
quality of a feature subset can be measured by a representativeness mea-
sure which is based on the features alone, and hence is independent of the
method used for finding such subsets [90].

In both problems, finding representative objects or features, represen-
tatives are used to reduce the number of objects or features, respectively.
One typical application for this is to eliminate irrelevant and redundant
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objects, e.g. in order to reduce computational complexity or prevent over-
fitting when using other methods [90, 149]. Similarly, representative nodes
can be used to reduce the number of nodes of a given graph [147]. This
can be helpful, e.g. for providing quick approximate computations on the
graph, for visualising the graph, or for identifying underlying patterns.

Notice that nodes can be representative as well as non-redundant, if
they are representative for distinct subsets of nodes. In contrast, two nodes
can be non-redundant, but not representative, if they are distant from each
other, but there exist no subsets of nodes they represent.

Further, one can be interested in sampling a subgraph from a large
graph, such that it maintains some topological properties (e.g. node degree
distribution) of the original graph [36, 84]. Alternatively, finding representa-
tive graphs might provide, e.g. a summary of large ensembles of graphs [11].
In contrast, we are only interested in finding interesting nodes.

2.2.5 Characteristic for a class

A node is characteristic for a class if it is a member of a subset of nodes
that share a combination of node attribute values and a class-related in-
terestingness measure of that set lies above a given threshold. This is a
typical problem in bioinformatics, where the aim is to find enriched gene
sets (interesting subsets of nodes), e.g. for virus infected samples. Notice
that here we take node attributes and class attributes into account, but not
the graph topology. The results can then be visualised in a graph and used
for other graph mining methods [111].

Consider again as an example nodes representing terms. The terms
branch, section, and division are all nouns and may be used in the same
sense: a unit of an organisation. Formally, assume terms described by
two node attributes, word category (e.g. the term branch can be used as
a noun or verb) and word sense (e.g. the noun branch can be used in the
sense of a part of a tree or organisation unit), are given. Then, the set
T ′ = {category=noun, sense=organisation unit} of node attribute values
might define the subset of terms VT ′ = {branch, section, division} as they
share the attribute values within T ′.

Let classes : P(V )→ Z+×Z+ be a function that gives the distribution
for a class c ∈ T of a given set VT ′ ⊆ V of nodes, where P(V ) is the
powerset of the nodes V . That is, classes(VT ′) gives the number of nodes
in VT ′ annotated by c and the number of nodes in VT ′ not annotated by c.

Consider again nodes representing terms described by the node at-
tributes word category and word sense. Assume further, different texts
are given, of which some are written by managers. A user might specify
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the node attribute value author=manager as the class she is interested in.
Then, classes(VT ′) gives the number of terms (nodes) in VT ′ which occur
in texts written by managers and the number of terms (nodes) in VT ′ which
do not occur in those texts. Similarly, classes(V \ VT ′) gives the numbers
of other terms that occur in texts written by managers and not.

Then, the class-related interestingness of a set of node attribute values
can be defined as

fc : P(T )→ R,
T ′ 7→ g(classes(VT ′), classes(V \ VT ′))

(2.22)

where P(T ) is the powerset of node attribute values T and VT ′ = V1 ∩
· · · ∩ Vk ⊆ V is the subset of nodes which share the attribute values T ′ =
{t1, . . . , tk} ⊆ T .

In other words, fc is a function g(·) of the class distributions within
and outside of the subset of nodes. The exact definition of function g(·)
varies from one problem variant to another, but the common denominator
is that it is based on the class distributions alone. Often the subsets are
analysed by statistical tests, like Fisher’s exact test, the χ2 test, or the
Binomial probability. (For more information, see, e.g. [33]). Alternatively,
heuristics such as the weighted relative accuracy [82] or the generalisation
quotient [49] can be used. Without loss of generality, we assume small
values of fc(·) indicate high interestingness.

A subset of nodes defined by a set T ′ ⊆ T of node attribute values is
characteristic for the class c ∈ T if the class-related interestingness fc(T ′)
is small. Formally, this can be defined as fc(T ′) ≤ α for a given constant α,
or one can identify the k best subsets of nodes instead of using a fixed
threshold.

Consider again nodes representing terms which are described by the
attributes word category, word sense and authorship. Assume classes(VT ′)
gives the number of terms (nodes) in VT ′ which occur in texts written by
managers and those which are not. Let the class-related interestingness of a
set VT ′ be determined by Fisher’s exact test based on the class distribution.
Then, the interestingness of a set T ′ = {category=noun, sense=organisation
unit} of node attribute values that define the subset of terms VT ′ = {branch,
section, division} is probably high if the terms branch, section, and division
are frequently used in texts written by managers, occur infrequently in texts
written by other authors, and other terms divide more or less evenly across
the different texts. Hence, the terms branch, section, and division that share
the attribute values category=noun and sense=building are characteristic for
texts written by managers.
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Finding such subsets of nodes which are characteristic for a class can be
of interest in various domains. For instance, given a social network where
nodes represent patients and node attributes their medical records, one can
aim to find subsets of patients with a specific diagnosis that share a combi-
nation of medical examination results or living habits [49, 10]. The identified
diagnostic patterns can, e.g. supplement medical consultation systems [10].

Given a graph where nodes represent traffic accidents, the aim can be
to find subsets of accidents of a specific severity that share a combination
of attribute values such as vehicles involved, number of people injured, road
class, speed limit, or light conditions [82]. Finding such sets of traffic acci-
dents may reveal unexpected relations, e.g. that serious and fatal accidents
often involve only a single vehicle.

Other application domains include census data [75], vegetation data [94],
telecommunications [83], and chess endgame positions [83], amongst others.

There are closely related topics where the interestingness of node at-
tribute value combinations is defined in a slightly different manner. For
instance, one might be interested in finding frequent item sets, i.e. frequent
combinations of attribute values, such as category = noun ∧ sense = or-
ganisation unit [4, 98]. One might also be interested in finding emerging
patterns, i.e. item sets for which the support increases significantly from one
class to another [41]. Further, one might be interested in finding associa-
tion rules, such as X 7→ Y , where the antecedent X and consequent Y are
item sets [5]. In categorical data the antecedent and consequent are (at-
tribute, attribute value) pairs such as sense = organisation unit 7→ category
= noun [15, 18]. Alternatively, one might be interested in finding exception
rules, i.e. unexpected association rules which differ from a highly frequent
association rule [125]. That is, unexpected association rules are rules such
as X ∧ Z 7→ Y , where X 7→ Y ′ and Z 67→ Y ′. Here, X and Z are item sets
or (attribute, attribute value) pairs, and Y and Y ′ are different (class at-
tribute, class) pairs. Consider e.g. X to be sense = organisation unit, Z to
be category = noun, Y to be author = manager, and Y ′ to be author = con-
tract worker. Further, one might be interested in finding contrast sets, i.e.
association rules whose frequency differs significantly across classes [15, 60].
One might also be interested in finding classification rules, such as X 7→ Y ,
where the antecedent X consists of attribute value pairs and the consequent
Y is a class [82]. There, the aim is to find a set of rules which allows to
predict the class of any object. In contrast, we are interested in finding
subsets of nodes where each subset itself is characteristic for a class.

Next we review different methods to find interesting nodes in graphs.
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2.3 Methods for finding interesting nodes

Consider data represented as a graph and an interestingness measure of
nodes given. Then, the most interesting nodes can be found by various
methods. A review of all possible methods is out of the scope of this thesis.
We focus on incremental methods that pick one interesting node after an-
other, methods that iteratively improve the overall interestingness by chang-
ing the set of nodes, methods for clustering nodes and picking a medoid as
representative for each cluster, and methods that find diverse sets of nodes
in order to select nodes characteristic for their class.

In the following sections we describe each of these methods. Further,
we briefly review areas where they have been applied.

2.3.1 Incremental methods

In each step, greedy methods make the choice that looks best at that
step [35]. We are especially interested in greedy methods that incrementally
pick one interesting node after another w.r.t. an interestingness measure
int(·). Such an incremental greedy method produces a ranked list of nodes.
In order to find k interesting nodes one can simply select the top k nodes
of the ranked list.

Consider a word co-occurrence network is given as well as a similarity
measure of nodes. Assume that the aim is to find terms (nodes) relevant
w.r.t. the term root, but non-redundant to each other. Then, an incremental
greedy method first finds the most relevant term w.r.t. the term root, which
might be the term tree. The second most relevant term might be maple.
However, the term maple is quite redundant w.r.t. the term tree. Instead,
the term equation might be selected as it is relevant w.r.t. root but non-
redundant w.r.t. tree. Next, the incremental greedy method finds a term
relevant w.r.t. root, but non-redundant w.r.t. the terms tree and equation.
That is, it might find indo-european language as the third most interesting
term.

A greedy method is guaranteed to find a set of k objects (nodes) which
achieves at least 1/k of the optimal score if objects are chosen w.r.t. a func-
tion that is submodular [102]. An interestingness measure int(·) is submod-
ular if it satisfies the following diminishing returns property: the marginal
gain of adding an object to a set A of objects is at least as big as adding it
to any of its supersets B ⊇ A:

int(A ∪ {x})− int(A) ≥ int(B ∪ {x})− int(B).

If the interestingness measure int(·) is not only submodular but also
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nondecreasing (the marginal change is either positive or zero), then a greedy
method is guaranteed to find a set of k objects (nodes) which achieves at
least (e− 1)/e ≈ 63% of the optimal score [102].

Several variants of random walk have been proposed that rank nodes in
an incremental, greedy fashion to capture their relevance and non-redundan-
cy [152, 96, 132]. We have been describing how random walks can measure
node similarities in Section 2.1.2, relevance by (personalised) PageRank
in Section 2.2.1, non-redundancy in Section 2.2.2, and irrelevance in Sec-
tion 2.2.3. Next, we describe three variants of random walk that find rele-
vant and non-redundant nodes by incrementally picking one relevant node
after another which are non-redundant to the previously selected nodes.

First, in an absorbing random walk nodes are selected in an incremental
greedy fashion such that at each step a random walk is performed on the
graph, after which the most relevant node is selected, which is then turned
into an absorbing node, i.e. a node at which a random walk stops [152].
The absorbing nodes diminish the relevance of nodes with high similarity,
because a random walk visiting them will be more likely absorbed than a
random walk visiting more distant nodes. As a result, the diversity across
the selected nodes is enhanced.

Second, in a vertex-inforced random walk nodes are selected in an incre-
mental greedy fashion such that at each step, a random walk is performed on
the graph, the most relevant node is selected, and the transition probabili-
ties are reinforced as follows [96]. The transition probabilities to previously
selected nodes increase, including those from a node to itself. (In this set-
ting each node has an edge to itself.) Thus, a random walker visiting a
node close to an already visited node will probably move to the already
visited node and stay there for some time. As a result, a random walk will
more often visit nodes distant from already visited nodes than nodes close
to an already visited node. Hence, the relevance of nodes distant to already
selected nodes increases and a diverse set of nodes is selected.

Finally, a variant of random walk with restart ranks nodes measuring
their relevance and non-redundancy as follows [132]. Nodes are selected
in an incremental greedy fashion such that at each step, the node is se-
lected which adds the highest marginal contribution to the set of previously
selected nodes w.r.t. the relevance and non-redundancy of Equation 2.10.
This method finds a set of k nodes which achieves at least 63% of the opti-
mal score, as the relevance and non-redundancy measure of Equation 2.10
is submodular and nondecreasing.

Further, incremental greedy methods have been used in IR to find docu-
ments that have high relevance to the query but contain minimal similarity
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to previously selected documents, by selecting, at each step, the document
with the highest marginal relevance and non-redundancy. Then, the greedy
method finds at each iteration the most relevant node, outputs it and adds
it to the set of retrieved nodes R.

Similarly nodes in a graph can be selected one by one w.r.t. the high-
est marginal relevance and non-redundancy of Equation 2.13 [96]. Several
subsequent IR approaches incrementally find documents which are relevant
w.r.t. the query, but mutually non-redundant to each other using other rele-
vance and non-redundancy measures (see e.g. [28, 32, 3] and Section 2.2.2).
Some of these relevance and non-redundancy measures are submodular
(e.g. [3]).

Incremental greedy methods have also been used to rank recommenda-
tions [121]. For instance, such an incremental greedy method has been used
to select, at each step, the recommendation with the highest relevance and
non-redundancy (see Equations 2.14–2.16).

Two graph-based methods for word sense disambiguation also use in-
cremental greedy methods to identify word senses [139, 2]. There, for each
(target) term that should be disambiguated a word co-occurrence network
is built where nodes represent terms co-occurring with the given word [139].
Then an incremental greedy method selects, at each step, the term with ei-
ther the highest degree [139] or the highest PageRank [2]. Neighbours of
previously selected nodes are no longer eligible to be selected. Then, for an
instance of a term its sense is identified as follows. Terms surrounding it
give scores to the selected nodes, from which the one with the highest sum
of scores represents the sense (see [139, 2] for more details).

Further, incremental greedy methods have been used in the setting of
viral marketing in order to find a set of k customers (nodes) of maximum
influence [40, 69]. There, at each step a customer is selected if a marketing
action offered for that customer increases the expected revenue, which can
be measured by a submodular and nondecreasing function [69]. Hence, the
performance is guaranteed to be at least 63% of the optimum.

Incremental greedy methods have also been used in other settings. Of-
ten, at each step the object is selected which has minimum similarity or
maximum distance to previously selected objects. Such greedy methods
have been used, e.g. to find a diverse set of chemical compounds [31], a
diverse set of solutions [59], or a diverse set of reviews [81]. Alternatively,
an incremental greedy method can at each step select the object, e.g. with
the highest information gain w.r.t. previously selected objects [108].
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2.3.2 Iterative improvement

In this section, we review methods that iteratively improve the overall in-
terestingness of a set of nodes. Even though the greedy incremental method
makes the best possible choice in each step, the set of top k nodes is not
necessarily optimal for any k except k = 1.

The iterative method produces a non-redundant set of k relevant nodes,
where k is given. Given an initial (e.g. random) set of k nodes, such a
method iteratively replaces l ≤ k nodes by l new nodes from outside of
the current k nodes if the interestingness of the node set improves. The
swapping is then repeated until no improvements can be achieved anymore.

Consider again the word co-occurrence example. Assume the aim is to
find terms which are relevant w.r.t. the term root, but non-redundant to
each other. Given the terms tree, maple, and equation as the initial set of
nodes, the terms tree and maple might be considered to be redundant as
they represent the same context: botanics. Replacing the term maple by
indo-european language produces a set consisting of the terms tree, indo-
european language, and equation. These terms are relevant as each term
co-occurs with the term root, and at the same time they are non-redundant
as they represent different contexts: botanics, linguistics, and mathematics,
respectively. Hence, the latter set might be more interesting for the user.

The method as such is deterministic (except when there are ties) and
is guaranteed to stop: the number of possible configurations of k nodes is
finite, and since the solution is changed only if it is improved, the method
never returns to a previous solution. Unfortunately the number of possible
solutions is exponential.

Incremental methods (Section 2.3.1) and iterative methods can be com-
bined to find a set of interesting nodes. In a generalised method l− ≤ k
nodes are removed and l+ ≤ k nodes are added at each step. Such a method
with different values of l− and l+, where l− ≤ l+, has been used, e.g. for
feature selection [113]. The greedy incremental (l− = 0 and l+ = 1) and the
iterative improvement (l− = l+) are instances of such a combined approach.

2.3.3 Clustering

The aim of graph clustering or partitioning is to assign nodes into groups
(clusters) such that nodes within the same cluster are strongly connected,
but there are sparse connections between clusters [104]. Alternatively, the
aim can be to identify clusters of nodes such that nodes within the same
cluster share some common characteristics [50].

Consider again the word co-occurrence network. There, the termsmaple,
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birch, aspen and pine might constitute one cluster, and the terms English,
German and Finnish another cluster.

A typical class of clustering methods is hierarchical clustering. There,
nodes are either grouped (bottom-up or agglomerativemethods) or split (top-
down or divisive methods) in an iterative manner [50, 118].

Agglomerative methods start with each node in a cluster of its own [104].
In each iteration, those two clusters are merged that give the best merged
cluster as a result, measured by some linkage criteria. Typical linkage crite-
ria include the highest similarity of two nodes of different clusters (single or
minimum linkage), the highest similarity among those nodes farthest away
from each other w.r.t. a pair of clusters (maximum or complete linkage) or
the highest average similarity of nodes in two different clusters (average or
mean linkage). Other linkage criteria can also be used (see e.g. [118, 151]).

Divisive methods (including graph partitioning) start with all nodes in
one cluster [104, 26]. In each iteration, the cluster is split into (typically
two) clusters [118]. Splitting criteria can be based on node betweenness [51],
minimum cut [57], or low conductance [24], among others.

For both the agglomerative and divisive methods, the clustering can be
finished when exactly k clusters are obtained, where k is a pre-specified
number, or when a threshold of a cluster quality score is reached [118].
Alternatively one can cluster in the agglomerative case until all nodes are
merged to the same cluster, or in the divisive case until each node belongs
to a separate cluster. The clusters for each step can then be represented as
a dendrogram (a hierarchical tree), where each leaf contains one node, and
the root consists of all nodes [104]. Horizontal cuts through the tree at dif-
ferent levels represent the results for different numbers k of clusters. Cluster
quality criteria can be used to determine where to cut the dendrogram [118].

The k-medoid clustering method [68] is similar to the better known
k-means clustering method [92]. Given n objects and k ≤ n, the number of
clusters to be constructed, both methods start with k initial (e.g. random)
cluster centres. Then, all objects are assigned to the cluster identified by
the closest centre, after which the cluster centres are re-calculated. The
object assignment and cluster centre calculation is iterated until the clusters
stabilise. The two methods differ in their choice of cluster centre: whereas
the k-means clustering method uses the mean value of the objects within
a cluster, k-medoids uses the object with minimum average (or minimum
total) dissimilarity to the objects within a cluster as cluster centre [68].

Choosing an object as cluster centre (medoid) is a practical necessity
when working with graphs, since there is no well defined mean for a set
of nodes. Given a graph and a node similarity measure, the medoid of a
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cluster is then the node for which the average or total similarity to all other
nodes in that cluster is maximal. Alternatively, the medoid node can also
be chosen w.r.t. some other measure, e.g. the closeness centrality [116].

The k-medoids method also immediately gives a set the representatives.
As each medoid is representative for its cluster [68], k clusters define a set
of k medoid nodes. Then, these k medoid nodes can be defined as a set of
representative (interesting) nodes in the graph. However, a possible problem
of k-medoids is related to the use of medoids: it may discover star-shaped
clusters, where cluster members are connected mainly through the medoid.

Consider again the word co-occurrence example. Given the terms maple,
birch, aspen and pine, the term birch is representative for the set as it is a
typical example among them. Identifying such representative terms gives,
e.g. a quick and representative overview of the different clusters.

Various other methods exist for clustering nodes in graphs as well.
For instance, online clustering methods process one object (node) at a
time [118], local clustering methods compute one cluster at a time based
on local information of the graph [26, 118], spectral clustering is based on
eigenvectors [95], and Markov clustering is based on random walks [137].

Nodes in a graph have been clustered in various application areas [118].
Next, we briefly review such applications where nodes in a graph have been
clustered based on their graph topology in order to find interesting nodes.

Finding a representative author (a node) and a representative scientific
article (a node of another type) for a given subset of time stamp nodes might
provide an interpretation for that subset [134]. There, subsets (clusters) of
time stamp nodes are obtained by a spectral clustering method. Then, the
representativeness measure of Equation 2.21 is used (as stated before in
Section 2.2.4) to find representative nodes for each cluster.

Both hierarchical and k-medoids clustering have been used to cluster
nodes in social networks [116]. However, medoids are only used for cluster-
ing with k-medoids, but are not considered to be representatives there.

Clustering has been used to identify different senses of an ambiguous
word as follows [42]. For an ambiguous word a local co-occurrence network
of similar words is built [144]. Then, terms (nodes) are clustered by an online
Markov clustering and semantically close clusters are merged [42]. Each
cluster is assigned a sense label by identifying the hypernym in WordNet
which subsumes as many nouns as possible of that cluster [143].

Clustering nodes in a graph by k-medoids and identifying a representa-
tive node for each cluster based on degree, betweenness centrality and HITS
has been used to approximate shortest path length computations, and for vi-
sualising large graphs [147]. A comparison of the different measures showed
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that random and centrality-based selections of representatives performed
equally well when approximating the shortest path length. However, when
approximating the shortest path length to hubs, identifying the represen-
tatives based on degree and betweenness centrality performed better than
random selection or identifying the representatives based on HITS.

2.3.4 Finding sets of nodes characteristic for class

In this section, we review methods that find subsets of nodes characteristic
for a class, such as a given node attribute value. In particular, subgroup
discovery methods find rules of the form Condition 7→ Subgroup, where
the antecedent Condition is a conjunction of attribute values and the conse-
quent Subgroup is a set of objects which satisfy some class-related interest-
ingness measure [74, 146, 83]. That is, given a graph where nodes represent
objects, subgroup discovery methods find rules of the form T ′ 7→ VT ′ where
nodes within a subset VT ′ = V1∩· · ·∩Vk ⊆ V share the set of node attribute
values T ′ = {t1, . . . , tk} ⊆ T , the size of the subset |VT ′ | is large enough, and
the set satisfies some class-related interestingness measure (Equation 2.22).

Subgroup discovery methods often find such rules in a top-down general-
to-specific search [146, 94]. For instance, one can search for rules such that
in each generation sets of node attribute values are expanded in all possible
ways, the generated sets are evaluated for interestingness, and the interest-
ing rules are expanded further in the next iteration [94]. This is continued
until a prespecified iteration depth is achieved or no further interesting rules
can be found. Subgroup discovery methods such as searching for enriched
gene sets (SEGS) [135] and SDM-Aleph [138] make use of attribute value hi-
erarchies. In general, the search can be performed breadth-first, depth-first,
or best-first [146]. (For a review on subgroup discovery methods see [78].)

Some classification methods aim to find rules for predicting the class of
any object (see Section 2.2.5), though classification methods can be adapted
to serve as subgroup discovery methods [83]. For instance, CN2-SD [82] is
a modified version of the CN2 [30]. Similarly, other classification methods
could be adapted [82].

Next we will present the contributions of this thesis and consider the
connections between the previous work just described and our work pre-
sented in this thesis.



Chapter 3

Contributions of this thesis

This thesis includes four original publications. In this chapter we will ex-
plain for each article how we define interestingness and describe the methods
we used to find interesting nodes. We will motivate our choices and dis-
cuss how the definitions of interestingness and the methods used differ from
those reviewed in Section 2.2 and Section 2.3, respectively. Finally, we will
show some experimental results we obtained.

3.1 Finding relevant and non-redundant nodes

Article I addresses the problem of identifying relevant and non-redundant
pieces of information. We assume a user specifies some positive, and pos-
sibly also some negative query objects. Then, the aim is to identify other
objects that are relevant w.r.t. the positive query objects, irrelevant w.r.t.
any negative query object, and non-redundant w.r.t. each other.

Here, objects can denote nodes in a graph, but they can denote any types
of objects for which a distance or similarity function is defined, though in
the following we will refer to those as nodes.

Next, we discuss our choice of relevance and non-redundancy measure.
We then describe how an incremental greedy method as well as a method
that iteratively improves the result find relevant and non-redundant nodes
w.r.t. that measure. Experiments on word co-occurrence and co-authorship
networks are reported. Given a word co-occurrence network, the terms
selected by the incremental method can be subjectively identified as relevant
and non-redundant. The results obtainted with a co-authorship network
demonstrate that both methods produce a good set of relevant and non-
redundant nodes when compared to random results.

31
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3.1.1 Relevance and non-redundancy

Relevance. We define the relevance of a node u ∈ V w.r.t. a single positive
query node q ∈ V directly as their similarity:

relP (u, q) = s(u, q) = d(u, q)−1. (3.1)

Given a set QP ⊂ V of (positive) query nodes, we define the relevance
of node u w.r.t. a set QP as

relP (u,QP ) = (
∑

q∈QP
d(u, q)α)−

1
α (3.2)

where α ≥ 1. This is the inverse of the p-norm [97]. Since the p-norm
is a distance but we want to measure relevance, we take the inverse of it.
Equation 3.1 is a special case of this definition when QP = {q} and α = 1.

With α = 1, the p-norm is the sum of the distances. Then, our relevance
can be interpreted as a variant of closeness centrality (Equation 2.6), where
the closeness is measured only w.r.t. the query nodes. That is, given two
positive query nodes, all nodes on the shortest path between those two
query nodes have an equal, highest relevance.

The relevance measure of Equation 3.2 meets our desire that a node is
considered to be more relevant if it is close to all positive query nodes. By
choosing the inverse of the p-norm distance, and not simply the closeness to
positive query nodes, we give the user the possibility to choose that larger
distances should dominate the function more by setting α > 1. With α =∞
the p-norm is the maximum of the distances.

For the sake of illustration, consider a set V of points on a plane and
the Euclidean distance d(u, v) between points. Figure 3.1 (a)–(b) shows the
relevance with α = 4 and two or three positive query points. The panels
illustrate how the relevance with α > 1 emphasises larger distances and, in
effect, favours points that are more equally distant to all query points.

Our definition of relevance (Equation 3.2) has some nice properties. It is
monotone decreasing in the distance to each query node (with the exception
of α =∞ when it is a function of the largest distance alone). Further, the
formulation as a function of the set of distances guarantees certain simplicity
as it rules out complex relevance functions that would depend on the inner
structure of the set QP of positive query nodes.

Irrelevance. The irrelevance or negative relevance of node u w.r.t.
a single negative query node q̄ is measured with the given similarity or
distance function, just like relevance to a single positive query node:

relN (u, q̄) = s(u, q̄) = d(u, q̄)−1. (3.3)
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(d) α = 4, β = 2

Figure 3.1: Altitude profiles of (a)–(b) relevance, (c) irrelevance, and (d)
overall relevance, of points on a plane. Positive query points are denoted by
pluses, negative ones by minuses. Lighter areas are more relevant.

Given a set QN ⊂ V of negative query nodes, we define the negative
relevance of node u w.r.t. QN ⊂ V as

relN (u,QN ) =
∑

q̄∈QN
d(u, q̄)−β =

∑

q̄∈QN
s(u, q̄)β, (3.4)

where β ≥ 1. That is, in the special case of β = 1 we measure irrelevance
to negative query nodes in a similar way as redundancy to a set of nodes
is measured in Equation 2.17, with the minor difference that we do not
normalise our irrelevance. (Remember that the desirable effect of irrelevance
is similar to redundancy.)

The irrelevance measure of Equation 3.4 has desirable properties, too.
It is zero if there are no negative query nodes, the effect of a negative
query node infinitely far away is zero, and the function is monotonically
decreasing in each distance. That is, negative query nodes are treated as
a disjunction: a node is considered to be less relevant if it is close to any
negative query node. Consider again nodes representing terms. When the
terms mathematics and linguistics are specified as negative query terms
the terms equation, formula, indo-european language and English are quite
irrelevant as each of them has a low distance to one of the query terms.

The situation is subtly different from positive query nodes, where the
relevance of an node was defined to be highest when the node is relevant
to all query nodes (as weighted by parameter α). Hence, p-norm would
not be a good alternative here, as it would prefer nodes centred between
all negative query nodes. That is, in the above example the terms disci-
pline and science would be irrelevant as they have low distance to both,
mathematics and linguistics. However, the user might still be interested
in disciplines and science in general. In contrast, terms like equation and
formula would be considered to be less irrelevant as they have low distance
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only to one negative query node, though they are quite irrelevant for a user
who specified mathematics as negative query term.

Setting β > 1 allows the user to give more weight to larger similarities,
i.e. to more proximal negative query nodes. The higher its value is, the
more dominant are the most proximal nodes.

For an illustration of the effects of negative query points, consider again
a set V of points on a plane. Figure 3.1 (c) shows how the effects of negative
query objects are concentrated locally around them.

Given positive and negative query nodes, i.e. sets QP and QN , respec-
tively, the overall relevance of node u is defined as

REL(u,QP , QN ) = relp(u,QP )− relN (u,QN ). (3.5)

In the special case of α = 1 and β = 1 we balance relevance to positive
and negative query nodes as relevance and redundancy have been balanced
in Equation 2.13: by their difference.

As a result, our overall relevance measure favours nodes that are centred
between the positive query nodes and that are not close to any negative one.
Given a single positive and single negative query point, it simply measures
which one is closer.

Figure 3.1 (d) illustrates the combined effect of two positive and two
negative query points on a plane: the most relevant area is no longer exactly
between the positive query points, but is pushed away by the negative query
points.

Non-redundancy. We want to retrieve a list of relevant nodes, which
are mutually non-redundant or complementary to each other. We define
redundancy in a set R ⊆ V of nodes in a similar way that we defined
negative relevance:

red(R) =
∑

u,v∈R
u6=v

d(u, v)−γ =
∑

u,v∈R
u6=v

s(u, v)γ , (3.6)

where γ ≥ 1. In the special case of γ = 1 our non-redundancy measure
is almost equivalent to the one of Equation 2.18 with the minor difference
that we do not add similarities of nodes to themselves.

Overall relevance and non-redundancy. The overall goal is to find
a diverse set of relevant nodes according to the user’s query. Using the
definitions above, we define the overall relevance and non-redundancy of a
set of (retrieved) nodes R ⊆ V as

REL(R,QP , QN ) =
∑

u∈R
relP (u,QP )−

∑

u∈R
relN (u,QN )− red(R). (3.7)
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Figure 3.2: The greedy method applied on points on the plane, with α = 4, β =
2, two positive (plusses), and one negative (minus) query point. The identified
points are denoted by digits in their output order. Contour lines are displayed
only for positive overall relevance values, a thick one where it is zero.

This gives a relatively simple but general objective function that tries
to find a balance between relevance w.r.t. positive query nodes, avoidance
of negative query nodes, and mutual non-redundancy of nodes in the result.
Thereby, relevance, irrelevance and non-redundancy are treated in quite a
uniform way. The measure is general in the sense that it is based on node
distance or similarity, but independent of the actual choice of which distance
or similarity measures are used.

Next, we will describe two approaches for finding a set of nodes that are
relevant but non-redundant w.r.t. Equation 3.7.

3.1.2 Incremental method

In Article I we propose to adapt the incremental greedy methods described
in Section 2.3.1 to produce a ranked list of relevant and non-redundant
nodes. At each iteration such a greedy method finds the currently most
relevant node w.r.t. the overall relevance REL(u,QP , QN ). We treat irrel-
evance and non-redundancy in the same way by setting γ = β. Then we
can, at each iteration, add the most relevant node simply to the negative
query nodes. As a result, the ith node output is non-redundant w.r.t. the
first i− 1 nodes already output.

Figure 3.2 illustrates how the greedy method incrementally picks points
from the plane given two positive and one negative query point.

In Article I we showed that REL(R,QP , QN ) of Equation 3.7 is sub-
modular. Hence, an incremental greedy method finds a set of k nodes with
an overall relevance and non-redundancy of at least 1/k of the optimal score.

3.1.3 Iterative improvement

In Article I we further proposed to use the iterative method described in Sec-
tion 2.3.2 in order to improve an initial set of k nodes w.r.t.REL(u,QP , QN ).
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In each step, one of the k nodes is replaced by the optimal one, given the
k − 1 other current nodes, until no improvements can be achieved.

The initial solution R clearly could have an important effect on the qual-
ity of the result as the iterative method may converge to a local optimum.
We therefore propose the following alternatives to initialising it:

1. Run the greedy method first (for k iterations) and use the top k nodes
from it as the initial solution to the iterative method.

2. Give k random nodes as the initial solution.

Next, we will show empirically that both methods indeed find relevant
and non-redundant nodes.

3.1.4 Experiments and results

In Article I we performed experiments on a word co-occurrence and on a
co-authorship network. Based on the results, both methods produce a good
set of nodes, with high relevance and low redundancy, on both data sets.
Next, we will show some exemplary results we obtained. (See Article I for
all experiments and their detailed description.)

Word co-occurrence network. Let us illustrate with a word co-
occurrence network that the generic model is able to perform a non-trivial
task without being specifically tuned for it. The goal is to test how the
proposed framework manages to find different senses of a given word. In
Table 3.1 we present the results.

The two most relevant non-redundant words associated to bank, for in-
stance, are reserve (which corresponds to sense #5 of bank in the WordNet1

dictionary: “a supply or stock held in reserve for future use”), and river
(sense #1: “sloping land [...] beside a body of water”). The third most rel-
evant word is gaza, as in Gaza Strip, which occurs in the specific context of
the West Bank of the Jordan river. The fourth most relevant word is credit
(sense #2: “a credit card processing bank”). The fifth most relevant word
is international, which does not correspond to any WordNet sense of bank
(or banking), but is highly ranked, because it occurs often in the corpus in
phrases like “international banking”.

For star, we obtain several relevant words from the astronomical context,
but also a name (Star Trek) and the sense of being a celebrity or movie star.

For branch and root as the positive query terms, the three first relevant
words again represent different contexts: botanics (tree), linguistics (indo),
and mathematics. The other two terms relate to mathematics as well.

1http://wordnet.princeton.edu/
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bank star branch, root
reserve planet tree
river trek indo
gaza cluster mathematics
credit sirius line
international movie equation

Table 3.1: Top five words ranked as rele-
vant and non-redundant by the greedy algo-
rithm for α = 4, β = 2 and different words
and a word pair as positive query nodes.
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Figure 3.3: Overall relevance of
set Rk of top k nodes obtained by
different methods with α = 4 and
β = 2.

Comparison of the two methods. For comparing the two methods
we retrieved a set of k nodes with the following four different variants:

1. finding relevant and non-redundant nodes with the greedy method
and taking the top k nodes,

2. finding them initially with the greedy method and improving the re-
sults with the iterative method,

3. picking k nodes randomly initially and improving the results with the
iterative method, and

4. simply picking k nodes randomly.

Figure 3.3 shows the overall relevance and non-redundancy of the four
variants. It is slightly positive for small k, but eventually drops to negative
values for larger k. The overall relevance becomes negative, e.g. when the
mutual redundancy of the selected nodes to each other is larger than their
relevance to the positive query nodes.

Comparing the four variants to each other indicates that the three first
ones, using the greedy and iterative methods, are practically indistinguish-
able while the random results are systematically inferior. This indicates
that the result of the greedy method is, in addition to being a ranking of
the nodes, also a good choice for any given k. Another observation is that
the iterative method performed equally well with random initialisation as
it does with initial ranking obtained by the greedy method.

Hence, based on the results of Article I, both the incremental and the
iterative method produce a good set of relevant and non-redundant nodes.
An interesting result is that the method that produces a ranking also seems
to work well in practice for any top k nodes.
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3.2 Finding relevant and non-redundant nodes in
probabilistic graphs

Article II extends the model of Article I (described in Section 3.1) to identify
and retrieve relevant and non-redundant nodes in a probabilistic graph.

Next, we discuss how we adapted the relevance, irrelevance and non-
redundancy measures of Article I to this special case in Article II. We again
use an incremental greedy method as well as a method that iteratively
improves the result to find such nodes. Experiments on co-authorship net-
works are reported, for experiments on a biological network see Article II.
The results suggest that both measures, the standard and the probabilistic
relevance and non-redundancy measure produce a good set of relevant and
non-redundant nodes.

3.2.1 Relevance and non-redundancy

As we consider probabilistic graphs, the similarity s(u, v) of two nodes u
and v can be measured by a probability, such as the probability that the
nodes are related or linked (Equation 2.2). To map probabilities to distances
we then use the function d(u, v) = − log(s(u, v)) = − log(prob(bp(u, v))).
As a result the most probable paths can be reduced to shortest paths.

Relevance. Using Equation 3.1 and setting α = 1, the relevance of a
node u ∈ V w.r.t. a single positive query node q ∈ V is then

relP (u, q) = d(u, q)−1 = − log(s(u, q))−1 (3.8)

if u 6= q and they are connected.
The relevance w.r.t. a set of positive query nodes QP is measured by

relP (u,QP ) = (
∑

q∈QP
d(u, q))−1 = − log(

∏

q∈QP
s(u, q))−1 (3.9)

That is, relP (u,QP ) is a lower bound of the sum of network reliabilities [34]
(see Section 2.1.2). Equation 3.9 is approximate also for another reason:
it does not take into account possible overlaps in the best paths. The
probabilities of any shared edges will be counted several times. This could
be circumvented by considering the union of all edges, but we anticipate
that this additional complexity is not significant in practice.

Irrelevance. For the irrelevance we propose to use the maximum in-
verse distance or maximum similarity

relN (u,QN ) = max
q̄∈QN

d(u, q̄)−β = max
q̄∈QN

s(u, q̄)β (3.10)
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instead of the sum of similarities (or inverse distances). Clearly, relN (·) is
a approximation of Equation 3.4 as it is a lower bound of it and it is the
highest lower bound we can obtain using just one negative query node.

This simple optimisation reduces the run time. Recall that the irrele-
vance of a node u usually depends on its distance to all negative query nodes.
However, it is mostly dependent on the nearest negative query node. Hence,
a reasonably good approximation can be obtained without computing all of
these. Thus, this optimisation does not change the worst case complexity,
but can give a practical advantage.

Given a probabilistic graph and β = 1, Equation 3.10 translates to

relN (u,QN ) = max
q̄∈QN

((−log(s(u, q̄)))−1) = (− log max
q̄∈QN

s(u, q̄))−1. (3.11)

Non-redundancy. Similarly to the definition of irrelevance, the non-
redundancy can be defined as the maximum inverse distance or similarity:

red(R) = max
u,v∈R
u6=v

d(u, v)−β = max
u,v∈R
u6=v

s(u, v)β (3.12)

which translates given a probabilistic graph and β = 1 to

red(R) = max
u,v∈R
u6=v

((−log(s(u, q̄)))−1) = (− log max
u,v∈R
u6=v

s(u, v))−1. (3.13)

Overall relevance and non-redundancy. The overall relevance and
non-redundancy can be defined as before (Equation 3.7) as the difference
of relevance, irrelevance and non-redundancy:

REL(R,QP , QN ) =
∑

u∈R
relP (u,QP )−

∑

u∈R
relN (u,QN )− red(R). (3.14)

3.2.2 Incremental method

We again use a greedy method to produce a ranked list of nodes in an
incremental fashion w.r.t. the overall relevance REL(u,QP , QN ). In each
iteration, it finds the currently most relevant node and outputs it.

3.2.3 Iterative improvement

We also use an iterative method to produce a non-redundant set of k relevant
nodes, where k is given as a parameter. Given k initial nodes as input (again,
either obtained from the greedy method or randomly chosen), the method
replaces, in each iteration, one of the k nodes by the optimal one, given
the k − 1 other nodes. The method stops when no improvements can be
achieved.
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3.2.4 Experiments and results

We performed experiments on social and biological networks, using different
distance measures. Based on the results, both methods produce a good set
of nodes, with high relevance and low redundancy with a standard as well as
with a probabilistic distance measure. Next, we will show some exemplary
results we obtained. (See Article II for all experiments and their detailed
description.)

Let us demonstrate the effect of the proposed relevance and non-redun-
dancy measures with a co-authorship network connecting C. Faloutsos and
J. Han. We used four different pairwise similarity measures:

• LEN-SP: the reciprocal of the length of the shortest path (Equa-
tion 2.1) on boolean edge weights,

• LEN-SP-RWR: Random walk with restart with transition probabilities
proportional to LEN-SP,

• CUM: a similarity measure proportional to a cumulative distribution
function [112] in the range [0, 1], where the similarity of any two au-
thors, especially when not co-authors, is defined using the best path
between them, taking the product of pairwise similarities along the
path as the final similarity, and

• CUM-RWR: Random walk with restart with transition probabilities
proportional to CUM.

When using LEN-SP or CUM as similarity, and either the relevance and
non-redundancy measure of Section 3.1.1 or the probabilistic relevance and
non-redundance measure of Section 3.2.1, the top eight authors obtained
are all prominent researchers that are relatively closely related to Faloutsos
and Han by direct or indirect co-authorship relations (see Article II for
their names and countries of affiliation). In both cases, the first four of the
chosen authors have never published together according to DBLP, so they
are likely to represent different communities or areas relevant to Faloutsos
and Han. The spread of the results is also illustrated by the fact that many
of the first eight authors come from different countries.

In contrast, if redundancy is ignored and the computation is based only
on relevance, a redundant set of authors is obtained, regardless of which
similarity measure is used (see Article II for their names and countries
of affiliation). The eight most relevant authors are highly connected to
each other in the co-authorships network, and come from either the US or
Canada, with a few exceptions. A redundant set of authors is also obtained
when LEN-SP-RWR or CUM-RWR are used as similarity measure.
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Hence, the results of Article II show that both the standard and proba-
bilistic relevance and non-redundancy measures based on different similarity
measures produce a good set of relevant and non-redundant nodes.

3.3 Finding representative nodes in probabilistic
graphs

Article III examines how to find a small representative subset of nodes out
of a larger set of nodes.

Next, we discuss our choice of representativeness measure. We then
describe how we use clustering methods to find clusters of nodes and select
a representative node for each cluster. The results suggest that clustering-
based approaches are capable of finding a representative set of nodes.

3.3.1 Representativeness

We assume a probabilistic graph is given and use Equation 2.2 to measure
pairwise node similarities.

Then, given a set of nodes, we find a node that represents the nodes
within the set by adapting the representativeness measure of Equation 2.19:

rep(u,R) =
∏

v∈R
s(u, v) =

∏

v∈R
prob(bp(u, v)) (3.15)

in case all nodes within R are connected. That is, the node that has a
maximal product of similarities between each other node in the cluster and
itself is chosen as the new medoid.

3.3.2 Clustering

In Article III we used k-medoids as well as hierarchical clustering as de-
scribed in Section 2.3.3 to find sets (clusters) of nodes.

For the k-medoids clustering we randomly chose k nodes as initial
medoids. Then, the k-medoids method iteratively assigns the other nodes
to the closest medoids based on the similarity measure of Equation 2.2. If
the pairwise similarity between a node and all medoids equals zero, the node
will be considered an outlier and is not assigned to any medoid in this iter-
ation. Next, the medoids are re-calculated for each cluster R by finding the
node u ∈ R that maximises Equation 3.15. This is repeated until the clus-
tering converges or the maximum number of iterations is reached. Hence,
k-medoids directly produces representatives based on the representativeness
measure (Equation 3.15), but not necessarily the optimal ones.
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In addition, we use agglomerative hierarchical clustering to find k clus-
ters. Starting with each node as a separate cluster, at each step it merges
the two clusters that are the closest based on average linkage and the sim-
ilarity measure of Equation 2.2. We used average linkage to give more
weight on cluster coherence. The hierarchical clustering stops when k clus-
ters were obtained. For each cluster we selected one representative based
on the representativeness measure of Equation 3.15.

3.3.3 Experiments and results

In Article III we performed experiments on biological networks. Based on
the results, both clusterings produce a good set of representatives. Next,
we will show some exemplary results we obtained. (See Article III for all
experiments and their detailed description.)

Example. Let us illustrate with the following example that k-medoids
finds a representative set of k = 3 genes out of a set of nine genes. The
nine genes belong to three known groups, each group associated with a
phenotype. The k-medoids clustering converged in this case after two it-
erations. Figure 3.4 presents the result. Only one gene (EntrezGene:1627)
was assigned to another cluster than it should w.r.t. the phenotypes. Apart
from this, the clustering produced the expected partitioning: each gene was
assigned to a cluster close to its corresponding phenotype. The three rep-
resentatives (medoids) are genes assigned to different phenotypes. Hence,
the medoids can be considered representative for the nine genes.

Biological networks. Let us next look at experiments performed on
100 biological networks. For each network there were k = 10 sets of genes
given, where each set consisted of 3 to 41 genes. (See Article III for further
experiments with k = 3.) Genes within a set related to the same gene
family (or disease). We used k-medoids as well as hierarchical clustering to
cluster the genes and selected a representative for each cluster obtained. As
k-medoids is sensitive to the randomly selected first medoids, we applied
k-medoids five times in each run and selected the best result.

For comparison, we also considered a method that selects representatives
randomly. We randomly select k medoids and clustered the remaining nodes
of S to the most similar medoid. If the pairwise similarity between a node
and all medoids equals zero, the node will be considered an outlier, as in
k-medoids. We applied the random selection of representatives 20 times in
each run and used average values of the measures in order to compensate
the random variation.

We evaluated how successful the methods are in finding representative
nodes based on four measures. First, we simply measure the average simi-
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EntrezGene:322

EntrezGene:246744

EntrezGene:1627

EntrezGene:4254 EntrezGene:51151

EntrezGene:8924

EntrezGene:5451

EntrezGene:276

EntrezGene:3938

Figure 3.4: Clusters (diamonds, boxes, ellipses) and representatives (double bor-
ders) of nine given nodes, and some connecting nodes (circles) on best paths be-
tween them. Lines represent edges between two nodes, dotted lines represent best
paths with several nodes.

larity of nodes to their closest representative (ASR):

ASR =
1

|V ′| − k
∑

u∈V ′
u6=m(u)

s(u,m(u)) (3.16)

where V ′ is the set of given nodes to be clustered, k is the number of clusters,
m(u) is the medoid most similar to u, and s(x,m(u)) denotes the similarity
(probability of best path) between node u and medoid m(u).

In terms of average similarity of nodes to their representative, the k-
medoids method slightly outperforms the hierarchical method (Figure 3.5,
left panel). The hierarchical method, in turn, is clearly superior to the
random selection of representatives (Figure 3.5, right panel).

Second, we take advantage of our knowledge that the genes belong to
gene families. Specifically, we calculate the fraction of non-represented
classes (NRC):

NRC =
1

k
|{i |6 ∃j : mj ∈ Hi, j = 1..k}|, (3.17)

where k is the number of classes and clusters (equal in our current test
setting), mj is the medoid of the jth cluster, and Hi is the ith original
class.
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Table 3.2: Fraction of non-
represented classes (NRC).

k-medoids 29 %
hierarchical 21 %
random 39 %

Table 3.3: Wrongly assigned ob-
jects, i.e. nodes (WAO).

k-medoids 44 %
hierarchical 25 %
random 46 %
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Figure 3.5: Average similarity of nodes to their nearest representative (ASR).
In each panel 100 runs are visualised. Each point represents one run, thereby
comparing ASR values of two variants (see x- and y-axis).
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The fraction of non-represented classes is a more neutral measure of per-
formance since neither variant directly maximises this. The results indicate
that the hierarchical variant is clearly superior to the k-medoids variant
(Table 3.2). Both methods clearly outperform the random selection of rep-
resentatives.

Third, we measured how good the underlying clusterings are based on
the compactness of clusters (ACC). Specifically, we calculated the minimum
similarity of two nodes in each cluster and averaged it across clusters with
at least two members:

ACC =
1

k′

K∑

k=1

min
x,y∈Ck

s(x, y), (3.18)

where k′ = |{k : |Ck| > 1, k = 1..K}|, i.e. k′ is the number of non-trivial
clusters. This measure is sensitive to outliers, and thus may favour the
k-medoids variant.

It is not surprising that clusters produced by the hierarchical method are
more compact on average than those produced by the k-medoids method
(Figure 3.6), as the hierarchical method more directly optimises this mea-
sure. It is however somewhat surprising that k-medoids performs only
slightly better than the random variant.

Fourth, we measured how good the underlying clusterings are by mea-
suring the difference of the clustering to the known classes. That is, we first
identify the class best represented by each cluster, and then calculate the
fraction of “wrongly assigned objects (nodes)” (WAO):

WAO =
1

|S|
K∑

k=1

min
k′=1..K

|Ck\Hk′ |. (3.19)

Rand index could have been used here just as well.
In terms of wrongly assigned nodes, the hierarchical variant clearly out-

performs k-medoids (Table 3.3). The k-medoids variant outperforms the
random selection of representatives, but only by a small difference.

Hence, based on the results of Article III both the k-medoids-based
variant and the hierarchical-based method reliably identify a high quality
set of representatives, though the hierarchical method seem to be more
robust. Further, the success of the methods in identifying the underlying
clusters depends on the evaluation measure used, and may also depend on
the number of clusters to be constructed.
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3.4 Finding sets of nodes characteristic for con-
trast classes

Article IV addresses the problem to identify sets of nodes that are worth to
explore by the user, when the user is interested in the comparison of two or
more classes, such as given node attribute values, at the same time. This is
a typical problem in bioinformatics, where the aim is to find enriched gene
sets that are specific for virus-infected samples at a specific time point.

Next we describe the interestingness measure we proposed in Article IV
which allows us to find such subsets of nodes. We then discuss how to
find such node sets by extending subgroup discovery by a second subgroup
discovery step. Notice that here we take node attributes and class attributes
into account, but not the graph topology. The results can then be visualised
in a graph and used for other graph mining methods [111]. Experimental
results on a time-series data set of virus-infected S. tuberosum (potato)
plants revealed subsets of genes that were unexpected and useful for a plant
biologist.

3.4.1 Characteristic for contrast classes

In Article IV we propose to replace the direct dependency on the class dis-
tribution of the classical subgroup discovery by a contrasting, indirect one.
In the classical, direct case, one is interested in sets of node attribute values
that are characteristic for a class. Our aim is to understand phenomena
in a setting where several different classes are given, such as different time
points. That is, in the contrasting case, we want to find sets of node at-
tribute values that indicate nodes which are characteristic for their class,
but not necessarily the same one.

In order to formally define the task, we first introduce a notation P for
the set of nodes characteristic for a class:

P = {v ∈ V | ∃ T ′ ⊂ T for which fc(T ′) ≤ α and v ∈ VT ′}, (3.20)

where (as before) T denotes the set of node attribute values, V the set of
nodes, VT ′ the set of nodes that share the attribute values T ′ ⊂ T , fc(·) the
class-related interestingness measure, and α a given constant. That is, set
P consists of nodes which belong to subsets which are characteristic for a
specific class.

Now the user can define two contrast classes Pc, Pc ⊂ P . The selection
of these two contrast classes depends on the objective and is left to the user.
They can, e.g., take several classes into account. Given m different class
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attributes c1, . . . , cm such as different time points, one can, e.g., contrast
one specific time point ck against all other time points.

Let P1, . . . , Pm be the sets of nodes characteristic for each of the m
class attributes. Then, Pc can be defined, e.g., as the set of nodes only
characteristic for the kth given class attribute:

Pc = Pk \
⋃

i∈{1,...,m},
i6=k

Pi . (3.21)

This definition can be used to find interesting subsets which are specific for
one class attribute in contrast to all the other class attributes. Alternatively,
it could be defined, e.g., as their intersection (see Article IV) if one wants
to find interesting subsets that are common to all class attributes.

The contrast class Pc can be defined as the complement of Pc, i.e.

Pc = P \ Pc , (3.22)

when one is interested in subsets specific for the nodes in Pc compared to
all other nodes of P . Or, if a user is interested in contrasting two specific
time points even in a case were more time points exist, then Pc would be
defined as one of those time points and Pc as the other time point.

Let us then define the function characteristic(·) that gives the number
of nodes characteristic for their class in the two contrasting classes Pc and
Pc for a given subset VT ′ :

characteristic : P(V )→ Z+ × Z+,

VT ′ 7→ (|VT ′ ∩ Pc|, |VT ′ ∩ Pc|).
(3.23)

Then the contrasting interestingness of a set of node attribute values
can be defined as

fi : P(T )→R,
T ′ 7→ g′(characteristic(VT ′), characteristic(P \ VT ′))

(3.24)

for some function g′ that measures the class distributions within and outside
of the subset of nodes (see Section 2.2.5).

That is, the contrasting interestingness measure analyses whether a sub-
set is interesting w.r.t. the two contrast classes, which both consist only of
nodes that are characteristic for their own class. This is in contrast to
the classical class-related interestingness measure, which analyses whether
a subset of nodes is interesting w.r.t. the node’s classes.

Then the contrasting subgroup discovery problem is to output all sets
T ′ ⊂ T of attribute values for which fi(T ′) ≤ α′ for some given constant α′

or, to identify the k best subsets of nodes instead of using a fixed threshold.
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In other words, while classical subgroup discovery is related to the ques-
tion of how to find subsets of nodes that are characteristic for a specific
class, the problem of contrasting subgroup discovery is related to asking if
subsets of nodes characteristic for (any) class can be found.

The relationship between the classical and contrasting subgroup dis-
covery immediately implies that for any subset found for the contrasting
subgroup discovery problem, its nodes are characteristic for their class. On
the other hand, a set of attribute values may be a valid answer to the
contrasting problem even if it is not for the classical problem.

That is exactly where the main conceptual contribution of Article IV is.
Contrast subgroup discovery allows finding subsets of nodes that could not
be found with classical subgroup discovery.

Next, we describe how to find subsets of nodes characteristic for contrast
classes.

3.4.2 Contrasting subgroup discovery

Given a set of nodes described by node attribute values and different classes
that a user has specified she is interested in, our goal is to find interesting
subsets of nodes characteristic for their class. Thereby we allow the user to
specify not only one, but several different classes as interesting.

To find such subsets we propose an approach that consists of three
steps: First, interesting subsets are found by a classical subgroup discov-
ery method. Second, contrast classes on those subsets are defined by set
theoretic functions. Third, contrasting subgroup discovery finds interesting
subsets for the contrast classes. Next, we will describe each step in detail.

Classical subgroup discovery (Step 1). A subgroup discovery
method is applied on some given nodes that are annotated by node at-
tributes and assigned a class. Thereby, we consider only one class attribute
the user is interested in at a time, and apply a subgroup discovery method
separately for each class attribute. The subgroups are then analysed by a
statistical test, like Fisher’s exact test followed by a permutation test.

Construction of contrast classes (Step 2). Let P1, . . . , Pm denote
the nodes characteristic for their class of the m class attributes specified
by the user (e.g. each representing one time point in a gene expression
experiment). Then, the two contrast classes Pc and Pc are defined by set
theoretic functions, e.g. by Equations 3.21 and 3.22. (As stated before, the
selection of a particular set theoretic function depends on the objective and
is left to the user.)

Contrasting subgroup discovery (Step 3). In this step we apply
a second subgroup discovery instance in order to analyse subsets w.r.t. the



3.4 Finding sets of nodes characteristic for contrast classes 49

constructed contrast classes. Given the subsets in the two contrast classes
Pc and Pc, we find interesting subsets of these nodes by a second subgroup
discovery instance. Again, p-values are calculated, using a permutation test.

Assuming that both subgroup discovery instances (Step 1 and 3) find all
subsets for which the classical interesting measures hold (Equation 2.22),
then the proposed method does find all subsets that satisfy the indirect
interestingness measure (Equation 3.24).

Similar to the approach presented here, some frequent item set mining
methods intersect transactions to find closed frequent item sets [98, 107,
17]. Further, supervised pattern mining approaches take a class labelled
data set as input (emerging pattern mining, exception rule mining and
contrast set mining), but they can take multiple classes into account by
comparing two classes where one is a union of several (sub)classes [86].
Especially, in contrast set mining two contrast classes are defined, and in
a setting where several different class attributes exist, these methods can
be applied in a pairwise manner. Similarly, we also aim to understand
the differences between several contrasting groups. However, in contrast
to these approaches we aim to find different types of patterns (described
in Section 2.2.5). Further, our aim is to find interesting subsets of nodes
which are characteristic for their class, regardless of their class.

Next, we will show that our proposed method indeed finds subsets of
nodes interesting for the user.

3.4.3 Experiments and results

We performed experiments on a Solanum tuberosum (potato) time-labelled
gene expression data set for virus-infected and non-infected plants. (See
Article IV for a detailed description and all experimental results.)

Our interest is in assisting biologists to generate new research hypothe-
ses. Therefore, a plant biologist evaluated our results by counting the quan-
tities of gene sets which are unexpected as well as those which are useful
to him (as in [126]). In this context, unexpected means that the knowl-
edge was contained in the biological ontologies GO2 (Gene Ontology) [71],
KO3 (Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology) [9]
or GoMapMan4, an extension of the MapMan [128] ontology, for plants,
but it was not shown previously to be related to S. tuberosum’s response to
viral infection. A gene set is useful if it is of interest for the plant biologist,
i.e. the gene set description tells him something about the virus response,

2http://www.geneontology.org/
3http://www.genome.jp/kegg/ko.html
4http://www.gomapman.org/

http://www.geneontology.org/
http://www.genome.jp/kegg/ko.html
http://www.gomapman.org/
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and/or he might want to have a closer look at the genes of that gene set.
We compare the results obtained by our proposed method (Step 1 to 3) to
those results obtained with a classical subgroup discovery method (Step 1
only). The proposed contrasting subgroup discovery method identified sev-
eral gene sets in Step 3, which were unexpected and useful for the biologist
which were not identified in Step 1, i.e. the classical subgroup discovery
method. (See Article IV for quantities of all, unexpected and useful gene
sets found with each method.)

Gene sets that are unexpected, useful or both may contain genes that
are interesting for further (tough, time-consuming) wet-lab experiments.
Let us give a few examples of such identified gene sets. A gene set that the
plant biologist considered as unexpected was

unidimensional cell growth (GO:0009826)

which covers 7 genes with a p-value of 0.0001. This gene set was novel when
compared to the classical subgroup discovery method (Step 1).

An example of a useful gene set found by the contrasting subgroup
discovery method (Step 3) is

enoyl-CoA hydratase activity (GO:0004300)

which covers 7 genes with a p-value ≤ 10−6. This gene set was novel when
compared to the classical subgroup discovery method (Step 1).

An exemplary gene set found by the contrasting subgroup discovery
method (Step 3) that was considered as unexpected as well as useful is

ER to Golgi vesicle-mediated transport (GO:0006888)
∧ vesicle coat (GO:0030120)

which covers 14 genes with a p-value of 0.0001. This gene set was more
specific compared to the classical subgroup discovery method (Step 1).

Hence, the results of Article IV show that our proposed method finds
subsets of nodes that are characteristic for a time point, a class specified by
a biologist. These subsets can be unexpected and useful for a biologist and
thus direct him where to look for the causes of the differences between the
time points. Other methods (and possibly data) are needed to find those
causes. For example, studying the genes (nodes) of such subsets may reveal
new research hypotheses for biologists.

Next we will answer the research questions and discuss open questions
and future work.



Chapter 4

Conclusions

In this thesis we addressed the problem of discovering interesting nodes in
weighted graphs where nodes represent objects and edges relations between
them. We reviewed how interestingness of nodes within a graph has been
defined previously, and which methods have been used to find such inter-
esting nodes. We then discussed the main contributions of Articles I-IV.

4.1 Answers to the research questions

Each article of this thesis gives slightly different answers to the research
questions: What kind of nodes are interesting for the user? and How to find
such interesting nodes in weighted graphs? Which nodes are considered to
be interesting or worth to explore by the user, differs within Articles I-IV.
Also the methods to find such nodes differ across the articles.

Specifically, we proposed four different measures for node interesting-
ness. In Article I we proposed that nodes are interesting if they are relevant
and non-redundant, given positive and negative query nodes. We based our
definitions of relevance, irrelevance and non-redundancy only on node dis-
tance or similarity. In Article II we adapted them for probabilistic graphs.
In Article III a node is interesting if it is representative, i.e. if it is a typical
example of a set of nodes. We based our definition of representativeness on
probabilistic node similarity. In Article IV we proposed to consider nodes
to be interesting if they are characteristic for a class, even if the classes are
not identical.

We then gave methods for identifying such nodes: In Article I we used a
greedy method that incrementally picks one interesting node after another
and a method that improves the set of nodes when the size of the set is fixed.
Article II shows that the same methods can be used to find relevant and
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non-redundant nodes in a probabilistic graph. In Article III representative
nodes are found by clustering the given nodes and picking a medoid node
for each cluster. In Article IV nodes characteristic for a class are found by
contrasting diverse sets of nodes and by combining well-known subgroup
discovery methods. The method is not specific to graphs, but finding nodes
characteristic for a class is one possible instance of the presented problem.

While the measures and methods are relatively simple, the experiments
on word co-occurrence networks (Article I), co-authorship networks (Ar-
ticle I–II), and biological networks (Article II–IV) show that they indeed
identify interesting nodes. We believe that these new measures and meth-
ods allow experts and practitioners from various fields to identify a small
number of interesting nodes within a large set of nodes.

4.2 Outlook

This work is preliminary in several aspects and it would be interesting to
address at least the following aspects in future work.

For instance, it would be interesting to apply and compare other, pos-
sibly new interestingness measures. For theoretical guarantees, it would be
nice to have a nondecreasing, nonnegative relevance and non-redundancy
function. Interestingness measures based on more expressive node similar-
ities, e.g. on network reliability, could prove more powerful, but are also
computationally more demanding. On the other hand, for complex and
large applications faster methods would be useful. For example, the in-
cremental and iterative methods are simple but efficient if the similarity
measure is readily available. More efficient definitions or approximations of
node similarity are needed for better scalability to large graphs.

It would also be interesting to investigate whether graph topology-based
measures for finding nodes characteristic for a given node attribute prove
more powerful. On the other hand, one could also examine whether rel-
evance and non-redundancy measures or representativeness measures that
take node attributes into account improve the results.

Further, one could seek to understand the reasons for the differences
of various approaches, such as the incremental versus the iterative method
and the k-medoids- versus the hierarchical-based method, or whether other
methods such as a combined approach of the incremental and iterative ap-
proaches prove more powerful.

Finally, it would be interesting to validate the performance of the pre-
sented measures and methods on further, real applications and in domains
not considered so far. In particular, it would be interesting if users could
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evaluate the results in depth, e.g. a biologist could evaluate the interest-
ing gene sets at the gene level, including a selection of genes for wet-lab
experiments, investigating whether the identified subsets will affect the un-
derstanding of the biological mechanisms of virus response.
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