3,445 research outputs found

    Radiation and magnetic field effects on new semiconductor power devices for HL-LHC experiments

    Full text link
    The radiation hardness of commercial Silicon Carbide and Gallium Nitride power MOSFETs is presented in this paper, for Total Ionizing Dose effects and Single Event Effects, under gamma, neutrons, protons and heavy ions. Similar tests are discussed for commercial DC-DC converters, also tested in operation under magnetic field

    A comprehensive study on the avalanche breakdown robustness of silicon carbide power MOSFETs

    Get PDF
    This paper presents an in-depth investigation into the avalanche breakdown robustness of commercial state-of-the-art silicon carbide (SiC) power MOSFETs comprising of functional as well as structural characterization and the corresponding underlying physical mechanisms responsible for device failure. One aspect of robustness for power MOSFETs is determined by its ability to withstand energy during avalanche breakdown. Avalanche energy (EAV) is an important figure of merit for all applications requiring load dumping and/or to benefit from snubber-less converter design. 2D TCAD electro-thermal simulations were performed to get important insight into the failure mechanism of SiC power MOSFETs during avalanche breakdow

    The impact of repetitive unclamped inductive switching on the electrical parameters of low-voltage trench power nMOSFETs

    Get PDF
    The impact of hot-carrier injection (HCI) due to repetitive unclamped inductive switching (UIS) on the electrical performance of low-voltage trench power n-type MOSFETs (nMOSFETs) is assessed. Trench power nMOSFETs with 20- and 30-V breakdown voltage ratings in TO-220 packages have been fabricated and subjected to over 100 million cycles of repetitive UIS with different avalanche currents IAV at a mounting base temperature TMB of 150°C. Impact ionization during avalanche conduction in the channel causes hot-hole injection into the gate dielectric, which results in a reduction of the threshold voltage VGSTX, as the number of avalanche cycles N increases. The experimental data reveal a power-law relationship between the change in the threshold voltage ΔVGSTX and N. The results show that the power-law prefactor is directly proportional to the avalanche current. After 100 million cycles, it was observed in the 20-V rated MOSFETs that the power-law prefactor increased by 30% when IAV was increased from 160 to 225 A, thereby approximating a linear relationship. A stable subthreshold slope with avalanche cycling indicates that interface trap generation may not be an active degradation mechanism. The impact of the cell pitch on avalanche ruggedness is also investigated by testing 2.5- and 4- m cell-pitch 30-V rated MOSFETs. Measurements showed that the power-law prefactor reduced by 40% when the cell pitch was reduced by 37.5%. The improved VGSTX stability with the smaller cell-pitch MOSFETs is attributed to a lower avalanche current per unit cell resulting in less hot-hole injection and, hence, smaller VGSTX shift. The 2.5-m cell-pitch MOSFETs also show 25% improved on -state resistance RDSON, better RDSON stability, and 20% less subthreshold slope compared with the 4-m cell-pitch MOSFETs, although with 100% higher initial IDSS and less IDSS stability with avalanche cycling. These results are important for manufacturers of automotive MOSFETs where multiple avalanche occurrences over the lifetime of the MOSFET are expected

    Avalanche ruggedness of parallel SiC power MOSFETs

    Get PDF
    © 2018 Elsevier Ltd The aim of this paper is to investigate the impact of electro-thermal device parameter spread on the avalanche ruggedness of parallel silicon carbide (SiC) power MOSFETs representative of multi-chip layout within an integrated power module. The tests were conducted on second generation 1200 V, 36 A–80 mΩ rated devices. Different temperature-dependent electrical parameters were identified and measured for a number of devices. The influence of spread in measured parameters was investigated experimentally during avalanche breakdown transient switching events and important findings have been highlighted

    Investigation of the Semicoa 2N7616 and 2N7425 and the Microsemi 2N7480 for Single-Event Gate Rupture and Single-Event Burnout

    Get PDF
    Single-event-effect test results for hi-rel total-dose-hardened power MOSFETs are presented in this report. The 2N7616 and the 2N7425 from Semicoa and the 2N7480 from International Rectifier were tested to NASA test condition standards and requirements. The 2N7480 performed well and the data agree with the manufacture's data. The 2N7616 and 2N7425 were entry parts from Semicoa using a new device architecture. Unfortunately, the device performed poorly and Semicoa is withdrawing power MOSFETs from it line due to these data. Vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) are the most commonly used power transistor. MOSFETs are typically employed in power supplies and high current switching applications. Due to the inherent high electric fields in the device, power MOSFETs are sensitive to heavy ion irradiation and can fail catastrophically as a result of single-event gate rupture (SEGR) or single-event burnout (SEB). Manufacturers have designed radiation-hardened power MOSFETs for space applications. See [1] through [5] for more information. The objective of this effort was to investigate the SEGR and SEB responses of two power MOSFETs recently produced. These tests will serve as a limited verification of these parts. It is acknowledged that further testing on the respective parts may be needed for some mission profiles

    A magnetically isolated gate driver for high-speed voltage sharing in series-connected MOSFETs

    Get PDF
    A scalable resonant gate drive circuit is described, suitable for driving series-connected MOSFETs in high-voltage, high-speed inverter applications for resistive and capacitive loads. Galvanic isolation is provided by a loop of high voltage wire, which also serves as the resonant inductor in the circuit. Fast dynamic voltage sharing is achieved by delivering equal current to each gate. A prototype is built and tested, demonstrating a 75ns switching time at 5kV using 900V MOSFETs

    A comprehensive study of the short-circuit ruggedness of silicon carbide power MOSFETs

    Get PDF
    The behavior of Silicon Carbide Power MOSFETs under stressful short circuit conditions is investigated in this paper. Illustration of two different short-circuit failure phenomena for Silicon Carbide Power MOSFETs are thoroughly reported. Experimental evidences and TCAD electro-thermal simulations are exploited to describe and discriminate the failure sources. Physical causes are finally investigated and explained by means of properly calibrated numerical investigations, and are reported along with their effects on devices short-circuit capability

    SiC power MOSFETs performance, robustness and technology maturity

    Get PDF
    Relatively recently, SiC power MOSFETs have transitioned from being a research exercise to becoming an industrial reality. The potential benefits that can be drawn from this technology in the electrical energy conversion domain have been amply discussed and partly demonstrated. Before their widespread use in the field, the transistors need to be thoroughly investigated and later validated for robustness and longer term stability and reliability. This paper proposes a review of commercial SiC power MOSFETs state-of-the-art characteristics and discusses trends and needs for further technology improvements, as well as device design and engineering advancements to meet the increasing demands of power electronics

    Five-Level Common-Emitter Inverter Using Reverse-Blocking IGBTs

    Get PDF
    In a high switching frequency operation of current-source inverter (CSI), a conventional way to obtain unidirectional power switches is by connecting discrete diodes in series with the high speed power switches, i.e. power MOSFETs or IGBTs. However, these discrete diodes will cause extra losses to the power converter. This paper presents experimental test results of high switching frequency five-level common-emitter CSI using the emerging unidirectional power switches, i.e. reverse blocking (RB)-IGBTs. Experimental tests were also conducted to compare the performance between power MOSFETs in series with the discrete diodes, and the RB-IGBTs having inherent reverse blocking capability. The results show that using RB-IGBTs, the efficiency of the power converter increase. However, it is also confirmed that the recently available RB-IGBTs have slow reverse recovery current than the discrete fast-recovery diodes connected in series with power MOSFETs

    Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Get PDF
    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost
    • …
    corecore