1,366 research outputs found

    Modern Black Sea oceanography applied to the end-Permian extinction event

    Get PDF
    The modern Black Sea has a mixed upper layer in the top 150−200 m of the water column, below which the water is anoxic, separated from the mixed layer by a redox boundary. There is limited vertical movement of water. Pyrite framboids form in the water column of the anoxic zone, then have been traditionally interpreted to sink immediately and accumulate in the sediments of the Black Sea. Thus the occurrence of framboids in sediments in the rock record is widely interpreted to indicate poorly oxygenated to anoxic conditions in ancient environments. However, in the Permian−Triassic boundary (PTB) microbialites of South China, which formed in shallow marine conditions in contact with the atmosphere, the published occurrence of framboids is inconsistent with abundant gastropod and ostracod shells in the microbialite. Furthermore, in the modern Black Sea: (a) framboids may be suspended, attached to organic matter in the water column, thus not settle to the sea floor immediately after formation; and (b) the redox zone is an unstable complex area subject to rapid vertical water movement including occasional upwelling. The model presented here supposes that upwelling through the redox zone can lead to upward transport of suspended pyrite framboids into the mixed layer. Advective circulation could then draw suspended framboids onto the shelf to be deposited in oxygenated sediments. In the Permian−Triassic transition, if framboids were upwelled from below the redox boundary and mixed with oxygenated waters, sediment deposited in these conditions could provide a mixed signal for potentially misleading interpretations of low oxygen conditions. However, stratigraphic sampling resolution of post-extinction microbialites is currently insufficient to demonstrate possible separation of framboid-bearing layers from those where framboids are absent. Profound differences between microbialite constructors and sequences between western and eastern Tethys demonstrate barriers to migration of microbial organisms. However, framboid occurrences in both areas indicate upwelling and emphasise vertical movement of water from the lower to upper ocean, yet the mixed layer advective motion may not have been as effective as in modern oceans. In the modern Black Sea, such advection is highly effective in water mixing, and provides an interesting contrast with the PTB times.Russian work was supported by EU-funded project PIRSES-GA-2009-247512

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work

    Paragenesis of Lacustrine Microbialites in the Upper Wilkins Peak Member, Green River Formation, Wyoming

    Get PDF
    Microbialites from the upper Wilkins Peak Member were investigated to determine their paragenesis and to help interpret lake chemistry. Two specific microbialite beds were analyzed that are associated with the “layered tuff”. Samples were collected from correlated sections along a NW to SE, 24 km line of section from lake margin towards lake center. XRD, SEM/EDS, and petrographic analysis show differences in diagenesis above and below the layered tuff. Microbialites below the tuff bed contain some primary calcite with diagenetic dolomite and abundant secondary silicification. Later, dolomite replaces both calcite and quartz. Pores are commonly filled with 20 ÎŒm euhedral dolomite cements and in some samples with 10 ÎŒm crystals of quartz replacing dolomite. The diagenetic sequence for microbialites below the tuff consists of: calcite, secondary dolomite, quartz, pore-filling dolomite, late silicification, late euhedral dolomite and calcite replacing dolomite. Microbialites above the tuff bed have approximately equal amounts of calcite and dolomite with no significant silicification. Pores, in general, are partially filled with euhedral dolomite or occasional euhedral calcite. Ostracods embedded in the microbialites are replaced by dolomite with secondary calcite cement coating the dolomitized shell. However, the associated matrix contains unaltered ostracods (original calcite). The order of diagenesis for microbialites above the tuff is: calcite, secondary dolomite, rare silicification, pore-filling dolomite, and calcite replacing pore-filling dolomite. Observed diagenetic relationships show: a) characteristic differences in diagenesis above and below the layered tuff bed, b) no significant lateral differences in diagenesis within individual microbialite beds along the margin to basin transect and c) a complex diagenetic history similar to the matrix diagenetic history. Differences in mineralogy and paragenesis of stromatolite and matrix in units below and above the layered tuff bed indicate different stages of lake and pore water chemical variations. These stages are: 1) Microbialite formation in a freshwater lake; 2) Dolomitization of microbialites via evaporative pumping and capillary draw; 3) Early post-burial microbialite silicification in the unit below the layered tuff; 4) High degree of microbialite cementation post-silicification on unit below the layered tuff; 5) Post-silicification dolomitization and dedolomitization as a result of the freshening of pore/lake water after tuff burial and the initiation of microbialite growth in the unit above the tuff. Diagenetic changes in the unit above the layered tuff indicate stages 1, 3 and 5

    Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah.

    Get PDF
    A railroad causeway across Great Salt Lake, Utah (GSL), has restricted water flow since its construction in 1959, resulting in a more saline North Arm (NA; 24%-31% salinity) and a less saline South Arm (SA; 11%-14% salinity). Here, we characterized microbial carbonates collected from the SA and the NA to evaluate the effect of increased salinity on community composition and abundance and to determine whether the communities present in the NA are still actively precipitating carbonate or if they are remnant features from prior to causeway construction. SSU rRNA gene abundances associated with the NA microbialite were three orders of magnitude lower than those associated with the SA microbialite, indicating that the latter community is more productive. SSU rRNA gene sequencing and functional gene microarray analyses indicated that SA and NA microbialite communities are distinct. In particular, abundant sequences affiliated with photoautotrophic taxa including cyanobacteria and diatoms that may drive carbonate precipitation and thus still actively form microbialites were identified in the SA microbialite; sequences affiliated with photoautotrophic taxa were in low abundance in the NA microbialite. SA and NA microbialites comprise smooth prismatic aragonite crystals. However, the SA microbialite also contained micritic aragonite, which can be formed as a result of biological activity. Collectively, these observations suggest that NA microbialites are likely to be remnant features from prior to causeway construction and indicate a strong decrease in the ability of NA microbialite communities to actively precipitate carbonate minerals. Moreover, the results suggest a role for cyanobacteria and diatoms in carbonate precipitation and microbialite formation in the SA of GSL

    Ostracods (Crustacea) associated with microbialites across the Permian-Triassic boundary in Dajiang (Guizhou Province, South China)

    Get PDF
    26 samples were processed for a taxonomic study of ostracods from the Upper Permian (Changhsingian) - Lower Triassic (Griesbachian) interval of the Dajiang section, Guizhou Province, South China. 112 species belonging to 27 genera are recognized. Five new species are described: Acratia candyae sp. nov, Bairdia adelineae sp. nov., Bairdia? huberti sp. nov., Bairdia jeromei sp. nov., Orthobairdia jeanlouisi sp. nov. The unexpected survival faunas associated with microbial formations in the aftermath of the end-Permian extinction are documented for the first time. Ostracod biodiversity variations and palaeo-environmental modifications associated with microbial growth through the Permian-Triassic boundary (PTB) are discussed

    Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 8 (2014): 418–429, doi:10.1038/ismej.2013.130.Microbialites are organosedimentary structures that are formed through the interaction of benthic microbial communities and sediments and include mineral precipitation. These lithifying microbial mat structures include stromatolites and thrombolites. Exuma Sound in the Bahamas, and Hamelin Pool in Shark Bay, Western Australia are two locations where significant stands of modern microbialites exist. Although prokaryotic diversity in these structures is reasonably well documented, little is known about the eukaryotic component of these communities and their potential to influence sedimentary fabrics through grazing, binding and burrowing activities. Accordingly, comparisons of eukaryotic communities in modern stromatolitic and thrombolytic mats can potentially provide insight into the coexistence of both laminated and clotted mat structures in close proximity to one another. Here we examine this possibility by comparing eukaryotic diversity based on Sanger and high-throughput pyrosequencing of small subunit ribosomal RNA (18S rRNA) genes. Analyses were based on total RNA extracts as template to minimize input from inactive or deceased organisms. Results identified diverse eukaryotic communities particularly stramenopiles, Alveolata, Metazoa, Amoebozoa, and Rhizaria within different mat types at both locations, as well as abundant and diverse signatures of eukaryotes with <80% sequence similarity to sequences in GenBank. This suggests presence of significant novel eukaryotic diversity, particularly in hypersaline Hamelin Pool. There was evidence of vertical structuring of protist populations and foraminiferal diversity was highest in bioturbated/clotted thrombolite mats of Highborne Cay.This work was funded by grant OCE-0926421 to JMB and VPE and OCE-0926372 to RES

    A microbial carbonate response in synchrony with the end-Triassic mass extinction across the SW UK

    Get PDF
    The eruption of the Central Atlantic Magmatic Province (CAMP)—the largest igneous province known—has been linked to the end-Triassic mass extinction event, however reconciling the response of the biosphere (at local and nonlocal scales) to potential CAMP-induced geochemical excursions has remained challenging. Here we present a combined sedimentary and biological response to an ecosystem collapse in Triassic-Jurassic strata of the southwest United Kingdom (SW UK) expressed as widely distributed carbonate microbialites and associated biogeochemical facies. The microbialites (1) occur at the same stratigraphic level as the mass extinction extinction, (2) host a negative isotope excursion in ή(13)C(org) found in other successions around the world, and (3) co-occur with an acme of prasinophyte algae ‘disaster taxa’ also dominant in Triassic-Jurassic boundary strata of other European sections. Although the duration of microbialite deposition is uncertain, it is likely that they formed rapidly (perhaps fewer than ten thousand years), thus providing a high-resolution glimpse into the initial carbon isotopic perturbation coincident with the end-Triassic mass extinction. These findings indicate microbialites from the SW UK capture a nonlocal biosedimentary response to the cascading effects of massive volcanism and add to the current understanding of paleoecology in the aftermath of the end-Triassic extinction

    Hopanoids and lipid biomarkers as indicators of microbial communities in modern microbialites from Fayetteville Green Lake, NY and Great Salt Lake, UT

    Get PDF
    Microbialites are composed of a complex community of microbes whose net metabolic activity results in the deposition of carbonate rock. Modern microbialite structures actively grow in a variety of environments and are similar to the oldest preserved form of life on Earth. This research used lipid biomarkers to study the microbial composition of microbialites from a freshwater meromictic lake (Fayetteville Green Lake, NY) and a hypersaline shallow lake (Great Salt Lake, UT). Lipid biomarkers are useful for tracking similarities and differences in the autotrophic and heterotrophic community with variable growth conditions. This work focused on the hopanoid biomarkers, bacterial cellular membrane components preserved in ancient microbial carbonates. Hopanoid biomarkers including diploptene, hop-21-ene, diplopterol, tetrahymanol, bacteriohopanetetrol, and 2-methyl forms were present in microbialite samples, indicating similarities in microbial communities. The microbialites in New York and Utah are valuable for their broad applicability to studying past microbial life

    Facies and geochemistry of non-marine gypsum, EMISAL, Egypt

    Get PDF
    Diverse gypsum facies in terms of crystal size and morphology are deposited in a shallow, non-marine, sulfate-enriched, semi-closed, perennial evaporite basin. These gypsum facies were deposited in intimate association with cyanobacterial mats. Facies analyses and geochemistry revealed two distinct primary facies, based on gypsum fabric; massive selenite, and laminated gypsum varieties. The massive selenite facies is composed of clusters of single and twinned crystals along (100), with upward pointing re-entrant angle. The laminated gypsum varies from rhythmically laminated grass-like selenite to gypsum microbialite (stromatolite). The change from massive selenite to laminated gypsum facies implies fluctuation in lateral and vertical salinity profiles, seasonal brine concentrations and wind action. Post-depositional changes in the form of dissolution, slight to moderate crystal deformation and recrystallization to anhydrite are evaluated. We develop a qualitative model for the depositional basin and facies distribution in order to simulate ancient analogues

    Textural and geochemical features of freshwater microbialites from Laguna Bacalar, Quintana Roo, Mexico

    Get PDF
    Microbialites provide some of the oldest direct evidence of life on Earth. They reached their peak during the Proterozoic and declined afterward. Their decline has been attributed to grazing and/or burrowing by metazoans, to changes in ocean chemistry, or to competition with other calcifying organisms. The freshwater microbialites at Laguna Bacalar (Mexico) provide an opportunity to better understand microbialite growth in terms of interaction between grazing organisms versus calcium carbonate precipitation. The Laguna Bacalar microbialites are described in terms of their distinct mesostructures. Stromatolites display internal lamination, attributed to the precipitation of calcite and the upward migration of cyanobacteria during periods of low sedimentation. Thrombolitic stromatolites show internal lamination in addition to internal clotting. The clotting is seen as a result of binding and/or trapping of micritic peloids by cyanobacteria and attributed to periods of high sedimentation. The carbonates in both microbialites had similar C- and O-stable–isotopic signatures, both enriched in ^(13)C relative to bivalves, suggesting photosynthetic CO_2 uptake was the trigger for carbonate precipitation. This implies that the rate of microbialite growth is largely a function of ambient carbonate saturation state, while the texture is especially dependent on accretion rates and sediment deposition on their surface. Importantly, the coexistence with grazing animals suggests no significant inhibition on microbialite growth, thereby calling into question the decline of microbialite as a result of metazoan evolution. Varying sedimentation rates are likely important in controlling the distribution of thrombolite–stromatolite packages in the geological record, given the importance of this factor at Bacalar
    • 

    corecore