273 research outputs found

    Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of treatment in hemianopic patients to restore missing vision is controversial. So far, successful techniques require laborious stimulus presentation or restrict improvements to selected visual field areas. Due to the large number of brain-damaged patients suffering from visual field defects, there is a need for an efficient automated treatment of the total visual field.</p> <p>Methods</p> <p>A customized treatment was developed for the reaction perimeter, permitting a time-saving adaptive-stimulus presentation under conditions of maximum attention. Twenty hemianopic patients, without visual neglect, were treated twice weekly for an average of 8.2 months starting 24.2 months after the insult. Each treatment session averaged 45 min in duration.</p> <p>Results</p> <p>In 17 out of 20 patients a significant and stable increase of the visual field size (average 11.3° ± 8.1) was observed as well as improvement of the detection rate in the defective visual field (average 18.6% ± 13.5). A two-factor cluster analysis demonstrated that binocular treatment was in general more effective in augmenting the visual detection rate than monocular. Four out of five patients with a visual field increase larger than 10° suffered from hemorrhage, whereas all seven patients with an increase of 5° or less suffered from infarction. Most patients reported that visual field restoration correlated with improvement of visual-related activities of daily living.</p> <p>Conclusion</p> <p>Rehabilitation treatment with the Lubeck Reaction Perimeter is a new and efficient method to restore part of the visual field in hemianopia. Since successful transfer of treatment effects to the occluded eye is achieved under monocular treatment conditions, it is hypothesized that the damaged visual cortex itself is the structure in which recovery takes place.</p

    Rehabilitation of face-processing skills in an adolescent with prosopagnosia: Evaluation of an online perceptual training programme

    Get PDF
    In this paper we describe the case of EM: a female adolescent who acquired prosopagnosia following encephalitis at the age of eight. Initial neuropsychological and eye-movement investigations indicated that EM had profound difficulties in face perception as well as face recognition. EM underwent 14 weeks of perceptual training in an online programme that attempted to improve her ability to make fine-grained discriminations between faces. Following training, EM’s face perception skills had improved, and the effect generalized to untrained faces. Eye-movement analyses also indicated that EM spent more time viewing the inner facial features post-training. Examination of EM’s face recognition skills revealed an improvement in her recognition of personally-known faces when presented in a laboratory-based test, although the same gains were not noted in her everyday experiences with these faces. In addition, EM did not improve on a test assessing the recognition of newly encoded faces. One month after training, EM had maintained the improvement on the eye-tracking test, and to a lesser extent, her performance on the familiar faces test. This pattern of findings is interpreted as promising evidence that the programme can improve face perception skills, and with some adjustments, may at least partially improve face recognition skills

    Mood is a key determinant of cognitive performance in community-dwelling older adults: a cross-sectional analysis

    Get PDF
    First Online: 06 October 2012Identification of predictors of cognitive trajectories through the establishment of composite or single-parameter dimensional categories of cognition and mood may facilitate development of strategies to improve quality of life in the elderly. Participants (n = 487, aged 50+ years) were representative of the Portuguese population in terms of age, gender, and educational status. Cognitive and mood profiles were established using a battery of neurocognitive and psychological tests. Data were subjected to principal component analysis to identify core dimensions of cognition and mood, encompassing multiple test variables. Dimensions were correlated with age and with respect to gender, education, and occupational status. Cluster analysis was applied to isolate distinct patterns of cognitive performance and binary logistic regression models to explore interrelationships between aging, cognition, mood, and socio-demographic characteristics. Four main dimensions were identified: memory, executive function, global cognitive status, and mood. Based on these, strong and weak cognitive performers were distinguishable. Cluster analysis revealed further distinction within these two main categories into very good, good, poor, and very poor performers. Mood was the principal factor contributing to the separation between very good and good, as well as poor and very poor, performers. Clustering was also influenced by gender and education, albeit to a lesser extent; notably, however, female gender × lower educational background predicted significantly poorer cognitive performance with increasing age. Mood has a significant impact on the rate of cognitive decline in the elderly. Gender and educational level are early determinants of cognitive performance in later life.This work was funded by the European Commission (FP7) “SwitchBox” (Contract HEALTH-F2-2010-259772). NCS is supported by a SwitchBox post-doctoral fellowship. We are thankful to all study participants. The authors would like to acknowledge all colleagues who assisted with participant recruitment and evaluation

    A four-dimensional probabilistic atlas of the human brain

    Get PDF
    The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype-phenotype-behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders

    Illusions of Visual Motion Elicited by Electrical Stimulation of Human MT Complex

    Get PDF
    Human cortical area MT+ (hMT+) is known to respond to visual motion stimuli, but its causal role in the conscious experience of motion remains largely unexplored. Studies in non-human primates demonstrate that altering activity in area MT can influence motion perception judgments, but animal studies are inherently limited in assessing subjective conscious experience. In the current study, we use functional magnetic resonance imaging (fMRI), intracranial electrocorticography (ECoG), and electrical brain stimulation (EBS) in three patients implanted with intracranial electrodes to address the role of area hMT+ in conscious visual motion perception. We show that in conscious human subjects, reproducible illusory motion can be elicited by electrical stimulation of hMT+. These visual motion percepts only occurred when the site of stimulation overlapped directly with the region of the brain that had increased fMRI and electrophysiological activity during moving compared to static visual stimuli in the same individual subjects. Electrical stimulation in neighboring regions failed to produce illusory motion. Our study provides evidence for the sufficient causal link between the hMT+ network and the human conscious experience of visual motion. It also suggests a clear spatial relationship between fMRI signal and ECoG activity in the human brain

    Patterns of Cognitive Performance in Healthy Ageing in Northern Portugal: A Cross-Sectional Analysis

    Get PDF
    Background: The Minho Integrative Neuroscience Database (MIND)-Ageing project aims to identify predictors of healthy cognitive ageing, including socio-demographic factors. In this exploratory analysis we sought to establish baseline cohorts for longitudinal assessment of age-related changes in cognition. Methods: The population sample (472 individuals) was strictly a convenient one, but similar to the Portuguese population in the age profile. Participants older than 55 years of age were included if they did not present defined disabling pathologies or dementia. A standardized clinical interview was conducted to assess medical history and a battery of neuropsychological tests was administered to characterize global cognition (Mini Mental State Examination), memory and executive functions (Selective Reminding Test; Stroop Color and Word Test; and Block Design subtest of the Wechsler Adult Intelligence Scale). Cross-sectional analysis of the neuropsychological performance with individual characteristics such as age, gender, educational level and setting (retirement home, senior university, day care center or community), allowed the establishment of baseline clusters for subsequent longitudinal studies. Results: Based on different socio-demographic characteristics, four main clusters that group distinctive patterns of cognitive performance were identified. The type of institution where the elders were sampled from, together with the level of formal education, were the major hierarchal factors for individual distribution in the four clusters. Of notice, education seems to delay the cognitive decline that is associated with age in all clusters. Conclusions: Social-inclusion/engagement and education seem to have a protective effect on mental ageing, although this effect may not be effective in the eldest elders