46 research outputs found

    Crystal Structure of the Hendra Virus Attachment G Glycoprotein Bound to a Potent Cross-Reactive Neutralizing Human Monoclonal Antibody

    Get PDF
    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    The forward physics facility at the high-luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Measurement of vector boson production cross sections and their ratios using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    Abstract available from publisher's website

    Concentrated solar energy applications using Fresnel lenses: A review

    No full text
    Solar energy concentration technology using Fresnel lens is an effective way to make full use of sunlight. This paper makes a review about the recent development of the concentrated solar energy applications using Fresnel lenses. The ongoing research and development involves imaging systems and non-imaging systems. Compared with imaging systems, non-imaging systems have the merits of larger accept angles, higher concentration ratios with less volume and shorter focal length, higher optical efficiency, etc. Concentrated photovoltaics is a major application and the highest solar-to-electric conversion efficiency based on imaging Fresnel lens and non-imaging Fresnel lens are reported as over 30% and 31.5 ± 1.7%, respectively. Moreover, both kinds of systems are widely used in other fields such as hydrogen generation, photo-bio reactors as well as photochemical reactions, surface modification of metallic materials, solar lighting and solar-pumped laser. During the recent two decades, such applications have been built and tested successfully to validate the practicality of Fresnel lens solar concentration systems. Although the present application scale is small, the ongoing research and development works suggest that Fresnel lens solar concentrators, especially non-imaging Fresnel lenses, will bring a breakthrough of commercial solar energy concentration application technology in the near future. Finally, the advantages and disadvantages of two systems are also summarized.Fresnel lens Solar concentrator Imaging Non-imaging

    A new empirical equation to describe the vertical leaf distribution profile of maize

    No full text
    The characteristic traits of maize (Zea mays L.) leaves affect light interception and photosynthesis. Measurement or estimation of individual leaf area has been described using discontinuous equations or bell-shaped functions. However, new maize hybrids show different canopy architecture, such as leaf angle in modern maize which is more upright and ear leaf and adjacent leaves which are longer than older hybrids. The original equations and their parameters, which have been used for older maize hybrids and grown at low plant densities, will not accurately represent modern hybrids. Therefore, the aim of this paper was to develop a new empirical equation that captures vertical leaf distribution. To characterize the vertical leaf profile, we conducted a field experiment in Jilin province, Northeast China from 2015 to 2018. Our new equation for the vertical distribution of leaf profile describes leaf length, width or leaf area as a function of leaf rank, using parameters for the maximum value for leaf length, width or area, the leaf rank at which the maximum value is obtained, and the width of the curve. It thus involves one parameter less than the previously used equations. By analysing the characteristics of this new equation, we identified four key leaf ranks (4, 8, 14 and 20) for which leaf parameter values need to be quantified in order to have a good estimation of leaf length, width and area. Together, the method of leaf area estimation proposed here adds versatility for use in modern maize hybrids and simplifies the field measurements by using the four key leaf ranks to estimate vertical leaf distribution in maize canopy instead of all leaf ranks
    corecore