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Abstract

Nowadays devices with embedded cameras are found everywhere. These
devices are able to perform complex tasks, such as image processing, ob-
ject recognition and more. Such tasks easily require 200 operations per
pixel and in addition each pixel is read and transferred many times, which
consume a substantial amount of energy and execution time. However the
number of transfers can substantially be reduced by exploiting data reuse
by optimizing for locality. Often these optimizations result in more com-
plex memory access patterns. In practice data transfers are performed
by a DMA (Direct Memory Access) controller, which is able to transfer
large consecutive block efficiently. However, large consecutive blocks do
not match with the complex access patterns that are required for good
locality. As a result, the attained bandwidth is only a portion of the max-
imum bandwidth. To improve bandwidth for locality optimized access
patterns, this work proposes a memory shuffling unit that provides an in-
terface between DMA and the accelerator IP (Intellectual Property). To
provide enough flexibility in the access patterns, the DMA controller and
the shuffling unit are programmable. Programming these units requires
many parameters, which makes it manually complex and error prone. To
abstract away from the complexity, a tool flow is developed that analyzes
the schedule, claims memory, and generates the DMA transfers and shuf-
fle instructions. Our shuffling unit increases memory bandwidth by 300x
and decreasing the energy consumption by 300x compared to supplying
the data in patterns directly from the off-chip memory.
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1 Introduction

Nowadays portable devices with embedded cameras are found everywhere, they
can be found in devices such as notebooks, tablets or even smartphones. More-
over, many companies are even trying to take a step further, a well known
example is google glass [21] where a processing unit, camera and other sen-
sors are integrated into a pair of glasses. These devices are potentially used
for many graphical functionalities such as editing images, detecting objects in
photographs or recording video. These devices should be able to perform these
complex image algorithms with a decent performance, and in many cases even
have real-time requirements. In addition they require extremely high energy
efficiency to last more than a few minutes on battery power.

General purpose processors do not meet the high energy requirements set
by those portable devices. By customization, which results in specialized accel-
erators it is possible to meet these requirements. These kind of heterogeneous
architectures consumes 500x less energy and 500x better performance for a spe-
cific task [11]. Hence heterogeneous architectures, combining general purpose
processors and specialized accelerators already dominate mobile systems, such
as the Tegra [22].

Section 1.1 will give an introduction into data transfers for accelerators. The
problem description of this project is described in section 1.2. Afterwards the
outline of this thesis is given in section 1.3.

1.1 Data transfers

One of the open issues is the data transfers to and from accelerators. For image
processing where each pixel easily requires 200 operations, the pixels needs to
be transferred many times. This results in a huge bandwidth requirement.
Fortunately the bandwidth can be reduced by reusing data.

A cache mechanism is commonly used in combination with a general pur-
pose processor to exploit the locality of reference. Since for a general purpose
processor the data access patterns are not known in advance, moreover it can
vary drastically depending on the application being processed. To accomodate
for that, a cache is designed to support a wide range of applications, this is
done by means of selecting a replacement policy that performs well on average.
A few examples of these policies are eviction or least recently used, to handle
these policies area and energy is required [4]. Though for known access patterns
these policies are not necessary, it is therefore more efficient to use scratchpad
memories.

Writing to scratchpad memories requires manual instructions, this can be
done by a general purpose processor. Instead it is more efficient in terms of
energy and throughput, to use a DMA (Direct Memory Access) unit, which is
specialized in transferring data.
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1.2 Problem description

When focussing on applications which use image processing, a wide range of
them are based on the same basic operation, namely 2D convolution. A few
well known examples are photo filtering and augmented reality applications.

There are accelerators specialized in convolution operations having a small
storage (for area, energy and flexibility), that can process data efficiently when
data is provided in certain patterns. On the other hand, there is a DMA that can
efficiently transfer large blocks of data. The problem is that these large blocks
of data do not match with the patterns that are favorable for the accelerator,
there is no efficient interface available between these two units.

To provide a flexible and efficient interface this work proposes a memory
shuffling unit. The contributions of this thesis are summarized below:

1. A flexible interface is proposed to connect a DMA to an image processing
accelerator. This interface reduces the off-chip memory bandwidth by
allowing the accelerator to exploit data reuse. Furthermore the interface
is sufficiently flexible within the application domain.

2. To outline the benefits and the costs of this interface a thorough analysis
is given, that includes throughput, area and energy studies.

3. To relieve the programmer from the complexity of programming individual
DMA transfers an automatic toolflow is developed. The flow defines the
read and write instructions and the shuffle instructions as well.

1.3 Outline

This thesis is organized as follows. Section 2 gives a short introduction to the
background information required for this project. Section 3 discusses reuse in
image processing algorithms and how it can be exploited. Section 4 explains
a concept of an interface able to reorder data. Section 5 presents implemen-
tation details of the proposed interface. In section 6 a toolflow is proposed
which makes it possibly to automatically generate instructions for the proposed
interface. Section 7 explains the toolflow using a complex image processing al-
gorithm. Experimental evaluation is done in section 8 and the thesis concluded
in section 10.
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2 Background

This work includes performing experiments in hardware, in order to be able to
rapidly prototype and analyse this hardware a Field-Programmable Gate Array
(FPGA) is used. First the FPGA and its relevant components are described
in section 2.1, afterwards an introduction is given in DMA data transfers in
section 2.2. The results of the performed experiments regarding data transfers
are show in 2.3. This section will be concluded in section 2.4.

2.1 Field programmable gate array

For this thesis a Zedboard (rev c) is used to perform the experiments. This board
includes a Zynq-7000 XC7Z020 SoC [24] and is composed of the following major
function blocks:

• Processing System (PS)

– Application processor unit (APU)

– Memory interfaces

– I/O peripherals (IOP)

– Interconnect

• Programmable Logic (PL)

Zynq-7000 SoC

DDR3 SDRAM

Figure 1: Zedboard (rev c)

The components of importance in this project are indicated in figure 1. First
is the off-chip memory DDR3 SDRAM [14], there are two units, each having a
size of 2GB on board. The designed hardware for this project is done on the
programmable logic of the Zynq-7000 XC7Z020 SoC, where the APU is used to
easily control and benchmark the hardware.

To prototype on the Zedboard, Xilinx tools are used to rapidly test and
benchmark the hardware. In particular new IP’s were written and synthesized

6



using Vivado HLS [12], which converts C/C++ code into HDL (Hardware De-
scription Language). This IP can then be tested by adding it into a simple test
setup, using the EDK.

For these tools Xilinx provides a catalog with commonly used IP cores, also
for this project a few of these IP’s are used to simplify the design part. Namely
the AXI DMA [2] is used for transferring data and AXI TIMER [3] is used to
perform benchmarks.

2.2 Data transfer

For a general purpose processor, data access patterns can vary drastically de-
pending on the loaded application. To solve this problem a cache, which per-
forms well on average, is commonly used in combination with a general purpose
processor. In a heterogeneous architecture, where different processing units
are specialized with respect to certain applications, access patterns are known
before hand. Due to this reason it is not worthwile to add a cache, instead a
scratchpad memory is used in combination with a DMA. In this setup, the DMA
is responsible for the off-chip communication, in order to gain more insights in
the efficiency of these data transfers, this section will illustrate the bandwidth
a DMA can provide.

2.2.1 DMA instruction

To illustrate the interfaces and components required to initiate a data transfer,
a basic setup of the hardware is shown in figure 2. Using this setup a DMA
instruction will be explained.

DMA Accelerator

SDRAM
Mem
Ctrl

CPU

Figure 2: Benchmark setup

As depicted the CPU is directly connected to the DMA, it has access to a few
registers to control it. The DMA contains two identical sets of registers, one
for writing to the SDRAM and one for reading. To initiate a transfer, three
registers need to be set:

• Start bit

• Address

• Size (in bytes)

For example, if one sets the corresponding parameters to issue the DMA to
read from the SDRAM. The DMA will react to it by reading from the SDRAM
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(through the memory controller) in bursts of data (figure 3). In this figure, there
is a fifo that represents blocks of data that can be received by the DMA over
time. The grey areas represent timestamps in which requested data is available.
Where the width represents the width of the interface and the burst length is a
static parameters.

DMA

Time between
bursts

Burst length Burst length

W
id

th

Time

Figure 3: SDRAM bursts

After the DMA receives the data from the SDRAM, this data will be send
to the accelerator. This does not happen in bursts, the DMA will send data
whenever the interface is available. Therefore the rate at which the DMA can
send data to the accelerator depends on the width of the interface and the rate
at which the accelerator can fetch data from it.

2.2.2 Parameters

From a single data instruction, one can identify many parameters that can
influence the bandwidth. Whereas in the previous section the flow of a data
transfer is described. This section will list and describe the parameters in more
detail before showing the experimental results.

DMA AcceleratorSDRAM

Reading from Memory

Writing to Memory

Mem
Ctrl

Figure 4: Bandwidth benchmark setup

Figure 4 shows a simple block diagram of the different components in the setup
that can have influence on the bandwidth. Note that the CPU is not illustrated
in the diagram, even though it is responsible for issueing memory transfers, it
does not have any influence on the bandwidth.
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From the components and the interfaces in the figure, the following parameters
can be identified:

• Clock frequency

• Data transfer size

• SDRAM burst length

• Bus width of memory interface

• Bus width of accelerator interface

Note that the clock frequency and the data transfer size are trivial parameters
that hold in general. Increasing the clock frequency will obviously increase
the bandwidth, however in terms of energy consumption it is favorable to keep
this parameter as low as possible. Even though it is a valid parameter, the
clock frequency will be kept constant for the experiments, since the effects with
respect to the bandwidth is predictable. Furthermore there is the data transfer
size, in practice this parameter varies with respect to the context. Nevertheless
if the goal is to achieve a high bandwidth, one has to keep this in mind.

For data transfers without any overhead the efficiency (efft, theoretical) can
be computed as follows:

efft =
#bytes

ttransfer

Where #bytes is the number of bytes transmitted and ttransfer is the number
of cycles it takes, these two values have a linear relation.

For the data transfer itself, this analysis is correct. However, to initiate data
transfers the DMA requires instructions, such as the start address, length and
start bit. Therefore initiating a data transfer requires a relatively large amount
of time, including this overhead in the formula gives:

effp =
#bytes

ttransfer + Tdma

From this can be deduced that increasing the size of the transfers, will decrease
the effect of the overhead.

As covered in the previous section, data transfers to and from the SDRAM
happen in bursts. Larger bursts can increase the efficiency of the SDRAM and
therefore has influence on the rate at which data can be retrieved from the
SDRAM (and vice versa). In order to explain the effect of this parameter, the
functioning of an SDRAM has to be explained in more detail.
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Bank

Row buffer

A row

Reads Writes

Figure 5: SDRAM bank

An SDRAM consists of multiple memory banks, where each bank consists
multiple rows and a row buffer (figure 5). For every SDRAM access, the address
of the request is first decoded into a bank, row and column addresses using a
memory map [1]. Using the bank and row addresses a bank can be selected
and the corresponding row can be requested. This row will then be loaded into
a row buffer, which stores the most recently activated row. Now a number of
reads or writes can be issued to access the columns in the row buffer, where
the number of reads or writes is the burst length. The described addresses are
illustrated in figure 6.

Bank

Row address

Bank address

Copy

Column address

Figure 6: SDRAM addresses

The size of each read or write depends on the width of the interface connected
to the memory controller. Trivially it is more efficient to issue as many read
or write requests as possible, however this depends on the amount of data that
is requested, the size of the row buffer and the width of the interface. If the
amount of data is small, there is no use to have a large burst length, since a
majority of the requested data will be discarded. Furthermore, since one wants
to reduce the number of row activations, alignments becomes an important issue.
By allocating large sequences of data to column addresses equal to 0, the start
of a row, one can ensure the minimum number of activations.

Introducing the width of the interface between the memory and the DMA
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as Wmem, the size of a burst in bytes Sburst can be computed as:

Sburst = Wmem ∗ Lburst

Where Lburst represents the length of the burst. So when a data transfer size
is specified in the register of the DMA, these are split up in bursts, where each
burst has the same size. The number of burst can be denoted as Nburst:

Nburst =

⌈
Stransfer

Sburst

⌉
Here Stransfer is the size of the entire transfer, which is set in the register of
the DMA. If Stransfer is not a multiple of Sburst, data will automatically be
discarded by the DMA to match the total size of Stransfer.

2.3 Experiments

This section will present the results of the performed experiments, the delivered
bandwidth are measured while varying the parameters described in the previous
section.

First the experimental setup is outlined, this is illustrated in figure 2. A
CPU is used to prepare the SDRAM, setup DMA transfers and measure the
time in cycles. Before the initiation of the DMA the CPU starts the timer until
an interrupt is generated by the DMA.

Figures 7 and 8 show the experimental results of setting the interfaces to
32 bits for reading and writing while varying the size of the transfers and burst
length.
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Figure 7: Reading from SDRAM using 32b interfaces

11



0

50

100

150

200

250

300

350

400

450

B
an

d
w

id
th

 (
M

B
/s

)

Transfer size (Bytes)

Burst 16

Burst 32

Burst 64

Burst 128

Burst 256

Figure 8: Writing to SDRAM using 32b interfaces

For the measurements having an interface width of 32 bits, one can find that
the bandwidth gradually increases as the size in bytes increases, nearly reaching
the theoretical maximum above sizes larger than 8KB. This behaviour was to
be expected, as the size of the transfer increases, the effect of the overhead Tdma

decreases.
Figures 9 and 10 show the experimental results of setting the interfaces to

64 bits for reading and writing while varying the size of the transfers and burst
length.
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Figure 9: Reading from SDRAM using 64b interfaces

12



0

100

200

300

400

500

600

700

800

900

B
a

n
d

w
id

th
 (

M
B

/s
)

Transfer size (Bytes)

Burst 16

Burst 32

Burst 64

Burst 128

Burst 256

Figure 10: Writing to SDRAM using 64b interfaces

The same results can be seen while setting the width of the interface to 64
bits. The main difference is that the maximum bandwidth doubled, this can be
explained by the fact that the interface allows to send twice as much data per
cycle.

For both sets of measurements, one can find that increasing the burst does
not improve the bandwidth, instead it decreases. This is very counter-intuitive
since the burst rate should decrease the latency by decreasing the number of
activations in the SDRAM, especially for larger data transfer sizes.

2.4 Conclusions

From the results of the experiments can be concluded that transfers of consec-
utive data can be performed efficiently. One can almost reach the theoretical
maximum bandwidth, provided that the transfer size is large enough. However
this means that a large on-chip memory is required to allow efficient transfers.
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3 Motivation of locality and reuse

In the previous section, some experiments are performed to show the bandwidth
a DMA unit can provide when transferring consecutive blocks of data. However,
those measurements do not show the performance when transferring data in
patterns that are favorable for 2D convolutional image processing. This class
of algorithms requires a high bandwidth, because a lot of data needs to be
transferred multiple times. The required bandwidth can be reduced by changing
the data access pattern such that the accelerator is able to reuse data.

The reduction of data transfers required to perform the operations will also
reduce the energy consumption. The focus of this section will be to explore
how to allow the accelerator to reuse data and show experimental results. In
section 3.1 the reuse of data is explained, section 3.2 describes how the reuse
of data can be exploited and what the consequences it has on the data access
patterns. Section 3.3 shows the results when transferring those patterns using
a DMA and this chapter is concluded in section 3.4.

3.1 Pixel reuse

In order to explain how to reuse data, an example of the convolution operation
is illustrated. In convolution a filter is used, also known as a kernel which is a
small matrix with a certain width WK and height HK (where the K denotes
kernel). The operation of such a kernel to process an image is illustrated in
figure 11.

K

*

=

Figure 11: A simple convolution

In the figure, a very small image is being convolved with a 3x3 kernel, where
the kernel is slided over the image, the kernel and its overlapping values are
multiplied and summed, resulting in a value in the output image. The fact
that only a small area, in this case a block of 3x3, is required to compute is a
characteristic of window-based algorithms, where the output does not depend
on the entire image, but only a small portion of it.

An important property is the overlap of the different blocks. Assume the red
block is currently being computed by the accelerator, which implies that those
pixels are loaded in the local memory. Afterwards, one could choose to slide the
kernel either horizontally or vertically. Due to the overlap of the blocks, not the
whole block needs to loaded, instead loading a small portion is sufficient.
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3.2 Exploiting reuse

From the previous section can be concluded that in convolution alike image
processing algorithms it is possible to reuse data by providing neighbouring
data. The most obvious way to do that is by including a large memory in
the accelerator, where all the required data can be stored. This option allows
the accelerator to fully use the available reuse within an image, however this
requires a large amount of local memory, which is expensive in terms of energy
and area, especially when multiple accelerators are used. Moreover, optimizing
for locality using this method decreases the flexibility:

• If the user wants to process an image larger than the available local mem-
ory, the accelerator might be unable to do so.

• There are applications in the image processing domain, which require even
more memory. For instance, one might need to process several images at
a time.

Fortunately there are a few options that require less local memory and still al-
lowing to reuse the data.

3.2.1 Row buffers

An easy option is to fully optimize reuse is by loading a few entire rows equal
to the height of the processing window, as depicted in figure 12. The figure
represents an image, which is entirely stored on the off-chip memory. Here the
gray areas are loaded in the local memory and the block representend by P is
the kernel. In this situation all available reuse can be exploited in the first set
of rows.

Figure 12: Row buffers

Once the first rows are all processed by P the next row can be loaded, while
discarding the first row. This allows P to exploit all the reuse available in the
following set of rows as well. This method effectively allows one to exploit all
reuse available in an image, however it requires a fairly large local memory as
well.
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3.2.2 Column buffers

To minimize the memory requirements of the accelerator, the data transfers have
to be minimized. Only a small amount of pixels need to be send to compute the
next block according to figure 11. This method can efficiently be implemented
for general cases, as illustrated in figure 13. By shifting the kernel to the right,
the start of each row WK ∗ HK needs to be send, whereas for the rest of the
computations only require HK new pixels.

Figure 13: Column buffers

In terms of reuse, it only reuses data while processing in the horizontal direc-
tion. The amount of data that needs to be transferred can be calculated by:

ND = HO ∗ (WK ∗HK) + (WO − 1) ∗HO ∗HK

Where ND denotes the number of data that needs to be transferred, WO and
HO represent the width and height of the output image respectively. Where the
first term computes the total number of pixels to be reloaded (HO times) and
the rest of the time only HK new pixels are required.

Note that this method only benefits from the reuse when moving the pro-
cessing window to the right. When a new row needs to processed, there is a
overlap with the previous row, however that property is not used. One could
benefit from it by increasing the size of the window loaded in the accelerator.
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Figure 14: Column buffers extended

For example, while in figure 13 three pixels are send at a time, figure 14
shows an example of sending four pixels. The idea is that by sending columns
of three, only one output value can be computed. By increasing the size of the
columns to four, two output values can be computed at the same time.

In other words one can increase the height of the input columns to increase
the height of the output columns, where each pixel in the output column can
be computed in parallel, which depends on the accelerator. The height of the
output columns is a parameter denoted by HOC , from which the height the
input columns (HIC) can be computed as:

HIC = (HOC − 1) + HK

ND =

⌈
HO

HOC

⌉
∗ (WK ∗HIC) + (WO − 1) ∗

⌈
HO

HOC

⌉
∗HIC

Where figure 13 required 288 to be transferred, by extending the size of the
columns to four, the number of transferred bytes can be reduced to 192.

Note that this method can also be used from top to bottom (row buffers),
since in many cases the images are wider than they are high, thus more reuse
can be exploited using column buffers.

3.3 Experiments

In the previous sections data patterns to optimize for locality were explored.
In this section experimental results are presented when transferring data in
patterns according to column buffers or column buffers extended using a DMA.

Before presenting the results of the experiments, the pattern in which data
is send is first illustrated in figure 15. Here the data is send in columns, where
the number in the columns indicate the order in which the data is send.
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Figure 15: Column pattern

Figures 16 and 17 show the actual results of the experiments. For each entry
in the column a separate DMA transfer is initiated where only one pixel is used.
As described in section 2 the size of a single transfer depends on the width of
the interface and the burst size. As only one pixel is needed, both parameters
are minimized.
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Figure 16: Reading column patterns

Figure 16 shows reading these patterns from the SDRAM, one can see that the
bandwidth decreases by nearly three orders of magnitude compared to transfer-
ring a large block of data (figure 7). These results were expected, since multiple
requests issued send for transferring a small amount of data, causing a huge
overhead. Furthermore for each request to the SDRAM a burst of data is re-
ceived, from which only one pixels is read and the rest is discarded.

The data is send in columns to the accelerator, which means that the out-
puts are retrieved in columns as well. Therefore the DMA controller has to
accomodate for that as well, the experiments are shown in figure 17.
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Figure 17: Writing column patterns

The results are similar as the measurements shown in 16, this is also due to
the high overhead of the data transfers.

3.4 Conclusions

This chapter shows data access patterns beneficial for image processing accel-
erators. In other words, sending data in these patterns requires less on-chip
memory. Using these patterns it is important to reuse data to decrease the
amount of data to be transferred. Experiments are performed in which the
DMA is used to send data in these patterns, however the bandwidth decreases
by nearly 3 orders of magnitude when compared to transfers of large consec-
utive blocks. Even though these patterns are beneficial for image processing
accelerators, the decrease in bandwidth is to large to be of any use.
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4 Data reordering

In previous chapters it is shown that the DMA can provide a high bandwidth
if the transfer consists of large blocks of data. On the other hand there is the
accelerator, which can reduce the amount of data to be transferred if data is
delivered in certain patterns. However, these patterns do not match the transfers
the DMA can handle efficiently.

In order to provide the data in patterns to the accelerator while at the same
time achieving a high bandwidth, the accelerator and the DMA accesses should
be separated. This can be achieved in the form of an interface, that can receive
large amounts of data while at the same time output this same data in patterns
favorable for the accelerator.
Outputting data in a different order implies that this interface requires a buffer
memory. Adding the interface, the setup is illustrated by 18.

DMA Accelerator

Interface

Memory

Memory

Figure 18: Interface for DMA/accelerator

In this setup, two memories are included because the data moves in two direc-
tions, and the data transfers of these two directions are unrelated. An issue that
can be identified here is, is that data is written and read from the same memory
which can cause collisions and makes this setup very error sensitive. A solution
to resolve these collisions is by using a ping pong method. What happens is that
the memory is divided into two smaller memories, the idea is that one unit reads
one of the memories while the other unit writes to the other. This is a prop-
erty that can be forced by the interface. The result of the modification is shown
in figure 19, here the exclusivity of memory usage is illustrated by the switches.

Interface

Memory

Memory

Memory

Memory

ping-pong

ping-pong

AcceleratorDMA

Figure 19: Interface including ping pong buffers
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4.1 Reordering

By studying the details of the reordering mechanism, one can derive that the
order of the data received from the DMA differs a lot compared to the order of
the access patterns. For instance, if the data received by the DMA is writting
to the memory within the interface in a consecutive order. The output of the
interface (input for the accelerator) is scattered over the memory. Gathering
data from the scattered positions in a memory is a time consuming task. The
proposal is to split the memories into banks, where different banks are accessible
in parallel. This structure allows access to multiple addresses in parallel, hence
allowing to gather the correct data with a high throughput.

Interface

AcceleratorDMA

A Bank

Figure 20: Banks concept

This concept is shown in figure 20, the transfers from the DMA towards the
accelerator are illustrated. Each row represents one address, thus one access
is required to access a row. The gray areas represent the areas being accessed
simultaneously. In this example the DMA unit accesses the memories in a
sequential order. In theory the accelerator can select any data as long as it only
accesses one address in each memory. Only two memories are illustrated in the
figure for illustrational purposes, however it is possible to add more memories
to increase the flexibility.
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4.2 Flexibility

For the reordering of data, this work focusses on convolution alike access pat-
terns. These algorithms have multiple parameters, e.g. kernel size, subsampling
factor, image or feature map size, the proposed interface can accomodate for
that. How this can be realized will be explained in detail in section 5.

In commercially sold SoCs, different accelerators are used for different tasks,
e.g. video decoding or face detection [22][15], from which many of them are
based on convolution alike data access patterns. Therefore by focussing on data
access patterns for the convolution operation, enables the interface to be used
for a large range of accelerators.
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5 Shuffling unit

A shuffling unit is proposed to provide an interface between the DMA and the
accelerator. The unit allows a high transfer rate while at the same time provides
access patterns required to exploit data reuse by optimizing locality for image
processing algorithms. In other words increasing spatial locality for the DMA
and maximize temporal locality for the accelerator.

5.1 Architecture

The basic architecture of the proposed memory shuffling unit can be found in
figure 21, here the accelerator is divided into a computation unit and memory
shuffling units. Furthermore there are FIFO buffers placed between the shuffling
units and the accelerator, these are placed to facilitate for the speed differences
between these components. For instance, if the shuffling unit wants to send data
to the accelerator while it is busy, instead of being stalled, the shuffling unit can
continue processing after writing the data to the FIFO.

In this setup the shuffling in is responsible for receiving the data from the
DMA and supply the data to the accelerator in the correct pattern. The shuffling
out receives the results from the accelerator, reorders the data and sends it back
to the SDRAM through the DMA.

Shuffling
in

Shuffling
out

Accelerator

Data in

Data out

DMA
SDRAM

FIFO

FIFO

Figure 21: Including the shuffling units

The shuffling units can receive and provide large amounts of data from and to
the DMA. Whereas on the other side, the shuffling unit can supply and retrieve
data in complex patterns, optimized for locality, from the computation unit.
Hence it is assumed that the computation unit has the required memory and
intelligence to make use of this [8].

Note that there is only one DMA present in this setup, this means that
data transfers can only happen in one direction at a time, as there is only one
connection available to the SDRAM. This means that the bandwidth can be
improved by adding another DMA, where one DMA is responsible for reading
and the other for writing.
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5.2 Memory

In order to send the same data in a different order requires buffer memory within
the shuffling units, which is shown in more detail in figure 22.

Shuffling in

Data in
Fetch Select

Shuffling out

Select Fetch

Accelerator

Data out Accelerator

AcceleratorDMA
SDRAM

FIFO

FIFO

BRAMs

BRAMs

BRAMs

BRAMs

Figure 22: Fetch & select units

Each shuffling unit has a two memories consisting of multiple block RAMs and
fetcher and selector units. Multiple memories allow the fetcher and selector unit
to process data at the same time without having the risk to interfere with each
other.

Multiple block RAMs allow a high flexibility in reading and writing, since
each block RAM can be accessed at the same time [7]. The fetcher takes care
of incoming data, it writes the data from the DMA into the block RAMs. The
selector is responsible for selecting the correct data from the block RAMs and
send it to the next unit.

5.3 Memory Patterns

To perform a shuffling action, the fetcher and selector should work together.
However, depending on the accelerator connected to the shuffling unit, it should
be able to supply different patterns. This changes the order in which the selector
selects data, to be able to do that efficiently, the fetcher should also change the
pattern in which the data is written.

To outline the inner working of the shuffling unit, an education example of
2D convolution is given. To describe the example the following notation based
uppon [6] is used.

• NB Number of banks

• NP Bank width

It is preferable to set NP equal to the width of the incoming interface, this
way each input has the same size as an entry in the memory. Moreover NB

is set equal to the width (in bytes) of the outgoing interface, guaranteeing to
be able to send data every cycle even if one byte is required from every bank
simultaneously, provided that the data is sorted well. For now, it is assumed
that all interfaces are 4 bytes wide. As shown in a previous section for the
convolution operation it is favorable to send data in columns to the accelerator,
from this information a few properties are derived.
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1. For every column, a single item is accessed from a row.

2. Neighbouring rows are accessed in parallel.

These properties can be translated into data accesses in multiple memory banks.
Since only one item from a row is accessed at a time, it can be concluded that
a row can safely be written in the same bank. The fact that neighbouring rows
are accessed simultaneously, implies that these rows should be folded over the
number of banks. A pattern that could be used for convolution is illustrated in
figure 23.

NP = 4

NB = 4

Figure 23: Fetch pattern for convolution

The block on the left is an image, where the lines are numbered. On the right
the lines of the image are mapped on the memory banks.

First Column

. . . . .

Figure 24: Select pattern for convolution

Afterwards the select unit can select columns from the memory banks, which in
this example is a set of 6 pixels, this is depicted in figure 24. Where the memory
banks are shown on the left side and the output fifo to the right. Here each
row is illustrated with a different color, so each column consists of 6 pixels with
different colors. Note that the operations of the fetch and select are similar for
reordering output data.
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5.4 Programmability

In order for the shuffling unit to work efficienty with a large range of image
processing accelerators, it needs to be flexible. That means the DMA and the
fetch and select units should be programmable, this is managed by a scheduler
as depicted in figure 25.
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Figure 25: Programmable shuffle unit

Just like a DMA instruction, a shuffle instruction processes a large amount of
data. Each shuffle instruction corresponds to both the select and fetch units,
since they both have to process the same block of data. Between the fetch and
select units there is a ping pong buffer, this means that for every instruction, the
select should wait for the fetch unit is finished such that the ping pong buffer
will be flipped. This results in a pipelined flow of the fetch and select units 26.

Time

SelectFetch

Fetch Select

Figure 26: Fetch & select pipelined
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5.5 Implementation

The architecture is implemented in hardware using Vivado HLS, as input lan-
guage C/C++ is used, which is converted to a HDL by the tool. Vivado HLS
offers easy creation of interfaces, due to these benefits, this tool allowed us to
rapidly design prototypes of the shuffling unit.

This section will show samples of code written in Vivado HLS that are
essential for the properties of the shuffling unit.

#de f i n e MEM SIZE 8192
#de f i n e BLOCKFACTOR 4
typede f i n t BANKTYPE;
BANKTYPE mem in0 [BLOCKFACTOR] [MEM SIZE/BLOCKFACTOR] ;
BANKTYPE mem in1 [BLOCKFACTOR] [MEM SIZE/BLOCKFACTOR] ;

Since a ping-pong mechanism is used, two identical sized memories are allo-
cated. Each consisting of BLOCK FACTOR banks (which is 4 in this case).

#pragma HLS ARRAY PARTITION va r i ab l e=mem in0 block f a c t o r=4 dim=1
#pragma HLS RESOURCE va r i ab l e=mem in0 core=RAM 2P BRAM

#pragma HLS ARRAY PARTITION va r i ab l e=mem in1 block f a c t o r=4 dim=1
#pragma HLS RESOURCE va r i ab l e=mem in1 core=RAM 2P BRAM

To define an appropriate structure regarding the block RAMs special com-
mands are required in the form of pragmas. Using the HLS ARRAY PARTITION
pragma, the mapping of the array on top of block RAMs is specified. Afterwards
it is specified to use simple dual port block RAMs to create this memory.

Besides having two memories, also two instruction variables are required,
since the instructions fed to the select unit needs to be delayed. Which instruc-
tion and memory to be used for the fetch and select units is decided by a one-bit
value i. A last variable is required to indicate the last instruction.

i c I n s t r i n s t r [ 2 ] ;
ap int<1> i = 0 ;
unsigned i n t l a s t ;

This function takes care of reading instructions and the last bit.

l a s t = r ead In s t r ( c t r l , i n s t r [ i ] ) ;

In the following segment the code representing figure 26 is shown. Where the
fetch and select units are represented by functions, where each function receives
a memory to read or write from and an instruction as parameters. First the fetch
unit initiates the first instruction, afterwards the while loop is entered, where
the fetch and select units run in parallel. In this loop the select unit processes
instruction i, while the fetch unit is processing i + 1. Since the instructions to
the select unit is delayed by one, this needs to be compensated after the last
instruction is received (when the loop breaks). Note that the if statement acts
as a switch to connect the fetch and select units to different memories and the
code within the if statement guarantees exclusive access.

27



f e t ch ( in , mem in0 , i n s t r [ i ] ) ;

i ˆ= 0x01 ;

whi l e ( ! l a s t ) {
#pragma HLS DEPENDENCE va r i ab l e=i n s t r i n t r a t rue

l a s t = r ead In s t r ( c t r l , i n s t r [ i ] ) ;

i f ( i ) {
f e t ch (mem in1 , i n s t r [ 1 ] ) ;
s e l e c t (mem in0 , i n s t r [ 0 ] ) ;

} e l s e {
f e t ch (mem in0 , i n s t r [ 0 ] ) ;
s e l e c t (mem in1 , i n s t r [ 1 ] ) ;

}

i ˆ= 0x01 ;
}

i f ( i )
s e l e c t ( out , mem in0 , i n s t r [ 0 ] ) ;

e l s e
s e l e c t ( out , mem in1 , i n s t r [ 1 ] ) ;
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6 Toolflow

In the previous section the shuffling unit is introduced to efficiently transfer
data to and from the image processing accelerator. This unit is flexible and
requires to be programmed according to the needs of the accelerator. However
the programming happens with custom instructions, where these instructions
depend on many parameters, e.g. interface widths and alignments in the hard-
ware. All these parameters makes the programming process hard to construct
and error-sensitive. That is why a toolflow is proposed to relieve the user from
this complex task.

Application
Description

Accelerator
Description

Memory Allocater

Partial Memory
Allocations Scheduler

DMA instruction
List

Shuffle instruction
List

Memory
Allocations

Shuffling Unit
Description

Figure 27: The toolflow

The goal of the toolflow is to generate shuffling instructions, though these shuf-
fling instructions are also related to the DMA instructions, on top of that, the
relative memory allocations depend on the DMA instructions. For the DMA to
operate correctly, the memory allocations have to be aligned. Note that for the
data transfers it is assumed that column buffers extended (figure 14) is used.
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As depicted in figure 27, the following information are required as input:

• Shuffling unit description: this description contains information about
the shuffling unit, allowing prediction of the behaviour.

– Interface widths: required for alignment of the data. Incorrect
alignments can result in undefined behaviour of the DMA.

– Memory size: this parameter bounds the number of bytes the shuf-
fling unit can receive.

– Number of banks: the data send to the shuffling unit is written
into multiple banks, in order to analyze the behaviour this parameter
is required.

• Application description: information about the application can be
found in this description, e.g. input dimensions and coefficients.

• Accelerator description: this description is required to know the be-
haviour and limits of the accelerator, e.g. the buffer size and number of
kernels it can compute simultaneously.

6.1 Partial memory allocations

The partial memory allocations is an intermediate result created by the memory
allocator process (figure 27). In this step the application description is used to
extract all the allocations required on the SDRAM, e.g. input, intermediate,
output and metadata. It is assumed all data is allocated in a large aligned block
of data. In addition since all transfers are performed by a DMA controller all
the values within this list must be aligned.

For example, consider computing of the partial memory allocations that
are required for a convolutional neural network. This kind of network has one
input image, several output data and intermediate data within each layer. The
metadata is extra data that is required to perform the computations, e.g. the
network coefficients.

6.2 Shuffle and DMA instructions

The DMA instructions is a list containing all the data transfers required for the
accelerator to run an application. Each instructions consists of the following
values:

1. Relative address

2. Size in bytes

3. Direction

The relative address is based on the partial memory allocations, because it
describes the data required for this application. Furthermore, these transfers
are directed in either direction as the accelerator also produces output data.
The shuffle instructions are closely related to the DMA instructions and can be
generated at the same time. The toolflow will simulate the behaviour of the
accelerator, since the simulator knows what data the accelerator expects, it can
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generate the required shuffling and corresponding DMA instructions to provide
data in the correct patterns. Note that each shuffling unit is related to multiple
DMA instructions, this idea is further explained using figure 28.

Length

H
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t

Figure 28: Shuffle instruction generation

Assume the gray area needs to be processed, though this area is not a consecutive
block, hence multiple data transfers are required. This whole block needs to be
shuffled as one entity, therefore three data transfers are required for one shuffle
instruction in this example.

The maximum height of this area depends on the kernel size and the accel-
erator description since the accelerator can manage a number of computations
at a time (column buffers extended, section 3). Using this maximum height, a
length can be computed depending on the size of the memory within the shuf-
fling unit. Here it is beneficial to use a length as long as possible for efficient
DMA transfers. Note that it is possible to reduce the height of the transfers to
increase the length. In other words increasing the DMA efficiency for the level
of parallelism in the accelerator.

The effect gained here is that practically a larger image is cut in smaller
blocks of data, where each block is processed separately. The manner in which
an image is partitioned is shown illustrated in figure 29.
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Figure 29: Partitioned image

In this figure an image is partitioned in four blocks, where between these
blocks there is overlap (indicated by a darker color), the size of the overlap
depends on the processing parameters. As mentioned, the height and length
depends on the accelerator and the memory in the shuffling unit. So for wider
images, it could be necessary to horizontally split the image in more than 2
partitions. The overlapping blocks of data are assumed to be transferred twice,
hence simplifying the memory management within the shuffling unit for the
price of exploiting less reuse.
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6.3 Memory Allocations

While the memory allocations are computed in the partial memory allocations,
some algorithms require additional memory allocations. For instance due to the
lack of resources in the accelerator, such that one needs to store intermediate
results of computations. These memory allocations, can be computed while
simulating the behaviour of the accelerator.

6.4 Toolflow results

In the previous subsections the different results from the toolflow are listed, this
section will describe how these different results are related and how they are
used to control the shuffling unit.

The results of the toolflow consists of the memory allocations, DMA in-
structions and shuffle instructions, where the DMA instructions matches with
the memory allocations and in turn the shuffle instructions are closely related
to the DMA instructions. The memory allocations describes a list of relative
addresses for all the data which is required for the computations, for which a
large and aligned block of data is allocated. The designated memory locations
of the input and metadata (e.g. coefficients) are required to be filled before the
computations can start. The result of the toolflow is depicted in figure 30.
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Figure 30: Theoretical concept of toolflow results

In the figure, the data is allocated and the scheduler now has access to the DMA
and shuffle instructions. This scheduler is responsible for supplying instructions
to the DMA and the shuffle units. In our setup the DMA instructions are set by
the CPU whereas the shuffling instructions are send using an extra DMA unit.
Once the data allocations are done, the DMA and shuffling units can be initiated
by supplying the instructions.
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7 Convolutional Neural Networks

In the previous sections, a shuffling unit was proposed based on the idea to
reduce data transfers, the focus was for applications based on the convolution
operation. This section will perform a case study for CNN’s (convolutional neu-
ral networks). These networks have shown to provide a large level of parallelism
and are flexible in terms of feature extraction and classification of images. Due
to these properties CNN’s are successfully applied in the domain of object recog-
nition [16][10][13]. However a CNN requires a lot of data, therefore this section
will describe the manner in which computations are performed in a CNN, from
this study, data patterns can be found which are able to exploit locality of
access [18].

As the name suggests, a CNN is a network of neurons, in this case artificial
neurons. Each operation is performed by a such an artificial neuron and is
illustrated by figure 31.
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Figure 31: An artificial neuron

Here the x values are the inputs, c the coefficients, vk an intermediate value
and yk the output. The inputs are multiplied with the coefficients and summed
afterwards. Note the bk, also known as the bias, which is similar to a coefficient,
the main difference is that this value remains constant, as illustrated by a value
of 1 at the input.

The activation function ϕ() is a non-linear function that bounds the summed
value. The activation function will prevent a dominating value from an input
to propagate through the entire network.
The operation of an artificial neuron can mathematically be expressed as:

vk =
∑m

i=1 ckixi + bk

yk = ϕ(vk)

The operation described by an artificial neuron is applied on a patch of data in
an image, to process an entire image many artificial neurons are used to shift
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on top of the image. Note that this operation is very similar to a convolution,
the main differences are the bias value and the activation function, nevertheless
the data patterns are identical to that of a convolution.

7.1 Multi-stage architecture

A CNN is a technique that uses multiple layers to process a single image, for
each layer the same operation is performed with different coefficients and di-
mensions. Figure 32 illustrates the concept of a layer.

Input Image Feature
maps

Figure 32: First layer

On the left, an input image can be found, this input is used to compute the
multiple feature maps, those are the results from this layer. In this case three
feature maps are computed, where each of them is the result of the computation
with a different kernel.
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Figure 33: Layers

The power of a CNN lies in the fact that there are multiple layers, whereas
the first layer can only detect simple features. The next layers can combine the
detected from the previous layers to identify more complex features, this process
is also known as feature extraction. Figure 33 shows computations between two
successive layers, where the left side represents the input feature maps and on
the right are the output feature maps. In this figure every arrow represents
a computation of an entire feature map with the same kernel. Note that not
each output feature map require the same amount of input feature maps, this
does happen in practice, though in this example the arrows are added randomly
for illustrational purposes. Furthermore the number of layers and number of
feature maps within a layer depends on the functionality one wants to achieve.

7.2 Processing Feature maps in parallel

Due to the multi-stage architecture there are many levels of parallelism pro-
vided, which allows for efficient processing. To be able to exploit this level of
parallelism, the data patterns are required to change drastically compared to
conventional convolution based algorithms. The following subsections will ex-
plain the concepts in more detail and solutions will be provided allowing large
amounts of reuse in addition to pixel reuse.
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7.2.1 Feature map reuse

From figures 32 and 33 one can find that certain inputs are required to compute
multiple outputs. Though the concept of exploiting reuse as explained in sec-
tion 3 only assumes one output. Fortunately this concept can be generalized,
where the input can be transferred using the same method as for conventional
convolution operations. Instead of using one kernel to convolve with the input,
multiple kernels are used, the only consequence of this modification is that the
output becomes more complex. As parts of multiple output feature maps are
interleaved.

7.2.2 Intermediate data reuse

The concept of intermediate data is explained using figure 33, from this can be
conluded that there are cases where an output feature map requires multiple
inputs. The consequence is that if not all the required input feature maps are
available, it would result in a large amounts of intermediate data that needs to
be transferred to the SDRAM.

For instance, in figure 33 the bottom output feature map is being computed,
it would require two input feature maps. Of course these two can be send
at the same time in an interleaved fashion, however these two inputs are also
required by the middle output feature map, where the middle one requires one
more input. To efficiently use this property, the result is that a whole layer is
transferred simultaneously to prevent intermediate data.

7.3 CNN interleaved pattern

The conclusion of the previous section for the most efficient data transfers is to
transfer parts of all the input feature maps in an interleaved fashion. Where
also all the output feature maps are being computed at the same time and in-
terleaved. This concept is illustrated in figure 34.
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Figure 34: CNN interleaved pattern

The number in the input denotes the order in which the data is presented
to the accelerator and the number in the output denotes after which transfer
specific data can be computed. In this figure it is assumed that the input and
output are directly read from or written to the shuffling unit.

For the shuffling unit this interleaving adds two complications, as multiple
inputs are processed at the same time, multiple inputs needs to be read at a time.
This implies a larger memory size with respect to a conventional convolution
operation. Furthermore the addressing of the data is more complex due to the
interleaving, the same complications hold for the output as well.
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8 Experimental evaluation

For this section a test setup is created including the shuffling unit, this is done
for the Zedboard (rev c). An abstract layout of the setup is presented in fig-
ure 35.
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Figure 35: Shuffle unit setup

In section 5 a scheduler is presented which supplies DMA and shuffle instruc-
tions, to simplify the test setup a CPU is used as a replacement. Also note that
two DMA units are used, the Data DMA sends data to the shuffling unit and
the Instr. DMA sends the shuffle instructions, such that the shuffling unit can
process multiple instructions independently of the CPU.

This setup operates as follows; first the shuffle instructions are prepared
on the SDRAM, once this is done, the Instr. DMA is initiated to send the
instructions as a stream. Afterwards the CPU controls the Data DMA to send
the data to the shuffling unit.

Note that only measurements of sending data towards the accelerator are
performed. This explains the lack of an output shuffling unit in figure 35.

8.1 Throughput

This section quantifies bandwidth results when supplying different data pat-
terns. Here a single layer of a CNN is assumed, where the computation and
subsampling layers are merged [17]. This CNN is depicted in figure 36, there
are 3 input feature maps and 3 output feature maps. Even though this CNN
is small, it contains all the kinds of reuse as explained in previous sections. In
order to gain more insight, different settings, such as image size, kernel size and
subsampling are used, however the connectivity will remain the same.
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Figure 36: Throughput CNN setup

For this setup multiple sets of parameters are used to illustrate the effects,
the sets are listed in table 1. The output column height (HOC) denotes the
potential parallelism that could be exploited by the accelerator and increases
the level of pixel reuse of the proposed pattern.

ID Image size Kernel size Subsampling Output column height (HOC)
1 800x600 5x5 2 8
2 800x600 5x5 1 4
3 800x600 5x5 2 4
4 800x600 3x3 1 4
5 1920x1080 5x5 2 8
6 1920x1080 5x5 1 4
7 1920x1080 5x5 2 4
8 1920x1080 3x3 1 4

Table 1: Overview of parameter sets
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A few different methods will be used to perform experiments, these are listed
below:

• Shuffling unit : the proposed interface is used to transfer the data in the
proposed patterns.

• DMA inefficient : identical patterns at outputted by the shuffling unit are
provided directly by the DMA controller.

• DMA lines: individual pixels lines of a feature map are transferred as
consecutive blocks to the accelerator. The accelerator computes the result
of a single input feature map, which causes additional data transfers of
the intermediate output result. For this method the accelerator needs to
store a few lines of data, resulting in a small local memory.

• DMA blocks: whole input feature maps are transferred as consecutive
blocks to the accelerator. To prevent intermediate output results, a single
output feature map is computed at a time. As a result input feature maps
are required to be transferred multiple times. Moreover a large memory
size is required since whole feature maps are stored on the local memory.

The selected methods have varying characteristics in terms of reuse, a clear
overview of the reuse these methods can exploit is given by table 2, the num-
bers are based on parameter set 2.

Method Pixel reuse Feature map reuse Intermediate data reuse
Shuffling unit 50.59% 100% 100%
DMA inefficient 50.59% 100% 100%
DMA lines 100% 100% 0%
DMA blocks 100% 0% 100%

Table 2: Reuse overview of a few methods

The table shows that for the proposed schedule 50.59% reuse of the available
is used. This value depends on the processing parameters, from which most
are application dependent, except for the output column height (HOC). This
parameter is also described in section 3 and increases the reuse. Note that HOC

only affects data transfers for shuffling unit and DMA inefficient. The band-
width results of the methods can be found in figure 37.
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Figure 37: Bandwidth evaluation

For DMA blocks entire images are send to the accelerator regardless of the
processing parameters, this results in the fact that the bandwidth nearly reaches
the theoretical maximum. DMA lines sends lines, since more transfers are ini-
tiated more overhead is created compared to DMA blocks. Furthermore, it pro-
duces intermediate computations where the amount depends on the processing
parameters, which also influences the bandwidth.

The shuffling unit performs reasonably well in terms of bandwidth, it shows
a nearly 2.5x bandwidth reduction compared to DMA blocks. This is due to the
smaller transfers compared to DMA blocks and because select forms a bottle-
neck in the current design of the shuffling unit. As expected, DMA inefficient
performs extremely bad compared to the other implemenations, mainly due to
the huge overhead of the transfers. It shows a difference of 2 orders of magnitude
compared to the shuffling unit.

From the bandwidth results, the effective bandwidth BWeff can also be com-
puted, this can be expressed as:

BWeff = BW ∗ #bytesact
#bytestransfer

Where BW is the measured bandwidth, #bytestransfer the transferred number
of bytes and #bytesact the number of bytes that actually needed to be trans-
ferred. The results are depicted in figure 38.
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Figure 38: Effective bandwidth evaluation

DMA blocks stays stable since the amount of data transferred does not de-
pend on the parameters. However the effective DMA lines decreases compared
to DMA blocks. Note that the effective bandwidth of DMA lines depends in
particular on the subsampling factor. From this figure can be concluded that
for measurements including subsampling, the efficiency of DMA lines nearly
approaches DMA blocks. Because a higher subsampling factor decreases the
number of intermediate data.

The graph also shows that shuffling unit moves in the same trend as DMA
lines, however this is not only due to the subsampling factor. As mentioned
before the select unit forms the bottleneck, this means that larger transfers to
the accelerator is more efficient. In other words, the effect of the bottleneck
decreases as the number of lines to be shuffled increases. Furthermore one can
find that larger transfers does not increase the effective bandwidth by much,
because larger transfers imposes a start-up latency.
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Figure 39: Latency evaluation
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In figure 39 the latency is plotted according to the number of bytes send and
the bandwidth results. From this figure the same conclusions can be made as
for figure 38.

8.2 Area

The resource usage of a setup without shuffling units (figure 2) is compared with
a setup including a shuffling unit in table 3. Note that all these designs include
at least one DMA and a timer for benchmarking purposes.

Design without shuffling unit Design including shuffling unit
Resource Usage Percentage Usage Percentage
Registers 4613 4% 7182 6%
LUTs 3903 7% 5770 10%
RAMB36E1 4 1% 23 7%
RAMB18E1 1 1% 3 1%
DSP48E1 0 0% 3 3%

Table 3: Resource usage of design with and without shuffle unit

Table 3 presents the resource requirements for designs with and without shuffling
unit. Here one can see that including a shuffling unit increases the resource
usage, this design also includes an additional DMA for providing instructions
to the shuffling unit.

The largest increase is the use of RAMB36E1 of about 7%, this was to
be expected as a large part of the shuffling unit is memory. The increase of
LUTs and registers can be explained by the logic required for the shuffling unit.
For the current implementation the shuffling unit claims the largest amount
of area, however it only uses a small amount of the available resources. The
current setup is not realistic as there are no real accelerators included, which
will be responsible for the highest resource requirements.

This interface can replace a substantial part of the memory requirements
within multiple accelerators. This property can reduce the resource penalty for
this interface. Also a few DSP48E1 are required for the shuffling unit, these
are used to perform address computations. In table 4 the resources for only the
shuffling unit is presented. Note that this is a pessimistic estimation made by
Vivado HLS.

Resource Usage Percentage
Registers 1286 1%
LUTs 2567 5%
RAMB36E1 0 0%
RAMB18E1 35 12.5%
DSP48E1 3 3%

Table 4: Resource usage of shuffling unit

From this table one can find that the shuffling unit uses a considerable amount
of the resources with respect to the entire design. However, the whole design
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consists only of the required components to test this shuffling unit, without
real accelerators. Note that in the estimation 0 RAMB36E1 are used and 35
RAMB18E1, this is because in the implementation 32 RAMB18E1 are replaced
by 16 RAMB36E1.

As there is no hardware generated to implement DMA blocks and DMA
lines the following tables show the block RAM requirement with respect to the
memory usage of the different parameter sets.

Image size (Bytes) Kernel size Subsampling RAMB18E1 Percentage
800x600 5x5 2 698 249.29%
800x600 5x5 1 1161 414.64%
800x600 3x3 1 1167 416.79%
1920x1080 5x5 2 3026 1080.71%
1920x1080 5x5 1 5040 1800%
1920x1080 3x3 1 5051 1803.93%

Table 5: Minimum memory usage for DMA blocks

Table 5 shows the block RAM usage of DMA blocks. In the table one can find
that the memory usage is extremely high, because whole feature maps are stored
in the local memory. None of the tested setups is feasible on the used platform.

Image size (Bytes) Kernel size Subsampling RAMB18E1 Percentage
800x600 5x5 2 3 1.07%
800x600 5x5 1 4 1.43%
800x600 3x3 1 2 0.71%
1920x1080 5x5 2 7 2.5%
1920x1080 5x5 1 9 3.21%
1920x1080 3x3 1 7 2.5%

Table 6: Minimum memory usage for DMA lines

In table 6 the memory usage with respect to the parameters for DMA lines is
listed. The block RAM usage requirements is substantially lower compared to
DMA blocks, since only individual pixel lines need to be stored locally. The
number of block RAMs requirement for the shuffling unit is only 8x larger than
DMA lines. Though the shuffling unit is much more flexible and is usable for
more accelerators.

8.3 Energy

For the energy analysis, Xilinx power analyzer [23] is used to accurately estimate
the power consumption of the designs. A minimal design of a setup in which
consecutive blocks of data is send and received from dummy IP’s is compared
to a design including the shuffling unit.
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No hardware implementations are made for DMA blocks and DMA lines. There-
fore a simple design including a varying memory size is created for estimation
purposes. Figure 40 shows the estimated power consumption while varying the
amount of local memory.
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Figure 40: Power consumption for memory units

This figure shows a linear relation between the power consumption in terms
of memory size. Where the base is approximately 0.114W and an estimated
increase of 0.001W per block RAM for larger values, this will be used for esti-
mations. The following tables will list power consumption estimations for the
actual designs.

Design without shuffling unit Design including shuffling unit
On-Chip Power (W) Percentage Power (W) Percentage
Clocks 0.021 17.5% 0.027 15.4%
Logic 0.005 4.2% 0.007 4%
Signals 0.007 5.8% 0.012 6.9%
BRAMs 0.010 8.3% 0.052 29.7%
Leakage 0.077 64.2% 0.078 44.6%
Total 0.120 100% 0.175 100%

Table 7: Power consumption evaluation
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In table 7 the power consumption of a design with and without shuffling unit
is presented. Due to the increase of the amount of logic and a drastic increase
in the number of block RAMs, the power consumption including the shuffling
unit is approximately 1.5x higher.

From these results the energy consumption can be computed using the re-
sults obtained in the throughput section, these are plotted in figure 41. For
DMA lines, the results are based on the measurements performed by 40 and for
DMA blocks the results are estimated. Note that these estimations are only on
based memory sizes, for these two methods additional logic is required to select
the correct data from the memory. In other words, the estimations gives a lower
bound for the power consumption of DMA lines and DMA blocks.
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Figure 41: Energy consumption evaluation

In terms of energy consumption, DMA blocks and DMA inefficient performs
extremely bad compared to the other two methods. This is due to the large
memory size and inefficient data transfers respectively. Here the energy con-
sumption of DMA inefficient is a factor 170x higher compared to the shuffling
unit. From the figure one can see that DMA lines performs approximately 1.4x
compared to the shuffling unit.

8.4 Conclusions

In this chapter an implementation including a shuffle unit is compared to a few
different methods without. This unit shows a reasonable performance in terms
of bandwidth, while at the same time the energy consumption and area is also
reasonably low. Note that DMA lines outperforms the shuffling unit on every
aspect. The transfers of DMA lines are equal transfers to the shuffling unit,
however no shuffling is performed. So basically DMA lines gives an upperbound,
however it can only handle certain data patterns and is not programmable at
all. Hence the advantage of the shuffling unit is its flexibility. Furthermore the
memory within DMA lines can only be used for a specific task, thus cannot be
shared among multiple accelerators, increasing the area requirements.
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9 Related work

Many others focus on improving the efficiency of heterogeneous architectures
by reducing the off-chip memory requirements. There are many approaches
that can help tackle this issue, such as focussing on the accelerator. In [20] a
flexible convolution engine is proposed which can be used for convolution-like
operations, here the focus is an efficient accelerator. This solution does reduce
the required amount of data, though it does not take into account the efficiency
of transfers from the SDRAM.

Others solve this issue by separating memories from the accelerator. Where
these memories are connected through the accelerator by means of a crossbar
switch. Where DMA controller are responsible for communication with the off-
chip memory, the reason for multiple DMA’s is to hide the start up latencies for
initiating data transfers [9]. In this architecture there are critical dependencies
between the accelerator and the buffers, this is solved by a large crossbar switch
connecting all the accelerators with all the buffers. These buffers need to be
sufficiently large to increase the energy efficiency of the data transfers, all this
concludes in a large area requirement.

In [5] data access patterns are analyzed by means of a polyhedral model,
from this they identify access patterns in the off-chip memory. Based on this
knowledge, these accesses are reorderd, such that these SDRAM requests happen
more efficiently. However, the data accesses by the accelerator itself is not
changed, this is solved by a separate unit including on-chip memory. This
approach increases the efficiency of the SDRAM accesses at the price of a small
unit. However they do not consider restructuring the loop structure of the
accelerator to better exploit data locality.

Where [19] also analyses access patterns using a polyhedral model, from this
as data access structures of the accelerator itself is modified. Where on-chip
memory is used to allow the accelerator to reuse data. However, they only
consider the amount of data required from the off-chip memory and not its
efficiency.

In [18] an accelerator template is given to efficiently compute CNNs, which
contains a memory subsystem also supplying data in efficient patterns. However
the memory subsystem is less flexible compared to the shuffling unit. Further-
more no analysis is given for the efficiency of data transfers to and from the
SDRAM.

My proposal is inspired by the work of [7], where the idea is to have a
flexible memory structure which can offer a high bandwidth. The addition of my
proposal are the fetch and select units to provide flexible interfaces for multiple
accelerator. In contrast to [9] this work assumes flexible reading and writing
units around the memories, allowing a higher level of flexibility. Therefore this
unit can be shared by multiple accelerators.
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10 Conclusions and Future work

The issue identified during the introduction was that there was no efficient in-
terface available to connect a DMA with an image processing accelerator. On
one side, there is the DMA which allows very fast data transfers for large con-
secutive blocks of data, while at the other side the image processing accelerator
is able to reuse data when the data is supplied in complex patterns.

In this project a shuffling unit is proposed forming an interface between a
DMA and an image processing accelerator. This unit is inspired by the work
of [7], which allows a high throughput and a high level of flexibility. In addition
a toolflow is proposed that takes care of instruction generation for the shuf-
fling unit, relieving the user from this complex task. This toolflow can generate
memory allocations, shuffling instructions and DMA instructions by analyzing
the application, based on the hardware parameters of the shuffling units and
properties of the accelerator. During this project, the shuffling unit is thor-
oughly analyzed for performance, area and energy consumption. The analysis
is performed using varying image processing parameters and is presented in
section 8.

With this work we can provide image processing accelerators with the re-
quired bandwidth. Due to the reordering of data accelerators can operate more
efficiently, furthermore the flexibility allows easy integration of multiple acceler-
ators. In other words, the shuffling unit allows new low cost and high throughput
applications to be implemented on mobile devices for everyday tasks.

10.1 Future work

In this work a case study is shown of a shuffling unit, more work is required to
be able to analyse this unit. In the current experiments the benefits of including
a shuffling unit is not analyzed in a realistic setup. This is due to the fact that
the shuffling unit is tested using dummy accelerators, which simply receives the
data without further processing. One can gain more insights about the benefits
of a shuffling unit once it is used for multiple real accelerators. In addition to
that, the shuffling unit allows a lot of flexibilty, this work only focussed on the
convolution operation. So it would be worthwile to explore the flexibility of this
interface, also this can then be tested in combination with multiple accelerators.

For the current architecture a simple DMA is used, this requires the CPU
to manually set DMA for every instruction. The result is that the overhead
created by initiating data transfers and the data transfers themselves happen
sequentially. To reduce the overhead the simple DMA could be replaced by a
DMA supporting scatter gather mode. This mode allows the user to prepare
multiple instructions and send them to the DMA at once. The result is that
the DMA can pipeline the initiation and the actual data transfers, resulting in
a higher bandwidth. Furthermore it relieves the CPU from having to check on
the DMA the whole time.

The current shuffling unit aligns the transfers, this means that different sets
of image processing parameters can have a large effect on the bandwidth. This
issue can be solved by aligning the transfers, however this also involves more
complex addressing of the scratchpad memory.
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