14 research outputs found

    Disability and Mere-Difference: An Exploration of the Relationship Between Disability and Well-Being

    Get PDF
    The objective of this thesis is to evaluate and defend the mere-difference view of disability. In order to do this, I will first review Elizabeth Barnes’s argument for a moderate social-constructivist understanding of disability. I will then review her presentation of the mere-difference view, and formally introduce a common and perhaps powerful objection to it—that it has unacceptable implications. Next, I will review some of Barnes’s responses to one of this objection’s common forms. I will then discuss objections raised against Barnes’s responses—specifically, those raised by Guy Kahane and Julian Savulescu, along with Vuko Andrić and Joachim Wündisch—before offering my own responses to these objections. Finally, I will broadly review additional objections that may be raised against the mere-difference view and offer additional responses. It is my aim to defend the position that disability is something which, in terms of well-being, is neither necessarily good, nor necessarily bad. Rather, that disability is a mere-difference; that it is, itself, a kind of difference which is neutral with regard to its effect on well-being

    Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-positive rates that occur when only sequence conservation at the core binding-sites is considered.</p> <p>Results</p> <p>To improve this situation, we have quantified the performance of several Position Weight Matrix (PWM) algorithms, using exhaustive approaches to find their optimal length and position. We applied these approaches to bio-medically important TFBSs involved in the regulation of cell growth and proliferation as well as in inflammatory, immune, and antiviral responses (NF-κB, ISGF3, IRF1, STAT1), obesity and lipid metabolism (PPAR, SREBP, HNF4), regulation of the steroidogenic (SF-1) and cell cycle (E2F) genes expression. We have also gained extra specificity using a method, entitled SiteGA, which takes into account structural interactions within TFBS core and flanking regions, using a genetic algorithm (GA) with a discriminant function of locally positioned dinucleotide (LPD) frequencies.</p> <p>To ensure a higher confidence in our approach, we applied resampling-jackknife and bootstrap tests for the comparison, it appears that, optimized PWM and SiteGA have shown similar recognition performances. Then we applied SiteGA and optimized PWMs (both separately and together) to sequences in the Eukaryotic Promoter Database (EPD). The resulting SiteGA recognition models can now be used to search sequences for BSs using the web tool, SiteGA.</p> <p>Analysis of dependencies between close and distant LPDs revealed by SiteGA models has shown that the most significant correlations are between close LPDs, and are generally located in the core (footprint) region. A greater number of less significant correlations are mainly between distant LPDs, which spanned both core and flanking regions. When SiteGA and optimized PWM models were applied together, this substantially reduced false positives at least at higher stringencies.</p> <p>Conclusion</p> <p>Based on this analysis, SiteGA adds substantial specificity even to optimized PWMs and may be considered for large-scale genome analysis. It adds to the range of techniques available for TFBS prediction, and EPD analysis has led to a list of genes which appear to be regulated by the above TFs.</p

    Inferring Binding Energies from Selected Binding Sites

    Get PDF
    We employ a biophysical model that accounts for the non-linear relationship between binding energy and the statistics of selected binding sites. The model includes the chemical potential of the transcription factor, non-specific binding affinity of the protein for DNA, as well as sequence-specific parameters that may include non-independent contributions of bases to the interaction. We obtain maximum likelihood estimates for all of the parameters and compare the results to standard probabilistic methods of parameter estimation. On simulated data, where the true energy model is known and samples are generated with a variety of parameter values, we show that our method returns much more accurate estimates of the true parameters and much better predictions of the selected binding site distributions. We also introduce a new high-throughput SELEX (HT-SELEX) procedure to determine the binding specificity of a transcription factor in which the initial randomized library and the selected sites are sequenced with next generation methods that return hundreds of thousands of sites. We show that after a single round of selection our method can estimate binding parameters that give very good fits to the selected site distributions, much better than standard motif identification algorithms

    Genomics Meets Glycomics—The First GWAS Study of Human N-Glycome Identifies HNF1α as a Master Regulator of Plasma Protein Fucosylation

    Get PDF
    Over half of all proteins are glycosylated, and alterations in glycosylation have been observed in numerous physiological and pathological processes. Attached glycans significantly affect protein function; but, contrary to polypeptides, they are not directly encoded by genes, and the complex processes that regulate their assembly are poorly understood. A novel approach combining genome-wide association and high-throughput glycomics analysis of 2,705 individuals in three population cohorts showed that common variants in the Hepatocyte Nuclear Factor 1α (HNF1α) and fucosyltransferase genes FUT6 and FUT8 influence N-glycan levels in human plasma. We show that HNF1α and its downstream target HNF4α regulate the expression of key fucosyltransferase and fucose biosynthesis genes. Moreover, we show that HNF1α is both necessary and sufficient to drive the expression of these genes in hepatic cells. These results reveal a new role for HNF1α as a master transcriptional regulator of multiple stages in the fucosylation process. This mechanism has implications for the regulation of immunity, embryonic development, and protein folding, as well as for our understanding of the molecular mechanisms underlying cancer, coronary heart disease, and metabolic and inflammatory disorders

    New handbook for standardised measurement of plant functional traits worldwide

    Full text link

    Clusters of alcohol abstainers and drinkers incorporating motives against drinking: a random survey of 18 to 34 year olds in four cities in four different continents

    Get PDF
    Objective: The aim of this analysis was to identify alcohol consumption clusters for adolescents and early adults according to attitudes to drinking, motivations against drinking and perceptions associated with alcohol. Method: Interviews were undertaken with people aged 18–34 years old living in four cities in different regions of the world. Multistage random sampling was consistent across the four cities (Ilorin (Nigeria), Wuhan (China), Montevideo (Uruguay) and Moscow (Russia)). The questionnaire was forward and back translated into relevant languages and face-to-face interviewing undertaken. The data were weighted to the population of each city. In total 6235 structured interviews were undertaken (1391 in Ilorin, 1600 in Montevideo, 1604 in Moscow and 1640 in Wuhan). Questions regarding motivation against alcohol consumption (14 items), assessing perceptions (3 items) and attitudes to drinking in certain situations (8 items) were asked of all respondents including abstainers. Factor analysis was initially undertaken to identify highly related correlated variables. Results: Cluster analysis provided a variety of clusters (Ilorin (3 clusters), Montevideo (5), Moscow (4) and Wuhan (4)). At least one cluster in each city was dominated by abstainers and another by heavy episodic drinkers. Variations by city and alcohol consumption patterns existed in regards to variables included. Conclusion: This analysis detailed the city specific motivations against drinking alcohol, and the attitudes towards alcohol consumption. Differences highlight the influence of country/city specific culture, customs, laws, societal norms and traditions

    Activation of the complement system generates antibacterial peptides

    No full text
    The complement system represents an evolutionary old and significant part of the innate immune system involved in protection against invading microorganisms. Here, we show that the anaphylatoxin C3a and its inactivated derivative C3a-desArg are antibacterial, demonstrating a previously unknown direct antimicrobial effect of complement activation. The C3a peptide, as well as functional epitopes in the sequence, efficiently killed the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, and the Gram-positive Enterococcus faecalis. In mice, a C3a-derived peptide suppressed infection by Gram-positive Streptococcus pyogenes bacteria. Fluorescence and electron microscopy demonstrated that C3a binds to and induces breaks in bacterial membranes. C3a was also found to induce membrane leakage of liposomes. These findings provide an interesting link between the complement system and antimicrobial peptides, which are two important branches of innate immunity
    corecore