1,131 research outputs found
Theoretical X-ray absorption spectroscopy database analysis for oxidised 2D carbon nanomaterials
In this work we provide a proof of principle for a theoretical methodology to identify functionalisation patterns in oxidised carbon 2D nanomaterials. The methodology is based on calculating a large number of X-ray absorption spectra of individually excited carbon atoms in different chemical environments using density functional theory. Since each resulting spectrum gives a fingerprint of the local electronic structure surrounding the excited atom, we may relate each spectrum to the functionalisation pattern of that excited atom up to a desired neighbourhood radius. These functionalisation pattern-specific spectra are collected in a database, that allows fast composition of X-ray absorption spectra for arbitrary structures in density functional theory quality. Finally, we present an exemplary application of the database approach to estimate the relative amount of functional groups in two different experimental samples of carbon nanomaterials
Recommended from our members
The Role of Crustal Magnetic Fields In Atmospheric Escape From Mars
Magnetic fields may have played an important role in shaping the planetary evolution of Mars. Through their ability to guide the flow of charged particles, magnetic fields facilitate both the input of energy and the escape of planetary ions, which at Mars has contributed to the loss of the planet's atmosphere over time. This atmospheric loss has been a primary driver of Martian evolution, altering the planet from one that sustained flows of liquid water to the cold, dry world we observe today.
In this thesis, I use data from the MAVEN spacecraft to characterize the magnetic field environment of Mars, placing a particular emphasis on how Martian crustal magnetic fields affect atmospheric escape.
Through measurements of electron pitch angle distributions and magnetic fields, I analyze magnetic topology throughout the Martian system, allowing us to determine where magnetic fields are providing avenues for energy input and ion escape at Mars. This work was then used as a foundation for the creation of a new technique for identifying magnetic topology at Mars.
I then perform studies of how Martian magnetic topology responds to changes in upstream solar wind conditions, namely solar wind pressure and interplanetary magnetic field direction. Solar wind conditions are expected to have been drastically different throughout solar system history, so an understanding of how magnetic fields at Mars respond to these conditions is needed in the context of interpreting long term evolution. I find that changes in solar wind pressure alter the morphology of crustal magnetic field structures, and that changes in upstream IMF cause local variations in topology on consistent, daily timescale.
Finally, I couple the previous works with direct measurements of escaping ions to estimate the influence that crustal magnetic fields have on atmospheric escape. I find that crustal fields typically inhibit ion escape from Mars, but that under certain conditions they can instead cause localized enhancements in escape. Comparisons with modeling results in the future may help determine precisely what conditions are necessary for this to occur.
Analysis of the Martian crustal magnetic fields may act as a gateway toward understanding the importance of planetary magnetic fields in general. As we begin to study more and more worlds throughout the universe, the work of this thesis could represent a small step toward characterizing the habitability of planets in general.</p
A zone of preferential ion heating extends tens of solar radii from Sun
The extreme temperatures and non-thermal nature of the solar corona and solar
wind arise from an unidentified physical mechanism that preferentially heats
certain ion species relative to others. Spectroscopic indicators of unequal
temperatures commence within a fraction of a solar radius above the surface of
the Sun, but the outer reach of this mechanism has yet to be determined. Here
we present an empirical procedure for combining interplanetary solar wind
measurements and a modeled energy equation including Coulomb relaxation to
solve for the typical outer boundary of this zone of preferential heating.
Applied to two decades of observations by the Wind spacecraft, our results are
consistent with preferential heating being active in a zone extending from the
transition region in the lower corona to an outer boundary 20-40 solar radii
from the Sun, producing a steady state super-mass-proportional
-to-proton temperature ratio of . Preferential ion heating
continues far beyond the transition region and is important for the evolution
of both the outer corona and the solar wind. The outer boundary of this zone is
well below the orbits of spacecraft at 1 AU and even closer missions such as
Helios and MESSENGER, meaning it is likely that no existing mission has
directly observed intense preferential heating, just residual signatures. We
predict that {Parker Solar Probe} will be the first spacecraft with a perihelia
sufficiently close to the Sun to pass through the outer boundary, enter the
zone of preferential heating, and directly observe the physical mechanism in
action.Comment: 11 pages, 7 figures, accepted for publication in the Astrophysical
Journal on 1 August 201
Recommended from our members
Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state
Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the structural, electronic and kinetic properties of liquid Ge2Sb2Te5 as a function of temperature by a combined experimental and computational approach. Understanding the properties of this phase is important to clarify the amorphization and crystallization processes. We show that the structural properties of the models obtained from ab initio and reverse Monte Carlo simulations are in good agreement with neutron and X-ray diffraction experiments. We extract the kinetic coefficients from the molecular dynamics trajectories and determine the activation energy for viscosity. The obtained value is shown to be fully compatible with our viscosity measurements
Infrequent Replication of Parvovirus B19 and Erythrovirus Genotypes 2 and 3 among HIV-Infected Patients with Chronic Anemia
We investigated the role that erythroviruses (parvovirus B19 and erythrovirus genotypes 2 and 3) play in the lives of immunosuppressed HIV-infected patients with chronic anemia. We screened the serum samples of 428 patients by specific ultrasensitive real-time polymerase chain reaction assay. Sixteen patients had circulating DNA, with no apparent clinical impact. Erythrovirus-associated anemia is an extremely rare event in HIV-infected patient
Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis.
Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis
An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses
The EuroVacc 02 phase I trial has evaluated the safety and immunogenicity of a prime-boost regimen comprising recombinant DNA and the poxvirus vector NYVAC, both expressing a common immunogen consisting of Env, Gag, Pol, and Nef polypeptide domain from human immunodeficiency virus (HIV)-1 clade C isolate, CN54. 40 volunteers were randomized to receive DNA C or nothing on day 0 and at week 4, followed by NYVAC C at weeks 20 and 24. The primary immunogenicity endpoints were measured at weeks 26 and 28 by the quantification of T cell responses using the interferon γ enzyme-linked immunospot assay. Our results indicate that the DNA C plus NYVAC C vaccine regimen was highly immunogenic, as indicated by the detection of T cell responses in 90% of vaccinees and was superior to responses induced by NYVAC C alone (33% of responders). The vaccine-induced T cell responses were (a) vigorous in the case of the env response (mean 480 spot-forming units/106 mononuclear cells at weeks 26/28), (b) polyfunctional for both CD4 and CD8 T cell responses, (c) broad (the average number of epitopes was 4.2 per responder), and (d) durable (T cell responses were present in 70% of vaccinees at week 72). The vaccine-induced T cell responses were strongest and most frequently directed against Env (91% of vaccines), but smaller responses against Gag-Pol-Nef were also observed in 48% of vaccinees. These results support the development of the poxvirus platform in the HIV vaccine field and the further clinical development of the DNA C plus NYVAC C vaccine regimen
Review on Superconducting Materials
Short review of the topical comprehension of the superconductor materials
classes Cuprate High-Temperature Superconductors, other oxide superconductors,
Iron-based Superconductors, Heavy-Fermion Superconductors, Nitride
Superconductors, Organic and other Carbon-based Superconductors and Boride and
Borocarbide Superconductors, featuring their present theoretical understanding
and their aspects with respect to technical applications.Comment: A previous version of this article has been published in \" Applied
Superconductivity: Handbook on Devices and Applications \", Wiley-VCH ISBN:
978-3-527-41209-9. The new extended and updated version will be published in
\" Encyclopedia of Applied Physics \", Wiley-VC
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
- …