879 research outputs found

    Likovna vzgoja: med prostorskim trajnostnim razvojem in podobo arhitekture

    Get PDF
    If we consider the role of education and its implications in the formation of a critical and conscious user of architecture, it is obvious that the development of educational strategies related to the sustainable development of our common space and environment becomes fundamental. Among the objectives of art education, we should consider our commitment with authentic and actual problems in our societies. One of them is the awareness of the characteristics of the built environment. Our cities are, in fact, the results of time-space plasters that function as units of spatial experiences in everyday life. The oldest buildings are iconic points of reference, and their simple presence produces a collection of unique meanings to the collective memory of a culture. Their demolition would in many cases injure the cities’ images and memory. The main question is how to develop programs at all educational levels to promote critical and responsible attitudes towards the common environment covering all the aspects that shape the concepts of sustainable spatial development. However, it is not possible to create strategies without proper information about the views of the students. The collection and analysis of this views is the main theme of the paper. It is supported by an empirical research on the image of architecture and the environment, held among secondary school students. The research is based on the idea that one of the most efficient critical attitudes towards the world would be to develop an unconditional connection of art work with “everyday life conditions” to promote the education of critical and responsible “perceivers” of the environment. (DIPF/Orig.

    Object approach computation by a giant neuron and its relation with the speed of escape in the crab Neohelice

    Get PDF
    Upon detection of an approaching object, the crab Neohelice granulata continuously regulates the direction and speed of escape according to ongoing visual information. These visuomotor transformations are thought to be largely accounted for by a small number of motion-sensitive giant neurons projecting from the lobula (third optic neuropil) towards the supraesophageal ganglion. One of these elements, the monostratified lobula giant neuron of type 2 (MLG2), proved to be highly sensitive to looming stimuli (a 2D representation of an object approach). By performing in vivo intracellular recordings, we assessed the response of the MLG2 neuron to a variety of looming stimuli representing objects of different sizes and velocities of approach. This allowed us to: (1) identify some of the physiological mechanisms involved in the regulation of the MLG2 activity and test a simplified biophysical model of its response to looming stimuli; (2) identify the stimulus optical parameters encoded by the MLG2 and formulate a phenomenological model able to predict the temporal course of the neural firing responses to all looming stimuli; and (3) incorporate the MLG2-encoded information of the stimulus (in terms of firing rate) into a mathematical model able to fit the speed of the escape run of the animal. The agreement between the model predictions and the actual escape speed measured on a treadmill for all tested stimuli strengthens our interpretation of the computations performed by the MLG2 and of the involvement of this neuron in the regulation of the animal's speed of run while escaping from objects approaching with constant speed.Fil: Oliva, Damian Ernesto. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; Argentin

    Differences in the escape response of a grapsid crab in the field and in the laboratory

    Get PDF
    Escape behaviours of prey animals are frequently used to study the neural control of behaviour. Escape responses are robust, fast, and can be reliably evoked under both field and laboratory conditions. Many escape responses are not as simple as previously suggested, however, and are often modulated by a range of contextual factors. To date it has been unclear to what extent behaviours studied in controlled laboratory experiments are actually representative of the behaviours that occur under more natural conditions. Here we have used the model species, Neohelice granulata, a grapsid crab, to show that there are significant differences between the crabs' escape responses in the field compared to those previously documented in laboratory experiments. These differences are consistent with contextual adjustments such as the availability of a refuge and have clear consequences for understanding the crabs' neural control of behaviour. Furthermore, the methodology used in this study mirrors the methodology previously used in fiddler crab research, allowing us to show that the previously documented differences in escape responses between these grapsid species are real and substantial. Neohelice's responses are delayed and more controlled. Overall, the results highlight the adaptability and flexibility of escape behaviours and provide further evidence that the neural control of behaviour needs to be address in both the laboratory and field context.Fil: Hemmi, J. M.. University of Western Australia; AustraliaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; Argentin

    Diversity in leadership: Australian women, past and present

    Get PDF
    This book provides a new understanding of the historical and contemporary aspects of Indigenous and non-Indigenous women’s leadership in a range of local, national and international contexts. Overview While leadership is an over-used term today, how it is defined for women and the contexts in which it emerges remains elusive. Moreover, women are exhorted to exercise leadership, but occupying leadership positions has its challenges. Issues of access, acceptable behaviour and the development of skills to be successful leaders are just some of them. Diversity in Leadership: Australian women, past and present provides a new understanding of the historical and contemporary aspects of Indigenous and non-Indigenous women’s leadership in a range of local, national and international contexts. It brings interdisciplinary expertise to the topic from leading scholars in a range of fields and diverse backgrounds. The aims of the essays in the collection document the extent and diverse nature of women’s social and political leadership across various pursuits and endeavours within democratic political structures

    Predation risk modifies behaviour by shaping the response of identified brain neurons

    Get PDF
    Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs Neohelice granulata from two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome.Fil: Magani, Fiorella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Luppi, Tomas Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Nuñez, Jesus Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Confessions of a hypocritical pastor

    Get PDF

    Brain modularity in arthropods: individual neurons that support “what” but not “where” memories

    Get PDF
    Experiments with insects and crabs have demonstrated their remarkable capacity to learn and memorize complex visual features (Giurfa et al., 2001; Pedreira and Maldonado, 2003; Chittka and Niven, 2009). Such abilities are thought to require modular brain processing similar to that occurring in vertebrates (Menzel and Giurfa, 2001). Yet, physiological evidence for this type of functioning in the small brains of arthropods is still scarce (Liu et al., 1999, 2006; Menzel and Giurfa, 2001). In the crab Chasmagnathus granulatus, the learning rate as well as the long-term memory of a visual stimulus has been found to be reflected in the performance of identified lobula giant neurons (LGs) (Tomsic et al., 2003). The memory can only be evoked in the training context, indicating that animals store two components ofthe learned experience, one relatedtothe visual stimulus and one relatedtothe visual context (Tomsic et al., 1998; Hermitte et al., 1999). By performing intracellular recordings inthe intact animal, we showthatthe ability of crabsto generalizethe learned stimulus into new space positions and to distinguish it from a similar but unlearned stimulus, two of the main attributes of stimulus memory, is reflected bythe performance ofthe LGs. Conversely, wefoundthat LGs do not supportthe visual context memory component. Our results provide physiological evidence that the memory traces regarding “what” and “where” are stored separately in the arthropod brain.Fil: Sztarker, Julieta. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; Argentin

    Functionalization of cotton with poly-NiPAAm/chitosan microgel: Part II. Stimuli-responsive liquid management properties

    Get PDF
    An innovative strategy for functional finishing of cotton involves application of stimuli-responsive surface modifying system based on temperature- and pH-responsive poly-NiPAAm/chitosan microgel. The stimuli-responsiveness implied to cotton is the consequence of swelling/collapse of the microgel particles incorporated to the fibre surface, which produces an active liquid management system. The performance of functionalized cotton fabric in terms of liquid management properties was assessed by choosing appropriate techniques (water uptake; thin-layer wicking; water retention capacity; and drying capability) and discussion of the results was based on the types of water that are expected to be present in hydrated cotton and stimuli-responsive microgel
    • 

    corecore