52 research outputs found

    A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells

    Get PDF
    Although there is now evidence that the expression of centromeric (CT) and pericentric (PCT) sequences are key players in major genomic functions, their transcriptional status in human cells is still poorly known. The main reason for this lack of data is the complexity and high level of polymorphism of these repeated sequences, which hampers straightforward analyses by available transcriptomic approaches. Here a transcriptomic macro-array dedicated to the analysis of CT and PCT expression is developed and validated in heat-shocked (HS) HeLa cells. For the first time, the expression status of CT and PCT sequences is analyzed in a series of normal and cancer human cells and tissues demonstrating that they are repressed in all normal tissues except in the testis, where PCT transcripts are found. Moreover, PCT sequences are specifically expressed in HS cells in a Heat-Shock Factor 1 (HSF1)-dependent fashion, and we show here that another independent pathway, involving DNA hypo-methylation, can also trigger their expression. Interestingly, CT and PCT were found illegitimately expressed in somatic cancer samples, whereas PCT were repressed in testis cancer, suggesting that the expression of CT and PCT sequences may represent a good indicator of epigenetic deregulations occurring in response to environmental changes or in cell transformation

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Lung cancer: A modified epigenome

    No full text
    Epigenetic is the study of heritable changes in gene expression that occur without changes in DNA sequence. This process is important for gene expression and genome stability and its disruption is now thought to play a key role in the onset and progression of numerous tumor types. The most studied epigenetic phenomena includes post-translational modifications in DNA and histone proteins as well as microRNAs expression. As epigenetic aberrations are potentially reversible, their correction has emerged as a potential strategy for the treatment of cancer. This review highlights the roles of chromatin epigenetic modifications and of microRNAs expression in lung tumorigenesis and discusses the emerging epigenetic therapies which are being developed for the treatment of lung cancer

    Activation of a Tip60/E2F1/ERCC1 network in human lung adenocarcinoma cells exposed to cisplatin

    Get PDF
    International audienceThe Tip60 and E2F1 proteins are key players of the cellular response induced by genotoxic stresses. Here, new insights into the involvement of both proteins during the DNA damage response are provided. We show that Tip60 interacts with E2F1 and promotes its acetylation. We identify the lysine residues 120/125 of the E2F1 protein as the prime target sites of Tip60 and show that acetylation at these sites promotes the accumulation of E2F1. Importantly, we demonstrate that cisplatin induces the accumulation of E2F1 in a Tip60-dependent manner. However, and in contrast to PCAF and p300, Tip60 is not required for the induction of apoptosis in cisplatin-treated cells. Instead, Tip60 and E2F1 are involved in the upregulation of the excision repair cross-complementation group 1 protein expression, an enzyme involved in the repair of cisplatin-induced DNA lesions. These findings identify Tip60 as a direct regulator of E2F1 and support their cooperative role in DNA repair
    corecore