60 research outputs found

    Temporal variations of vegetative features, sex ratios and reproductive phenology in a Dictyota dichotoma (Dictyotales, Phaeophyceae) population of Argentina

    Get PDF
    This paper addresses the phenology of a Dictyota dichotoma population from the North Patagonian coasts of Argentina. The morphology of the individuals was characterized, and analyses of the temporal variations of vegetative features, diploid and haploid life cycle generations and sex ratios are provided. Individuals, represented by growing sporophytes and gametophytes, occurred simultaneously throughout the year. Morphological variables showed temporal variation, except the width and height of medullary cells, which did not vary between seasons. All vegetative variables were significantly correlated with daylength. Besides, frond length, frond dry mass and apical and basal branching angles were significantly correlated with seawater temperatures. Vegetative thalli were less abundant than haploid and diploid thalli. Sporophytes were less abundant than male and female gametophytes. Male gametophytes dominated in May, August, October and January, and female gametophytes were more abundant in September, November, December, February and March. The formation of female gametangia showed a significant correlation with daylength, and the highest number of gametangia was registered in spring. In general, the male/female sex ratio varied between 1:2 and 1:1. Apical regions were more fertile than basal regions. Our data about frequency in the formation of reproductive structures and male/female ratios are the first recorded in the Dictyota genus and thus could not be compared with populations from other regions of the world. Significant morphological variation was observed in thalli of both life cycle generations, regarding length and dry mass, number of primary branches and branching basal angle. In general, all variables analyzed varied seasonally except cortical cell width.Fil: Gauna, Maria Cecilia. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Laboratorio de Ecología Acuática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); ArgentinaFil: Caceres, Eduardo Jorge. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Laboratorio de Ficología y Micología; ArgentinaFil: Parodi, Elisa Rosalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Laboratorio de Ecología Acuática; Argentin

    Adiciones a la flora de algas marinas bentónicas de El Hierro (islas Canarias)

    Get PDF
    Veinticinco especies de algas marinas bentónicas (cinco Cyanophyta, catorce Rhodophyta y seis Chlorophyta) son citadas por primera vez para la isla de El Hierro. Las especies fueron recolectadas en el eulitoral y el sublitoral en la zona de uso tradicional de la ‘Reserva Marina del Mar de Las Calmas’. Se presentan datos sobre el hábitat y la distribución regional de las especies.Twenty-five species of benthic marine algae (five Cyanophyta, fourteen Rhodophyta, and six Chlorophyta) are reported for the first time for the island of El Hierro. Species were collected in the eulittoral and sublittoral in the zone for traditional activities of the ‘Reserva Marina del Mar de Las Calmas’. Data concerning the habitat and the regional distribution of the species are presented

    Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.

    Get PDF
    The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent molecular data have revealed an unrecognized early-diverging lineage of green plants, the Palmophyllales, with a unique form of multicellularity, and typically found in deep water. The phylogenetic position of this enigmatic group, however, remained uncertain. Here we elucidate the evolutionary affinity of the Palmophyllales using chloroplast genomic, and nuclear rDNA data. Phylogenetic analyses firmly place the palmophyllalean Verdigellas peltata along with species of Prasinococcales (prasinophyte clade VI) in the deepest-branching clade of the Chlorophyta. The small, compact and intronless chloroplast genome (cpDNA) of V. peltata shows striking similarities in gene content and organization with the cpDNAs of Prasinococcales and the streptophyte Mesostigma viride, indicating that cpDNA architecture has been extremely well conserved in these deep-branching lineages of green plants. The phylogenetic distinctness of the Palmophyllales-Prasinococcales clade, characterized by unique ultrastructural features, warrants recognition of a new class of green plants, Palmophyllophyceae class. nov

    Evidence for deep phylogenetic conservation of exonic splice-related constraints:Splice-related skews at exonic ends in the brown alga <em>Ectocarpus</em> are common and resemble those seen in humans

    Get PDF
    The control of RNA splicing is often modulated by exonic motifs near splice sites. Chief among these are exonic splice enhancers (ESEs). Well-described ESEs in mammals are purine rich and cause predictable skews in codon and amino acid usage toward exonic ends. Looking across species, those with relatively abundant intronic sequence are those with the more profound end of exon skews, indicative of exonization of splice site recognition. To date, the only intron-rich species that have been analyzed are mammals, precluding any conclusions about the likely ancestral condition. Here, we examine the patterns of codon and amino acid usage in the vicinity of exon–intron junctions in the brown alga Ectocarpus siliculosus, a species with abundant large introns, known SR proteins, and classical splice sites. We find that amino acids and codons preferred/avoided at both 3′ and 5′ ends in Ectocarpus, of which there are many, tend, on average, to also be preferred/avoided at the same exon ends in humans. Moreover, the preferences observed at the 5′ ends of exons are largely the same as those at the 3′ ends, a symmetry trend only previously observed in animals. We predict putative hexameric ESEs in Ectocarpus and show that these are purine rich and that there are many more of these identified as functional ESEs in humans than expected by chance. These results are consistent with deep phylogenetic conservation of SR protein binding motifs. Assuming codons preferred near boundaries are “splice optimal” codons, in Ectocarpus, unlike Drosophila, splice optimal and translationally optimal codons are not mutually exclusive. The exclusivity of translationally optimal and splice optimal codon sets is thus not universal

    Contrasting Geographical Distributions as a Result of Thermal Tolerance and Long-Distance Dispersal in Two Allegedly Widespread Tropical Brown Algae

    Get PDF
    BackgroundMany tropical marine macroalgae are reported from all three ocean basins, though these very wide distributions may simply be an artifact resulting from inadequate taxonomy that fails to take into account cryptic diversity. Alternatively, pantropical distributions challenge the belief of limited intrinsic dispersal capacity of marine seaweeds and the effectiveness of the north-south oriented continents as dispersal barriers. We aimed to re-assess the distribution of two allegedly circumtropical brown algae, Dictyota ciliolata and D. crenulata, and interpret the realized geographical range of the respective species in relation to their thermal tolerance and major tectonic and climatic events during the Cenozoic.Methodology/Principal FindingsSpecies delimitation was based on 184 chloroplast encoded psbA sequences, using a Generalized Mixed Yule Coalescent method. Phylogenetic relationships were inferred by analyzing a six-gene dataset. Divergence times were estimated using relaxed molecular clock methods and published calibration data. Distribution ranges of the species were inferred from DNA-confirmed records, complemented with credible literature data and herbarium vouchers. Temperature tolerances of the species were determined by correlating distribution records with local SST values. We found considerable conflict between traditional and DNA-based species definitions. Dictyota crenulata consists of several pseudocryptic species, which have restricted distributions in the Atlantic Ocean and Pacific Central America. In contrast, the pantropical distribution of D. ciliolata is confirmed and linked to its significantly wider temperature tolerance.Conclusions/SignificanceTectonically driven rearrangements of physical barriers left an unequivocal imprint on the current diversity patterns of marine macroalgae, as witnessed by the D. crenulata–complex. The nearly circumglobal tropical distribution of D. ciliolata, however, demonstrates that the north-south oriented continents do not present absolute dispersal barriers for species characterized by wide temperature tolerances

    Dictyotaceae (Dictyotales, Phaeophyceae) species from French Polynesia: current knowledge and future research

    Get PDF
    The coral reefs of French Polynesia (FP) have experienced repeated macroalgal blooms over the last decades. These events have prompted intense efforts in fundamental and applied research on macroalgae in this ecoregion, especially regarding species of the order Fucales (Turbinaria ornata and Sargassum pacificum). Recently, however, these proliferations have occurred with a higher frequency, and they now involve additional species. Specifically, over the past decade, the abundance of species belonging to the Dictyotaceae family (e.g., Dictyota bartayresiana and Spatoglossum asperum) has increased on coral reefs around Tahiti Island, the largest and most inhabited island in FP. On the course of evolution, these species have developed physical and chemical defenses to deter grazers, including the production of a wide array of specialized metabolites. These molecules are of particular interest for their promising biological activities as well as for the new Blue Economy opportunities they can offer to FP. We review the current state of knowledge on the diversity, ecology, and potential uses of Dictyotaceae species present in FP. The first section focuses on the diversity and distribution of the family Dictyotaceae in FP. The second part examines the ecological dynamics of Dictyotaceae species in the coral reef ecosystem and their response to various environmental factors. The third and final part reviews the metabolites known from Dictyotaceae species that are present in FP, their associated biological activities, and potential for the development of biotechnological applications in FP

    Structural Color in Marine Algae

    Get PDF
    Structural colouration is widespread in the marine environment. Within the large variety of marine organisms, macroalgae represent a diverse group of more than 24,700 species. Some macroalgae have developed complex optical responses using different nanostructures and material compositions. In this review, we describe the mechanisms that are employed to produce structural colour in algae and provide a discussion on the functional relevance by analysing the geographical distribution and ecology in detail. In contrast to what is observed in the animal kingdom, we hypothesise that structural colour in algae predominantly functions for a non-communicative purpose, most likely protection from radiation damage, e.g. by harmful UV light. We suggest that the presence of structural colour in algae is likely influenced by local factors such as radiation intensity and turbidity of the water.Biotechnology and Biological Sciences Research Council (Grant ID: BBSRC David Phillips, 13 BB/K014617/1), European Research Council (Grant ID: ERC-2014-STG H2020 639088), Department of Chemistry, Cambridge (Philip and Patricia Brown Next Generation Fellowship), National Centre of Competence in Research “Bio-Inspired Materials”, Adolphe Merkle Foundatio
    corecore