42 research outputs found

    Letter of intent for KM3NeT 2.0

    Get PDF

    Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units: The KM3NeT Collaboration

    Get PDF
    KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV–PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232–3386 m seawater depth is obtained

    Letter of intent for KM3NeT 2.0

    Get PDF
    The main objectives of the KM3NeT Collaboration are ( i ) the discovery and subsequent observation of high-energy neutrino sources in the Universe and ( ii ) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: ( 1 ) the high- energy astrophysical neutrino signal reported by IceCube and ( 2 ) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure con- sisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the syner- gistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon ( France ) , Capo Passero ( Sicily, Italy ) and Pylos ( Peloponnese, Greece ) . The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three- dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely con fi gured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary fi eld of view, including the galactic plane. One building block will be densely con fi gured to precisely measure atmospheric neutrino oscillations. Original content from this work may be used under the ter

    Letter of intent for KM3NeT 2.0

    No full text
    The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations

    Sensitivity of the KM3NeT/ORCA detector to the neutrino mass ordering and beyond

    No full text

    Sensitivity of the KM3NeT/ORCA detector to the neutrino mass ordering and beyond

    No full text
    The KM3NeT collaboration is currently building a new generation of large-volume water-Cherenkov neutrino telescopes in the Mediterranean sea. Two detectors, ARCA and ORCA, are under construction. They feature different neutrino energy thresholds: TeV range for ARCA and GeV range for ORCA. The main research goal of ORCA is the measurement of the neutrino mass ordering and atmospheric neutrino oscillation parameters, while the detector is also sensitive to a wide variety of other physics topics, including non-standard interactions, sterile neutrinos and Earth tomography, as well as low-energy neutrino astronomy. This contribution will present an overview of the updated ORCA sensitivity projection to its main science objectives, including - but not limited to - the measurement of the neutrino mass ordering and oscillation parameters Future perspectives for ORCA to serve as far detector for a long baseline neutrino experiment with a neutrino beam from the U70 accelerator complex at Protvino in Russia will also be discussed

    Tuning parametric models of the atmospheric muon flux in MUPAGE to data from the KM3NeT detector

    No full text
    The muons produced by cosmic ray interactions in the upper atmosphere constitute the most abundant signal for underwater neutrino detectors such as KM3NeT (the Cubic Kilometre Neutrino Telescope), which is currently being deployed in the Mediterranean Sea at two distinct locations. Situated at different depths, the KM3NeT/ARCA and KM3NeT/ORCA detectors experience a different flux of muons, and thus are uniquely positioned to study their evolution and propagation from cosmic ray showers. It is imperative to the main physics goals of the experiment that the atmospheric muon background is modelled correctly, which aids in benchmarking and understanding the detector response to the constant flux of these particles. In this study, the data from the KM3NeT/ORCA detector is used and compared with the Monte Carlo (MC) prediction from the MUPAGE (MUons from PArametric formulas: a fast GEnerator for neutrino telescopes) software package, which generates the energy spectrum, lateral distribution, and muon multiplicity of muon bundles according to a specific parametrisation at different depths below sea level. This parametrisation consists of many free parameters which can be tuned such that simulated physical observables in the detector agree with those measured in data. In this way, improvements to the data-MC agreement are achieved by quantitatively comparing the level of agreement between simulated and measured observables in the KM3NeT detector

    Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector

    No full text
    Studying atmospheric neutrino oscillations in the few-GeV range with a multi-megaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1-20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice.[Figure not available: see fulltext.]

    Indirect dark matter searches with neutrinos from the Galactic Centre region with the ANTARES and KM3NeT telescopes

    No full text
    An anomalous flux of neutrinos produced in hypothetical annihilations or decays of dark matter inside a source would produce a signal observable with neutrino telescopes. As suggested by observations, a conspicuous amount of dark matter is believed to accumulate in the centre of our Galaxy, which is in neat visibility for the Mediterranean underwater telescopes ANTARES and KM3NeT. Searches have been conducted with a maximum likelihood method to identify the presence of a dark matter signature in the neutrino flux measured by ANTARES. Results of all-flavour searches for WIMPs with masses from 50 GeV/c2 up to 100 TeV/c2 over the whole operation period from 2007 to 2020 are presented here. Alternative scenarios which propose a dark matter candidate in the heavy sector extensions of the Standard Model would produce a clear signature in the ANTARES telescope, that can exploit its view of the Galactic Centre up to high energies. The presentation of Galactic Centre searches is completed with ongoing analyses and future potential of the KM3NeT telescope, in phased construction in the Mediterranean Sea

    Neutrino non-standard interactions with the KM3NeT/ORCA detector

    No full text
    KM3NeT/ORCA is a dense array that constitutes the low-energy branch of the KM3NeT project with the main goal of resolving the question of the neutrino mass ordering. At present, the KM3NeT/ORCA Phase 1 has already been deployed, which means that six out of the planned 115 detection lines are operational. Even with this limited configuration, neutrino oscillations can already be measured and studied. In this contribution, the sensitivity to the neutrino Non-Standard Interactions (NSI) parameter εμτ using the current stage of the KM3NeT/ORCA detector together with the projections for the final configuration are presented
    corecore