93 research outputs found

    Detection chain and electronic readout of the QUBIC instrument

    Get PDF
    The Q and U Bolometric Interferometer for Cosmology (QUBIC) Technical Demonstrator (TD) aiming to shows the feasibility of the combination of interferometry and bolometric detection. The electronic readout system is based on an array of 128 NbSi Transition Edge Sensors cooled at 350mK readout with 128 SQUIDs at 1K controlled and amplified by an Application Specific Integrated Circuit at 40K. This readout design allows a 128:1 Time Domain Multiplexing. We report the design and the performance of the detection chain in this paper. The technological demonstrator unwent a campaign of test in the lab. Evaluation of the QUBIC bolometers and readout electronics includes the measurement of I-V curves, time constant and the Noise Equivalent Power. Currently the mean Noise Equivalent Power is ~ 2 x 10⁻¹⁶ W/√Hz

    Detection chain and electronic readout of the QUBIC instrument

    Get PDF
    The Q and U Bolometric Interferometer for Cosmology (QUBIC) Technical Demonstrator (TD) aiming to shows the feasibility of the combination of interferometry and bolometric detection. The electronic readout system is based on an array of 128 NbSi Transition Edge Sensors cooled at 350mK readout with 128 SQUIDs at 1K controlled and amplified by an Application Specific Integrated Circuit at 40K. This readout design allows a 128:1 Time Domain Multiplexing. We report the design and the performance of the detection chain in this paper. The technological demonstrator unwent a campaign of test in the lab. Evaluation of the QUBIC bolometers and readout electronics includes the measurement of I-V curves, time constant and the Noise Equivalent Power. Currently the mean Noise Equivalent Power is ~ 2 x 10⁻¹⁶ W/√Hz

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    D´eveloppement du pipeline de mesure des modes B pour l’expérience QUBIC

    No full text
    QUBIC est une expérience au sol en cours de construction dont le but est de mesurer les modes-B primordiaux du fond diffus cosmologique en utilisant la technique innovante de l’interférométrie bolométrique. Grace à la fusion entre interférométrie et imagerie,QUBIC a une très bonne sensibilité et un excellent contrôle des effets systématiques instrumentaux. De plus, du fait de la dépendance en fréquence du lobe synthétique,QUBIC peut être utilisé comme un spectre-imageur. Ces points pris en compte, la sensibilité globale de QUBIC au rapport tenseur/scalaire est 0.012. L’objectif de cette thèse est de d´écrire le code d’analyse de données de QUBIC, depuis la fabrication de cartes`a partir des données temporelle jusqu’`a la séparation de composantes astrophysique, l’estimation du spectre de puissance angulaire et celle des paramètres cosmologiques.Les aspects essentiels de ce travail sont les suivants: la fabrication de carte qui est très inhabituelle vis à vis des autres projets du domaine et le développement de la stratégie de couverture du ciel pour QUBIC.QUBIC is a ground-based experiment aiming to measure the primordial B-modes, currently under construction, that uses the novel bolometric interferometry technique. Thanks to the fusion nature of QUBIC, it has very good sensitivity and excellent control of systematics. Moreover, the fact that the synthesized beam depends on the wavelength allows us to treat QUBIC as a spectro-polarimeter. These factors together give sensitivity on tensor-to-scalar ratio r 0.012. The goal of this thesis is to describe the pipeline of data analysis for QUBIC, from map-making of CMB from raw time-ordered data, through component separation and power spectra estimation to cosmological parameter estimation. The main accents of this work are: map-making, which is very unusual in comparison with other experiments in the field, and the development of scanning strategy for QUBIC

    A deep learning method for the trajectory reconstruction of cosmic rays with the DAMPE mission

    Full text link
    A deep learning method for the particle trajectory reconstruction with the DAMPE experiment is presented. The developed algorithms constitute the first fully machine-learned track reconstruction pipeline for space astroparticle missions. Significant performance improvements over the standard hand-engineered algorithms are demonstrated. Thanks to the better accuracy, the developed algorithms facilitate the identification of the particle absolute charge with the tracker in the entire energy range, opening a door to the measurements of cosmic ray proton and helium spectra at extreme energies, towards the PeV scale, hardly achievable with the standard track reconstruction methods. In addition, the developed approach demonstrates an unprecedented accuracy in the particle direction reconstruction with the calorimeter at high deposited energies, above a few hundred GeV for hadronic showers and above a few tens GeV for electromagnetic showers

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    Thermal architecture for the QUBIC cryogenic receiver

    No full text
    QUBIC, the QU Bolometric Interferometer for Cosmology, is a novel forthcoming instrument to measure the B-mode polarization anisotropy of the Cosmic Microwave Background. The detection of the B-mode signal will be extremely challenging; QUBIC has been designed to address this with a novel approach, namely bolometric interferometry. The receiver cryostat is exceptionally large and cools complex optical and detector stages to 40 K, 4 K, 1 K and 350 mK using two pulse tube coolers, a novel 4He sorption cooler and a double-stage 3He/4He sorption cooler. We discuss the thermal and mechanical design of the cryostat, modelling and thermal analysis, and laboratory cryogenic testing
    corecore