65 research outputs found

    Differential regulation of the zebrafish orthopedia1 gene during fate determination of diencephalic neurons

    Get PDF
    BACKGROUND: The homeodomain transcription factor Orthopedia (Otp) is essential in restricting the fate of multiple classes of secreting neurons in the neuroendocrine hypothalamus of vertebrates. However, there is little information on the intercellular factors that regulate Otp expression during development. RESULTS: Here, we identified two otp orthologues in zebrafish (otp1 and otp2) and explored otp1 in the context of the morphogenetic pathways that specify neuroectodermal regions. During forebrain development, otp1 is expressed in anterior groups of diencephalic cells, positioned in the preoptic area (PO) (anterior alar plate) and the posterior tuberculum (PT) (posterior basal plate). The latter structure is characterized by Tyrosine Hydroxylase (TH)-positive cells, suggesting a role for otp1 in the lineage restriction of catecholaminergic (CA) neurons. Disruptions of Hedgehog (HH) and Fibroblast Growth Factor (FGF) pathways point to the ability of SHH protein to trigger otp1 expression in PO presumptive neuroblasts, with the attenuating effect of Dzip1 and FGF8. In addition, our data disclose otp1 as a determinant of CA neurons in the PT, where otp1 activity is strictly dependent on Nodal signaling and it is not responsive to SHH and FGF. CONCLUSION: In this study, we pinpoint the evolutionary importance of otp1 transcription factor in cell states of the diencephalon anlage and early neuronal progenitors. Furthermore, our data indicate that morphogenetic mechanisms differentially regulate otp1 expression in alar and basal plates

    Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    Get PDF
    BACKGROUND: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity

    Community-Level Responses to Iron Availability in Open Ocean Plankton Ecosystems

    Get PDF
    Predicting responses of plankton to variations in essential nutrients is hampered by limited in situ measurements, a poor understanding of community composition, and the lack of reference gene catalogs for key taxa. Iron is a key driver of plankton dynamics and, therefore, of global biogeochemical cycles and climate. To assess the impact of iron availability on plankton communities, we explored the comprehensive bio-oceanographic and bio-omics data sets from Tara Oceans in the context of the iron products from two state-of-the-art global scale biogeochemical models. We obtained novel information about adaptation and acclimation toward iron in a range of phytoplankton, including picocyanobacteria and diatoms, and identified whole subcommunities covarying with iron. Many of the observed global patterns were recapitulated in the Marquesas archipelago, where frequent plankton blooms are believed to be caused by natural iron fertilization, although they are not captured in large-scale biogeochemical models. This work provides a proof of concept that integrative analyses, spanning from genes to ecosystems and viruses to zooplankton, can disentangle the complexity of plankton communities and can lead to more accurate formulations of resource bioavailability in biogeochemical models, thus improving our understanding of plankton resilience in a changing environment

    UNA MANO ALL’INTELLIGENZA

    Get PDF

    Des nageoires aux membres: l'apport de la génétique moléculaire du développement dans l'étude de l'évolution des morphologies chez les vertébrés

    No full text
    Over the past few years, several genes involved in the development of the tetrapod limbs have been isolated and characterized. Thus, it becomes possible to study some of the developmental mechanisms responsible for the morphogenesis of these complex structures through a novel approach. Alternatively, these genes can be used as tools to examine, at the molecular level, some aspects of the fascinating question of the fin to limb transition. Such an approach provides additional facts which illustrate both the similarities an differences in the morphologies of these homologous structures. In particular, the study of zebrafish (Danio rerio) Hox genes suggests a scenario for the fin-limb transition in which the distal parts of the autopods (the digits) are neomorphic structures produced by unequal proliferation of the posterior part of an ancestral appendix. Such an asymmetric morphogenesis could he the reason why tetra-pods have their major limb axes bent anteriorly, towards their distal ends, while the homologous fin axis extends straight from proximal to distal.Les cinq derniÚres années ont vu la découverte de plusieurs gÚnes impliqués dans la morphogenÚse des membres des tétrapodes, permettant une nouvelle approche des mécanismes responsables de l'ontogenÚse de ces structures complexes. En particulier, ces gÚnes peuvent servir d'outils pour réexaminer quelques aspects d'une des questions les plus discutées de ce siÚcle en paléontologie des vertébrés : le passage d'une nageoire ancestrale à des membres authentiques de tétrapodes, c'est-à-dire munis de ces éléments fascinants et indispensables que sont les doigts. Les comparaisons moléculaires entre poissons et mammifÚres renforcent le lien phylogénétique entre ces structures, pourtant d'apparence si différente, mais révÚlent également des différences fondamentales. En particulier, l'étude des gÚnes Hox d'un petit poisson téléostéen (le poisson-zÚbre, Danio rerio) suggÚre un schéma de transition nageoire-membre dans lequel les extrémités des mains et des pieds (les doigts) sont des structures néomorphes produites par prolifération inégale de la partie postérieure et distale d'une nageoire-membre ancestrale

    Primary genetic linkage maps of the ascidian, Ciona intestinalis

    Get PDF
    For whole-genome analysis in a basal chordate (protochordate), we used F1 pseudo-testcross mapping strategy and amplified fragment length polymorphism (AFLP) markers to construct primary linkage maps of the ascidian tunicate Ciona intestinalis. Two genetic maps consisted of 14 linkage groups, in agreement with the haploid chromosome number, and contained 276 and 125 AFLP loci derived from crosses between British and Neapolitan individuals. The two maps covered 4218.9 and 2086.9 cM, respectively, with an average marker interval of 16.1 and 18.9 cM. We observed a high recombinant ratio, ranging from 25 to 49 kb/cM, which can explain the high degree of polymorphism in this species. Some AFLP markers were converted to sequence tagged sites (STSs) by sequence determination, in order to create anchor markers for the fragmental physical map. Our recombination tools provide basic knowledge of genetic status and whole genome organization, and genetic markers to assist positional cloning in C. intestinalis

    Zebrafish <i>Hoxa</i> and <i>Evx-2</i> genes: cloning, developmental expression and implications for the functional evolution of posterior <i>Hox </i>genes

    No full text
    Vertebrate Hox genes are required for the establishment of regional identities along body axes. This gene family is strongly conserved among vertebrates, even in bony fish which display less complex ranges of axial morphologies. We have analysed the structural organization and expression of Abd-B related zebrafish HoxA cluster genes (Hoxa-9, Hoxa-10, Hoxa-11 and Hoxa-13) as well as of Evx-2, a gene closely linked to the HoxD complex. We show that the genomic organization of Hoxa genes in fish resembles that of tetrapods albeit intergenic distances are shorter. During development of the fish trunk, Hoxa genes are coordinately expressed, whereas in pectoral fins, they display transcript domains similar to those observed in developing tetrapod limbs. Likewise, the Evx-2 gene seems to respond to both Hox- and Evx-types of regulation. During fin development, this latter gene is expressed as the neighbouring Hox genes, in contrast to its expression in the central nervous system which does not comply with colinearity and extends up to anterior parts of the brain. These results are discussed in the context of the functional evolution of Hoxa versus Hoxd genes and their different roles in building up paired appendages

    Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya

    No full text
    International audienceSOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role
    • 

    corecore